
Fuzzy c-Shape: A new algorithm for clustering
finite time series waveforms

Fateme Fahiman∗, James C.Bezdek†, Sarah M.Erfani†, Marimuthu Palaniswami∗ and Christopher Leckie†
∗Department of Electrical and Electronic Engineering, University of Melbourne, Australia

Email: ffahiman@student.unimelb.edu.au; palani@unimelb.edu.au
†Department of Computing and Information Systems, The University of Melbourne, Australia

Email: {jbezdek,sarah.erfani, caleckie}@unimelb.edu.au

Abstract—The existence of large volumes of time series data
in many applications has motivated data miners to investigate
specialized methods for mining time series data. Clustering is a
popular data mining method due to its powerful exploratory
nature and its usefulness as a preprocessing step for other
data mining techniques. This article develops two novel clus-
tering algorithms for time series data that are extensions of a
crisp c-shapes algorithm. The two new algorithms are heuristic
derivatives of fuzzy c-means (FCM). Fuzzy c-Shapes plus (FCS+)
replaces the inner product norm in the FCM model with a shape-
based distance function. Fuzzy c-Shapes double plus (FCS++)
uses the shape-based distance, and also replaces the FCM cluster
centers with shape-extracted prototypes. Numerical experiments
on 48 real time series data sets show that the two new algorithms
outperform state-of-the-art shape-based clustering algorithms in
terms of accuracy and efficiency. Four external cluster validity
indices (the Rand index, Adjusted Rand Index, Variation of
Information, and Normalized Mutual Information) are used to
match candidate partitions generated by each of the studied
algorithms. All four indices agree that for these finite waveform
data sets, FCS++ gives a small improvement over FCS+, and in
turn, FCS+ is better than the original crisp c-shapes method.
Finally, we apply two tests of statistical significance to the three
algorithms. The Wilcoxon and Friedman statistics both rank the
three algorithms in exactly the same way as the four cluster
validity indices.

I. INTRODUCTION

Increasing large volumes of time series data are becoming
available from a diverse range of sources, including smart
phones, environmental sensors and biological devices. Tech-
niques for analyzing time series data include dimensional-
ity reduction [1], indexing [2], [3], and segmentation [4].
In addition, techniques have been developed to extract the
underlying shape or trends in the data, for tasks such as pattern
discovery [5]–[7], classification [8], [9], rule discovery and
summarization. An open challenge in time series analysis is
how to cluster a set of time series according to the similarity
of their underlying shape. The basic objective of this article
is to generalize the fuzzy c-means (FCM) model [10] to
accommodate clustering in finite time series data.

Most state-of-the-art approaches for shape-based clustering
suffer from two main drawbacks: (i) they are computationally
expensive and thus, not suitable for large volumes of data [6],
[7], [11], [12]; and (ii) these approaches are limited to specific
domains [12], or their effectiveness has only been evaluated
over a small number of datasets [7], [11].

k-Shape [13] is a novel method that has been proposed to
address the problem of finding a suitable distance measure
and clustering method for finite time series data, where time
series sequences belong to the same cluster, exhibiting similar
patterns, regardless of differences in amplitude and phase.
To demonstrate the robustness of k-Shape clustering [13],
the authors perform an extensive evaluation over 48 different
time series datasets and demonstrate the superiority of their
technique against fifteen existing schemes.

In this paper, we introduce two novel clustering algorithms.
The first substitutes the Shape Based Distance (SBD) measure
introduced in [13] for the model norm in the standard fuzzy
c-means [14] algorithm, and the second uses the SBD measure
and shape extraction method in [13] to update prototypes in the
fuzzy c-means clustering algorithm [14]. These two modifica-
tions result in 4.5% and 58.5% improvement respectively in
accuracy and efficiency in comparison to k-Shape clustering.
We make a direct comparison with the results reported in the
k-Shape paper, by evaluating our methods on the same UCR
time series classification archive [15], which consists of 48
labeled time series datasets from various real-world domains.

The rest of the paper is organized as follows: Section II
presents the relevant theoretical background on fuzzy c-means
and k-Shape clustering that are based of our two new algo-
rithms. Section III introduces our two novel clustering methods
FCS++ and FCS+. Section IV discusses the four external
cluster validity indices used for measuring the accuracy of
clustering methods. Section V evaluates our proposed methods
with extensive numerical experiments, and shows that our
algorithms outperform the crisp k-Shape clustering algorithm
in terms of accuracy and efficiency. Section VI contains our
conclusions and some future research directions.

II. PRELIMINARIES

In this section we review the relevant theoretical background
for our new clustering algorithms. In Section II-A, we review
fuzzy c-means clustering, which is the basis of our work. In
Section II-B, we introduce the shape-based distance (SBD)
[13]. Section II-C introduces a new method for assigning a
center to clusters based on the shape of the time series and
briefly explains the k-Shape clustering method [13].

978-1-5090-6034-4/17/$31.00 c©2017 IEEE

A. The Generalized Fuzzy c-Means Model

Crisp and fuzzy/probabilistic c-partitions of n objects are,
respectively, the sets of matrices defined as

Mfcn = {U ∈ <cn : for 1 ≤ i ≤ c, 1 ≤ k ≤ n; 0 ≤ uik ≤ 1;
c∑

i=1

uik = 1 ∀k;
n∑

k=1

uik > 0 ∀i} (1a)

Mhcn = {U ∈Mfcn : uik ∈ {0, 1}∀i, k}. (1b)

The Generalized Least Squares Error (GLSE) clustering
model is the constrained optimization problem

min(U,P){Jm(U,P ;X) =
n∑

k=1

c∑

i=1

(uik)m[∆(xk, pi)]
2}. (2)

In equation (2), m is a weighting parameter, m ≥ 1, U ∈
Mfcn, P = {p1, . . . , pc} is a set of cluster prototypes, and
[∆(xk, pi)]

2 is a measure of the squared error incurred by
representing input xk by prototype pi. Optimal partitions U∗

of X are taken from pairs (U∗, V ∗) that are local minimizers
of Jm.

There are dozens of instances of equation (2) for specific
choices of P and ∆. For example, the prototypes P may be
points, lines, planes, linear varieties [10], hyperquadrics [16],
or even regression functions [17]. The dissimilarity measure
∆ may be an inner product norm [10], a Minkowski norm
[18], or a shape-based distance [13] such as the one used in
this paper.

Theorem (1) (FCM) [14]: Let X = {x1, . . . , xn} ⊂ <p

contain at least c distinct points. Let P = V = {v1, . . . , vc} ⊂
<p, and A be a positive-definite norm inducing p× p weight
matrix, ∆(xk, pi)

2 = ‖xk − vi‖2A = (xk − vi)TA(xk − vi) >
0 ∀i, k. If m > 1, then (U, V) ∈Mfcn ×<p may minimize
Jm(U, V ;X) only if

uik =




c∑

j=1

(‖xk − vi‖A
‖xk − vj‖A

) 2
m−1



−1

; 1 ≤ i ≤ c; 1 ≤ k ≤ n,

(3a)

vi =

n∑

k=1

umikxk/

n∑

k=1

umik; 1 ≤ i ≤ c. (3b)

It is also well known that when m = 1 the partition matrix
U is necessarily crisp, U ∈ Mhcn, and under the remaining
hypotheses in Theorem (1), that equation (2) reduces to the
classical hard c-means (HCM, or classical k-means) model
which was first discussed by Lloyd in [19].

Theorem (2) (HCM) [14] : Let X = {x1, . . . , xn} ⊂ <p

contain at least c distinct points, P = V = {v1, . . . , vc} ⊂ <cp

, and m = 1. If ∆(xk, pi)
2 = ‖xk − vi‖2A > 0 ∀i, k, then

(U, V) ∈ Mfcn × <cp may minimize J1(U, V ;X) only if
U ∈Mhcn is a hard c-partition of X , and

uik =

{
1 ‖xk − vi‖A < ‖xk − vj‖A∀j 6= i
0 otherwise

}
(4a)

vi =
n∑

k=1

uikxk/
n∑

k=1

uik; 1 ≤ i ≤ c (4b)

The content of Theorem (2) is often given by denoting the
partition U ∈Mhcn by its equivalent set-theoretic form,

X =
c⋃

i=1

Xi; � = Xi

⋂

i 6=j

Xj ;
c∑

i=1

| Xi |=
c∑

i=1

ni = n. Using

this representation, equations (4) take the alternate form

uik =

{
1 xk ∈ Xi

0 otherwise

}
; 1 ≤ i ≤ c, 1 ≤ k ≤ n (5a)

vi = v̄i =
∑

xk∈Xi

(
xk
ni

)
; 1 ≤ i ≤ c. (5b)

The advantage of using equations (4) instead of (5) is that
the role of the partition matrix U is clearly seen in the more
general fuzzy case. Note that (5a) labels each point in X
with the nearest prototype rule; and (5b) shows that the point
prototypes are none other than the geometric centroids (sample
means) of the c clusters in X .

There are various ways to estimate solutions for the GLSE
problem (2) for the choice [∆(xk, pi)]

2 = ‖xk − vi‖2A. The
most popular method is Picard iteration through necessary
conditions (3) or (4). For the fuzzy case, these are first order
necessary conditions (FONCs, the gradient must vanish at
extreme points). For the crisp case, looping through conditions
(4) or (5) is sometimes called Lloyd iteration: (4b), (5b) is a
FONC, and (4a), (5a) is necessary, but not first order. This
method is summarized as Algorithm 1.

Algorithm 1 AO c-means for HCM and FCM

Input: X = {x1, . . . , xn} ⊂ <p

Output: (U, V)
1: Pick 1 < c < n : m ≥ 1 TM = iterationLimit

2: Model Norm: ‖ x− v ‖A=
√

(x− v)TA(x− v)

3: Et =| Jm(Ut, Vt)− Jm(Ut−1, Vt−1) |
4: 0 < ε = terminationCriteria
5: Guess V0 = {v10, . . . , vc0} ⊂ <cp

6: Calculate U0 with V0 and (3a) or (4a)
7: t = 1: E1 = bigNumber
8: while t < Tm and Et > ε do
9: Calculate Ut with Vt−1 and (3a) or (4a)

10: Calculate Vt with (3b) or (4b)
11: t = t+ 1
12: end while
13: (U, V)← (Ut, Vt)

Our interest is confined to three algorithms for clustering
finite time series in the special case when each xk ∈ X is a
vector of length p that represents a finite portion of a waveform
or time series. All three algorithms are ad hoc methods that

depend on equations (4) or (5) and use Algorithm 1 with
appropriate modifications to find approximate solutions.

B. Shape Based Distance

The quality of clustering in feature vector data almost
always depends on finding a good way to measure similarity
or distance between the items represented by the data. Most
of the extant literature on clustering in time series data
modifies a classic clustering algorithm such as k-means
by (i) substituting a suitable distance measure on the raw
data; or (ii) by extracting features from the data that convert
it into vectors that can be inserted directly into a classic
algorithm. This paper follows the approach taken in [13],
which concentrates attention on SBD as the distance of
choice for waveform clustering.

The new algorithms begin by modifying the GLSE model
at (2) by introducing the SBD, which is tailored to the time
series case to define ∆(xk, pi). Specifically, this distance is
introduced for a pair of z-normalized vectors x and y of
length p in Algorithm 2:

Algorithm 2 [13]: [dist, y′] = SBD(x, y)

Input: Two z-normalized sequences x, y ∈ <p

Output: Dissimilarity dist = SBD(x,y) ∈ <+;Aligned se-
quence y’ of y towards x

1: length = 2nextpower2(2∗length(x)−1)

2: CC = IFFT{FFT (x, length)∗FFT (y, length)}%(A)
3: NCCc = CC/ ‖ x ‖ . ‖ y ‖
4: [value,index] = max(NCCc)
5: dist= 1 - value % (B)
6: shift = index - length(x)
7: if shift ≥ 0 then
8: y’= [zeros(1,shift), y(1:end-shift)] %(C)
9: else

10: y’= [y(1-shift:end), zeros(1,-shift)] %(C)
11: end if

Notes about Algorithm 2 The z-normalization mentioned
in the input line is the standard (0, 1) statistical normalization.
Lines 2, 5, and 8 correspond to the following equations from
[13].
(A) CC(X,Y) = F−1{F(x)∗F(y)}, where F and F−1 are
forward (inverse) discrete Fourier transforms, ∗ is convolution.
(B) dist = SBD(x, y) = 1 −maxw{CCw(x, y)/‖x‖.‖y‖},
where w ∈ {1, 2, . . . , 2p− 1}; CCw(x, y) = Rw−p(x, y); and

Rk(x, y) =





p−k∑

j=1

xj+kyj ; k ≥ 0

R−k(x, y); k < 0





.

(C) x(s) =





(

|s|︷ ︸︸ ︷
0, . . . , 0, x1, . . . , xp−s); s ≥ 0

(x1−s, . . . , xp, 0, . . . , 0︸ ︷︷ ︸
|s|

); s < 0





.

Equation (C) shows how a sliding window passes

across a vector, while looking for the optimal alignment
between x and y. The inputs to Algorithm 2 are vectors in
<p, so the distance ‖xk − vi‖A in equations (4a) and (5a)
can be directly replaced by SBD(x, y), which is called a
distance in [13].

Paparrizos and Gravano argue in [13] that most of the
research on waveform clustering has used distances like
DTW to the exclusion of cross correlation (CC) between
time series because this time honored statistical method
suffers from normalization and registration issues. They
assert that to be useful, the data and the CC applied to
it must be appropriately normalized. The z-normalization
of the inputs to Algorithm 2 gives it scale invariance, and
takes care of inherent distortion in the data. They tackle
the normalization of CC with equations (A)-(C) that follow
Algorithm 2. Shift invariance is addressed by computing
CCw(x, y) = Rw−p(x, y), which maximizes CC at the best
match between x and y by testing each position offered
by the sliding window in equation (C). They discuss three
ways to normalize CC, but only use CCw, shown and used
here, which produces values in the closed interval [−1, 1].
Consequently, SBD(x, y) ∈ [0, 2], and it takes the value 0
when x and y are perfectly similar (corresponding to zero
distance, i.e., x = y). Efficiency of finding CCw is addressed
by using the discrete forward and inverse Fourier transforms
and padding the input data so its length is always a power
of 2. The overall complexity of Algorithm 2 is given as
O(plog(p)).

C. Shape Based Prototypes and k-Shape Clustering

The second major alteration of k-means introduced in [13] is
to compute prototypes that attempt to capture shape informa-
tion, based on the fact that input vectors represent finite time
series waveforms. To begin, we revisit equation (3a) for vi.
This prototype arises for FCM by zeroing the gradient of the
function Jm(U∗, V ;X) in the reduced optimization problem

minV ∈<cp

{
Jm(U∗, V ;X) =

n∑

k=1

c∑

i=1

(u∗ik)m‖xk − vi‖2A

}
.

(6)

U∗ is fixed in (6), and minimization of Jm(U∗, V ;X) is
unconstrained, so solving ∇viJm(U∗, V ;X) = 0 for vi leads
directly to (3a) in the fuzzy case, and (4a) in the crisp case.
When the distance in equation (6) is not an inner product norm,
Jm(U∗, V ;X) is generally not differentiable with respect to
vi. In this more general case, the reduced problem for the crisp
case (m = 1 in (6)) of the GLSE model becomes:

minv∈<p

{
J1(v;X) =

∑

xk∈Xi

∆(xk − v)2

}
. (7)

The method of solving (7), sometimes referred to as the Steiner
sequence problem [20], depends on the nature of the distance
function ∆(xk − v).Bypassing some intermediate steps given

in [13], (7) eventually becomes an instance of maximization
of the famous Rayleigh Quotient [21], viz,

vi = maxv∈<p

{
vTQTSQV

vT v

}
= maxv∈<p

{
vTMv

vT v

}
(8)

where M = QTSQ, Q = I − (1/p)[1], and [1] is the
p × p matrix of 1′s. The solution of (8) is the eigenvector
corresponding to the largest eigenvalue of the real symmetric
matrix M , which is computed in the last line of Algorithm 3,
which records this procedure as shown in [13].

Algorithm 3 [13]: Vi,t+1= Shape Extraction(X, vi,t)

Input: X = {x1, . . . , xn} ⊂ <p as a n× p matrix X whose
columns are z-normalized time series vectors. vi,t ∈ <p

is the reference sequence against which time series of X
are aligned

Output: vi,t ∈ <p % new ith shape prototype
1: X ′ ← []
2: for i = 1 to n do
3: [dist,x′] ← SBD(vi,t, X(i)) %Algorithm 2
4: X ′ ← [X ′;x′]
5: end for
6: S ← X ′T •X ′ %S, Eq (8)

7: Q ← I − 1

p
[1] %Q, Eq (8)

8: M ← QT • S • Q %M , Eq (8)
9: vi,t ← Eig(M, 1) %Extract 1stev

Now everything is in place for Papparrizos and Gravano to
define their k-Shape method, repeated here from [13].

III. FCS+ AND FCS++ CLUSTERING

The SBD algorithm, in conjunction with Theorem (1),
offers a way to immediately modify the basic FCM algorithm
for waveform inputs. We can replace the inner product
norm in Line 2 of Algorithm 1 with the SBD computed by
Algorithm 2. This results in our first heuristic generalization,
which we will call fuzzy c-Shape plus (FCS+). We have
added the ”+” to the acronym FCS so that you won’t confuse
this new shape-based distance algorithm with an older one
bearing the acronym FCS (fuzzy c-shells, [22]).

Note about Algorithm 5. The optional lines of Algorithm 5
harden the terminal fuzzy partition. This option is NOT
necessary, since there are soft versions of all four CVIs based
on the contingency matrix discussed in the next section [23].
However, we will use this option for FCS+ in our numerical
experiments so that the comparison of FCS+ to k-Shape
(which has only crisp partitioning) is equitable. Algorithm 4
represents the crisp partition of X that it produces as the
n × 1 label vector u (not bold in Algorithm 4). This is an
efficient way to carry the information in the crisp case. To
see how a fuzzy generalization would make sense, let us
represent the partition information possessed by the crisp
vector u as a matrix U ∈ Mhcn. For example, suppose the
output of Algorithm 4 is u = [12131], so there are c = 3 crisp

Algorithm 4 [13]: [u, V]= k-Shape(X, c)

Input: X = {x1, . . . , xn} ⊂ <p as a n× p matrix X whose
columns are z-normalized time series vectors: c is the
number of clusters produced

Output: u is a n×1 label vector that partitions X into c crisp
clusters. V is a c× p matrix containing c shape extracted
centroids of length p.

1: iter ← 0
2: u′ ← []
3: while u! = u′ and iter < 100 do
4: u′ ← u

% Refinement step
5: for j ← 1 to c do
6: X ′ ← []
7: for i← 1 to n do
8: if u(i)= j then
9: X ′ ← [X ′, X(i)]

10: end if
11: end for
12: v(j)← Shape Extraction (X ′; v(j)) %Algorithm3
13: end for

% Assignment step
14: for i← 1 to n do
15: mindist←∞
16: for j ← 1 to c do
17: [dist, x′]← SBD (v(j), X(i)) %Algorithm2
18: if dist < mindist then
19: mindist← dist
20: u(i)← j
21: end if
22: end for
23: end for
24: iter ← iter + 1
25: end while

Algorithm 5 FCS+
1: Replace: line 3 in Algorithm FCM with: 3 Model Norm:

SBD(x, v) ←‖ x− v ‖2A
2: Do: Algorithm 1
3: [optional] Harden U , line 13, Algorithm 1 with Eq(11)
4: [optional] Output: Hmm(U) ∈Mhcn

labels for n = 5 objects. The matrix representation for this u is

U =




1 0 1 0 1
0 1 0 0 0
0 0 0 1 0


 (9)

During the refinement step, Algorithm 4 will update the three
cluster centers by calling Algorithm 3 three times. Each
prototype update uses only the data vectors in its cluster,
illustrated graphically as follows:

U =




1 0 1 0 1
0 1 0 0 0
0 0 0 1 0




=⇒ v1,t → v1,t+1

=⇒ v2,t → v2,t+1

=⇒ v3,t → v3,t+1

(10)

Equation (10) shows how crisp membership in each cluster is
used to control which vectors in the data set are accessed dur-
ing the update procedure. At each j, lines 6-9 of Algorithm 4
picks out only the vectors in current cluster Xj (corresponding
to the 1’s in the jth row of U) and writes them into X

′
, so

when Algorithm 3 is called in line 12 of Algorithm 4, only
the points in Xj are sent to it via array X

′
to update the shape

based prototype for the jth cluster.
The representation of the partition produced by Algorithm 4

at (10) shows how to generalize the k-Shape algorithm to the
fuzzy case. Algorithm FCS+ produces a fuzzy U ∈ Mfcn,
which we can harden using the maximum membership func-
tion Hmm : Mfcn → Mhcn, which operates on the columns
of U. Hmm(U) = [h(U(1)) · · · h(U(n))] is a hardening of U
defined on the n columns {U(k)} of U as follows:

h(U(k)) = (0, 0, . . . , 1︸︷︷︸
ith

, . . .)T

⇐⇒
{

1 uik > ujk; j 6= i
0 otherwise

}
. (11)

In words: h replaces the largest value in each column of U
with a 1, and place 0’s in the other c−1 slots in each column
of U . When ties occur, assign the membership 1 arbitrarily
to any winner, and treat the other maximums as non-winners.
For example if we apply Hmm to the matrix

U ′ =




0.9 0.1 0.6 0.3 0.65
0.1 0.8 0.3 0.22 0
0 0.1 0.1 0.75 0.35


 (12)

the result is that Hmm(U
′
) = U , the matrix at (10).

Once this conversion is made, it is a simple matter to convert
Hmm(U

′
) back to the list form row by row, u←Hmm(U

′
),

required as one of the inputs to Algorithm 4. With this
conversion in hand, we can define the fuzzy c-Shape double
plus (FCS++) algorithm, where the first + stands for the use
of the SBD distance function (Algorithm 2), and the second
+ represents the use of SE prototypes via Algorithms 3 and
4.

IV. CLUSTER VALIDITY INDICES

The quality of our experimental outputs can be judged in
a number of ways. To make direct comparisons between the
k-Shape outputs in [13] to those found by FCS+ and FCS++,
we will follow [13] by using external cluster validity indices
(CVIs), which are functions that identify a ”best” member
amongst a set of candidate partitions CP = {U ∈ Mfcn :
cm ≤ c ≤ cM} of any set of O = {o1, . . . , on} of n objects.

Chapter 16 in [21] is an excellent source of general informa-
tion about CVIs.Here we briefly summarize the four external

Algorithm 6 FCS++
Input: X = {x1, . . . , xn} ⊂ <p

Output: (U, V)
1: Pick 1 < c < n : m ≥ 1 : TM= iteration limit
2: Model Norm: ∆(x, v) = SBD(x, v)
3: Error Norm: Et = ‖ Vt − Vt−1 ‖
4: 0 < ε = termination criterion
5: Guess V0 = {v10, . . . , vc0} ⊂ <cp

6: t = 1 : E1 = big number
7: while T < TM and Et > ε do
8: Calculate Ut with Vt−1 and (3a)
9: u← H(ut) %Harden Ut with Eq(11)

%SE Refinement step
10: for j ← 1 to c do
11: X ′ ← []
12: for i← 1 to n do
13: if u(i) = j then
14: X ′ ← [X ′, X(i)]
15: end if
16: v(j)← Shape Extraction (X ′; v(j)) %Algorithm3
17: end for
18: end for
19: Vt = [V (1)V (2) · · · v(c)]
20: t = t+ 1
21: end while
22: (U, V)← (ut, Vt) % U ∈Mhcn is crisp

validity indices we use to evaluate our algorithms.
Let U ∈ Mhrn, Q ∈ Mhcn and N = UQT (in general,

r 6= c). When a reference (ground truth) partition is available,
it will be Q in the transformation N = UQT . The matrix N
forms a contingency table between the two partitions, so is
sometimes called a contingency matrix. Given Q, we match
Q to candidate U ∈ CP using CV I(U | Q). The Rand index
[24], one of the first (and still most popular) crisp external
CVIs, is based on (4) paired comparison values derived from
the elements of N :

a =
1

2

r∑

i=1

c∑

j=1

nij(nij − 1); (13a)

b =
1

2




c∑

j=1

n2•j −
r∑

i=1

c∑

j=1

n2ij


 ; (13b)

c =
1

2




r∑

i=1

n2i• −
r∑

i=1

c∑

j=1

n2ij


 ; (13c)

d =
1

2


n2 +

r∑

i=1

c∑

j=1

n2ij − (
r∑

i=1

n2i• +
c∑

j=1

n2•j)


 . (13d)

CVIs are notoriously fickle, so we use four CVIs here based
on different combinations of the values in the contingency
matrices to see if they will all rank the three algorithms the

same way. The Rand Index (RI) is computed with these four
values as

RI(U | Q) =
(a+ d)

(a+ d) + (b+ c)
(14)

The numerator (a+d) is the number of agreements between
pairs in U and Q; (b + c) is the number of disagreements.
The RI is valued in [0, 1], taking its maximum if and only if
U = Q. So, the heuristic for this index is that the maximum
value of the RI over the partitions in CP points to the best
match among the candidates. We call such an index a max−
optimal CV I , indicated as (↑). Several adjustments of (14)
have been proposed in the literature that attempt to rectify the
tendency of the RI to increase monotonically with c. Of these,
the Adjusted Rand Index (ARI) of Hubert and Arabie [25] is
the most popular:

ARI(U | Q) =

(
a− (a+c)(a+b)

a+b+c+d

)

(
(a+c)+(a+b)

2 − (a+c)(a+b)
a+b+c+d

) . (15)

The ARI is also max-optimal (↑): it maximizes at 1, but
its minimum may be negative if the index is less than its
expected value of zero. The third external CVI we will use is
the variation of information (VI) introduced in [26]:

V I(U | Q) =−
r∑

i=1

c∑

j=1

nij
n
log

nij
n

−




r∑

i=1

c∑

j=1

nij
n
log

nij/n

(ni•/n)(n•j/n)


 . (16)

In equation (16) ni•, n•j are, respectively, the ith row and jth

column sums of the contingency matrix N .
The V I index is a metric valued in [0, log(n)] which takes

the value 0 when U = Q, so the heuristic for V I is to accept
the partition achieving the minimum value over CP : the V I
is min-optimal (↓).
The last external CV I we use is a form of mutual information,
which is normalized by a maximum calculation, so this index
bears the notation NMIM (U | Q):

NMIM (U | Q) =

r∑

i=1

c∑

j=1

nij
n
log

nij/n

(ni•/n)(n•j/n)

max{HS(U), HS(Q)} , (17)

where, for example, ni =

n∑

k=1

uik is the number of points

in the ith cluster in U , and HS(U) = −
r∑

k=1

c∑

i=1

ni
n
log

ni
n

is

Shannon’s entropy of U [21], and likewise for HS(Q).The
range of NMIM (U | Q) is [0, 1], and it is a max-optimal (↑)
CV I .

V. NUMERICAL EXPERIMENTS

We use the same 48 synthetic and real data sets that were
used in [13]. The 48 sets are all z-normalized, crisply labeled,
split into training and test sets, and are collected in the UCR
time series database [15].We ran the experiments for each
clustering method ten times for each data set. We implemented
the clustering methods in MATLAB R2014b (64bits) using
the platform: Intel(R) with core(TM)i7 processor and clock
speed at 3.60 GHz and 16 GB RAM.

Table I shows the grand averages over 480 trials for each
of the four crisp external CVIs. Each index was evaluated 10
times for different runs of FCS+ and FCS++ on each of the 48
labeled data sets. The ordering for the three algorithms is the
same for all four indices. Table I shows that FCS++ is slightly
better than FCS+, and in turn, FCS+ outperforms k-Shape
by a small margin for all four indices. This demonstrates
that the overall quality of both of the new fuzzy methods for
clustering waveform data is superior to the k-Shape algorithm
in [13].

TABLE I. Grand Average of (480) CVI values
(10 runs per data set x 48 data sets)

CVI Type Range FCS++ FCS+ k-Shape

RI (↑) [0, 1] 0.822 0.807 0.772

ARI (↑) [−a, 1] 0.461 0.403 0.321

NMIM (↑) [0, 1] 0.641 0.534 0.413

V I (↓) [0, logn] 1.010 1.463 2.455

Figure 1 compares each pair of methods graphically. Each
of the views 1(a), 1(b) and 1(c) plots the average values
of the Rand Index over 10 runs for each of the 48 data sets.
The dots represent the 48 data sets, and the coordinates of
each dot are the average values of the Rand index for the
algorithm pair in each view.
For example, the coordinates of points in Figure 1(a) are:
horizontal coordinate x = average RI value achieved by 10
runs of k-Shape; vertical coordinate y = average RI value
achieved by 10 runs of FCS+. There are 10 points below
the line y = x in Figure 1(a), 1 point on the line, and 37
points above the line. This means that FCS+ achieved a better
average result with the RI than k-Shape on 37 of the 48 data
sets, they were tied on one data set, and k-Shape had a better
average RI than FCS+ on 10 data sets. Figure 1(b) shows that
FCS++ is slightly better, with 38 data sets above the line.
And Figure 1(c) shows that FCS++ achieves a better result
than FCS+ on 38 of the 48 data sets.

Time complexity analysis: Assume that n and p
are the number and the length of the finite time series
respectively and c is the number of clusters. All three
algorithms use the SBD function to measure dissimilarity
between data points and centroids. The SBD function
requires O(plog(p)) time to calculate this measurement.
The implementation of FCM as shown in Algorithm 1
is O(npc2). k-Shape uses the k-means algorithm as its

((a)) FCS+ vs. k-Shape. Circles above the diagonal
indicate datasets for which FCS+ has a better
average Rand Index than k-Shape.

((b)) FCS++ vs. k-Shape. Circles above the diago-
nal indicate datasets for which FCS++ has a better
average Rand Index than k-Shape.

((c)) FCS++ vs. FCS+. Circles above the diago-
nal indicate datasets for which FCS++ has better
average Rand Index than FCS+.

Fig. 1. Comparisons of k-Shape, FCS+ and FCS++ : average RI values of ten runs over 48 data sets.

TABLE II. Average run time for 480 values of the Rand Index (48 data sets,
10 runs each)

Algorithm Ave. CPU Time (in seconds)

FCS+ 9.51

k-Shape 22.95

FCS++ 25.04

underlying clustering algorithm, where the time complexity
of k-means is O(npc). Now, the time complexity for the
FCS+ algorithm can be calculated as O(ncplog(p)) time.
In FCS++ and k-Shape clustering algorithms, there is a
refinement step, which for every cluster calculates matrix M
with O(p2) time complexity, and then computes an eigenvalue
decomposition on M with O(p3) time complexity. Therefore,
the complexity of the refinement step is O(max{np2, cp3}).
As a result, the per iteration time complexity of FCS++
and k-Shape are O(max{nc2plog(p), np2, cp3}) and
O(max{ncplog(p), np2, cp3}) time respectively. Thus, all
three algorithms are linear in the number of time series, and
the major portion of the computational cost rests with p, the
length of the time series.

Table II shows the average CPU time taken by each of the
three algorithms to evaluate the Rand index for 10 runs of
FCM on each of the 48 data sets. FCS+ takes roughly 9.5
secs per run, whereas the other two required about three times
that, FCS++ topping out at about 25 secs per run. This is
easy to understand: FCS+ does not use SE Algorithm 3, so it
is considerably less expensive computationally than the other
two algorithms. Overall, these algorithms are reasonable fast
for the 48 data sets used in our experiments.

Statistical analysis: We used two statistical tests that
assess the statistical significance of the performance of the
various methods. First, we perform pairwise comparisons
between different methods using the Wilcoxon signed-rank
test [27]. The test returns a ρ-value associated with each
comparison, representing the lowest level of significance of a
hypothesis that results in a rejection. This value can be used to
determine whether two algorithms have significantly different

performance and to what extent. For all the comparisons in
this study the significance level α is set to 0.05. Table III
summarizes these comparisons on all the accuracy results
from the three algorithms over 48 datasets. In the three
mentioned tables, the ρ-value is less than the significance
level (α = 0.05), which means that there is a significant
difference between the accuracy of algorithms. To illustrate,
consider the RI Accuracy, where the first row compares
k-Shape with FCS++. The sum of ranks for k-Shape is less
than the sum of ranks for FCS++. Therefore, the accuracy of
FCS++ is better than k-Shape clustering. Another statistical
test that enables us to compare the three clustering algorithms
is Friedman’s test [28]. The Friedman test is a non-parametric
statistical test for differences between groups. Figure 2 shows
the results of applying Friedman’s test to the three clustering
algorithms with respect to the three max optimal CVIs used
in our study. Friedman’s test supports the conclusions drawn
from Wilcoxon’s test, viz., that FCS++ is superior to FCS+,
which is in turn superior to k-Shape.

Fig. 2. Comparison for rankings of clustering accuracy methods for 3
metrics. The bars represent average rankings based on the Friedman test,
and the number on the top of the bars indicates the ranking of the algorithm,
from the best (1) to the worst (3) for each given measure. The ranking is
determined for all datasets and finally an average is calculated as the mean
of all rankings.

TABLE III. Wilcoxon test to compare three clustering methods in terms of accuracy based on RI , ARI , and NMIM validity method. R+ corresponds to
the sum of the ranks for the method on the left and R− for the right

RI Accuracy ARI Accuracy NMIM Accuracy

Method R+ R− ρ-value R+ R− ρ-value R+ R− ρ-value

k-Shape vs FCS++ 215 913 1.304e−04 66.5 1061.5 1.403e−07 75 1053 1.426e−07

k-Shape vs FCS+ 238 813 3.309e−04 154 897 6.848e−06 81 970 1.991e−07

FCS++ vs FCS+ 931 245 2.608e−04 1036.5 139.5 4.199e−06 1009 167 4.199e−05

VI. CONCLUSIONS AND FUTURE REASERCH

Two new fuzzy variants of k-Shape were defined. FCS+
arises by substituting SBD(xk, pi) for ‖ x − v ‖2A in FCM.
FCS++ is FCS+ with the additional substitution of SE V for
the prototypes in FCM. For FSC++, partitioning is adapted
to the k-Shape algorithm by hardening the fuzzy partitions
produced by FCM at each assignment step. We performed
the same experiments with 48 labeled waveform data sets that
were done using k-Shape in [13], and compared the two fuzzy
methods to k-Shape using four crisp external cluster validity
indices and two statistical tests of significance. All four indices
indicate that FCS++ performs somewhat better than FCS+,
and in turn, FCS+ is slightly superior to k-Shape. While
our numerical results are encouraging, they are by no means
definitive. More experiments are needed with other waveform
data, including unlabeled data. Another avenue of pursuit is
the theory: is SBD a metric? Is there any convergence theory
for k-Shape, FCS+ or FCS++? Moreover, any satisfactory
convergence theory has to overcome the fact that the SBD
and SE schemes are computer programs, not functions.

REFERENCES

[1] C. Ding, X. He, H. Zha, and H. D. Simon, “Adaptive dimension
reduction for clustering high dimensional data,” in Data Mining, 2002.
ICDM 2003. Proceedings. 2002 IEEE International Conference on.
IEEE, 2002, pp. 147–154.

[2] E. Keogh, “A decade of progress in indexing and mining large time
series databases,” in Proceedings of the 32nd International Conference
on Very Large Data Bases. VLDB Endowment, 2006, pp. 1268–1268.

[3] E. Keogh and C. A. Ratanamahatana, “Exact indexing of dynamic time
warping,” Knowledge and Information Systems, vol. 7, no. 3, pp. 358–
386, 2005.

[4] E. Keogh, S. Chu, D. Hart, and M. Pazzani, “Segmenting time series:
A survey and novel approach,” Data mining in time series databases,
vol. 57, pp. 1–22, 2004.

[5] E. Keogh and J. Lin, “Clustering of time-series subsequences is mean-
ingless: implications for previous and future research,” Knowledge and
Information Systems, vol. 8, no. 2, pp. 154–177, 2005.

[6] F. Petitjean, A. Ketterlin, and P. Gançarski, “A global averaging method
for dynamic time warping, with applications to clustering,” Pattern
Recognition, vol. 44, no. 3, pp. 678–693, 2011.

[7] W. Meesrikamolkul, V. Niennattrakul, and C. A. Ratanamahatana,
“Shape-based clustering for time series data,” in Advances in knowledge
Discovery and Data Mining. Springer, 2012, pp. 530–541.

[8] B. Hu, Y. Chen, and E. J. Keogh, “Time series classification under more
realistic assumptions.” in SDM. SIAM, 2013, pp. 578–586.

[9] C. A. Ratanamahatana and E. Keogh, “Making time-series classification
more accurate using learned constraints.” SIAM, 2004.

[10] J. C. Bezdek, Pattern recognition with fuzzy objective function algo-
rithms. Springer Science & Business Media, 2013.

[11] V. Niennattrakul and C. A. Ratanamahatana, “Shape averaging under
time warping,” in 6th International Conference on Electrical Engi-
neering/Electronics, Computer, Telecommunications and Information
Technology. ECTI-CON 2009., vol. 2. IEEE, 2009, pp. 626–629.

[12] J. Yang and J. Leskovec, “Patterns of temporal variation in online
media,” in Proceedings of the Fourth ACM International Conference
on Web Search and Data Mining. ACM, 2011, pp. 177–186.

[13] J. Paparrizos and L. Gravano, “k-shape: Efficient and accurate clustering
of time series,” in Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data. ACM, 2015, pp. 1855–1870.

[14] J. C. Bezdek, “Fuzzy mathematics in pattern classification,” 1973.
[15] E. Keogh, X. Xi, L. Wei, and C. A. Ratanamahatana, “The ucr time

series classification/clustering homepage,” URL= http://www. cs. ucr.
edu/eamonn/time series data, 2006.

[16] R. Krishnapuram, H. Frigui, and O. Nasraoui, “Fuzzy and possibilistic
shell clustering algorithms and their application to boundary detection
and surface approximation. i,” IEEE Transactions on Fuzzy Systems,
vol. 3, no. 1, pp. 29–43, 1995.

[17] R. J. Hathaway and J. C. Bezdek, “Switching regression models and
fuzzy clustering,” IEEE Transactions on Fuzzy Systems, vol. 1, no. 3,
pp. 195–204, 1993.

[18] L. Bobrowski and J. C. Bezdek, “c-means clustering with the l l and l
norms,” IEEE Transactions on Systems, Man and Cybernetics, vol. 21,
no. 3, pp. 545–554, 1991.

[19] S. P. Lloyd, “Least squares quantization in pcm,” IEEE Transactions on
Information Theory, vol. 28, no. 2, pp. 129–137, 1982.

[20] F. Petitjean and P. Gançarski, “Summarizing a set of time series
by averaging: From steiner sequence to compact multiple alignment,”
Theoretical Computer Science, vol. 414, no. 1, pp. 76–91, 2012.

[21] S. Theodoridis and K. Koutroumbas, “Pattern recognition–fourth edition,
2009.”

[22] R. N. Dave and K. Bhaswan, “Adaptive fuzzy c-shells clustering and
detection of ellipses,” IEEE Transactions on Neural Networks, vol. 3,
no. 5, pp. 643–662, 1992.

[23] D. T. Anderson, J. C. Bezdek, M. Popescu, and J. M. Keller, “Comparing
fuzzy, probabilistic, and possibilistic partitions,” IEEE Transactions on
Fuzzy Systems, vol. 18, no. 5, pp. 906–918, 2010.

[24] W. M. Rand, “Objective criteria for the evaluation of clustering meth-
ods,” Journal of the American Statistical Association, vol. 66, no. 336,
pp. 846–850, 1971.

[25] L. Hubert and P. Arabie, “Comparing partitions,” Journal of Classifica-
tion, vol. 2, no. 1, pp. 193–218, 1985.

[26] M. Meilă, “Comparing clusteringsan information based distance,” Jour-
nal of Multivariate Analysis, vol. 98, no. 5, pp. 873–895, 2007.

[27] F. Wilcoxon, “Individual comparisons by ranking methods,” Biometrics
Bulletin, vol. 1, no. 6, pp. 80–83, 1945.

[28] M. Friedman, “The use of ranks to avoid the assumption of normality
implicit in the analysis of variance,” Journal of the American Statistical
association, vol. 32, no. 200, pp. 675–701, 1937.

