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Abstract

The problem of unsupervised anomaly detection arises in a
wide variety of practical applications. While one-class sup-
port vector machines have demonstrated their effectiveness as
an anomaly detection technique, their ability to model large
datasets is limited due to their memory and time complexity
for training. To address this issue for supervised learning of
kernel machines, there has been growing interest in random
projection methods as an alternative to the computationally
expensive problems of kernel matrix construction and sup-
port vector optimisation. In this paper we leverage the theory
of nonlinear random projections and propose the Randomised
One-class SVM (R1SVM), which is an efficient and scalable
anomaly detection technique that can be trained on large-
scale datasets. Our empirical analysis on several real-life and
synthetic datasets shows that our randomised 1SVM algo-
rithm achieves comparable or better accuracy to deep autoen-
coder and traditional kernelised approaches for anomaly de-
tection, while being approximately 100 times faster in train-
ing and testing.

Introduction
Unsupervised anomaly detection (also known as outlier de-
tection) plays a significant role in a variety of applica-
tions, such as fraud detection, network intrusion detection
and fault diagnosis. One-class Support Vector Machines
(1SVMs) (Schölkopf et al. 2001; Tax and Duin 2004) have
proven to be a very effective unsupervised learning method
to construct highly accurate classifiers for anomaly detec-
tion. However, 1SVMs are often impractical for use on
very large datasets due to the computational and mem-
ory complexity of their underlying optimisation problem
during training (Vapnik 1998; Vishwanathan, Smola, and
Murty 2003; Bengio and LeCun 2007). Recently, there has
been growing interest in randomised approaches to improve
the efficiency of kernel methods for supervised learning of
SVMs (Rahimi and Recht 2007; 2009). In this paper, we
build on the theory of nonlinear random projections in or-
der to accelerate the training of 1SVMs, and propose a
new form of anomaly detector called Randomised One-class
SVM (R1SVM). We show that R1SVM can achieve com-
parable or better accuracy than an existing 1SVM method,
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while reducing training and testing time by up to two orders
of magnitude.

A key challenge in anomaly detection is how to char-
acterise the distribution of “normal” (i.e., non-anomalous)
data. This is particularly challenging when the process that
generated the normal data has an unknown, potentially com-
plex underlying distribution. 1SVM approaches have had
considerable success in addressing this modelling task by
using a kernel function to implicitly map the data from the
input space to a higher dimensional feature space, in which
a relatively simple model such as a hyperplane (Schölkopf
et al. 2001), hypersphere (Tax and Duin 2004) or hyperel-
lipsoid (Wang, Yeung, and Tsang 2006; Rajasegarar et al.
2010) can be used to characterise normal observations.

A practical limitation of 1SVM approaches is their com-
putational and memory complexity for training. In a dataset
with n records, each with d dimensions, training using a
nonlinear kernel requires O(dn2) computational complex-
ity, as well as O(dn2) memory complexity for the kernel
matrix (Tax and Duin 2004). This limits the utility of 1SVM
in applications involving large datasets. While training can
be performed on a smaller sample of the training data, this
can reduce the accuracy of the 1SVM due to the sparse sam-
pling of the underlying distribution, particularly in applica-
tions that involve high dimensional input spaces.

Recently, there has been significant progress in using ran-
domised features in conjunction with linear algorithms to
reveal nonlinear patterns in data. In particular, a nonlinear,
randomised variant of component analysis methods such as
Principal Component Analysis (RPCA) and Canonical Cor-
relation Analysis (RCCA) has been proposed (Lopez-Paz et
al. 2014). These randomised variants have been applied to
the tasks of regression and classification of large datasets,
and exhibited significant savings in computation time while
incurring little or no loss in accuracy.

In this paper, we propose a novel application of ran-
domised methods by deriving a highly scalable algorithm
for anomaly detection based on training a linear one-class
SVM using randomised, nonlinear features. By using ran-
domised features rather than finding a set of optimised sup-
port vectors, we can substantially reduce the cost of training
our one-class SVM. We provide extensive empirical testing
to show that our randomised 1SVM method achieves sub-
stantial improvement in both computational complexity and



accuracy over exact kernel methods.
To the best of our knowledge this is the first attempt

to exploit nonlinear random features in kernel-based meth-
ods for anomaly detection. In addition to significantly re-
ducing computational complexity, we show that our ran-
domised 1SVM algorithm achieves comparable or better ac-
curacy compared to autoencoder and kernelised approaches
to anomaly detection. We postulate that this improvement
in accuracy is due to the implicit regularisation induced by
randomness, as well as an improvement in the separation be-
tween normal and anomalous data points when compared in
the nonlinear feature space. By improving the efficiency of
training 1SVMs in this way, we believe it will be possible
to apply anomaly detection to data-intensive applications in
resource constrained environments, such as wireless sensor
networks.

Related Work and Background
While numerous 1SVM formulations using nonlinear kernel
have been proposed in the literature (Schölkopf et al. 2001;
Tax and Duin 2004; Bottou and Lin 2007), a common fea-
ture of many formulations is the solution of a quadratic pro-
gramming (QP) problem. In particular, these kernel-based
methods rely on the calculation of a kernel matrix over all
pairs of data points, which limits the scalability of training
1SVMs on large datasets. This can also limit the effective-
ness of 1SVMs on high dimensional input spaces, given the
need to have a sufficiently large training dataset that spans
the variation in the high dimensional space.

Existing approaches to address the scalability problems
of SVMs can be classified into two general categories.
One category comprises hybrid and complimentary meth-
ods for SVMs, which are used to preprocess the data prior
to processing by the SVM. For example, clustering (Sun et
al. 2004), dimension reduction techniques such as PCA or
KPCA (Cao et al. 2003; Subasi and Ismail Gursoy 2010),
and deep belief networks (Bengio and LeCun 2007) are
some of the most well-known approaches. Although these
approaches play an important role in building the model,
they do not directly address the scalability of the SVM itself.
The second category includes methods that aim to alleviate
the QP problem of kernel machines. A more heuristic ap-
proach is to reduce the size of the QP problem by breaking
it into smaller pieces, for example by using chunking (Vap-
nik 1998; Sonnenburg et al. 2006), decomposition (Vish-
wanathan, Smola, and Murty 2003; Joachims 1999), or Se-
quential Minimal Optimisation (SMO) (Platt 1999). An al-
ternative to enhance the computational efficiency of SVMs is
to instead use an approximation of QP (Fung and Mangasar-
ian 2001). A more radical approach is to totally avoid the
QP problem, and obtain the solution through a fast iterative
scheme (Fung and Mangasarian 2003; Yang, Duraiswami,
and Davis 2005).

To reduce the memory and computational complexity, a
popular approach is to obtain a low-rank approximation of
the kernel matrix. Selective sampling (or active learning)
methods iterate through the training data and sample a small
subset of the records that are near the boundary in the feature
space with higher probabilities, e.g., (Tong and Koller 2002),

or see (Settles 2010) for a survey. To avoid the computational
cost of processing the whole dataset, Lee and Mangasarian
(2001) propose the use of random sampling to obtain a result
that is close to the original SVM.

A more recent trend explores the use of randomisation,
such as linear random projection (Blum 2006) as a substi-
tute for the computationally expensive cost of kernel ma-
trix construction. An early example is the work of Achliop-
tas, McSherry, and Schölkopf (2002), which replaces the
kernel function by a randomised kernel to speedup KPCA.
The work of Rahimi and Recht (2007; 2009) made a break-
through in this approach. They replicated an RBF kernel
by randomly projecting the data to a lower dimensional
space and then used linear algorithms. Random projection
avoids the computational complexity of traditional optimi-
sation methods needed for nonlinear kernels. More recently,
Kar and Karnick (2012), and Hamid et al. (2014) have ex-
tended the method of Rahimi and Recht to other types of
kernels, e.g., dot-product and polynomial kernels.

In this paper, we build on the work of Rahimi and Recht
by developing a model for using randomised projection in
the context of unsupervised learning of a 1SVM. In the
next section we describe our proposed randomised 1SVM
scheme.

Proposed Approach — R1SVM
In this section we present our Randomised 1SVM (R1SVM)
model for anomaly detection. We begin by recalling a few
key aspects of one-class SVMs, and then introduce the use
of nonlinear random projections for detecting anomalies
in large-scale data. Random projections have been utilised
mainly in distance-based classification or data reconstruc-
tion schemes to speedup the search, as it approximately pre-
serves L2 distances among a set of points. Thus instead
of performing the search in a high-dimensional space, the
search is conducted in a space of reduced dimension but on
a larger neighbourhood. Note that in our context, ultimately,
our goal is anomaly detection. Therefore, we are not neces-
sarily interested in deriving a representation that allows for
the best classification or reconstruction of the data, but we
rather seek to find a model of the underlying distribution of
the data which can then be used to detect anomalies.

One-class SVM (1SVM)
Let X = [x1, · · · ,xn] be the d× n matrix containing n train-
ing points xi ∈ Rd of one specific class, and let φ be a fea-
ture mapX → H such that the dot product inH can be com-
puted using some kernel k(x,x′) =< φ(x),φ(x′) >H.

A One-class Support Vector Machine (1SVM) (Schölkopf
et al. 2001; Manevitz and Yousef 2002) finds anomalies by
first projecting the data to the feature spaceH, and then find-
ing a hyperplane that best separates the data from the origin.
In other words, the decision function in the 1SVM returns +1
in a region where most of the data points occur (i.e., where
the probability density is high), and returns −1 elsewhere.

Defining a family of sets Cs,ρ = {x|fs,ρ(x) > 0}, the
1SVM estimates a function fs,ρ(x) = sgn(s.φ(x)−ρ) that
maximises the distance of all the data points (in the feature



space F) from the hyperplane to the origin, parameterised
by a weight vector s and an offset ρ.

Thus, the resulting binary function fs,ρ(x) can be esti-
mated by minimising the regularised risk:

Rreg[fs,ρ(x)] = Remp[fs,ρ(x)] +
1

2
‖fs,ρ(x)‖2H (1)

where Remp(.) is the empirical risk and 1
2‖fs,ρ(x)‖2H is the

regulariser. The empirical risk is the average loss and can be
written as

Remp[fs,ρ(x)] ≡ 1

n

n∑
i=1

c(fs,ρ(xi), yi) (2)

where c(fs,ρ(xi), yi) is the loss function that penalises the
deviation between the prediction fs,ρ(.) and the label y, i.e.,
this captures the cost of the errors caused when fs,ρ(.) is
negative on training vectors.

Replacing ‖fs,ρ(.)‖2H with a maximum margin regulariser
‖s‖2 to penalise complex regions, we can setup the follow-
ing quadratic program for 1SVM:

min
s,ξi,ρ

1
2‖s‖

2 + 1
νn

∑n
i=1 ξi − ρ

s.t. (s.φ(xi)) ≥ ρ− ξi,
ξi ≥ 0 (3)

where ν ∈ (0, 1] is a regularisation parameter that controls
the fraction of anomalies and the fraction of support vectors,
and ξi are the slack variables that allow some of the data
vectors to lie on the wrong side of the hyperplane. By intro-
ducing the Lagrange multipliers, we arrive at the following
quadratic program, which is the dual of the primal program
in (3):

min
α

1
2

∑
ij αiαjk(xi,xj)

s.t. 0 ≤ αi ≤ 1
νn ,∑n

1 αi = 1 (4)

where αi are the Lagrange multipliers. Further, s =∑
i αiφ(xi). Using the Karush-Kuhn-Tucker optimality

conditions (KKT conditions) the data vectors can be char-
acterised in terms of whether they fall below, above, or on
the hyperplane boundary in the feature space depending on
the corresponding αi values. Data vectors with positive αi
values are the support vectors. Further, for 0 < αi < 1/νn,
the data vectors fall on the hyperplane and hence ρ can be
recovered using these vectors, vis-a-vis ρ =< s,φ(xi) >=∑
j αjk(xj ,xi). Therefore, the decision function can now

be written as

fs,ρ(x) = sgn(s.φ(x)− ρ)

= sgn(αik(xi,x)− ρ) (5)

The solution to the quadratic program in (4) is charac-
terised by the parameter ν ∈ (0, 1], which sets an upper
bound on the fraction of anomalies (training examples re-
garded as out-of-class) and a lower bound on the number of
training examples used as support vectors.

The computational complexity of 1SVM using an SMO
solver is approximately O(dn2) for the RBF kernel (Vem-
pati et al. 2010), and O(dn) for a linear kernel with n being
the number of samples and d the number of dimensions in
feature space. However, it has been noted that when 1SVM
is used with a linear kernel, it introduces a bias to the ori-
gin. This problem can be removed by using an RBF ker-
nel, which has a higher computational complexity associated
with the higher dimensional kernels, thus making it cumber-
some for processing with large scale data.

In order to overcome this limitation, in the next section,
we propose to exploit nonlinear random projections inside
a linear 1SVM, which serves as a good approximation of a
nonlinear 1SVM.

Randomised 1SVM
We propose R1SVM, a nonlinear randomised variant of
1SVM, which applies the original linear 1SVM method on
a randomised nonlinear projection of the data. We first dis-
cuss how to generate the nonlinear random features from
the original data, and then we show how to employ these
features to detect anomalies using a linear 1SVM. This ap-
proach eliminates the need to deal with large kernel matrices
for large datasets, consequently reducing the computational
complexity while achieving comparable or better anomaly
detection performance than a traditional 1SVM (as shown
in the Evaluation section).

Generating Nonlinear Random Features Consider the
problem of fitting a function f (note that the subscripts s
and ρ in fs,ρ are omitted for brevity) to the data set {xi, yi},
where yi values are always set to 1 for the one-class prob-
lem. This fitting problem consists of finding f that min-
imises the empirical risk in equation (2). For the 1SVM
problem, the loss function c(y, y′) is of the form c(y, y′) =
max(0, 1 − yy′). Using the kernel function, the function
f(x) = sgn(s.φ(x)−ρ) becomes f(x) =

∑n
i αik(x,xi).

Therefore, in the general form, the function f(x) can be
written as f(x) =

∑∞
i=1 α(si)φ(x; si), where φ are pa-

rameterised by vector s and weighted by αi. By jointly opti-
mising over s and αi, in a greedy manner, the solution can be
found (Rahimi and Recht 2007). However, this is computa-
tionally intensive. Rahimi and Recht (2009) have proved that
this nonlinear optimisation problem over (α, s1, · · · , sn)
in f , can be solved by randomly sampling the si ∈ Rd
from a data-independent distribution p(s) and creating k-
dimensional random features z(X) = [z1 · · · zk], where
zi = [cos(sTi x1 + bi), · · · , cos(sTi xn + bi)] are Fourier
based random features. For more details refer to (Rahimi
and Recht 2007). Thus, we arrive at the following simpli-
fied optimisation problem:

min
α∈Rk

1
n

∑
i c(α

Tzi, yi)

s.t. ‖α‖∞ ≤ B (6)

where B is a regularisation constant. Furthermore, it is
shown by Rahimi and Recht (2009) that using randomly se-
lected features in nonlinear spaces causes only bounded er-
ror compared to using optimised features:



Theorem 1. Let p be a distribution on Ω and |φ(x; s)| ≤
1. Let F =

{
f(x) =

∫
δ
α(s)φ(x; s)ds | |α(s)| ≤ Bp(s)

}
.

Draw s1, · · · , sk iid from p. Further let λ > 0, and c be
some L-Lipschitz loss function, then the function fk(x) =∑k
i=1 αiφ(x; si) minimises the empirical risk c(fk(x), y)

has a distance from the c-optimal estimator in F bounded
by

Ep[c(fk(x), y)]−min
f∈F

Ep[c(f(x), y)]

≤ O

(
LB√
n

+
1√
k
LB

√
log

1

δ

)
(7)

with a probability of at least 1− 2δ.
The convergence rate of our randomised R1SVM to its

original kernel 1SVM version can be expressed by the fol-
lowing theorem (Lopez-Paz et al. 2014):
Theorem 2. Given the data X ∈ Rn×d, a shift invariant
kernel k, a kernel matrix Kij = k(xi,xj) and its approxi-
mation K̂ using k random features, it can be proven that

E‖K̂ −K‖ ≤
√

3n2 log n

k
+

2n log n

k
. (8)

The proof to this theorem can be found in (Lopez-Paz et
al. 2014).

Evaluation and Discussion
In this section, we evaluate the effectiveness of our R1SVM
method for anomaly detection by conducting the following
two experiments. First, we empirically explore the impact
of random projections on the separability of normal data
records from anomalous records. Then we compare the per-
formance of R1SVM in terms of accuracy, training and test-
ing time, with a 1SVM scheme called Support Vector Data
Decomposition (SVDD), and a deep autoencoder (AE).

Experimental setup: For visualisation purposes, in the
first experiment, we used a tool called improved Visual As-
sessment of cluster Tendency (iVAT) (Wang et al. 2010),
which helps visualise the possible number of clusters in, or
the cluster tendency of, a set of objects. iVAT reorders the
dissimilarity matrix of the given set of objects so that it can
display any clusters as dark blocks along the diagonal of the
image.

In the second experiment we used the svdd implemen-
tation from Dd-tools (Tax 2013) as the one-class SVM
method. Note that the hypersphere-based SVDD model us-
ing an RBF kernel is equivalent to a hyperplane-based
1SVM model. In the case of the autoencoder, we imple-
mented a basic autoencoder including five-layers with tied
weights and a sigmoid activation function for both the en-
coder and decoder. The training is conducted in mini-batches
of q = 100 records. Initially the autoencoder was trained
based on greedy layer-wise pre-training (i.e., training one
layer at a time) to extract features, and then using these
features to train the next layer. Training a network implies
finding parameters (network weight and bias) that minimise
the reconstruction error between the inputs x and the re-
construction of x at the output x̄, l(x, x̄) = ‖ x − x̄ ‖2.
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Figure 1: Demonstration of the effect of nonlinear projection on
normal and anomalous records.

Once the network was trained, the learned parameter values
were used as initialisation values of a multilayer perceptron
(MLP) with the same number of inputs and outputs. Then the
network was fine-tuned by gradient descent to adjust the pa-
rameters. The whole process of pre-training and fine-tuning
was performed in an unsupervised manner for anomaly de-
tection. Anomalies then can be identified by the autoencoder
based on the history of the squared error between the inputs
and outputs for the training records. Let e be the reconstruc-
tion error of xi ∈ X, where i = 1, . . . , n. If the recon-
struction error for a test sample is larger than the threshold
τ = µ(e) + 3σ(e), the record is identified as anomalous,
otherwise it is identified as normal.

Datasets: The experiments are conducted on six real-
life datasets from the UCI Machine Learning Repository:
(i) Forest (ii) Adult (iii) Gas Sensor Array Drift (Gas),
(iv) Opportunity Activity Recognition (OAR), (v) Daily and
Sport Activity (DSA), and (vi) Human Activity Recogni-
tion using Smartphones (HAR), with dimensionalities of 54,
123,128, 242, 3151 and 561 features, respectively. We also
use two synthetic datasets. One is a “Smiley” dataset, gen-
erated from a mixture of two compact Gaussians and an arc
shaped distribution. The dataset contains 20 dimensions and
in any two dimensions the components of the face are ran-

1DSA is a large dataset comprising the time series measure-
ments from 45 wearable sensors for 19 activities. We select a por-
tion of the time series for each of the first 7 activities, yielding a
total of 315 concatenated time series features.



Table 1: Comparison of AUC, train and test time of R1SVM with SVDD and autoencoder (AE).
SV DD AE R1SVM

Dataset Features AUC Train time Test time AUC Train Time Test time AUC Train time Test time

Smiley 20 0.85 1.58 2.3× 10−2 0.98 0.61 1.1× 10−3 0.98 7.8× 10−3 1.0× 10−5

Forest 54 0.97 2.12 2.2× 10−2 0.99 0.47 1.5× 10−3 0.99 5.3× 10−3 1.2× 10−5

Banana 100 0.92 2.75 2.4× 10−2 0.99 0.79 2.6× 10−3 0.99 5.3× 10−3 1.2× 10−5

Adult 123 0.87 2.83 2.7× 10−2 0.99 0.65 2.6× 10−3 0.99 5.3× 10−3 1.3× 10−5

Gas 128 0.91 1.06 2.6× 10−2 0.98 0.99 2.2× 10−3 0.98 2.0× 10−3 1.0× 10−5

OAR 242 0.91 1.08 2.5× 10−2 0.97 0.67 5.8× 10−3 0.97 2.3× 10−3 1.1× 10−5

DSA 315 0.84 1.13 3.4× 10−2 0.98 0.63 5.5× 10−3 0.98 5.0× 10−3 1.5× 10−5

HAR 561 0.88 2.11 4.2× 10−2 0.99 1.02 1.4× 10−2 0.99 8.4× 10−3 1.4× 10−5

*Note: The reported time is in seconds.
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Figure 2: Comparison of accuracy of anomaly detection methods as the number of training records is varied.

domly moved. The other is the “Banana” dataset that is a
mixture of two banana shaped distributions, which are ran-
domly moved in 100 dimensions. All the records in each
dataset are normalised between [0,1].

Although R1SVM is designed to overcome the challenges
that arise for anomaly detection in large datasets, we con-
ducted our experiments on datasets with varying numbers
of dimensions and records, from 200 to 40,000 records, to
assess the effect of data size on its performance. In each ex-
periment, 80% of records are randomly selected for training
and 20% for testing, and then, respectively, mixed with 5%
and 20% anomalous records, randomly drawn from U(0, 1).
Note that training is performed in an unsupervised way, and
labels are only used for testing.

Accuracy Metric: We use the Receiver Operating Char-
acteristic (ROC) curve and the corresponding Area Under
the Curve (AUC) to measure the performance of all the
methods. The reported training/testing times are in seconds
based on experiments run on a machine with an Intel Core i7
CPU at 3.40 GHz and 8 GB RAM. The stated AUC values
and training/testing times are the average of 1000 iterations
for each experiment.

Experiment 1: Interpretation of Basis for Anomaly
Detection with R1SVM

Fig. 1 demonstrates the benefits of using random nonlin-
ear features for anomaly detection on two datasets, Banana
and HAR (due to the shortage of space images of the other
datasets are not shown). The interpretation of the subfigures,
from the top is as follows: iVAT image of the raw datasets,
the iVAT image of the projected datasets, and the scatter
plot of the projected datasets (projected to R3). As can be
seen in the image of the raw datasets, normal records (first
1000 records) appear in dense blocks, while the anomalous
records (last 50 records) are shown in gray shadow (since
they are distributed across the dataset). When the data are
projected to a lower space, a clearer separation appears be-
tween the normal records and anomalies, as reflected in the
improved clarity and contrast in the block structure. This is
also reflected in the corresponding scatter plots, which show
the effect of projection on normal records (shown in blue)
and anomalies (shown in black). We postulate that the expla-
nation of this effect is the concentration of the data around its
mean as a result of the random projection (Dasgupta 2000;
Zimek, Schubert, and Kriegel 2012)



Table 2: Comparing computational and memory complexity of
SVDD, AE and R1SVM

Technique SVDD AE R1SVM

Training O(dn2) O(dmn) O(kn)
Testing O(dn) O(dmn) O(k + d)
Memory O(dn2) O(dq) O(kn)

Experiment 2: Empirical Performance of R1SVM
Table 1 compares the AUC results, training and testing time
of R1SVM with SVDD and AE for several medium size
(2000 records) datasets — a limit of 2000 records was cho-
sen because the performance of SVDD significantly de-
grades on larger datasets. As shown in the table, our pro-
posed approach delivers a comparable AUC to the state-of-
the-art AE. However, the AUC of SVDD is significantly
lower — e.g., up to 14% for DSA and 13% for Smiley
datasets. A more significant advantage of R1SVM is its
reduction in training/testing time. R1SVM reduces theses
measures by factor of approximately 100 and 1000 times
compared to AE and SVDD, respectively.

When selecting an anomaly detection technique, the size
of the training dataset is an immediate concern. Some tech-
niques, such as kernel machines, can perform best with small
datasets, i.e., their performance decays as the number of
records grows. In contrast, methods like AE can be inac-
curate if trained with small numbers of records (Bengio and
LeCun 2007). Additionally, the training time for some tech-
niques is prohibitive for large numbers of records, e.g., the
time complexity of kernel-based methods can grow at least
quadratically in the number of data records. Fig. 2 and Fig. 3
show how the AUC and training/testing time vary with the
number of training records.

Fig. 2 shows the impact of larger-scale training and high-
dimensional data on the accuracy of the studied approaches.
We observe that the accuracy of SVDD decreases as the
number of training records increases. In some cases, e.g.,
Smiley, OAR and DSA datasets, SVDD experiences a sub-
stantial decrease in AUC when the number of training
records reaches 5000. In contrast, the accuracy of AE can
initially be low but increases as the data size grows. Overall,
only R1SVM delivers more consistent results across various
ranges of data sizes.

An attractive property of autoencoders is their efficiency
in training/testing time, which scales linearly with the num-
ber of records. Therefore, we compared the training and test-
ing time of AE and R1SVM for large datasets. The results
in Fig. 3 suggest that although both measures grow linearly
for the two techniques, the training/testing time of AE grow
at a much faster rate. The AUC values for this experiment
are not included, since they were more or less consistant.
Table 2 summarises the computational and memory com-
plexity of these techniques, where m and q are the size of
the bottleneck layer and batch in the AE.

In summary, the above experiments demonstrate that
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Figure 3: Comparison of the training and testing time of AE and
R1SVM on large datasets.

R1SVM is as accurate as a deep autoencoder, but approxi-
mately 100 times faster in terms of training/testing time. It is
also important to note that the training algorithm of R1SVM
requires only one parameter, k, to be set. Since we are in-
terested in anomaly detection, modelling the underlying dis-
tribution is more important than preserving distances among
classes, therefore the data can be projected to very low di-
mensions. In our empirical analysis we have also tested the
sensitivity of R1SVM to the choice of the parameter k. Over-
all, the value of k has little effect on accuracy, while larger
values of the k increase the training time. Hence, smaller
values of k are most effective.

Conclusion and Future Work
We presented R1SVM, an unsupervised anomaly detection
technique that approximates a nonlinear 1SVM through ap-
plying the original linear 1SVM method on a randomised
nonlinear projection of the data. Using a simple but effec-
tive random projection overcomes the scalability issues of
1SVM methods while enhancing the accuracy of anomaly
detection. Our empirical analysis on several benchmark
datasets shows that R1SVM not only delivers significant
improvements over a conventional nonlinear 1SVM, but it
matches the performance of a state-of-the-art deep autoen-
coder — while reducing its training and testing time by
up to two orders of magnitude. These savings in time and
space enable R1SVM to execute anomaly detection on large
datasets more efficiently, in real-time applications or mem-
ory constrained devices, such as smart phones and wireless
sensor networks. In addition to large-scale training, the other
major advantage of R1SVM is that it is also shown to be ef-
fective at maintaining its accuracy on small datasets when
training data is limited.

In future work, we will also explore the changes in the
eigen-spectrum of the kernel matrix and generalisation er-
ror bound when using the Nyström method. Unlike random
Fourier features, the basis functions in the Nyström method
are data dependent and randomly sampled from the training
data.
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