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Abstract
Many conventional statistical machine learning al-
gorithms generalise poorly if distribution bias ex-
ists in the datasets. For example, distribution
bias arises in the context of domain generalisation,
where knowledge acquired from multiple source
domains need to be used in a previously unseen tar-
get domains. We propose Elliptical Summary Ran-
domisation (ESRand), an efficient domain gener-
alisation approach that comprises of a randomised
kernel and elliptical data summarisation. ESRand
learns a domain interdependent projection to a la-
tent subspace that minimises the existing biases
to the data while maintaining the functional rela-
tionship between domains. In the latent subspace,
ellipsoidal summaries replace the samples to en-
hance the generalisation by further removing bias
and noise in the data. Moreover, the summarisation
enables large-scale data processing by significantly
reducing the size of the data. Through comprehen-
sive analysis, we show that our subspace-based ap-
proach outperforms state-of-the-art results on sev-
eral activity recognition benchmark datasets, while
keeping the computational complexity significantly
low.

1 Introduction
Domain generalisation is an emerging area of machine learn-
ing that explores how to acquire knowledge from various re-
lated domains, and apply it to unseen target domains. In ac-
tivity recognition via wearable sensors, for example, training
samples may be collected under specific conditions involv-
ing device type, device placement, orientation, sampling fre-
quency, and activity performance style [Stisen et al., 2015].
In such applications, the classification model built using
learning algorithms operating on samples from one dataset
may not be directly applied to other related datasets. This
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problem mainly concerns conventional classification tech-
niques built based on the assumption that training and test
data follow the same distribution. In many real-world appli-
cations, however, this assumption is violated; the data might
have been collected from heterogeneous sources, introduc-
ing bias to the samples and resulting in poor generalisation
across datasets. Developing learning algorithms that are in-
variant to data distribution bias is therefore an important and
compelling problem.

More formally, a domain is defined as a probability distri-
bution P. Although domains are not observed directly, their
samples can be drawn {(xi, yi)}mi=1. A classification algo-
rithm is trained on the samples provided by multiple source
domains, whereas distinct target domains are used for test-
ing. Discrepancy (or inconsistency) in the underlying data
collection process in different domains can lead to deviation
in marginal P(X) and conditional P(Y |X) distributions of
the samples. To mitigate this issue, the sampling process
with adjusted settings should be replicated, which may not al-
ways be feasible; or a large number of samples should be col-
lected, which requires accessing large storage and processing
resources. Consequently, the challenge is to build a system
that is robust to bias and performs well on unseen datasets.

Domain adaptation and domain generalisation overcome
the above problem by finding a shared subspace for related
domains. The aim of domain adaptation is to produce ro-
bust models on a target domain, by leveraging supplementary
information during training from the unlabelled target do-
main, as well as taking labeled samples from multiple source
domains. Domain adaptation produces target-specific mod-
els, indicating that the training process should be repeated
for each target domain. Moreover, the target domain sam-
ples may not always be available. Domain generalisation, in
contrast, generates a model independent of target domains.
It only assumes that samples from multiple source domains
can be accessed, and makes no further assumption regarding
the target domain. More specifically, domain generalisation
aims to cope with the deviations in the marginal distribution
P(X) and conditional distribution P(Y |X) among different
domains. Blanchard et al. [2011] first introduced the notion of
domain generalisation. Muandet et al. [2013] developed a do-
main invariant feature representation incorporating the distri-
butional variance across domains to reduce the dissimilarity.
Domain generalisation algorithms have also been exploited in



computer vision for object recognition [Khosla et al., 2012].
The goal of our work is to efficiently extract features

that improve generalisation performance across domains, i.e.,
features that transfer across domains. We introduce ES-
Rand, an efficient domain generalisation method based on
a randomised kernel algorithm, which finds a subspace that
minimises the difference between the marginal distributions
P(X) of domains, while maintaining the functional relation-
ship P(Y |X). In the lower (projected) space, ESRand ex-
ploits label information from the training domains and sum-
marises the data by replacing the domains with a set of el-
lipses and their focal points. While significantly reducing the
training time, data summarisation also improves generalisa-
tion by eliminating the effect of noisy samples and anomalies.

Through a comprehensive analysis we demonstrate that
ESRand has the following desirable properties that distin-
guish it from previous approaches. Unlike existing domain
generalisation approaches that are built based on nonlin-
ear kernels [Blanchard et al., 2011; Muandet et al., 2013;
Khosla et al., 2012], ESRand exploits random features in an
invariant sub-space to reveal nonlinear patterns in the data.
It enables large-scale data processing of computationally ex-
pensive machine learning algorithms by significantly reduc-
ing the size of the data. Moreover, it outperforms state-of-the-
art results on several sensor-based activity recognition bench-
mark datasets, while being computationally efficient.

2 Background and Related Work
ESRand is a domain generalisation method based on ran-
domised kernels, therefore we briefly review these two lines
of research in this section.

Domain generalisation: Given several labeled training
samples drawn from different sources with biased distribu-
tions, domain generalisation assigns class labels to target sets.
Fluctuations in the distributions arise in a variety of several
applications due to technical, environmental, biological, or
other sources of variation. This problem has been addressed
in other areas of machine learning such as domain adapta-
tion [Jiang, 2008] and transfer learning [Pan and Yang, 2010].
However, they require the incorporation of target samples or
even access to a few of the target labels, while domain gener-
alisation can be performed independent of the target set.

Blanchard et al. [2011] first raised the domain gener-
alisation problem and proposed a kernel-based approach
that identifies an appropriate Reproducing Kernel Hilbert
Space (RKHS) and optimises a regularised empirical risk
over the space. Two projection-based algorithms, Domain-
Invariant Component Analysis (DICA) and Unsupervised
DICA (UDICA), were then developed by Muandet et
al. [2013] to solve the same problem. Extending Kernel
PCA (KPCA), DICA and UDICA incorporate the distribu-
tional variance across domains to reduce the dissimilarity.

Domain generalisation algorithms also have attracted the
computer vision community for object recognition. Khosla
et al. [2012] proposed Undoing Dataset Bias (UDB), a multi-
task max-margin classifier exploiting dataset-specific biases
in feature space. The encoded biases are used to push each
dataset’s weight to be aligned with the global weights. Xu et

X

X1

X2

Projection

Input space Feature space

X
X

X

X

X

X

X

X

XX

X

X

X

X

X

X

X
X

X X

X

X

X

X

X

X

X

X

X

XX

X

X X

X

X

X

Z1

Z2

X
X

X

X

X

X

X

X

XX

X

X

X
XX

X

X

X

X

X

X

X
X

X

X

X

X

X

X
X

X

X

X

X

X

X

Summarisation

Feature space
Z1

Z2

Grey   

Blue         

Subject one

Subject two     
Class one

Class two     X

Summarised class one

Summarised class two     

X

X

X

X

Figure 1: An example of ESRand algorithm.

al. [2014] proposed an exemplar SVM based method by ex-
ploiting the low-rank structure in the source domain. They
formulated a new optimisation problem as a nuclear norm-
based regulariser that captures the likelihoods of all positive
samples. Niu et al. [2015] extended [Xu et al., 2014] and pro-
posed a multi-view domain generalisation approach for visual
recognition by fusing multiple SVM classifiers. They built
upon exemplar SVMs to learn a set of SVM classifiers by us-
ing one positive sample and all negative samples in the source
domain each time. More recently, Ghifary et al. [2015] pro-
posed a multi-task autoencoder that leverages naturally oc-
curring variation in sources as a substitute for the artificially
induced corruption, and learns a transformation from the orig-
inal image into analogs in multiple related domains.

Kernel randomisation: Various nonlinear kernel-machine
formulations are used to improve the capacity of learning ma-
chines while making learning feasible, e.g., quadratic pro-
gramming (QP) solvers. In particular, these kernel-based
methods rely on the computation of a kernel matrix over all
pairs of data points, which limits the scalability of the algo-
rithm on large datasets, and also can limit its effectiveness on
high dimensional inputs, given the need to have sufficiently
large training samples spanning the variation in the high di-
mensional space.

To address the scalability problems of kernel-machines,
techniques have been proposed that either preprocess the
data, e.g., by using dimensionality reduction techniques such
as PCA or deep learning [Erfani et al., 2016b], or alleviate
the QP problem, e.g., by breaking the problem into smaller
pieces, for example by using chunking. A more recent trend
explores the use of randomisation, such as linear random pro-
jection [Blum, 2006] as a substitute for the computationally
expensive step of kernel matrix construction. The work of
Rahimi and Recht [2007; 2009] made a breakthrough in this
approach. They replicated an Radial Basis Function (RBF)
kernel by randomly projecting the data to a lower dimen-
sional space and then used linear algorithms. Random projec-
tion avoids the complexity of traditional optimisation meth-
ods needed for nonlinear kernels. Recently, randomisation
has been applied to other kernel methods, such as dot-product
kernels [Kar and Karnick, 2012], and one-class SVM [Erfani
et al., 2015; 2016a].

3 ESRand: Elliptical Summary
Randomisation

ESRand is a domain generalisation approach based on ran-
domised kernels and elliptical data summarisation, see Fig-
ure 1 for an example. The randomised kernel projects the



data to a lower-dimensional latent space that minimises the
effect of domain bias, while preserving the functional rela-
tionship of the data. The Johnson-Lindenstrauss (JL) Lemma
provides probabilistic guarantees that the random projection
of a dataset to a lower feature space preserves the relative
distances between data points. However, the probabilistic na-
ture of the JL-lemma and random projection results in a small
number of noisy or outlying data points. To improve the gen-
eralisation by further removing noise and outliers in the pro-
jected data, we use ellipsoidal summaries to replace the sam-
ples. The focal distance between pairs of ellipsoids are then
utilised as the dissimilarity measure among domains. In the
following, we first formulate the problem and our objective
function, and then formally introduce ESRand.

Let Pij denote the distribution of observations over an in-
put space Rn, Xij ⊂ Rn, for a specific setting i ∈ {1, . . . , q}
which corresponds to a class j ∈ {1, . . . , c}. For example,
Pij can be the distribution of observations collected from a
subject (setting) performing a certain activity (class). There-
fore, there are two sources of dissimilarity between data dis-
tributions in the input space. ESRand transforms the data into
a new space Rh to minimise the unwanted dissimilarity intro-
duced by different settings and to preserve/increase the dis-
similarity between different classes.

Let D denote the dissimilarity (e.g., focal distance) be-
tween two distributions, our objective is to find a transforma-
tion φ ∈ Rn × Rh that minimises D(φ(Xj), φ(Y j)), while
maximising dissimilarity between classesD(φ(Xj), φ(Y l)),
where X and Y are samples from any two subjects. So
the objective function has two discordant goals of reducing
the distance between some distributions, while increasing the
distance between some other distribution, i.e., the functional
relationship between dissimilar distributions should be pre-
served. This leads to the following optimisation problem:

min
φ∈Rn×Rh

β

c∑
j=1

D(φ(Xj), φ(Y j))

− (1− β)

c− 1

c∑
j=1

c∑
l=j+1

D(φ(Xj), φ(Y l)),

(1)

where β and 1−β show the relative importance of each goal.
Note that to yield the best separation, the embedding φ can be
different for each activity. The search space of all functions
over Rn × Rh is not tractable, so normally the search is con-
ducted over a family of parametric models. In this way, only
the parameters of the models have to be found.

3.1 Featurised Kernel Mean Embedding
To learn from data distributions P, we employ a Hilbert space
embedding to represent the data distribution as a mean func-
tion in a RKHSHk. The embedding enables efficient compu-
tation of the dissimilarities, while maintaining the necessary
information of data distributions. Let Hk be an RKHS func-
tion f : X → R, and k be a positive definite function. The
kernel mean map of X is defined as

µP := Ex∼P[k(·, x)] =

∫
X
k(·, x)dP(x) ∈ Hk. (2)

However, since in practice distribution P is unknown, one
can use sample data X ∈ Rm×n drawn from P. Therefore,
the sample data is interpreted as the empirical distribution
P̂ = 1

m

∑m
i=1 δxm(·), where δxm(·) is the Dirac delta func-

tion at point x ∈ X . The empirical kernel mapping (2) is
approximated by

µ̂P :=
1

m

m∑
i=1

k(·, xi) ∈ Hk. (3)

In practice, the feature embedding in (2) and (3) may be
infinite-dimensional and lack a closed form for some kernels,
making it cumbersome for processing large scale datasets.
To overcome this limitation, we propose to exploit a lower
rank approximation using nonlinear random Fourier features
[Rahimi and Recht, 2007], which serves as a good approxi-
mation of a nonlinear kernel. For shift-invariant kernels we
can exploit Bochner’s theorem to generate h-dimensional ran-
dom features Z ∈ Rm×h, and for i = 1, . . . ,m

zi = [cos(wT
i x1 + bi), . . . , cos(wT

i xh + bi)]. (4)

The vectors (w1, . . . ,wh) ∼ p(w) are sampled from the
Fourier transformation, and (b1, . . . , bh) ∼ U(0, 2π). Then
(3) reduces to

µ̃P =
1

m

m∑
i=1

zi ∈ Rh. (5)

3.2 Elliptical Data Summarisation
In the latent space h, our system converts the projected data to
elliptical summaries. Then a dissimilarity image of the data is
built from a measure of the focal distance between pairs of el-
lipsoids. Bezdek et al. [2011] defined elliptical summaries for
anomaly detection and summarisation of a set of noisy data
points. A hyperellipsoidal summary with effective radius ti
centred at the sample mean µ̃Pi

of Zi, with covariance matrix
Si is defined as

ei(µ̃Pi ,S
−1
i ; t) ={

Zi ∈ Rh|(Zi − µ̃Pi
)TS−1i (Zi − µ̃Pi

) 6 t2
}
.

(6)

Remark: (Zi− µ̃Pi
)TS−1i (Zi− µ̃Pi

) is the Mahalonobis dis-
tance from Zi to µ̃Pi

and S−1i is the matrix of the hyperellip-
soid ei. We use µ̃Pi and S−1i to represent a hyperellipsoidal
cluster ei for Zi, whose boundary is defined as

δei(µ̃Pi ,S
−1
i ; ti) ={

Zi ∈ Rh|(Zi − µ̃Pi)
TS−1i (Zi − µ̃Pi) = t2

}
.

(7)

We choose t2 = (χ2)−1h (γ) (i.e., the inverse of the chi-
squared statistic with h-degrees of freedom). This results in
an ellipsoid that covers at least 100γ% of the data under the
assumption that the data has a Gaussian distribution [Tax and
Duin, 2000]. The Gaussian assumption is rarely true for real
datasets. However, this threshold is a close approximation
for any unimodal distribution. This means that the ellipse for
γ selection of h covers the majority points and some of the
outlying points are left outside.



The ellipsoid in (7) summarises the data points while re-
moving the effect of outlying samples. We use these ellip-
soids instead of the data points as the inputs to the classi-
fication techniques. Classification techniques require a dis-
tance measure to classify the input objects. This distance
measure should capture the differences between the input ob-
jects. Three distance measures have been proposed in [Mosh-
taghi et al., 2011] to measure distances between pairs of ellip-
soids. These distances are designed to capture the difference
between ellipsoids in terms of eccentricity, location and ori-
entation. Here, we briefly explain the best performing mea-
sure called the focal distance.

Let d(ei, ej) be the distance between two ellipsoids
ei(µ̃Pi

,S−1i ; ti) and ej(µ̃Pj
,S−1j ; tj). Every plane ellipse

e(µ̃P,S
−1; t) can be constructed by tracing the curve whose

distance from a pair of foci f1 and f2 is a positive con-
stant. The foci always lie on the major axis of the ellipse.
If {λ−

S−1 , λ
+
S−1} are the minimum/maximum eigenvalues of

S−1 with corresponding eigenvectors {v−,v+}, the foci are

f1,2 = µ̃P ±
1

2

√
(λ+

S−1 − λ−S−1)

λ+
S−1λ

−
S−1

v+. (8)

The focal distance between a pair of ellipses ei and ej is an
average of a set of four distances. Each component in the
average is a distance to one of the focal elements from the
other one. Let δ(x,y) = ‖x − y‖ be the Euclidean distance
between vectors in x and y. We have two focal segments
with endpoints {f i,1,f i,2} and {f j,1,f j,2}. We compute
four distances from δijl and δjil for l ∈ {1, 2}:

δijl = min{δ(f j,l,f i,l), δ(f i,l,f j,l⊕1)}. (9)

Then the focal distance between ei and ej is computed as:

d(ei, ej) =
1

4

2∑
l=1

(δijl + δjil). (10)

3.3 ESRand Procedure
To train ESRand, the data collected from c classes of q sub-
jects is first embedded in a subspace using (4) and (5). Then
in the feature space, we replace the samples with c × q el-
lipsoids using (7), generating one ellipsoid per class of each
subject. Instead of solving the optimisation problem in (1),
we follow the description in Section 4 and generate a pro-
jection φ ∈ Rn×h that obtains dissimilarities satisfying the
conditions in (1). The test procedure is similar to the train-
ing procedure, projecting the test data to the feature space
by applying φ, and summarising the samples with ellipsoids.
When ESRand is used in conjunction with k−NN, the test el-
lipsoids are classified w.r.t. their focal distance to the closest
training ellipsoids; and when used with SVM the focal points
and their associated labels are the input to the algorithm.

4 Theoretical Justification
Random projection is a dimensionality reduction method that
has been widely adopted in machine learning [Rahimi and
Recht, 2007; Oymak and Tropp, 2015]. The first result,

known as the JL-Lemma, states that for a given a set of points
in a high-dimensional space, there is a projection into a lower-
dimensional random subspace that preserves the functional
relationship of the data (e.g., the inter-point distances and an-
gles with high probability). Here, the most important impli-
cation is that if we have data that is separated by some small
margin, then a random linear separator would probably be
a weak learner with error less than 1/2. Therefore, we can
combine kernel functions with the JL-Lemma to note that if a
learning problem has a large margin under the kernel k(·, x),
then a random linear projection of the Hilbert space down to
a sub-space approximately preserves linear separability.

While the random projector should preserve geometric fea-
tures of the set, we do not want to map a point in the set to
the origin. To ensure this, we refer to the results in [Oymak
and Tropp, 2015]: the success probability and stability of a
random projection for a given set depends on the embedding
dimension that can be quantified through universality theo-
rems in high-dimensional stochastic geometry.

Theorem 1 A Universality Law for the Embedding Di-
mension. Given the n × h random projector φ with the pa-
rameters p > 4, ν ≥ 1, % ∈ (0, 1), and ε ∈ (0, 1), there is a
number N := N(p, ν, %, ε) for which the following statement
holds. Suppose that the ambient dimension n ≥ N ; E is
a nonempty, compact subset of Rn that does not contain the
origin; the statistical dimension of E is proportional to the
ambient dimension: %n ≤ θ(E) ≤ n. Then h ≥ (1 + ε)θ(E)

implies P{0 /∈ φ(E)} ≥ 1 − Cpn
1− p

4 . Furthermore, if
θ(E) is spherically convex, then h ≤ (1 − ε)θ(E) implies
P{0 ∈ φ(E)} ≥ 1− Cpn1−

p
4 .

This theorem ensures that the random projection suc-
ceeds for a spherically convex set E when the embedding
dimension h exceeds the statistical dimension θ(E) where
0 < θ(E) ≤ n and can be computed through θ(E) =
E[(max

b∈θ
g.b)2+], g ∈ N(0, I). To simplify this, let Ω be a

closed, spherically convex set in Rn; and the entries of the
random projector φ : Rn → Rh be small, constant, partly
non-zero, standardised, independent, and symmetric, with a
modest amount of regularity. For this class of random projec-
tors, it has been proved that

h ≤θ(Ω)− o(n) implies 0 ∈ φ(Ω) with high prob.;
h ≥θ(Ω) + o(n) implies 0 /∈ φ(Ω) with high prob, (11)

where o(n) depends only on the regularity of the random vari-
ables. Therefore, over the mentioned class of random pro-
jectors, the phase transition in the embedding dimension is
universal, provided that Ω is not too much smaller than the
original dimension n. In the other words, there is a substan-
tial class of random projectors for which the phase transition
in the embedding dimension is universal. Moreover, it is im-
portant to quantify the stability properties of randomised di-
mension reduction. The stability of the random projector on a
compact, convex set E in Rh can be quantified using the uni-
versality theorem for the restricted minimum singular value.

Theorem 2 Universality for the Restricted Minimum Sin-
gular Value. Given the random projector φ : Rn → Rh
with the fixed parameters p, ν, % ∈ (0, 1), λ ∈ (0, 1),



and ε ∈ (0, 1), there is a number N := N(p, ν, %, ε) for
which the following statement holds. Suppose that the am-
bient dimension n ≥ N ; E is a nonempty, compact sub-
set of the unit ball Bn in Rn; the embedding dimension d
is in the range λn ≤ h ≤ n6/5; the h-excess width of E
is not too small: εh(E) ≥ %

√
h. Then P{σmin(φ;E) ≥

(1−ε)(εh(E))+} ≥ 1−Cpn1−p/4. Furthermore, ifE is con-
vex, then P{σmin(φ;E) ≤ (1+ε)(εh(E))+} ≥ 1−Cpn1−p/4
where the constantCp depends only on the parameter p in the
random matrix model.

For any random projector, Theorem II proves that the dis-
tance of the random projection from the origin cannot be
much smaller than the h-excess width εh(E). Similarly,
whenE is convex, the distance of the random projection from
the origin cannot be much larger than the h-excess width. The
excess width εh(E) is not much smaller than the embedding
dimension

√
h. Correspondingly, the random projection is

stable and far from the origin, i.e., the embedding succeeds,
if the restricted minimum singular value is large enough. De-
tailed proofs can be found in [Oymak and Tropp, 2015].

5 Empirical Analysis
In this section, we illustrate the effectiveness of ESRand via
a visualisation of a toy dataset. Furthermore, we compare
the performance and efficiency of the proposed algorithm
with state-of-the-art algorithms through classification tasks
on multiple benchmark datasets.

Datasets: The experiments are conducted on four real
life datasets from the UCI Machine Learning Repository:
(i) Daily and Sport Activity (DSA), (ii) Heterogeneity Ac-
tivity Recognition (HAR), (iii) Opportunity Activity Recog-
nition (OAR), (iv) PAMAP2 Physical Activity Monitoring,
with the number of 19, 6, 5, 13 activities collected from 8,
9, 4, 8 subjects, respectively1. All the records in each dataset
are normalised between [0,1].

Baselines: To evaluate the performance and efficiency of
ESRand, we compare it with the following baseline meth-
ods: (i) KPCA, (ii) DICA and UDICA: kernel-based opti-
misation algorithms that learn an invariant transformation to
minimise the dissimilarity across domains, (iii) AE (Autoen-
coder) [Bengio et al., 2007]: a basic autoencoder trained by
stochastic gradient descent, (iv) CAE (Contractive Autoen-
coder) [Rifai et al., 2011]: an autoencoder with an additional
penalty, the Frobenius norm of the Jacobian matrix of the en-
coder activations with respect to the input, to yield robust fea-
tures on the activation layer, (v) k−NN: k Nearest Neighbour,
we use k = 1, (vi) SVM: Support Vector Machine with RBF
kernel, (vii) UDB: a max-margin SVM-based framework for
reducing dataset bias, (viii) LRE-SVM [Xu et al., 2014]: a
non-linear exemplar-SVMs model with a nuclear norm regu-
larisation to impose a low-rank likelihood matrix.

The hyper-parameters of all the algorithms are adjusted us-
ing grid search based on their best performance on a valida-

1DSA, HAR and PAMAP2 are large datasets including millions
of samples. We used a subset of these datasets. For DSA and
PAMAP2 the first 1000 samples of each activity from each user were
used, and for HAR the first 2000 samples were used.
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Figure 3: iVAT images of the projected toy dataset

tion set. Algorithms i − iv are used for feature extraction.
For classification purposes, the learnt features from these al-
gorithms are used with k−NN and multi-class SVM with a
linear kernel l-SVM. Since the focus of the experiment is to
evaluate the effectiveness of feature extraction methods, we
utilise simple classification algorithms, otherwise more ad-
vanced approaches can be employed. For algorithms v− viii
no feature extraction has been conducted, and the algorithms
have been applied directly on the (normalised) raw datasets.

Metric: We use the Receiver Operating Characteristic
(ROC) curve and the corresponding Area Under the Curve
(AUC) to measure the performance of all the methods. The
reported AUC values of each algorithm are the average ac-
curacies of leave-one-domain-out test (domain), i.e., taking
one domain as the test set and the remaining domains as the
training set. The reported training times are in seconds, and
the stated AUC values and training times are the average of
20 folds for each experiment. For SVM based methods LIB-
SVM was used.

5.1 Visualisation
To demonstrate the impact of ESRand, we used a toy dataset,
a subset of the DSA dataset including the first 375 sam-
ples from three activities of two subjects, and a visualisation
tool called improved Visual Assessment of cluster Tendency
(iVAT) [Wang et al., 2010]. iVAT helps to visualise the pos-
sible number of clusters in a set of objects, by reordering the
dissimilarity matrix of the objects so that it can display any
clusters as dark blocks along the diagonal of the image.

Figure 2, from the left, shows the images of the raw toy
dataset from subject 1, subject 2, and their combination, re-
spectively. The first two images show three dark blocks indi-
cating three activities of each subject. When combining the
two datasets, it is expected that similar activities of the two
subjects should overlap, however, the image shows six dis-
tinct blocks due to bias in the domains’ distribution.

Figure 3 compares the impact of ESRand with i − iv pro-
jection baselines on the toy dataset. Among all, only the



Table 1: Comparison of the leave-one-domain-out classification accuracies and standard deviations. Bold-face values indicate the two best
performance for each dataset.

k −NN l-SVM

Dataset KPCA DICA AE CAE ESRand KPCA DICA AE CAE ESRand k−NN SVM UDB LRE

DSA 87± 6 88± 5 90± 3 95± 3 95± 1 85± 9 87± 4 92± 2 94± 1 96± 0 88± 6 86± 6 89±3 92± 4
HAR 61± 10 68± 9 76± 6 84± 2 87± 2 60± 8 63± 6 77± 3 83± 1 86± 1 65± 8 74± 11 76± 4 80± 3
OAR 72± 5 73± 3 79± 5 85± 2 89± 1 73± 8 74± 5 76± 4 86± 2 88± 1 72± 4 71± 7 77± 5 79± 6
PAMAP2 81± 4 81± 3 91± 2 95± 2 97± 0 79± 3 82± 5 91± 1 97± 2 97± 1 79± 4 83± 3 85± 3 89± 2

Avg. 75± 7 78± 5 84± 4 90± 2 92± 1 74± 7 77± 5 84± 2 90± 2 92± 2 76± 6 79± 7 82± 4 85± 4

autoencoder based approaches (AE and CAE) and ESRand
manage to reduce the six clusters, in the combined dataset,
to the three main clusters. It is noteworthy that unlike all the
other feature extraction methods, algorithms i − iv, ESRand
summarises the dataset, reducing the total number of sam-
ple points from M = 2250, i.e., M = mqc the number of
samples×subjects×activities, in this example to 6 (qc). This
major reduction in data size is expected to alleviate classifica-
tion time significantly. In the following, we explore whether
these feature extraction yields better classification accuracy,
and how data summarisation accelerates classification time.

5.2 Accuracy Evaluation
Table 1 compares the accuracy values of the baselines against
ESRand. The reported values are the percentage of accu-
racy ± the standard deviation. Since the accuracy results of
UDICA and DICA are comparable on these dataset, only the
results of DICA have been included in the table. On average,
the algorithm with the best performance on these datasets is
ESRand with an average accuracy of 92%. The closest results
are from CAE, with 90% accuracy. To statistically assess the
significance of the performance between the two algorithms,
we use the Wilcoxon signed-rank test. The test returns a
p−value 0.0312 rejecting the null hypothesis for the accuracy
with a level of significance of α = 0.05. This result implies a
significant improvement of ESRand over the CAE. Although
the added penalty term to CAE enhances the feature learn-
ing of the basic autoenoder AE, it does not yield comparable
accuracy to ESRand. This indicates that enhancing the fea-
ture learning strategy can provide better discriminative fea-
tures with respect to unseen samples. Observing the standard
divisions from Table 1, ESRand also yields more consistent
results with the lowest standard deviation on average.

A possible explanation for the effectiveness of ESRand can
relate to the dimensionality of the manifold in feature space
where samples concentrate. We hypothesise that if features
concentrate near a low dimensional sub-manifold, then the al-
gorithm has found invariant features and will generalise well.
Moreover, the data summarisation eliminates noisy records
and outliers, which can give a boost to the generalisation.

5.3 Efficiency Evaluation
A desirable property of ESRand is that it summarises
datasets, substantially reducing the number of samples as well
as the number of features. To study this impact we compare
the training time of ESRand with CAE, which has the second
best accuracy and linear time complexity of O(Mn). In this
experiment we used DSA and PAMPA2, the datasets with a
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Figure 4: Comparing the training time of ESRand and CAE.

large number of activities. The first comparison is between
ESRand and CAE, which shows the training time of these
two algorithms without including the classification time. As
can be seen in Figure 4, the training time of ESRand grows
linearly with a much more gentle slope than CAE.

Comparing the training time of l-SVM on the out-
put of these two algorithms (i.e., l-SVM(ESRand) and l-
SVM(CAE)) reveals the advantage of ESRand’s data sum-
marisation. The training time of l-SVM on the summarised
output of ESRand remains fairly low, while on CAE it soars.
The total training time of ESRand+l−SVM remains signifi-
cantly lower than CAE+l−SVM. With large datasets, search-
ing for the pair of variables that maximise class separation is
a computationally expensive procedure. The computational
complexity of most common algorithms such as k−NN and
SVM is quadratic in the total number of records M . As dis-
cussed earlier, ESRand reduces the size of training data to
q × c. More specifically, the time complexity of ESRand is
computed as O(Mn) + O(Mh2), and when h � n then the
complexity reduces toO(Mn), and the size of ESRand’s out-
put reduces from RM×n to Rqc×h.

6 Conclusion

We have presented ESRand, an efficient domain generalisa-
tion method that aims to reduce distribution bias in multi-
domain learning. ESRand incorporates a simple but effec-
tive random projection with an elliptical data summarisation
to overcome distribution variance across domains. Our anal-
ysis on several benchmark activity recognition datasets re-
veals that ESRand successfully learns domain-invariant fea-
tures, yielding state-of-the-art performance from unseen tar-
get domains. Moreover, ESRand enables large-scale data pro-
cessing by significantly reducing the size of data, in both the
dimensionality and the number of samples.
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