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Abstract—One of the most crucial tasks for utility companies
is load forecasting in order to plan future demand for generation
capacity and infrastructure. Improving load forecasting accuracy
over a short period is a challenging open problem due to the
variety of factors that influence the load, and the volume of
data that needs to be considered. This paper proposes a new
approach for short term load forecasting using an effective new
combination of clustering and deep learning methods, along with
a new weighted aggregation mechanism. Our evaluation using
smart meter data from a publicly available real-life dataset
demonstrates the improved accuracy of our approach over
existing methods.

I. INTRODUCTION

The smart grid introduces the two-way flow of data between

electricity suppliers and customers. In this new system, cus-

tomers can play an important role in achieving energy savings

by modifying their electricity consumption pattern according

to the dynamic electricity market [1], and selling renewable

energy on an open market [2] through demand response

mechanisms. The demand response mechanism depends on

the convergence of accurate electric power load measurements,

renewable energy, and price forecasting. Therefore, a crucial

task for utility companies in this contest is load forecasting.

With accurate prediction of future demand, electric utilities can

make important decisions such as generating and purchasing

electric load, distributing and developing their infrastructure,

and optimizing load switching in order to manage their power

grid.

Any error in load forecasting can result in significant cost

increases for electricity suppliers and increase the chance of

unexpected blackouts or brownouts. In contrast, accurate load

forecasting can result in improvements to network reliability.

Therefore, trying to produce more accurate load forecasting

models has become a major research challenge for energy sup-

pliers, energy marketers, financial markets, and other parties

that contribute to electric power generation, distribution and

transmission.

Load forecasting has been widely studied since the 1970s.

Traditional methods introduced linear models for time-series

load forecasting, such as autoregressive (AR) and autore-

gressive with moving average (ARMA) models [3], [4]. A

comprehensive review on short term load forecasting can be

found in [5].

The Global Energy Forecasting Competition 2012 (GEF-

Com2012) brought together the state-of-the-art techniques for

energy forecasting and introduced the hierarchical forecasting

track. In [6], the authors summarize the methods used by

the participants in the GEFCom2012. It should be noted that

these forecasting competitions have focused on zonal level

demand forecasting, i.e., when predictions are made based on

aggregated data from large regions or zones of the power grid,

which comprise a large number of households. In contrast,

our focus is on demand forecasting for household level data,

where data is available from meters at individual households.

In particular, this raises the interesting challenge of whether

it is possible to improve forecasting accuracy by constructing

finer grained models for sets of similar households, compared

to coarse grained prediction models based on aggregate data

at zonal level.

Currently, nonlinear forecasting models have generally ob-

tained better accuracy than linear models. These nonlinear

models are based on machine learning methods such as neural

networks [7], support vector machines [8], and k-nearest

neighbours approaches [9]. Neural networks have been used

widely in load forecasting due to their ability to approximate

complex nonlinear relationships. However, neural network

methods have some potential drawbacks such as overfitting

of the model, sensitivity to random weight initialization, and

tendency to convergence to local optima. To address these lim-

itation of traditional neural networks, recently new approaches

called deep neural networks have been proposed. Deep belief

networks with many nonlinear levels can represent complex

features from their inputs [4], and obtain a more general model

with the ability to learn these complex features from the data.

In this paper, we propose a method for load prediction using

Hinton and Salakhutdinov’s deep belief nets (DBN), which are

a type of probabilistic generative neural network composed by

multiple layers of restricted Boltzmann machines (RBM) [10].

In this study, two forecasting methods, based on deep neural

networks and traditional neural networks, are proposed and

evaluated in terms of their prediction accuracy on real life

residential load data.

Key components of smart grid technology are smart meters,

which provide fine-grained energy consumption information

at sampling intervals of 15, 30 or 60 minutes. One of the

most promising applications for such large volumes of data
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from smart meters is to improve the accuracy of electrical

load forecasting. Typical methods for improving load forecasts

using the data generated from smart meters of individual

customers is based on the use of clustering [11], [12]. In this

approach, the knowledge about load consumption behaviour

of customers is used to improve the accuracy of forecasting.

Instead of developing a single forecasting model for the

accumulated load consumption of all customers, clustering

can be used to divide the customers into sub-populations with

similar demand profiles. Then, a forecasting model can be

provided for each cluster of customers according to their load

profile. Thus, a more accurate model can be provided for each

cluster, and then the load forecast for all consumers can be

obtained by combining the forecasts of these models. Applying

clustering as an initial step in electric load forecasting has

been the focus of several studies [13], [14]. The K-means

clustering method has been widely used in previous works for

this purpose [11], [15]. However, little attention has been paid

in previous studies to the choice of clustering method with the

aim of improving the aggregate level of forecasting accuracy.

In this paper, we show that the accuracy of load forecasting

depends not only on the load forecasting method, but also

on the accuracy of the clustering method and the accuracy of

extracting of the load pattern of each cluster. In addition, we

show that careful clustering of customers can result in smaller

forecasting error. We apply a time-series clustering algorithm

(k-shape clustering [16]) that aims to reduce the error in load

forecasting through more accurate assignment of individuals

to clusters based on their load consumption profile.

A. Contributions made in this paper

In this paper we propose a new method for load forecasting

which leads to improved accuracy of short term load forecast-

ing. We show that by appropriate choice of features we can

significantly improve the accuracy of forecasting. Moreover,

we study a time-series clustering method (K-shapes) that

can cluster consumers into the groups based on their load

consumption profiles, such that the accuracy of models based

on each K-shape cluster is more accurate than models based

on traditional K-means clustering. In addition, we implement

our proposed approaches on publicly available real-life data

and demonstrate the biggest improvement in accuracy is

achieved by applying both new approaches, i.e., applying

the new clustering method and the new forecasting method.

Moreover, in contrast to previous work [11], [15], [17] that

simply summed the forecasting results of each cluster to obtain

the final aggregate forecast, we introduce a new weighted

summation method for accumulating the forecasting results

of each cluster according to the size of their membership.

B. Paper Outline

In the next section, we briefly explain the existing methods

for aggregate-level load forecasting, and our new approach

for this problem. In Section III we discuss the new clustering

method (K-shape) that we use to identify sub-populations of

customers with similar behaviour. In Section IVwe explain the

use of shallow vs deep neural network methods for learning

load forecasting models. Then, in Section V we show our

experimental results based on real-life smart meter data, and

give a comparison of the results of our proposed method

against existing methods. Finally, in Section VI we conclude

our study and discuss some possible directions for future work.

II. METHODS

A. Smart Meter Dataset

The real-world smart meter records from the Commission

for Energy Regulation [18] are used in this paper. This dataset

was recorded in Ireland from July 14, 2009 to December 31,

2010 with more than 6000 Irish consumers at a resolution of 30

min. The dataset is divided in to three groups of consumers:

residential, small-to-medium enterprises, and others. In this

paper only the residential group of consumers are studied,

which include 3176 homes and 17 months of 30 minutes

interval data from August 2009 to December 2010. The

first 14 months were used as the training set. One month

was used for validation, and the model was tested through

the last two months of data. Through data pre-processing,

consumers with a large number of successive missing records

were eliminated. For consumers with single missing records,

linear interpolation between the records in the vicinity of the

missing ones was applied to complete the dataset. Moreover,

temperature data for the mentioned time periods was collected

from the website: wunderground.com. Using these data sets,

and applying the time-series clustering (K-shape) and deep

neural network methods, we aim to obtain the best prediction

accuracy for forecasting time horizons ranging from 30 min

to one day ahead.

B. Problem Statement

The smart meter records consist of a set of M consumers

x1, x2, ..., xM . The consumption history of consumer i can be

defined as xi = { x1
i , x2

i , ..., xT
i }, ∀i ∈ {1, 2, ..., M}, where

T is the total number of historical time periods and M is the

total number of consumers. Our aim is to predict the electrical

load consumption for the aggregated load of the network. The

total load consumption of the network can be represented as:

Xt
aggr =

M∑
i=1

xt
i, ∀t ∈ {1, 2, ..., T}. (1)

Three approaches for load prediction at the network level

have been reported in the literature. The first approach is a

completely aggregated method [17], which accumulates the

load consumption of all consumers that belong to the network

into a vector Xaggr = (X1
aggr, X

2
aggr, ..., X

T
aggr) and take

this as the input feature vector for forecasting. The second

method is a completely disaggregated method [17], which

applies load forecasting for individual consumers, and then

adds the individual predictions to obtain the prediction at

the aggregated level. The third method is a clustering based

forecast, where the consumers are divided into specific clusters

and then the sum of the load consumption over each cluster is
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taken, and finally a forecast for each group is generated and

these predictions for each cluster are accumulated. These three

models are illustrated in Fig. 1(a), (b) and (c). We propose a

different approach in this paper as a clustering based weighted

forecasting model, which is illustrated in Fig. 1(d).

The insight of using clustering to group the individual cus-

tomers is as follows. It is known that load forecasting for

individual customers is complicated because each household’s

load depends on a variety of factors. At the granularity of half

an hour, the energy consumed by a single house can fluctuate

widely, due to the dependency on the number of residents in

the home, the appliances that are used at the particular time,

the lifestyle of the people staying in the home, and so on.

Thus, accurate load prediction for an individual household can

be difficult due to the individual variations in consumption

patterns. To improve the overall accuracy of forecasting, an

alternative approach is to group households, and analyse the

aggregate level of consumption so that individual variations in

consumption will tend to cancel each other out. This grouping

can be achieved by the application of an appropriate clustering

method, such that households with a similar load time series

are grouped together, where the total noise in each cluster

would tend to cancel out.

We consider that by applying a clustering algorithm, k clus-

ters C={c1, c2, ...,ck} are obtained, so that each cluster of

households in C can then be used to train a neural network.

Therefore k prediction models FC={Fc1 , Fc2 , ...,Fck} are

generated from the k groups of consumers. To calculate the

final prediction for period of interest, some studies [11], [15]

simply take the sum over the predictions from the clusters as

follows:

Faggr =

k∑
i=1

Fci , (2)

This summation can be used to calculate the accuracy of the

forecast based on the mean absolute percentage error (MAPE):

MAPE =
100

T

T∑
t=1

| F
t
agrr −Xt

aggr

Xt
aggr

| . (3)

This approach works well if the clusters have similar sizes.

When the clusters have widely varying sizes, then better results

can generally be achieved by using a weighted summation of

the forecasts from each cluster. We can define these weights

according to the number of members in each cluster. Assume

that Nci is the number of consumers that belong to the cluster

ci, therefore the weight of the cluster ci can be defined as

Wci=
Nci

M
, where M is the total number of consumers. We

can then modify equations (2) and (3) as follows:

Fagrr,w =
k∑

i=1

Wci .Fci , (4)

Xagrr,w =

k∑
i=1

Wci .Xagrr,ci , (5)

where Xaggr,ci is the total load consumption of the consumers

that belong to cluster i. Now, we can define the mean absolute

percentage error as:

MAPE =
100

T

T∑
t=1

| F
t
agrr,w −Xt

aggr,w

Xt
aggr,w

| . (6)

C. Feature Selection

The load forecasting accuracy is influenced by a variety

of factors. While neural networks can fit highly non-linear

models, the selection of input variables, or features, is also

very important and has a major impact on the accuracy of load

prediction. Fig. 2 demonstrates the influence of human added

features on the overall model performance. We considered four

sets of features, namely, load variables, temperature variables,

time cyclic variables, and day-type variables. A separate neural

network is trained for each set of features, and the MAPE
of each network is shown in Fig. 2.

1) Load Features: Electrical load consumption usually ex-

hibits a daily periodicity pattern. In addition, load consumption

profiles in adjacent weeks exhibit strong positive correlations.

According to these characteristic we define six variables: load

at time t of the previous day, load at time t-30 minutes of

the previous day, load at the same day and same time of the

previous week, average load of the previous day, minimum

load of the previous day, and maximum load of the previous

day.

2) Temperature Features: The weather can have a major

impact on the electrical load consumption pattern. We have

defined seven features as temperature variables: the tempera-

ture at time t and the same time of previous day, maximum

and minimum temperature of the previous day, past 3 hours, 6

hours, and 24 hours average temperatures. Note that because

the weather data set is available for an hour granularity, linear

interpolations should be used for producing temperature data

every 30 minutes.

3) Time Cyclic Features: These features reflect the cyclic

characteristic of the time of day and the type of day. Cyclic

variables are extracted in order to capture the cyclic nature of

load time series [19]. By spectral analysis, the half day, day,

week and year periods have been identified as the dominant

frequencies of the load data [20]. For each frequency, a pair of

variables is considered to represent the corresponding cycles:

c1(t) = sin(
2πt

T
)

c2(t) = cos(
2πt

T
), (7)

where t is the time indicator of the half hourly granularity

sampling, which extends from 1 to 17520 for one year. The

variable T represents the cycle period that is equal 17520, 336,

48, and 24 for a year, a week, a day, and a half-day cycle,

respectively.

4) Type of Day Features: Discriminating between working

days and non-working days is also an important feature that

should be considered. The load analysis has shown that load

consumption on non-working days is lower than on working
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((a)) ((b)) ((c)) ((d))

Fig. 1. Different methods for network-level load forecasting. (a) Completely aggregated method. (b) Completely disaggregated method. (c) Clustering based
forecasting method. (d) Clustering based weighted forecasting method

days. The non-working days (weekends and national holidays)

and working days are represented by 0 and 1, respectively, as

the type of day variables.

The summary of the features that have been used for training

the neural networks are given as follows:

Load features = {L(t − 1dat), L(t − 1day − 30Minutes),
L(t− 1week), Lmax(t− 1day), Lmin(t− 1day), Lmean(t−
1day)}
Temperature features={T (t), T (t − 1day), Tmax(t − 1day),
Tmin(t − 1day), Tmean(t − 3hours), Tmean(t − 6hours),
Tmean(t− 24hours)}
Cycle Features = {cos( 2πt

336
), sin(

2πt

336
), cos(

2πt

48
), sin(

2πt

48
),

cos(
2πt

24
), sin(

2πt

24
), cos(

2πt

17520
), sin(

2πt

17520
)}

Type of day features = {weekdays, weekends and holidays}
where T refers to temperature and L refers to load.

Fig. 2. Mean absolute percentage error achieved using different types of
features

III. GROUPING SMART METERING DATA BASED ON

CONSUMPTION PROFILES

Recently, there have been a number of studies that segment

customers based on their electrical consumption as a prelude

to forecasting demand [5], [21]. This segmentation can be

performed using clustering methods on the smart meter data

from customers. As we shall see, this helps to achieve a deeper

understanding of the load profile characteristics as well as

greater prediction accuracy.

In contrast to these previous works, we apply a time series

approach to clustering the load consumption patterns of each

consumer based on the shape of their weekly profile. By

clustering the time series data, we can analyze its variations

over time in detail, and search for common profiles that can

be potentially useful for load prediction. Such profiles can

be extracted according to the shape of the load profiles. We

search for groups of customers that show similar behavior

over time. We use a time-series clustering approach that aims

to reduce the error in the aggregate forecast through suitable

assignment of individuals to clusters based on the shape of

their load profiles. In contrast to traditional clustering methods

such as K-means [6], [16], which tend to cluster customers

with similar average load levels, we require an approach

that clusters customers based on the similarity of their load

profile over the course of the day. These groups of customers

with similar consumption patterns can be used to achieve a

more accurate aggregate load forecast. We next describe the

clustering method we have used, which is called K-shape

clustering.

A. K-shape Clustering

Numerous clustering algorithms have been used for the load

prediction problem. Determining the best algorithm depends

greatly on the nature, purpose and mining objectives of the

dataset. In this paper, we use K-shape, an algorithm for time-

series clustering that can conserve the shapes of time-series

sequences [16]. This new time-series clustering algorithm

creates consistent and well separated groups of time-series. K-

shape considers the shape of the time series during clustering,

in contrast to traditional methods such as K-means, which

treat the observations in a time series as independent at-

tributes. This time-series clustering method uses a normalized,

domain-independent form of cross correlation as its distance

measure. Using this method, the K-shape algorithm derives a

shape-based distance measure for comparing the time series

efficiently and effectively. Then, based on the properties of

the shape-based distance measure, K-shape computes cluster

centroids, which are used in each iteration to capture shared

characteristics of the underlying data and update the assign-

ment of time series to clusters.

The extraction of a representative centroid for each cluster

is a challenging task that critically depends on the choice of

distance measure. By extracting the centroid, the clustering

algorithm can effectively summarize a set of time series in

terms of only one sequence, and extract the most representative

shape from the underlying data. Then, these extracted shapes

or centroids are used for clustering the time-series. The robust-

ness of K-shape clustering has been experimentally evaluated

against partitional methods like K-means, K-medoid, hier-

archical and spectral clustering methods, with combinations

of the most competitive distance measures [16]. It has been
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shown [16] that K-shape outperforms all of these approaches

in terms of accuracy on time series data. In this paper we

compare our results using K-shape and K-means methods,

and it will be shown in the experimental results section that

K-shape significantly outperforms K-means with respect to

clustering accuracy, and as a result forecasting accuracy.

In summary, the K-shape method groups sequences exhibit

similar patterns into the same cluster according to their shape

similarity, regardless of differences in amplitude and phase.

K-shape clustering is a domain-independent, accurate, and

scalable algorithm that uses a distance measure which is

invariant to scaling and shifting. This clustering method can

thus preserve the shapes of time-series sequences. The K-shape

clustering algorithm consists of three main components: (1) a

shape-based distance measure, (2) time series shape extraction,

and (3) shape-based time series clustering. We now give an

overview of each of these key components.

1) Shape-Based Distance: The first component is the Shape

Based-Distance, which is based on a cross-correlation mea-

sure. This algorithm derives a scale- and shift-invariant time-

series distance measure in a computationally efficient way.

Consider two sequences −→x = (x1, x2, ..., xm) and −→y =
(y1, y2, ..., ym). The similarity of these two sequences can be

determined as follows:

CCw(
−→x ,−→y ) = Rw−m(−→x ,−→y ), (8)

where CCw(
−→x ,−→y ) is the cross-correlation sequence with

length 2m− 1, and Rw−m(−→x ,−→y ) is computed as:

Rk(
−→x ,−→y ) =

⎧⎪⎨
⎪⎩

m−k∑
l=1

xl+k.yl : k ≥ 0

R−k(
−→y ,−→x ) : k < 0

(9)

For scaling invariance, this algorithm uses the Z-normalization

method, where each sequence −→x is transformed into −→x ′ =−→x − μ

σ
, where μ is the mean and σ is the standard devi-

ation. In order to address the shift invariance problem this

algorithm useS coefficient normalization, which generates val-

ues between [−1, 1]. By coefficient normalization, the cross-

correlation sequence is divided by the 5th geometric mean of

the autocorrelation of the individual sequences. So, we can

define the normalized cross-correlation coefficient NCCc as

follows:

NCCc(
−→x ,−→y ) =

CCw(
−→x ,−→y )√

R0(
−→x ,−→x ).R0(

−→y ,−→y )
. (10)

The goal is to find the position w where NCCc(
−→x ,−→y ) is

maximized. Thus the Shape Based Distance (SBD) can be

calculated as:

SBD(−→x ,−→y ) = 1−max
w

(NCCc(
−→x ,−→y )), (11)

which yields values between 0 to 2, with 0 indicating perfect

similarity for time-series sequences.

2) Time-Series Shape Extraction: The second component

of K-shape clustering is defining a centroid that summarizes

a set of time series. Extracting the shape of a set of time

series, which is able to capture the shared characteristics of the

underlying data, is a difficult task that depends on the SBD
distance measure. To achieve accurate shape extraction, this

algorithm casts centroid computation as an optimization prob-

lem, where the objective function is to find the maximizer μ∗k
of the squared similarities to all other time-series sequences.

So, we can formulate the optimization problem as follows:

−→μ ∗k = argmax
−→μ k

∑
−→xi∈Pk

(NCCc(
−→x ,−→μk))

2, (12)

where Pk is the kth partition and −→μ k is the initial centroid for

the kth partition. This equation uses the previously computed

centroid as a reference and aligns all time-series according

to this reference sequence in each iteration of the clustering

algorithm. To align the sequences with the reference sequence,

this algorithm uses the SBD measure, which identifies an

ideal shift for every −→xi ∈ Pk.

3) Shape-based Time-Series Clustering: The third and final

component is K-shape clustering, which relies on the SBD
distance measure and the shape extraction method to efficiently

produce clusters of time series. The K-shape clustering algo-

rithm takes the time series set X and the number of clusters

K as inputs. Then, this algorithm assigns the time series in

the set X to the K clusters randomly. In the next step, it

computes each cluster’s centroid using the Shape-Extraction

algorithm. Then once the centroids are computed, it refines

the memberships of the clusters by using the SBD distance

measure. The K-shape clustering algorithm repeats these steps

until the algorithm converges or reaches the maximum number

of iterations (usually a small number, such as 100). The

outputs of this algorithm are the assignment of the time-series

to clusters, and the centroids for each cluster which represent

the shared characteristics from the underlying data. In addition,

each centroid depicts the most representative shape of each

group, which is the load profile for each cluster.

IV. DEEP-LEARNING VS SHALLOW NEURAL NETWORK

BASED LOAD FORECASTING

Neural networks have been widely used for electric load

forecasting. this approach attempts to learn a complex nonlin-

ear relationship between the inputs and the outputs. Recently,

deep learning neural network theory has developed rapidly

and achieved improvements over traditional shallow neural

networks. Three aspects, namely, better parameter initializa-

tion techniques, having a large number of hidden layers and

better learning algorithms, have influences the success of deep

learning methods [22].

Shallow architectures with large hidden layers can suffer

from the over-fitting problem [23], [24]. In contrast, deep

architectures with a large number of hidden layers and many

levels of non-linearity can represent complex features from

their input, and learn these features with models that have

better generalization. Consequently, a shallow architecture can
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result in a model that does not generalise well, unless trained

with very large data sets, thus increasing the computational

resources required. Recent research has shown that when the

problem has highly nonlinear properties, deep networks can be

more efficient to train than shallow networks [22], [25], [26].

In general, deep architectures can include multiple layers of

representation and abstraction to help model and generalise

from a complex dataset. This enables deep architectures to

provide a compact representation for a much wider range

of functions than is possible using shallow architectures. A

thorough description of shallow and deep architectures is

presented in [27], and the interested reader is referred to that

paper for further information.

In this paper we use both the feed forward Multilayer Per-

ceptron (MLP) and the Restricted Boltzman Machine (RBM)

models for load prediction, and compare their results in terms

of prediction accuracy. In the following, we first briefly in-

troduce neural networks, and then introduce the deep learning

method based on the Restricted Boltzman Machine (RBM).

A. Artificial Neural Networks

We executed the tests using a feed forward multilayer

perceptron architecture with one input layer, two or three

hidden layers and one output layer. The input consists of a

vector of various features extracted from the load, temperature,

and calendar variables. Each hidden layer receives a vector of

inputs from the previous layer and converts it to its output vec-

tor using a linear transformation followed by a nonlinear acti-

vation function. Given a set of training data with corresponding

target values D = {(x(1), y(1)), (x(2), y(2)), ..., (x(T ), y(T ))},

for each pair (x(i), y(i)), x(i) is the input to the network and

y(i)is its label. The output state for each neuron, with Nc input

connections, can be calculated as:

y = fa

⎛
⎝

Nc∑
j=0

WiXi

⎞
⎠ , (13)

where Wi and Xi are the weight and input vectors respectively,

and fa is the activation function, which is the sigmoid function

in this study, fa(z) = sigmoid(z) =
1

1 + e−z
.

Let vector o(i) be the corresponding output of the neural

network and vector x(i) be the input feature vector. In training

the neural network, the output value o(i) should be close to

the actual label y(i). The network adjusts its weights to obtain

a good estimation of y(i) by minimizing the square error

function E =
1

2

T∑
t=1

(o(t)−y(t))2. In the optimization process,

the resilient backpropagation algorithm [28] is used, which is

based on the traditional backpropagation algorithm. In contrast

to traditional backpropagation, the resilient method can find

better network parameters and accelerate the optimization pro-

cess. In order to modify the weights of networks for finding a

local minimum of the error function, resilient backpropagation

allocates a separate learning rate for each weight, which can

be changed during the training process.

B. Deep-Learning Based on Restricted Boltzman Machine and
Deep Belief Networks

Neural networks with multiple hidden layers can be very

sensitive to initialization, which can lead to much better or

much worse results after training [29]. To reduce this sensitiv-

ity, Hinton et al. introduced a greedy layer-wise pre-training

method [27], [30] by a combination of Restricted Boltzman

Machines (RBM) to address the drawbacks of traditional

neural networks.

A Restricted Boltzmann Machine (RBM) can be defined as

a generative stochastic neural network model that learns a

probability distribution over the input vectors. The standard

type of RBM consists of binary-valued hidden units, visible

units, a matrix of weights Wjk corresponding to the link

between hidden unit hj and visible unit vk, and bias weights

ak and bj for the visible and hidden units, respectively. In

addition, the RBM is a special type of energy based model

that can be defined as:

E(v, h) = −hTWv − aT v − bTh

= −
∑
k

akvk −
∑
j

bjhj −
∑
jk

Wjkvkhj , (14)

where the joint distribution over the visible and hidden units

is defined by p(v, h) =
e−E(v,h)

Z
, where Z is a normalization

factor.

The visible and hidden units are conditionally independent

given one another. Accordingly, the conditional probabilities

p(h | v) and p(v | h) can be written as:

p(h | v) =
∏
j

p(hj | v)

p(v | h) =
∏
k

p(vk | h). (15)

If the values of v and h are limited to the set {0, 1}, the

conditional probabilistic model can be defined as:

p(hj = 1 | v) = sigmoid(bj +
∑
k

Wjkhk)

p(vk = 1 | h) = sigmoid(ck +
∑
j

Wjkhj). (16)

DBNs are multi-layer generative models that learn one layer

of features at a time from unlabelled data. The extracted

features are then treated as the input for training the next

layer. This efficient, greedy learning can be followed by fine-

tuning the weights to improve the generative or discriminative

performance of the whole network. There are a range of

advantageous properties that have been identified for DBNs

[27]: they can learn higher-level features that yield good

classification accuarcy; they are parametric models, whose

training time scales linearly with the number of records; and

they can use unlabelled data to learn from complex and high-

dimensional datasets.

DBNs are multilayer neural networks, where each layer is

typically made of RBMs and can be carefully pre-trained in
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an unsupervised, layer-by-layer method. Each larger of the

hierarchical network is trained in an unsupervised manner,

where the output of one layer becomes the input of the

next layer in a bottom-up manner. After the unsupervised

pre-training. The DBN uses supervised learning to precisely

adjust the network. DBN defines a joint probability distribution

between the input x and the hidden variables at layer i, hi, as

follows:

p(x, h1, . . . , hl) = (
l−1∏
j

p(hi−1 | hi))p(hl−1, hl), (17)

V. EXPERIMENTAL RESULTS

In this paper, we investigate the best clustering method for

grouping the load consumption data that comes from smart

meters at the household level, in order to improve the accuracy

of load forecasting at the network level. In addition, we study

the application of deep learning to improve the performance

of load forecasting. Moreover, we introduce a new method

for aggregating the forecast load for each cluster to derive a

network level load forecast that is more accurate than previous

methods [11], [15], [31]. To evaluate the effectiveness of

our method, a real-life smart meter dataset was used for

testing our approach. The Neural Network and Deep Neural

Network based forecasting models with K-shape and K-means

clustering methods were applied to the dataset.

For K-shape and K-means clustering, the average consumption

for each day of the week during the training period of interest

were obtained. In addition, for preprocessing the dataset, the

standard score normalization method was applied to normalize

the load into the range [0, 1]. Then, the data points were

arranged in a 3176-by-336 data matrix, where the dimension

of the matrix refers to the number of customers and the number

of features (48 segments per day for seven days of a typical

week). To determine the optimal number of clusters, the

MAPE at each granularity of the day for each day of the testing

period was calculated with the number of clusters varying from

2 to 8. Then, the average MAPE was calculated during the

whole testing period for varying numbers of clusters. Figs. 3, 4

show that the best accuracy for our dataset is obtained when

K = 5 clusters are used in both clustering methods (K-shape

and K-means). Using this value of K = 5, to compare the

accuracy of K-means with NN, K-shape with NN, K-means

with DNN and K-shape with DNN. In Fig. 5, it is shown that

K-shape with the DNN based forecasting model has the best

accuracy among the four proposed methods.

For both Neural Network and Deep Neural Network methods,

the features that were described in the section on feature

selection have been used. Tabel I shows the comparative results

between the proposed methods. We show the forecasting reults

for 24 hours ahead for each of the four methods, and it

can be seen that the method using K-shape clustering with

DNN has the highest forecasting accuracy for the aggregate

load. Based on the forecasting results, we have demonstrated

that by using our approach, load prediction accuracy can be

improved by effectively clustering the customers based on

their consumption pattern, and applying the forecasting model

that can better generalize over the dataset. Fig. 6 depicts the

average of weekly consumption at each cluster level during 14

months from August 2009 to September 2010. In this figure, it

is clear that each cluster has the specific load profile in terms

of the shape extraction in the K-shape clustering method.

Fig. 3. Average MAPE for one month (November 2010-December 2010) vs
lead times of 30 min ahead, 1 h ahead, 2 h ahead, ..., 24 h ahead for different
numbers of cluster.

Fig. 4. Average MAPE for one month (November 2010-December 2010) vs
lead times of 30 min ahead, 1h ahead, 2h ahead, ..., 24h ahead for different
numbers of cluster.

Fig. 5. Average MAPE for one month (November 2010-December 2010) vs
lead times of 30 min ahead, 1h ahead, 2h ahead, ..., 24h ahead for different
proposed methods.
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TABLE I. Mean Absolute Percentage Error for different clustering and
forecasting methods for lead time 24hours ahead in November 2010 -
December 2010

Methods Average MAPE%
K-shape clustering+DNN 2.15%
K-means clustering+DNN 2.55%
K-shape clustering+NN 2.98%
K-means clustering+NN 3.33%

Fig. 6. Normalized load profiles extracted by K-shape clustering when K=5,
the optimal number of clusters.

VI. CONCLUSION

We present a new approach to the problem of short term

load forecasting by using deep neural networks, which provide

better generalization than traditional neural network models.

In addition, we show that by using an appropriate clustering

method we can further improve forecasting accuracy. Based on

an evaluation using real-life smart meter data, we have shown

that the best accuracy can be achieved when K-shape cluster-

ing is used in combination with deep neural network methods

for forecasting. In future work, we will focus on developing

dynamic clustering methods for real-time forecasting.
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