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High-dimensional problem domains pose significant challenges for anomaly detection. The presence of
irrelevant features can conceal the presence of anomalies. This problem, known as the ‘curse of dimen-
sionality’, is an obstacle for many anomaly detection techniques. Building a robust anomaly detection
model for use in high-dimensional spaces requires the combination of an unsupervised feature extractor
and an anomaly detector. While one-class support vector machines are effective at producing decision
surfaces from well-behaved feature vectors, they can be inefficient at modelling the variation in large,
high-dimensional datasets. Architectures such as deep belief networks (DBNs) are a promising technique
for learning robust features. We present a hybrid model where an unsupervised DBN is trained to extract
generic underlying features, and a one-class SVM is trained from the features learned by the DBN. Since a
linear kernel can be substituted for nonlinear ones in our hybrid model without loss of accuracy, our
model is scalable and computationally efficient. The experimental results show that our proposed model
yields comparable anomaly detection performance with a deep autoencoder, while reducing its training
and testing time by a factor of 3 and 1000, respectively.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The growth in pervasive network infrastructure, such as the
Internet of Things (IoT), is enabling a wide range of physical
objects and environments to be monitored in fine spatial and
temporal detail [1,2]. A key challenge in the development of IoT
applications is how to model and interpret the large volumes of
high-dimensional data that are generated in such domains [2].
Further, the lack of ground truth (labels) in the data that are col-
lected from large-scale networks in the IoT require unsupervised
algorithms to process the data. Anomaly detection aims to detect
unusual behaviours caused by either faulty devices or events of
interest in the monitoring environment, and thus is of great
importance in IoT applications. However, a major challenge for
anomaly detection in such domains is how to cope with noisy,
large-scale datasets [3-6]. In this work we address this challenge
by proposing an unsupervised hybrid architecture for anomaly
detection in large-scale high-dimensional problem domains.

A core challenge for anomaly detection that distinguishes it
from other classification problems is that in many cases anomaly
. Erfani).
on Technology, Deakin Uni-
detection algorithms should be trained with unlabelled records,
i.e., trained in an unsupervised manner. Obtaining a large training
set of clean and labelled data is often a labour and time intensive
task. Moreover, anomaly detection becomes more challenging
when applied to high-dimensional datasets that contain a large
number of records. Many of the available methods for identifying
anomalies assume small datasets with low numbers of features.

High-dimensional datasets pose a challenge for anomaly
detection due to the following factors [7]: (i) Exponential search
space — The number of potential feature subspaces grows expo-
nentially with increasing input dimensionality, resulting in an
exponential search space. (ii) Data-snooping bias — Every point in a
high-dimensional space appears as an anomaly. Given enough
alternative subspaces, at least one feature subspace can be found
for each point such that it appears as an anomaly. (iii) Irrelevant
features — A high proportion of irrelevant features effectively
creates noise in the input data, which masks the true anomalies.
The challenge is to choose a subspace of the data that highlights
the relevant attributes.

Our objective is to find a large-scale, high-dimensional anomaly
detection algorithm that is robust, i.e., generates an accurate model
for data drawn from a wide range of probability distributions, and
is not unduly affected by small departures from the trained model.
In addition, it is desirable that the algorithm be efficient in terms

www.sciencedirect.com/science/journal/00313203
www.elsevier.com/locate/pr
http://dx.doi.org/10.1016/j.patcog.2016.03.028
http://dx.doi.org/10.1016/j.patcog.2016.03.028
http://dx.doi.org/10.1016/j.patcog.2016.03.028
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2016.03.028&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2016.03.028&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2016.03.028&domain=pdf
mailto:sarah.erfani@unimelb.edu.au
http://dx.doi.org/10.1016/j.patcog.2016.03.028


S.M. Erfani et al. / Pattern Recognition 58 (2016) 121–134122
of time complexity, memory complexity and the required number of
labelled records.

One-class Support Vector Machines (1SVMs) [8–10] are a
popular technique for unsupervised anomaly detection. Generally,
they aim to model the underlying distribution of normal data
while being insensitive to noise or anomalies in the training
records. A kernel function implicitly maps the input space to a
higher dimensional feature space to make a clearer separation
between normal and anomalous data. When properly applied, in
principle a kernel-based method is able to model any non-linear
pattern of normal behaviour. For clarity in the rest of the paper, the
notation of 1SVM is used to denote (an unsupervised) one-class
SVM; lSVMs — short for labeled SVM — to denote (supervised)
binary and multi-class SVM classifiers; and SVMs when both
1SVMs and lSVMs are considered.

SVMs are theoretically appealing for the following reasons
[11,12]: they provide good generalisation when the parameters are
appropriately configured, even if the training set has some bias;
they deliver a unique solution, since the loss function is convex;
and in principal they can model any training set, when an
appropriate kernel is chosen.

In practice, however, training SVMs is memory and time
intensive. SVMs are non-parametric learning models, whose
complexity grows quadratically with the number of records [13].
They are best suited to small datasets with many features, and so
far large-scale training on high-dimensional records (e.g.,
106 � 104) has been limited with SVMs [14]. Large numbers of
input features result in the curse of dimensionality phenomenon,
which causes the generalisation error of shallow architectures
(discussed in Section 2.1), such as SVMs, to increase with the
number of irrelevant and redundant features. The curse of
dimensionality implies that to obtain good generalisation, the
number of training samples must grow exponentially with the
number of features [14,4,15]. Furthermore, shallow architectures
have practical limitations for efficient representation of certain
types of function families [16]. To avoid these major issues, it is
essential to generate a model that can capture the large degree of
variation that occurs in the underlying data pattern, without
having to enumerate all of them. Therefore, a compact repre-
sentation of the data that captures most of the variation can
alleviate the curse of dimensionality as well as reducing the
computational complexity of the algorithm [16,17].

An alternative class of classification algorithms that have
emerged in recent years are Deep Belief Nets (DBNs), which have
been proposed as a multi-class classifier and dimensionality
reduction tool [18–20]. DBNs are multi-layer generative models
that learn one layer of features at a time from unlabelled data. The
extracted features are then treated as the input for training the
next layer. This efficient, greedy learning can be followed by fine-
tuning the weights to improve the generative or discriminative
performance of the whole network.

DBNs have a deep architecture, composed of multiple layers of
parameterised non-linear modules. There are a range of advanta-
geous properties that have been identified for DBNs [16]: they can
learn higher-level features that yield good classification accuracy;
they are parametric models, whose training time scales linearly
with the number of records; they can use unlabelled data to learn
from complex and high-dimensional datasets.

A major limitation of DBNs is that their loss function is non-
convex, therefore the model often converges on local minima and
there is no guarantee that the global minimum will be found. In
addition, DBN classifiers are semi-supervised algorithms, and
require some labelled examples for discriminative fine-tuning,
hence an unsupervised generative model of DBNs, known as
autoencoders, are used for anomaly detection.
The open research problem we address is how to overcome the
limitations of one-class SVM architectures on complex, high-
dimensional datasets. We propose the use of DBNs as a feature
reduction stage for one-class SVMs, to give a hybrid anomaly
detection architecture. While a variety of feature reduction
methods — i.e., feature selection and feature extraction methods —
have been considered for SVMs (e.g., [21–25] — see [26] for a
survey) none have studied the use of DBNs as a method for deep
feature construction in the context of anomaly detection, i.e., with
a one-class SVM. In this paper, we design and evaluate a new
architecture for anomaly detection in high-dimensional domains.
To the best of our knowledge, this is the first method proposed for
combining DBNs with one-class SVMs to improve their perfor-
mance for anomaly detection.

The contributions of this paper are two-fold. The performance
of DBNs against one-class SVMs is evaluated for detecting
anomalies in complex high-dimensional data. In contrast, the
reported results in the literature from DBN classification perfor-
mance only covermulti-class classification, e.g., [14,27–29]. A novel
unsupervised anomaly detection model is also proposed, which
combines the advantages of deep belief nets with one-class SVMs.
In our proposed model an unsupervised DBN is trained to extract
features that are reasonably insensitive to irrelevant variations in
the input, and a 1SVM is trained on the feature vectors produced
by the DBN. More specifically, for anomaly detection we show that
computationally expensive non-linear kernel machines can be
replaced by linear ones, when aggregated with a DBN. To the best
of our knowledge, this is the first time these frameworks have
been combined this way. The result of experiments conducted on
several benchmark datasets demonstrate that our hybrid model
yields significant performance improvements over the stand-alone
systems. The combination of the hybrid DBN-1SVM avoids the
complexity of non-linear kernel machines, and reaches the accu-
racy of a state-of-the-art autoencoder while considerably lowering
its training and testing time.

The remainder of the paper is organised as follows. Section 2
begins with an introduction to deep architectures and their strengths
and weaknesses compared to their shallow counterparts. Then it
reviews some of the leading 1SVM methods, and motivates the
requirements for the hybrid model by considering the shortcomings
of SVMs for processing large datasets. Section 3 presents our pro-
posed unsupervised anomaly detection approach DBN-1SVM. Section
4 describes the empirical analysis and provides a detailed statistical
comparison of the performance of autoencoder, 1SVM and DBN-
1SVM models on various real-world and synthetic datasets. It
demonstrates the advantages of the DBN-1SVM architecture in terms
of both accuracy and computational efficiency. Section 5 summarises
the paper and outlines future research.
2. Background

2.1. Shallow and deep architectures

Classification techniques with shallow architectures typically
comprise an input layer together with a single layer of processing.
Kernel machines such as SVMs, for example, are a layer of kernel
functions that are applied to the input, followed by a linear com-
bination of the kernel outputs. In contrast, deep architectures are
composed of several layers of nonlinear processing nodes. The
widely used form of the latter type of architectures are multi-layer
neural networks with multiple hidden layers.

While shallow architectures offer important advantages when
optimising the parameters of the model, such as using convex loss
functions, they suffer from limitations in terms of providing an
efficient representation for certain types of function families. In
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particular, shallow models have difficulties in representing func-
tions that capture dependencies in joint distributions, i.e.,
dependencies between multiple variables can be difficult to cap-
ture using a shallow architecture. They can also be inefficient in
terms of the required number of computational elements and
training examples. Consequently, a shallow architecture can result
in a model that does not generalise well, unless trained with a very
large number of examples and implemented with a sufficiently
large number of nodes, thus increasing the computational
resources required.

Deep architectures can include multiple layers of representa-
tion and abstraction to help model and generalise from complex
datasets. This enables deep architectures to provide a compact
representation for a much wider range of functions than is pos-
sible using shallow ones. In general, functions with a k-layer
architecture can provide a compact representation using a number
of hidden units that is polynomial in the number of input features,
whereas a ðk�1Þ-layer architecture requires an exponentially large
number of hidden units. Furthermore, these units are generally
organised in multiple layers so that many levels of computation
can be composed. A thorough description of shallow and deep
architectures is presented in [16], and the interested reader is
referred to this paper for further information.

2.2. 1SVM, DBN and hybrid DBN-1SVM

One-class SVMs are widely used for anomaly detection. Their
general approach is to implicitly map the data vectors from the
input space to the feature space by means of a non-linear kernel
function. The mapped vectors in the feature space are called image
vectors. Then a smooth surface or boundary is found in the feature
space that separates the image vectors into normal and anomalous
measurements. By using a Mercer kernel function [30], the data
vectors are implicitly mapped to a higher dimensional inner pro-
duct space without any knowledge of the mapping function. The
boundaries found in the implicit feature space usually yield a non-
linear boundary in the input space [10].

Supervised SVMs (lSVMs — for labelled SVMs) are not always
practical for anomaly detection, due to their need for labelled
training data that identifies both normal and anomalous records in
the dataset, or relying on “pure” normal data that are free of any
anomalies. Such training datasets are expensive to compile in
practice. Unsupervised anomaly detection approaches such as
one-class SVMs overcome this challenge by constructing a non-
linear model of normal behaviour, where data points that deviate
from the normal model are identified as anomalies. Recently,
several one-class SVM methods have been proposed for anomaly
detection and some of the state-of-the-art one-class SVM for-
mulations [8,9,31–35] are briefly described in the following.

Schölkopf et al. [31] proposed a hyperplane-based one-class
SVM, where image vectors in the feature space are separated from
the origin by a hyperplane with the largest possible margin. The
vectors in the half space containing the origin are identified as
anomalous. This scheme uses quadratic optimisation to fit a
hyperplane. Campbell and Bennett [36] formulated a linear pro-
gramming approach for the one-class SVM when used with a
radial basis function (RBF) kernel. This formulation is based on
attracting the hyperplane towards the average of the image data
distribution, rather than minimising the maximum norm distance
from the bounding hyperplane to the origin as in [31].

Tax and Duin [8] formulated the one-class SVM using a
hypersphere, where a minimum radius hypersphere is fixed
around the majority of the image vectors in the feature space. The
data vectors that fall outside the hypersphere are identified as
anomalies. The optimisation of the hypersphere formulation uses
quadratic programming. Further, Tax and Duin have shown that
the hyperplane-based one-class SVM becomes a special case of the
(equivalent) hypersphere-based scheme when used with a radial
basis kernel. Wang et al. [9] formulated the one-class SVM using
hyperellipsoids with minimum effective radii around a majority of
the image vectors in the feature space. This hyperellipsoidal for-
mulation involves two phases. First, the image vectors are parti-
tioned into a number of distinct clusters using Ward's algorithm
[37]. Second, the image vectors in each cluster are fixed with a
hyperellipsoid that encapsulates a majority of the image vectors in
that cluster. The image vectors that do not fall within any of the
hyperellipsoids are identified as anomalous. This problem is for-
mulated as a second order cone programming optimisation pro-
blem, imposing a greater computational requirement than quad-
ratic programming.

Laskov et al. [32] have observed the one-sidedness of the data
distribution in many practical applications, and exploited this
property to develop a special type of SVM called a one-class
Quarter-Sphere SVM (QSSVM). This is extended from the
hypersphere-based one-class SVM approach proposed by Tax and
Duin [8]. The QSSVM finds a minimal radius hypersphere centred
at the origin that encapsulates a majority of the image vectors in
the feature space [32]. Data vectors that fall outside the quarter
sphere are classified as anomalies. This problem is formulated as a
linear programming problem. In [35], a distributed approach is
presented using the QSSVM. In [33,34] a centred-hyperellipsoidal
one-class SVM is presented based on a linear programming
approach.

In contrast, deep belief nets are a relatively new type of multi-
layer neural network. A DBN is trained in an unsupervised way to
learn a hierarchical representation of the training data, which
corresponds to a high-dimensional manifold. DBNs are trained one
layer at a time, i.e., the latent variables at each layer are treated as
the input for training the next layer. This efficient, greedy layer-
wise training [38] can be followed by a stage of supervised fine-
tuning, e.g., adding softmax or a logistic regression classifier, to
improve the discriminative performance of the network. Semi-
supervised DBNs are commonly used for multi-class classification.
These methods have been shown to exhibit low complexity and
high classification performance on complex datasets, e.g., for
electroencephalography waveform clarification [39] and 3D object
recognition [40], in comparison to other (shallow) classifiers such
as SVMs.

DBNs have been demonstrated to be effective at learning
invariant features from complex and high-dimensional datasets.
While SVMs with their fixed kernel function can face difficulties in
learning complicated invariances, but can learn robust decision
surfaces when applied to well-behaved feature vectors. Given
these complementary strengths, it is appealing to investigate the
scope for using a hybrid model of these two architectures for
anomaly detection.

Hybrid DBN-lSVM methods (i.e., a DBN in combination with
labelled SVMs such as binary or multiclass SVMs) have been used
in several application domains, such as object classification [14],
text classification [27], music classification [29], face expression
recognition [41], and speech separation [42]. These studies have
observed that a hybrid model yields noticeable performance
improvement over the stand-alone methods for supervised classi-
fication, but have not considered unsupervised anomaly detection.
The next section presents our hybrid model that combines DBN
and one-class SVM architectures, called DBN-1SVM, for unsu-
pervised anomaly detection.

3. DBN-1SVM hybrid model

To benefit the complementary strengths of DBNs and kernel
machines, we propose a novel unsupervised hybrid architecture



Fig. 1. Model architecture of AE, DBN and the proposed hybrid DBN-1SVM.

Fig. 2. Comparing SVDD and PSVM. The figure on the left shows a simple dataset in
the input space. Normal records are represented with solid dots and anomalies
with crosses. The figures on the right show the data projected to a higher
dimensional space using two different 1SVM approaches.

S.M. Erfani et al. / Pattern Recognition 58 (2016) 121–134124
DBN-1SVM (see Fig. 1), in which a DBN is trained to extract fea-
tures that are relatively invariant to irrelevant variations in the
input, so that the 1SVM can effectively separate the normal data
from anomalies in the learned feature space. A DBN is trained as a
non-linear dimensionality reduction algorithm to transform the
high-dimensional data into a low-dimensional set of features [18].
The derived feature sets from the training samples form the input
to train the one-class SVM. Subsequently, a hybrid of the generated
models from these two algorithms constructs the ultimate
anomaly detection model and can be used for testing. Our
experiments show that this hybrid system not only improves the
detection rate significantly, but also alleviates the computational
complexity of training and testing.

In the following, we first describe the use of the DBN as a
dimensionality reduction algorithm, and then elaborate on how
the output of the DBN can be taken as input for a one-class SVM.
For the explanation below, two of the most common 1SVM algo-
rithms are chosen, a hypersphere-based 1SVM (known as Support
Vector Data Description (SVDD)) by Tax and Duin [8], and a Plane-
based 1SVM (PSVM) by Scholkopf et al. [31], see Fig. 2; corre-
spondingly, their hybrid models are referred to as a DBN-SVDD
(DSVDD) and a DBN-PSVM (DPSVM), respectively. Note that the
other types of 1SVMs that are described in Section 2 can also be
applied in a similar way to our hybrid model.
3.1. Deep belief nets (DBNs)

DBNs are multi-layer generative models that learn one layer of
features at a time from unlabelled data. Two significant properties
of DBNs are their ability to perform non-linear dimensionality
reduction on very large datasets and to learn high-dimensional
manifolds from the data.

A DBN can be trained efficiently in a greedy layer-wise fashion
by using a Restricted Boltzmann Machine (RBM). An RBM is a
bipartite graph, with visible units v representing observations and
hidden units h learning to represent features, i.e., it maps the input
vectors v from an input space of dimension n to a feature space of
dimension d¼ jhj , where don. Given a dataset Dm�n as input, an
RBM maps it to Xm�d. RBMs are restricted in the sense that there
are no connections between units at the same level, i.e., visible–
visible or hidden–hidden connections, and the two layers of the
graph are connected with symmetric weights W between pairs of
hidden and visible units.

As in the original Boltzmann machine architecture, the joint
distributions over hidden and visible vectors pðv;hÞ are defined in
terms of an energy function Eðv;hÞ, as pðv;hÞ ¼ e� Eðv;hÞ

Z , where Z is a
normalisation factor called the partition function and is calculated
as Z ¼Pv;he

�Eðv;hÞ. The energy of the joint configuration is deter-
mined with respect to the values of the network parameters
θ¼ ðW;b; cÞ, where b and c are biases to the hidden layer and
visible layers, respectively. The hidden layer h is binary, and the
hidden units are Bernoulli random variables, whereas the input
units can be either binary or real-valued. Assuming that the input
vectors are Gaussian random variables with variance σ, the energy
function for this Gaussian–Bernoulli RBM can be obtained as:

Eðv;hÞ ¼ 1
2

X
i

ðvi�ciÞ2�
X
j

bjhj�
X
i;j

wi;jvihj; ð1Þ

where vi and hj are the ith and jth units of the visible v and hidden
h layers with the symmetric weight of wi;j, respectively, and the
corresponding biases ci and bj. Given a binary hidden unit hj, since
there is no connection between hidden units it is straightforward
to calculate the conditional distribution pðhjvÞ,

pðhjvÞ ¼∏
j
pðhj jvÞ ¼∏

j
Sigm bjþ

X
i

wi;jvi

 !
; ð2Þ

and similarly since there is no connection between visible units,
pðvjhÞ factorises to

pðvjhÞ ¼∏
i
pðvi jhÞ ¼∏

i
N ciþ

X
j

wi;jhj;σ

0
@

1
A; ð3Þ
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where SigmðxÞ ¼ 1
1þ e� x is the logistic sigmoid function and N ðμ;σÞ

denotes a Gaussian distribution with mean μ and variance σ.
Training an RBM implies finding the values of the parameters θ

such that the energy is minimised. One possible approach aims at
maximising the log-likelihood of v that is estimated by its gradient
with respect to the model parameters,

∂ log pðvÞ
∂θ

¼ Epðhj vÞ
∂Eðv;hÞ

∂θ

� �
�Epðv j hÞ

∂Eðh; vÞ
∂θ

� �
: ð4Þ

Since an exact calculation of the second term of the log-
likelihood is intractable, the gradient can be estimated using a
method known as Contrastive Divergence (CD) [43]. CD approx-
imates the expectation through k iterations of Gibbs sampling
(often k¼1) to update the network weights, i.e.,

∂ log pðvÞ
∂wi;j

� vihj
� �0� vihj

� �k
; ð5Þ

where :h iI represents the average value at contrastive divergence
iteration I. After training an RBM, another RBM can be stacked on
top of the first one, i.e., the inferred states of the hidden units,
Xm�d, are used as the visible units for training the new RBM. The
upper layers can be a Bernoulli–Bernoulli RBM, in which the main
difference to the first layer lies in the binary visible units and the
energy function [44]. Stacking RBMs enables one to model the
significant dependencies between the hidden units of the earlier
RBM. More specifically, multiple layers of RBMs can be stacked to
produce different layers of non-linear feature detectors, which
represent progressively more complex statistical structure in the
data. In a stack of RBMs, the bottom-up recognition weights of the
resulting DBN are used to initialise the weights of a multi-layer
feed-forward neural network. This network can be employed as a
tool for dimensionality reduction, or topped with a logistic
regression layer and discriminatively fine-tuned by back-
propagation for classification.

3.2. One-class SVM

For the second stage of our DBN-1SVM architecture, we avoid
discriminative fine-tuning of the DBN and feed the output of the
last hidden layer (bottleneck) X to a one-class SVM (see Fig. 1).

3.2.1. Support vector data description (SVDD)
SVDD essentially finds the smallest possible hypersphere

around the majority of the training records, while leaving out
some points to be excluded as anomalies. Given X ¼ f
xl : l¼ 1;…;mg and XARd, SVDD finds the most tightly fitting
hypersphere that encompasses most of the data points, as shown
in Fig. 2. Denoting the centre of the hypersphere by a and its
radius by R, this hypersphere formulation involves solving the
following quadratic programming optimisation problem,

min
a; R; ξ

R2þ 1
mν

Xm
l

ξl

s:t: JϕðxlÞ�aJ2rR2þξl;

8 l¼ 1;…;m; ξlZ0: ð6Þ

The term ϕð:Þ is a non-linear function that maps data to a
higher dimensional space Rd-Rq, where doq. The term ν is a
user predefined regularisation parameter that governs the trade-
off between the size of the hypersphere and the fraction of data
points falling outside the hypersphere, i.e., the fraction of training
examples that can be classified as anomalies. The terms ξl,
l¼ 1;…;m, are the slack variables that allow some of the data
points to lie outside the hypersphere.
Let α¼ ½α1;…;αm�T and 0rαlr 1
mν. The dual problem for the

above primary problem in (6) is as follows

max
α

Xm
l ¼ 1

αlðxl � xlÞ�
X
l;t

αlαtðxl � xtÞ;

81r l; trm;

s:t: 0rαlr
1
mν

: ð7Þ

Maximising this optimisation (7) gives a set of αl. For the
training samples xl that satisfy the inequality
JϕðxlÞ�aJ2oR2þξl, the corresponding Lagrange multiplier will
be zero, i.e., αl ¼ 0. For examples that satisfy the equality
JϕðxlÞ�aJ2 ¼ R2þξl, the multiplier will become greater than
zero, i.e., α40. In summary,

JϕðxlÞ�aJ2oR2þξl;α¼ 0 inlier;

¼ R2þξl;0oαo 1
mν

border SVs;

4R2þξl;α¼ 1
mν

outlier:

The centre of the hypersphere is a linear combination of the
training examples, i.e., a¼PiðαixiÞ. Among the input vectors xl,
only those with αl40 (the support vectors (SVs)) are required.
After solving the above optimisation problem, a test instance z is
detected as an anomaly if its distance to a is larger than the radius
R,

JϕðzÞ�aJ24R2;

whereJϕðzÞ�aJ2 ¼ ðz � zÞ�2
X

αlðz � xlÞþ
X
l;t

αlαtðxl � xtÞ:

3.2.2. Plane-based one-class support vector machine (PSVM)
An alternative to SVDD for the hybrid model is a plane-base

1SVM (PSVM) [31,45]. PSVM identifies anomalies in the feature
space by finding a hyperplane that best separates the data from
the origin. In other words, the decision function of PSVM returns
þ1 in a region where most of the data points occur (i.e., where the
probability density is high), and returns �1 elsewhere. To separate
the data from the origin, PSVM solves the following quadratic
optimisation function:

min
s;ξ;ρ

1
2
JsJ2þ 1

mν

Xm
l ¼ 1

ξi�ρ

s:t: ðs � xlÞZρ�ξl;
8 l¼ 1;…;m; ξlZ0: ð8Þ

Since the non-zero slack variables ξl are penalised in the
objective function, the PSVM estimates a decision function f s;ρðxÞ
¼ sgnðs �ϕðxÞ�ρÞ that maximises the distance of all the data
points (in the feature space) from the hyperplane to the origin,
parameterised by a weight vector s and an offset ρ.

By introducing the Lagrange multipliers and setting the primal
variables s, ξ and ρ equal to zero, the quadratic program can be
derived as the dual of the primal program in Eq. (8):

min
α

1
2

X
lt

kðxl; xtÞ

s:t: 0rαlr
1
mν

;
X
l

αl ¼ 1: ð9Þ

Using the Karush–Kuhn–Tucker optimality conditions (KKT con-
ditions) the data vectors can be characterised in terms of whether
they fall below, above, or on the hyperplane boundary in the feature
space depending on the corresponding αi values. Data vectors with
positive αi values are the support vectors. Further, for 0oαio1=νn,
the data vectors fall on the hyperplane and hence ρ can be recovered
using these vectors, vis-a-vis ρ¼ 〈s;ϕðxiÞ〉¼

P
jαjkðxj; xiÞ. Therefore,
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the decision function can now be written as

f s;ρðxÞ ¼ sgnðs �ϕðxÞ�ρÞ ¼ sgnðαikðxi; xÞ�ρÞ: ð10Þ
4. Evaluation and discussion

This section evaluates the performance of the proposed hybrid
approaches through various experiments. More specifically the
aims of these experiments are as follows:

� Evaluate the effect of the choice of kernel on the performance of
1SVM-based methods (4.2).

� Compare the performance of DBN-1SVMs against the standa-
lone approaches (i.e., autoencoder, SVDD and PSVM), as well as
PCA-SVDD and PCA-PSVM (a hybrid model consisting of Prin-
ciple Component Analysis (PCA) and a 1SVM) on several high-
dimensional datasets. Note that PCA is used as a reference
feature extraction algorithm as it is one of the most prevalent
approaches used in conjunction with SVMs2 (4.3).

� Measure the effect of the network depth (number of hidden
layers) on the performance of DBN-1SVMs (Section 4.4).

� Determine the effect of the number of training records on the
performance of the hybrid model (Section 4.5).

� Assess the time- and memory-complexity of the hybrid models
(Section 4.6).

4.1. Experimental methodology

Experimental setup: DBN-based algorithms are implemented in
MATLAB with mini-batch learning, following the original scheme
in [18,19]. Each RBM was first individually trained using one step
Contrastive Divergence3 (k¼1) [43], to extract features, and used
the features to train the next layer. Training a network implies
finding parameters (network weight and bias) that minimise the
reconstruction error between the inputs x and the reconstruction
of x at the output x, lðx; xÞ ¼ Jx�x J2. Once the network was
trained, the learned parameter values were used as initialisation
values of a multilayer perceptron (MLP) with the same number of
inputs and outputs. Then the network was fine-tuned by gradient
descent to adjust the parameters. The whole process of pre-
training and fine-tuning was performed in an unsupervised
manner so far. When the autoencoder is used for anomaly detec-
tion, anomalies can be identified based on the history of the
squared error between the inputs and outputs for the training
records. Let e be the set of reconstruction error values of the xiAX,
where i¼ 1;…;m. If the reconstruction error for a test sample is
larger than the threshold τ¼ μðeÞþ3σðeÞ, where μðeÞ and σðeÞ are
the mean and standard deviation of the values in the set e,
respectively, then the record is identified as anomalous, otherwise
it is identified as normal.

When the network is used as a feature extractor, e.g., in the
hybrid model, its bottom half (i.e., a DBN) is used to extract feature
sets, which are then taken as input to train a one-class SVM in the
usual way. For the one-class SVMs (PSVM and SVDD) LIBSVM [48]
is employed, and for the PCA, the standard native MATLAB com-
mand princomp is used. For visualisation purposes, a tool called
2 Kernel-PCA (KPCA) is another well-known nonlinear approach that can also
be used as a dimensionality reduction tool. However, similar to other kernel-
machines, KPCA suffers from high computational complexity ðOðN3ÞÞ, i.e., it starts
by projecting data to a higher dimensional space. Moreover, the main difficulty in
KPCA is the choice of an appropriate kernel and the corresponding parameters,
where choosing an inappropriate kernel may lead to an increase in dimensionality
[46].

3 In this paper we follow the original scheme in [18,19,43] to train an RBM, but
other approaches like [47] can also be applied.
improved Visual Assessment of cluster Tendency (iVAT) [49] is
applied to help visualise the possible number of clusters in, or the
cluster tendency of, a set of objects. iVAT reorders the dissimilarity
matrix of the given set of objects so that it can display any clusters
as dark blocks along the diagonal of the image.

Datasets: The experiments are conducted on six real-life data-
sets and two synthetic ones. The real-life datasets are from the UCI
Machine Learning Repository: (i) Forest Adult Gas Sensor Array
Drift (Gas), Opportunity Activity Recognition (OAR), Daily and
Sport Activity (DSA), and Human Activity Recognition using
Smartphones (HAR), with dimensionalities of 54, 123, 128, 242,
3154 and 561 features, respectively. One synthetic dataset is the
“Banana” dataset, generated from a mixture of two banana shaped
distributions, which are randomly moved in 100 dimensions. The
other is a “Smiley” dataset, generated from a mixture of two
compact Gaussians and an arc shaped distribution, resembling an
smiley-face. The dataset contains 1000 dimensions and in any two
dimensions the components of the face are randomly moved. All
the records in each dataset are normalised between [0,1].

Although DBN-1SVMs are designed to overcome the challenges
that arise for anomaly detection in high-dimensional and large
datasets, the experiments are conducted on datasets with varying
numbers of dimensions and records, to assess the effect of data
size on their performance. In each experiment, 80% of records are
randomly selected for training and 20% for testing, and then,
respectively, mixed with 5% and 20% anomalous records, randomly
drawn from Uð0;1Þ [50]. Note that training is performed in an
unsupervised way, and labels are only used for testing.

The hyperparameters of DBN-based networks, learning rate
(for pretraining 0.001–0.01, for fine tuning 0.1–1), number of
epochs (for pretraining 5–10, for fine tuning 10–30), number of
hidden units ðd⪡nÞ, are set based on the best performance on a
validation set following [51]. The parameters of SVM based
methods are selected via a grid-search, width ν ð0�1Þ, and σ ð1�
1Þ for SVDD [8], and γ ð2�15;2�13;…;23Þ and C ð2�5;2�3;…;215Þ
for RBF kernel [52]. In the case of PCA the number of components κ
is set such that 95% of the variance is retained.

Metrics: The Receiver Operating Characteristic (ROC) curve and
the corresponding Area Under the Curve (AUC) are used to mea-
sure the accuracy of all the methods. The reported training/testing
times are in seconds based on experiments that were imple-
mented in MATLAB (2014b) and run on a machine with an Intel
Core i7 CPU at 3.40 GHz, 8 GB RAM and RAM frequency of
799.0 MHz. The training time for the hybrid methods, DBN-1SVMs
and PCA-1SVMs, includes the time to train the dimensionality
reduction algorithm, extracting features and training a 1SVM with
the features. The stated performance measures, AUC values and
training/testing times, are the average of 1000 iterations for each
experiment.

In the following reported results, the value given after the
headings of DBN-based methods (i.e., DBN1, DBN2, D1x, D2x, AE1
and AE3) indicates the number of hidden layers for the corre-
sponding experiment (e.g., DBN1 has one hidden layer, DBN2 has
two hidden layers). D1x and D2x are used as an abbreviation for
referring to the hybrid methods, e.g., DBN1-SVDD is presented as
D1SVDD. Note that all the autoencoders herein include an odd
number of hidden layers, while the hybrid methods may have any
number of hidden layers, for example, DBN2 corresponds to the
encoder part of AE3, see Fig. 1.

Statistical analysis: Statistical analysis is conducted to identify
statistical significance among the performance results obtained
4 DSA is a large dataset comprising the time series measurements from 45
wearable sensors for 19 activities. We select a portion of the time series for each of
the first 7 activities, yielding a total of 315 concatenated time series features.
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from the various methods. Non-parametric tests are chosen in this
paper, according to the recommendation made in [53–56], where
their use in the field of machine learning is strongly recom-
mended. These tests are conducted since the initial conditions that
guarantee the reliability of the parametric tests may not be satis-
fied, causing the statistical analysis to lose credibility with these
parametric tests [53].

Throughout the experiments several non-parametric tests are
considered. The Wilcoxon signed-rank test [57] is used to perform
pairwise comparisons between different methods. The Iman–
Davenport test [58] is used to detect statistical differences among
Table 1
Performance results. Training and testing times are in seconds, except for testing time
methods are only considered in Section 4.2 and not used in the subsequent tests in the la
the corresponding AUC over 1000 iterations.

Kernel Hybrid Method Metric Datasets

Forest Banana Adult

Linear PSVM AUC 0.83 0.77 0.81
AUCstd 70.07 70.11 70.08
Train 0.0046 0.0121 0.0073
Test 0.0018 0.0029 0.0036

SVDD AUC 0.83 0.78 0.81
AUCstd 70.05 70.13 70.07
Train 0.0743 0.2505 0.1880
Test 0.0019 0.0012 0.0015

RBF PSVM AUC 0.97 0.92 0.86
AUCstd 70.02 70.03 70.05
Train 0.0254 0.0464 0.0611
Test 0.0091 0.0085 0.0286

SVDD AUC 0.97 0.92 0.87
AUCstd 70.02 70.04 70.02
Train 0.0192 0.0201 0.0423
Test 0.0085 0.0986 0.0186

AE3 AUC 0.99 0.97 0.99
AUCstd 70.00 70.01 70.00
Train 0.3217 0.518 0.564
Test 0.0021 0.0035 0.0033

Linear PCA PSVM AUC 0.84 0.77 0.82
AUCstd 70.07 70.09 70.07
Train 0.0283 0.0507 0.0661
Test 0.0010 0.0089 0.0017

SVDD AUC 0.84 0.78 0.82
AUCstd 70.06 70.08 70.08
Train 0.1146 0.0338 0.1643
Testn 3.2717 0.0345 0.5154

RBF PCA PSVM AUC 0.96 0.94 0.88
AUCstd 70.02 70.03 70.06
Train 0.1034 0.0228 0.1320
Test 0.0176 0.0011 0.0240

SVDD AUC 0.96 0.94 0.89
AUCstd 70.01 70.04 70.05
Train 0.1156 0.1121 0.0654
Test 0.0088 0.0031 0.0018

Linear DBN2 PSVM AUC 0.99 0.99 0.98
AUCstd 70.00 70.00 70.01
Train 0.0768 0.0815 0.0898
Testn 0.0082 0.0095 0.0091

SVDD AUC 0.99 0.99 0.99
AUCstd 70.00 70.00 70.00
Train 0.0768 0.0815 0.0898
Testn 0.018 0.0397 0.145

RBF DBN2 PSVM AUC 0.98 0.99 0.99
AUCstd 70.00 70.00 70.00
Train 0.0903 0.1174 0.1256
Test 0.007 0.0105 0.0086

SVDD AUC 0.99 0.99 0.99
AUCstd 70.00 70.00 70.00
Train 0.0909 0.0974 0.1212
Testn 0.1213 0.1871 0.1434
a group of studied methods. If a significant difference was detected
then a post hoc test, the Shaffer test [59], is performed to identify
which methods are distinctive in an all-by-all comparison. The
post hoc test is conducted to examine if a hypothesis of a com-
parison of means could be rejected at a specified significance level
α. Therefore, the p-value associated with each comparison is
computed, representing the lowest level of significance of a
hypothesis that results in a rejection. This value allows one to
identify if two algorithms have significantly different performance
and to what extent. For all the comparisons in this study the sig-
nificance level α is set to 0.1.
rows marked with a n , which are in milliseconds. The results of the underscored
tter sections. The AUCstd value for each method represents the standard deviation of

Avg.

GAS OAR DSA Smiley HAR

0.89 0.87 0.78 0.75 0.80 0.8125
70.08 70.12 70.06 70.09 70.15 70.0887
0.0857 0.0722 0.0156 0.0605 0.0791 0.0421
0.0063 0.0067 0.0085 0.0086 0.0082 0.0058
0.89 0.87 0.79 0.74 0.80 0.8137
70.03 70.09 70.07 70.13 70.11 70.0850
0.3175 0.2764 0.8314 1.9246 1.6288 0.6864
0.0027 0.0004 0.0013 0.0025 0.0016 0.0016

0.91 0.90 0.85 0.79 0.87 0.8838
70.04 70.05 70.03 70.08 70.09 70.0488
0.0606 0.0475 0.1516 1.0071 0.3548 0.2193
0.0132 0.0090 0.0275 0.0976 0.0763 0.0337
0.91 0.91 0.84 0.78 0.88 0.8850
70.04 70.06 70.05 70.05 70.07 70.0350
0.0411 0.0165 0.0664 0.5422 0.2562 0.1255
0.0123 0.0136 0.0243 0.0885 0.0828 0.0434

0.98 0.98 0.98 0.96 0.99 0.9800
70.00 70.00 70.00 70.01 70.00 70.0025
0.99 0.67 0.63 1.7561 1.02 0.8093
0.0029 0.0035 0.0041 0.0076 0.0054 0.0041

0.91 0.88 0.78 0.76 0.80 0.8200
70.06 70.08 70.03 70.06 70.11 70.0731
0.1086 0.1438 0.2191 0.4217 0.2913 0.1662
0.002 0.0024 0.0038 0.0053 0.0037 0.0036
0.91 0.88 0.79 0.77 0.80 0.8238
70.07 70.04 70.05 70.08 70.10 70.0700
0.1451 0.1717 0.4317 0.4911 0.5176 0.2587
0.6542 0.7879 1.2140 1.8087 2.0619 1.2936

0.95 0.96 0.91 0.79 0.92 0.9137
70.02 70.03 70.04 70.05 70.06 70.0388
0.1647 0.0452 0.3252 0.4829 0.4944 0.2213
0.0338 0.0055 0.0554 0.0232 0.0713 0.0290
0.95 0.96 0.91 0.80 0.92 0.9162
70.02 70.01 70.03 70.04 70.04 70.0300
0.0784 0.1352 0.2126 0.2916 0.3490 0.2436
0.0062 0.0063 0.0206 0.0308 0.0256 0.0129

0.98 0.98 0.98 0.98 0.99 0.9838
70.00 70.00 70.01 70.01 70.00 70.0013
0.0969 0.0803 0.1495 0.3015 0.2416 0.1289
0.0082 0.0167 0.0092 0.0111 0.0096 0.0102
0.97 0.98 0.98 0.98 0.99 0.9838
70.01 70.00 70.01 70.01 70.00 70.0025
0.0969 0.0803 0.1495 0.3225 0.2416 0.1289
0.5597 0.5076 0.4738 1.3518 1.1496 0.5307

0.96 0.97 0.98 0.99 0.99 0.9813
70.01 70.01 70.00 70.00 70.00 70.0025
0.1048 0.1379 0.1715 0.3265 0.2404 0.1560
0.0067 0.0032 0.0068 0.0153 0.0088 0.0084
0.97 0.98 0.98 0.98 0.99 0.9838
70.01 70.00 70.00 70.01 70.00 70.0025
0.1075 0.1566 0.1881 0.3642 0.3186 0.1749
0.1831 0.1260 0.2581 0.2253 0.1628 0.1759
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4.2. Choice of kernel

In Section 3 two types of one-class SVMs, hypersphere and
hyperplane SVM, were presented for combination with a DBN.
Given that each of the methods can be used in conjunction with
different kernels, their performance for two common kernels,
linear and RBF, are evaluated. Table 1 shows the performance
results and their average over all the datasets. For further infor-
mation, the standard deviation of the AUC values are also included
as AUCstd in the table. The best case, i.e., the highest AUC and lowest
training/testing time, for each dataset is stressed through bold-
face.

Before taking the study further, to improve the clarity in the
reporting results only the best pair of kernel and 1SVM methods is
taken. The Wilcoxon test is conducted to perform a pair-wise
comparison among the performance values of PSVM and SVDD
when used with linear and RBF kernels. Table 2 demonstrates the
output of this comparison on all the hybrid and stand-alone 1SVM
results from Table 1. The returned p-values in either case fail to
reject the null hypothesis for the accuracy measure with a level of
significance of α¼ 0:1, i.e., the accuracy of PSVM and SVDD are
comparable for both kernels. Similar results are obtained for the
training time of the 1SVM methods used with the RBF kernel,
whereas in case of the linear kernel, PSVM outperforms SVDD, i.e.,
the sum of ranks for PSVM is less than the sum of ranks for SVDD,
meaning that the PSVM performance was generally better. A dis-
crepancy is observed in the testing time, where the linear kernel
PSVM outperforms SVDD, while for the RBF kernel SVDD outper-
forms PSVM. Consequently, hereafter only the results for PSVM
with the linear kernel and SVDD with the RBF kernel from Table 1
are considered in this study. Note that by 1SVM we refer to these
two methods with the above combination/setup.

4.3. Influence of dimensionality reduction

While the main intention behind applying a dimensionality
reduction method to an SVM is to alleviate the computational
complexity, it is also interesting to investigate its effect on accu-
racy. Table 1 compares the differences in the performance of the
Table 2
Wilcoxon test to compare the performance of the PSVM and SVDD based methods
with respect to the choice of kernel. Rþ corresponds to the sum of the ranks for the
method on the left and R� for the right.

PSVM vs. SVDD Accuracy Training time Test time

Rþ R� p-value Rþ R� p-value Rþ R� p-value

Linear 2 7 0.2891 48 136 0.0004 62 238 0.0119
RBF 3 7 0.1826 193 107 0.2192 203 97 0.0024
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Fig. 3. Comparison of rankings of anomaly detection methods for 3 metrics. The bars re
the bars indicates the ranking of the algorithm, from the best (1) to worst (7) for each g
determined for all datasets and finally an average is calculated as the mean of all ranki
hybrid and stand alone methods on the experimental frame work
detailed above. As expected, the results obtained using the 1SVM
approaches exhibit poor performance for high-dimensional data-
sets. In contrast, the results from the hybrid 1SVMs suggest that a
feature extraction method such as PCA or DBN is able to enhance
the accuracy of the baseline techniques. Between the two, DBN
achieved the best accuracy. On average the PCA-based 1SVMs
exhibit an increase of about 1% in their AUC, while SVDD and
PSVM experience a 10% and 16% increase in AUC, respectively,
when combined with a DBN. In this way, the DBN-1SVM can
achieve a comparable AUC to AE3. This improvement is due to the
fact that DBNs are better in characterising highly non-linear
functions with many variations [17]. In contrast, the objective of
PCA is to learn a linear manifold that is closest to the distribution
of the training samples, i.e., characterising a lower-dimensional
region in the input space near where the training records have a
higher density. However, for complex real world domains, data
manifolds are likely to be strongly non-linear.

In the hybrid models, a similar improvement can also be
observed for the testing time, but not in the training time. Com-
pared with the standalone methods, the results show a substantial
reduction in the testing time of the hybrid models for all the
datasets, i.e., the average testing time of SVDD and PSVM are
reduced by a factor of approximately 2 when aggregated with PCA,
and by 150 and 5000 when aggregated with DBN. A trade-off for
the hybrid models is their training time, which shows an increase
against SVDD and PSVM, i.e., the training time of the hybrid SVDD
methods are increased by half, and for the hybrid PSVM methods
are tripled.

In order to statistically compare the performance of the studied
anomaly detection methods and find the performance relationship
among them, a multiple comparison test is conducted on the
reported results of Table 1. For ease of interpreting these results,
Fig. 3 graphically demonstrates the average rankings of the three
metrics, AUC, training and testing time, obtained using Friedman's
test [60].

Under all the measures, a statistical study conducted using the
Iman–Davenport test detects significant differences between the
algorithms and rejects the null hypothesis of equivalence between
the methods. The returned p-values — i.e., 0:69e�19 for AUC, 0:12
e�18 for training time, and 0:68e�19 for testing time — are sig-
nificantly lower than the significance level α-value of 0.1. The
identified differences are then analysed with a Shaffer post hoc
test, shown in Tables 3–5. In these tables, “þ” symbol indicates
that the method in the row is statistically better than the one in
the column, i.e., in the case of AUC it implies a higher accuracy and
in the case of the time it implies a lower running time, whereas
“�” implies the contrary; “¼” indicates that the two compared
methods have no significant differences.
SVM PCASVDD D2LSVM D2SVDD
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present average rankings based on the Friedman test, and the number on the top of
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Observing the results from Tables 3 and 5, it can be noted that
the DBN-based methods (AE3, D2SVDD and D2PSVM) clearly
outperform their other counterparts in terms of AUC and testing
time. It can also be inferred that the DBN-based methods generate
more robust results, having negligible standard deviations of the
AUC values from Table 1. Although DBN-based methods are not
the leading approaches in terms of training time, as shown in
Table 4, it can be concluded that DBN is a powerful tool as a
dimensionality reduction method, when combined with 1SVMs.
Moreover, it overcomes the underlying scalability issues of 1SVMs,
and improves their performance.

In addition, it can be seen from the table that the performance
of the D2SVDD and D2PSVM approaches are not significantly dif-
ferent from AE3. To assess the significance of the results, the
Wilcoxon test is applied to conduct a multiple pairwise compar-
ison. Table 6 shows the p-values obtained from this test, which
indicate that the AUC values of the three methods are statistically
similar. However, both hybrid approaches (D2PSVM and D2SVDD)
outperform AE3 in terms of training and testing time, at the sig-
nificance level of α¼ 0:1, with D2PSVM being in the lead.

From the reported results in Tables 1, 3 and 5, the positive
synergy between the DBN and the 1SVM methods can be
observed, offering an outstanding anomaly detection method for
high-dimensional datasets. The next section studies the influence
of DBN depth on the performance of these hybrid methods.
Table 4
Shaffer test to compare training times.

Method PSVM SVDD AE3

PSVM x ¼ ð0:35Þ þð0:35e�6Þ
SVDD ¼ ð0:35Þ x þð0:31e�4Þ
AE3 �ð0:35e�6Þ �ð0:31e�4Þ x
PCAPSVM �ð0:54e�2Þ �ð0:06Þ þð0:02Þ
PCASVDD �ð0:17e�2Þ �ð0:03Þ þð0:05Þ
D2PSVM �ð0:06Þ ¼ ð0:35Þ þð0:12e�2Þ
D2SVDD �ð0:11e�2Þ �ð0:02Þ þð0:06Þ

Table 5
Shaffer test to compare test times.

Method PSVM SVDD AE3

PSVM x �ð0:08Þ ¼ ð0:56Þ
SVDD þð0:08Þ x �ð0:02Þ
AE3 ¼ ð0:56Þ þð0:02Þ x
PCAPSVM ¼ ð0:13Þ þð0:11e�2Þ ¼ ð0:35Þ
PCASVDD ¼ ð0:72Þ ¼ ð0:16Þ ¼ ð0:35Þ
D2PSVM þð0:21e�3Þ þð0:53e�7Þ þð0:17e�2Þ
D2SVDD þð0:54e�2Þ þð0:63e�5Þ þð0:03Þ

Table 3
Shaffer test to compare AUC values.

Method PSVM SVDD AE3

PSVM x �ð0:08Þ �ð0:14e�4Þ
SVDD þð0:08Þ x �ð0:92e�2Þ
AE3 þð0:14e�4Þ þð0:92e�2Þ x
PCAPSVM ¼ ð0:52Þ ¼ ð0:27Þ �ð0:21e�3Þ
PCASVDD þð0:01Þ ¼ ð0:54Þ �ð0:06Þ
D2PSVM þð0:63e�5Þ þð0:55e�2Þ ¼ ð0:86Þ
D2SVDD þð0:63e�5Þ þð0:55e�2Þ ¼ ð0:86Þ
4.4. Influence of number of hidden layers

Increasing the number of hidden layers (i.e., the depth of the
representation) has shown promising results in tackling data
complexity and the curse of dimensionality issues [61,17]. How-
ever, that is not the case for linear algorithms such as PCA.
Stacking up PCAs with the intention of forming a deeper archi-
tecture and obtaining a more abstract representation is ineffective.
The composition of linear operations yields another linear opera-
tion [61]. Thus, only the impact of network depth on DBN-based
methods is studied. Table 7 summarises the performance results of
AEs and DBN-1SVMs with various numbers of hidden layers, e.g.,
AE1 indicates an AE with one hidden layer. Analogous to the ear-
lier results, on average the hybrid methods present a higher AUC
value and lower training/testing time.

Comparing the DBN1-based results with deeper networks in
Tables 1 and 7, the experiments indicate that increasing the number
of hidden layers enhances anomaly detection, in both the baseline AE
and the hybrid methods. However, appropriate statistical analysis is
required to support this claim. For this purpose, the Wilcoxon signed-
rank test is applied to highlight the significance of the differences.
Table 8 shows the returned p-values. In concordance with previous
studies [16], the experimental results suggest that the deeper the
network, the greater the accuracy and training/testing time. The
Wilcoxon test shows that deeper networks increase the accuracy of
shallower ones. This improvement is more significant when
PCAPSVM PCASVDD D2PSVM D2SVDD

þð0:54e�2Þ þð0:17e�2Þ þð0:06Þ þð0:11e�2Þ
þð0:06Þ þð0:03Þ ¼ ð0:35Þ þð0:02Þ
�ð0:02Þ �ð0:05Þ �ð0:12e�2Þ �ð0:06Þ
x ¼ ð0:72Þ ¼ ð0:35Þ ¼ ð0:64Þ
¼ ð0:72Þ x ¼ ð0:20Þ ¼ ð0:91Þ
¼ ð0:35Þ ¼ ð0:20Þ x ¼ ð0:16Þ
¼ ð0:64Þ ¼ ð0:91Þ ¼ ð0:16Þ x

PCAPSVM PCASVDD D2PSVM D2SVDD

¼ ð0:13Þ ¼ ð0:72Þ �ð0:21e�3Þ �ð0:54e�2Þ
�ð0:11e�2Þ ¼ ð0:16Þ �ð0:53e�7Þ �ð0:63e�5Þ
¼ ð0:35Þ ¼ ð0:35Þ �ð0:17e�2Þ �ð0:03Þ
x �ð0:06Þ �ð0:03Þ ¼ ð0:20Þ
þð0:06Þ x �ð0:51e�4Þ �ð0:17e�2Þ
þð0:03Þ þð0:51e�4Þ x ¼ ð0:35Þ
¼ ð0:20Þ þð0:17e�2Þ ¼ ð0:35Þ x

PCAPSVM PCASVDD D2PSVM D2SVDD

¼ ð0:52Þ �ð0:01Þ �ð0:63e�5Þ �ð0:63e�5Þ
¼ ð0:27Þ ¼ ð0:45Þ �ð0:55e�2Þ �ð0:55e�2Þ
þð0:21e�3Þ þð0:06Þ ¼ ð0:86Þ ¼ ð0:86Þ
x �ð0:06Þ �ð0:11e�3Þ �ð0:11e�3Þ
þð0:06Þ x �ð0:04Þ �ð0:04Þ
þð0:11e�3Þ þð0:04Þ x ¼ ð1:0Þ
þð0:11e�3Þ þð0:04Þ ¼ ð1:0Þ x



Table 8
Wilcoxon tests to determine the influence of the number of hidden layers on the
performance of DBN-based methods. Rþ corresponds to the sum of the ranks for
the method on the left and R� for the right.

Dataset Accuracy Train time Test time
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comparing DBN1-based networks with DBN2-based (i.e., D2x and
AE3) networks, and the comparison rejects the null hypothesis with a
level of significance of α¼ 0:1, whereas in the case of DBN3 (i.e., D3x
and AE5) and DBN2 methods the returned p-values are not statisti-
cally significant. This statement also holds for the training measures,
increasing the network's depth increases the training time. However,
unlike the accuracy comparison, the null hypothesis is only rejected in
comparisons among the deeper networks, the DBN2 and DBN3
methods. This indicates that in comparisons among the deeper net-
works, the accuracy improvement is not statistically significant, while
the efficiency of the deeper networks has decreased.

Based on these results, it can be concluded that deeper net-
works are able to infer more abstract features. Accordingly, more
abstract features are generally more invariant to underlying var-
iations in the training set. However, it should be considered that
increasing the depth of the network beyond a certain point may
only increase the complexity and execution time of the network.

Overall, the DBN2-based methods deliver the best perfor-
mance, both in terms of accuracy and efficiency. Combining DBN2
and 1SVMs, therefore, results in a more robust anomaly detection
technique, while maintaining the training/testing time as low as
possible. Recall that PSVM obtains comparable AUC as SVDD, when
combined with DBN2. Hence, the greater computational efficiency
of D2PSVM (see Table 6) makes it a more practical anomaly
detection technique.
Table 6
Wilcoxon test to compare the performance of DBN-based methods regarding p-
values of Wilcoxon test. Rþ corresponds to the sum of the ranks for the method on
the left and R� for the right.

Method Accuracy Train time Test time

Rþ R� p-value Rþ R� p-value Rþ R� p-value

D2PSVM vs. AE3 5 1 0.5 0 35 0.0078 0 36 0.0078
D2SVDD vs. AE3 5 1 0.5 0 36 0.0078 0 36 0.0078
D2PSVM vs. D2SVDD 1 1 1 0 36 0.0078 0 36 0.0078

Table 7
Performance results of deep and shallow DBN-based methods. Training and testing ti
milliseconds.

Method Metric Datasets

Forest Banana Adult GAS

AE1 AUC 0.97 0.93 0.98 0.96
Train 0.104 0.411 0.267 0.352
Test 0.002 0.0033 0.003 0.003

AE5 AUC 0.99 0.98 0.99 0.99
Train 0.5162 0.6802 0.7843 2.015
Test 0.0068 0.0043 0.0102 0.005

D1PSVM AUC 0.98 0.93 0.98 0.96
Train 0.0304 0.0649 0.1042 0.081
Test n 0.0100 0.0120 0.0100 0.008

D3PSVM AUC 0.99 0.99 0.99 0.99
Train 0.0916 0.0932 0.0963 0.103
Test n 0.0096 0.0100 0.0093 0.009

D1SVDD AUC 0.98 0.95 0.99 0.97
Train 0.0827 0.0932 0.1218 0.099
Test n 0.1011 0.128 0.14 0.104

D3SVDD AUC 0.99 0.99 0.99 0.99
Train 0.0988 0.1048 0.1236 0.112
Test n 0.1381 0.2051 0.1864 0.212
The reason behind this phenomenon can be explored in Fig. 4,
which demonstrates the benefits of using DBN features for
anomaly detection on two datasets, Banana and HAR (due to the
shortage of space the images of the other datasets are not shown).
The interpretation of the subfigures, from the left, is as follows: the
iVAT image of the raw datasets, the iVAT image of the reduced
datasets with one hidden layer, and with two hidden layers. As can
be seen in the image of the raw datasets, normal records (first 760
records) appear in dense blocks, while the anomalous records (last
40 records) are shown in gray shadow (since they are distributed
across the dataset). When the data are projected to a lower
dimensional space with DBN, a clearer separation appears
between the normal records and anomalies. The impact of the
depth of the network is reflected in the improved clarity and
contrast in the block structure. Projecting data with deeper net-
works (e.g., DBN2) provides sufficient separability among the
normal and anomalous records that to enable the use of basic
kernels such as linear, rather than more complex ones such as RBF.
mes are in seconds, except for testing time rows marked with a n , which are in

Avg.

OAR DSA Smiley HAR

0.94 0.97 0.91 0.98 0.9550
0.433 0.383 0.989 1.7320 0.5839

1 0.0032 0.0039 0.0068 0.0047 0.0037

0.98 0.98 0.99 0.99 0.9850
0.8468 0.63 2.003 2.0216 1.1871

6 0.0051 0.0058 0.0098 0.0081 0.0070

0.95 0.97 0.94 0.98 0.9612
3 0.0823 0.1502 0.3632 0.3811 0.1572
7 0.0093 0.0088 0.0089 0.0081 0.0195

0.98 0.98 0.99 0.99 0.9863
3 0.0818 0.1546 0.3319 0.3019 0.1568
4 0.0194 0.0104 0.0213 0.0115 0.0126

0.95 0.97 0.94 0.99 0.9675
2 0.1498 0.1832 0.3758 0.2886 0.1743

0.106 0.218 0.1850 0.1430 0.1406

0.98 0.98 0.99 0.99 0.9863
9 0.1618 0.1925 0.4211 0.3507 0.1958
7 0.1756 0.2762 0.2873 0.1928 0.2093

Rþ R� p-value Rþ R� p-value Rþ R� p-value

AE3 vs. AE1 33 0 0.0078 28 8 0.1484 23.5 4.5 0.0391
AE3 vs. AE5 0 5 0.2500 1 35 0.0156 0 36 0.0078
D2PSVM vs.

D1PSVM
28 0 0.0156 35 1 0.7422 19 17 0.8438

D2PSVM vs.
D3PSVM

0 3 0.2500 0 36 0.0078 0 36 0.0078

D2SVDD vs.
D1SVDD

15 0 0.0625 26 8 0.1953 36 0 0.0078

D2SVDD vs.
D3SVDD

0 3 0.5000 0 36 0.0078 0 36 0.0078



Fig. 4. Demonstration of the impact of the number of hidden layers on the separability of normal and anomalous records. Each image is the output of the iVAT method for
visualising cluster tendency.
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Fig. 5. Comparison of the accuracy of anomaly detection methods as the number of training records is varied.
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4.5. Influence of number of training records

Unlike deep networks, SVMs are known to be less effective for
large-scale training on high-dimensional data [14,4], i.e., their
performance decreases as the number of records in the dataset
increases. To study this concern and also examine the performance
of our hybrid methods, PSVM, SVDD, AE3, D2PSVM and D2SVDD
are trained on the four datasets with the highest dimensionality
(HAR, Smiley, DSA and OAR) while varying the number of records
(from 200 to 5000). As shown in Fig. 5, with 1000 or more training
records, DBN-based methods outperform PSVM and SVDD. When
the number of records is particularly small (less than 500), SVDD
can perform slightly better than DBN-based methods. More spe-
cifically, the accuracy of the DBN-based methods generally
increases as the number of records grows, whereas the 1SVM
methods show the reverse behaviour. This suggests that the
1SVMs tend to learn models with higher variance for large data-
sets, i.e., they overfit the data.

4.6. Efficiency and scalability

When it comes to large-scale training, in addition to robust-
ness, it is advantageous for an anomaly detection algorithm to be
efficient in terms of time- and memory-complexity. Table 9
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compares the complexity of PSVM, SVDD, DBN, DPSVM and
DSVDD. As can be seen from the table, SVDD and DSVDD with the
RBF kernel [13] have much higher (quadratic) training- and
memory-complexity compared to the other techniques. Although
the complexity of DPSVM may not be as efficient as PSVM, note
that it still grows linearly.

To explore the efficiency of the DPSVM in practice, we compare
it with an AE, an effective method with linear complexity, on three
datasets, Adult, Forest each with over 40,000 records and Smiley
dataset with 1.1 million records (see Fig. 6). This figure suggests
that although training and testing time grow linearly for the two
Table 9
Comparison of time- and memory-complexities.

Technique PSVM SVDD AE DSVDD DPSVM

Training nm Oðnm2Þ O(nmd) Oðnmdþdm2Þ OðnmdþdmÞ
Testing nþm O(nm) O(nmd) Oðnmdþdm2Þ OðnmdþdþmÞ
Memory nm Oðnm2Þ O(nq) Oðnqþdm2Þ OðnqþdmÞ
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Fig. 6. Comparison of the training and testing time of AE and DPSVM on large datasets
Smiley dataset includes 1.1 million records.

Fig. 7. Comparing the performance results of the prop
techniques, the training/testing time of the AE grows at a much
faster rate. The AUC values for this experiment are not included,
since they were more or less consistent.

In summary, from the aforementioned analysis we can con-
clude that the proposed hybrid methods are more suitable and
robust than the standalone techniques for large-scale and high-
dimensional anomaly detection. Recall that the efficiency and
accuracy of D2PSVM make it the most effective approach, even
when compared with the state-of-the-art AE. Fig. 7 demonstrates
that the proposed hybrid methods have the best performance, the
highest the AUC and lowest training/testing time, among all the
studied methods, with D2PSVM outperforming D2SVDD in
computation time.
5. Conclusion

In this paper, we proposed an unsupervised anomaly detection
technique for high-dimensional large-scale unlabelled datasets.
The technique is a combination of a DBN and one-class SVM. The
Percentage of records
25

Test

50 75 100

. In this experiment the Adult and Forest datasets include 40,000 records and the

osed and studied anomaly detection techniques.
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DBN is trained as a dimensionality reduction algorithm, generating
a non-linear manifold and transforming the data into a lower
dimensional set of features. The derived features from the training
samples are taken as input to train the one-class SVM. Subse-
quently, the generated hybrid model from the two algorithms is
used for testing.

Coupling a DBN with a 1SVM is advantageous since it addresses
the complexity and scalability issues of the 1SVM, especially when
training with large-scale datasets. DBNs are appropriate feature
detectors for anomaly detection, taking only raw (unlabelled) data
to capture higher-order correlations among features, generating an
accurate model, and imposing minimal computationally and
memory complexity. Reducing the number of irrelevant and
redundant features improves the scalability of a 1SVM for use with
large training datasets containing high-dimensional records. In
addition, by using a deep architecture, a DBN-1SVM can deliver
better generalisation. Therefore, in the hybrid model more basic
kernels, such as linear kernels, can be substituted for more com-
plicated and computationally expensive ones, such as RBF kernels,
with no loss in accuracy. Hence, our model offers an efficient,
accurate and scalable anomaly detection approach that can be
applied to large-scale and high-dimensional domains, such as the
ones arise in the Internet of Things. Note that this empirical study
has only been conducted on anomaly detection in sensor network
datasets, and although similar results are potentially likely to arise
in other domains due to the ability to use a linear kernel, no
guarantee can be provided without further tests.

The experimental results on a wide range of benchmark data-
sets demonstrate that the AUC of DBN-1SVM outperforms stan-
dalone 1SVMs, where the improvement reaches around 20% in
some datasets. Compared with an autoencoder, the difference is
negligible, while the hybrid DBN-1SVM executes 3 times faster in
training and 1000 times faster in testing.

A direction for future improvement is to adapt DBN-1SVMto
on-line learning through incorporating incremental learning for
1SVMs. Currently the DBN is trained with mini-batches, which is
suited to real-time training. However, 1SVMs are trained with a
full-batch of records. Further, it will be interesting to apply DBN-
1SVM to data streams, where the challenge would be how to
maintain the accuracy of the model if normal behaviour evolves
significantly over time.
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