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Abstract—Participatory sensing using mobile devices is emerg-
ing as a promising method for large-scale data sampling. A
critical challenge for participatory sensing is how to preserve
the privacy of individual contributors’ data. In addition, the
integrity of the data aggregation is vital to ensure the acceptance
of the participating sensing model by the participants. Existing
approaches to these issues suffer from excessive communication
cost, long delays or rely on a trusted third party. The objective
of our research is to design a data-aggregation scheme for
participatory sensing systems that addresses user privacy and
data integrity while keeping communication overhead as low as
possible. We propose four techniques to address these challenges
and validate them through analytical models and simulations.

I. Introduction

Participatory sensing is an emerging field in sensing appli-

cations, which employs sensors embedded in mobile devices

such as smart phones to enable users to monitor, share and

learn from their surrounding environment. Due to the personal

nature of the data shared in Participatory Sensing Networks

(PSNs), their success depends on the goodwill of users to

contribute their data. Consequently, a key challenge in PSNs is

how to ensure the privacy of users [1]. Since sensor readings

may contain sensitive information concerning a user’s private

life, any lack of confidence in the privacy of an individual’s

data will prevent participants from contributing or providing

faithful observations. Hence, an essential precondition to the

success of these networks is maintaining participants’ privacy.

In many PSN applications, aggregation queries allow the

system to aggregate individuals’ measurements in a way that

provides exact summary results while hiding personal infor-

mation. An open challenge in this context is how to aggregate

raw data from users when the aggregator is untrusted. A

practical solution for this issue has been proposed by [2], in

which users’ privacy is preserved based on a mutual protection

approach called data slicing. In this approach, sensed values

are split in to “slices” and distributed among neighbours before

being transmitted to the server. Acting as intermediate aggre-

gators, neighbours partially aggregate the received data slices

and then forward the result to the server. While this scheme

ensures that captured sensor measurements are likely to remain

private, there is potential for the intermediate aggregators to

make inferences about their neighbours or the whole network.

For example, consider the case of a group of participants who

are on a low-cal diet. Even receiving a slice of measured

calories with a greater value than the defined limit reveals

that the corresponding neighbour did not follow the diet plan.

A further challenge that arises from sharing data slices

according to this scheme is that there is no way to guarantee

that the collected sensor readings are trustworthy. If malicious

nodes in the network modify other participants’ data, then

the integrity of the system can be compromised. Additional,

factors like delay or collisions over wireless network channels

may cause messages to be lost or corrupted, thus degrading

the integrity of the aggregation results from the PSN.

To the best of our knowledge, the latter issue, data integrity,

has not been addressed in the existing research on aggregation

in PSNs. The lack of a comprehensive method for data

aggregation in PSNs that simultaneously ensures user privacy

and integrity motivates our work.

To address the above-mentioned issues, we adapt a secret

perturbation scheme [3] for use in the PSN architecture, shown

in Fig. 1a, to achieve the following objectives.

• User Privacy: We require that the sample measurements

of a source node are not revealed to any other entity

in the network. A similar requirement applies to fully

or partially aggregated data, that they should only be

accessible to the aggregation server.

• Data Integrity: We require that the aggregated value at

the aggregation server should be equal to the sum of the

original data sensed by the participating source nodes.

• Efficiency: While privacy and integrity are requirements

of data aggregation, we also require that the system

complexity should be kept as low as possible.

II. RelatedWork

Since the idea of participatory sensing was first introduced

in [4], it has recently become an active topic of research. A

broad overview on the importance of PSNs, their challenges

and opportunities are illustrated in [5], [6], [7]. Two major

issues for data aggregation in participatory systems are the

privacy of personal information and data accuracy. Although

some similar issues have been addressed in WSNs [8], [3],

[9], participatory sensing systems inherit a complex communi-

cation environment. Accordingly, with dynamic architectures,

untrusted aggregators and the personal content of queries,

PSNs cannot directly employ such solutions.
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Privacy - In contrast to the large number of studies on

privacy-preserving data aggregation conducted in WSNs, it is

largely an open problem in PSNs.

The closest works to our focus on privacy-preserving data

aggregation are [2] in participatory networks, and [3], [9] in

WSNs. In SMART [9], user privacy is addressed by slicing

each data measurement randomly and relying on neighbours

to transmit data slices. Recently, PriSense [2] applied SMART

to PSNs, and studied the effectiveness of neighbour selection

for data sharing.

A promising approach for secure data aggregation is CMT

[3], which is an efficient and provably secure additive homo-

morphic stream cipher that provides effective encrypted data

aggregation. However, there are some disadvantages associ-

ated with CMT. First, source nodes need to send their non-

aggregatable ID to the server, thus increasing the communica-

tion cost. Second, the additive homomorphic property of CMT

means that a malicious participant can simply add fraudulent

data to the content of a message. Finally, it does not prevent

a malicious server seeking to disclose participants’ records.

A number of studies have attempted to address some of

these deficiencies of the CMT secret perturbation scheme. For

example, in [10] to avoid sending user IDs, it is assumed that

all the nodes are participating. Li and Cao[11] applied CMT

to mobile sensing networks with a dynamic architecture and a

malicious server. However, the authors rely on a trusted third

party for assigning secrets to users, which may be a restrictive

assumption in a real world scenario.

Privacy and Integrity - Privacy and integrity are still open

challenges for PSNs. The authors in [10] adopt a secret sharing

scheme for integrity assurance, in which the system is required

to have background knowledge about the nodes that are willing

to contribute. This might be a feasible assumption in WSNs

with a more static environment, and where it can be assumed

that all nodes are participating. However, these assumptions

are too restrictive for PSNs.

III. Preliminaries and Problem Statement

In this section, we outline the network architecture, query

model and security assumptions for our problem statement.

A. Participatory Sensing Architecture

We consider the case of a participatory sensing network that

comprises an aggregation server (AS) and a set of participating

mobile user nodes N = {nl| l = 1, . . . ,N}, as can be seen

in Fig. 1a. Similar to the architecture in [12], we assume

that the AS transmits packets via one hop to the N nodes,

and the nodes (e.g., using WiFi or cellular) can communicate

directly with the AS. Nodes within the network can also form

a wireless ad hoc network with each other, so that they can

communicate with their neighbours, e.g., using AODV [13]

for route discovery. For ease of understanding, in this paper

we assume the network has a flat architecture. However, our

schemes can be applied to hierarchical architectures as well.

Without loss of generality, we describe the case of a single

measurement variable at each node. The AS issues a query Q

(a) PSN architecture. (b) BSP architecture.

(c) UPS architecture. (d) KSS architecture.

Fig. 1 Architectures of PSN and aggregation schemes.

to the nodes N , and computes the aggregation value of the

measurement values returned by those nodes that choose to

respond to the query or have a valid value satisfying Q. Let

SN ∈ N denote the set of nodes that report to the AS query,

such that SN = {sni | i = 1, . . . , S N}, and let Di denote the

measurement value returned by sni, where Di is an integer.

B. Aggregation Query Model

In this paper, we consider the case of the widely used

exact summation query, where the AS is to compute S UM =∑S N
i=1 Di. We also expect that the AS is able to determine

the number of source nodes S N that have provided their

measurement value. In this way, the participatory network is

able to compute a range of queries, such as MEAN, AVERAGE

or STANDARD DEVIATION.

C. Security Model

Our aim is to ensure the integrity of the data aggregation

process in response to a query, while ensuring the privacy of

the participant source nodes. In particular, our aim to minimise

the possibility that a source node sni can be associated with its

measurement data Di by any third party eavesdropper, the AS

or any other node nl ∈ N\{sni}. In this section we summarise

the main security assumptions we have made and the type of

threat model that we address.

Security Assumptions - Each node nl is assigned an

identifier IDl and a private key Kl that is shared with the

AS. Each pair of neighbouring nodes can derive their own

symmetric key, so that any communication between that pair

of nodes can be encrypted to prevent eavesdropping attacks.

The allocated key is temporal and is valid as long as the node

is in the network (or active). Each node is also given a list of

all available neighbouring nodes in the network, with which

it can communicate, following the approach proposed in [12].

Threat Model - We consider that no entity can be guaran-

teed to be trustworthy, including both the AS and the nodes. In

the case of the AS, we consider it to be an “honest-but-curious”

adversary, i.e., it is interested in the correct aggregation results,
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but may want to violate the privacy of a source node by being

able to associate a source node sni with its measurement data

Di. In the case of a node, we assume it can exhibit two types

of malicious behaviour: a) it can try to violate the privacy of

a neighbour by attempting to obtain the measurement data Di

collected from a neighbour sni, b) if used to aggregate values

from other nodes, it may want to manipulate the result of

aggregation to produce an incorrect result.

IV. Our Schemes for Privacy Preservation

To achieve privacy for exact SUM queries in participatory

networks, we adopt the basic ideas of secret perturbation [3]

and data splitting [9]. In the following four subsections, we

build different schemes based on these basic ideas to meet

our desired objectives for PSNs. We refer to these schemes

as: (A) Basic Secret Perturbation, (B) Universal Participation,

(C) Key Splitting, and (D) Key Splitting with Integrity.

A. Basic Secret Perturbation Scheme (BSP)

The idea of secret perturbation [3] is based on additive

homomorphic encryption. Let D ∈ [0,M − 1] denote a

measurement value, where M is a large integer, and let K
denote a key. The encryption of D using K gives a ciphertext

C = Enc (D,K,M) = (D + K) modM, where the decryption

gives D = Dec (C,K,M) = (C − K) modM. Using this

scheme, it can be shown that if C1 = Enc (D1,K1,M) and

C2 = (D2,K2,M) then Dec (C1 + C2,K1 + K2,M) = D1 + D2,

i.e., the encryption is homomorphic with respect to addition.

We can use secret perturbation in participatory sensing as

follows. Each source node sni has a measurement value Di and

a secret key Ki that is shared with the aggregation server AS.

The source node sni also has an identifier IDi that is assigned

by the AS. If the source node sni wants to participate in a

query it takes the following steps:

i. Encrypt the observation Ci = (Di + Ki) modM
ii. Notify the AS of the participation of sni by sending IDi

directly from sni to the AS

iii. Send Ci to a neighbour node of sni for aggregation

A source node selects a neighbour randomly from the list of

available neighbours and forwards its data via the neighbour

to the AS. We refer to these randomly chosen neighbours

as a cover node (cn) [2] of sni. Although all nodes can

communicate directly to the AS, a cover node helps to protect

the user’s privacy. As shown in Fig. 1b, when a node n3

receives perturbed observations (say, C1 and C2) from its

neighbours (sn1 and sn2), it transmits the summation C1 + C2

to the aggregation server AS. Thus, the AS receives C1 + C2

and separately ID1 and ID2, from which it infers that it must

use K1 and K2 in decryption. The final aggregation D1 + D2

can then be determined as D1+D2 = Dec (C1+C2,K1+K2,M).

Note that by sending the Ci values in aggregated form to the

AS, we ensure that the AS does not have the ability to decrypt

individual data observations. In addition, the cover nodes are

unable to decrypt the encrypted values Ci.

Potential Drawbacks - Applying secret perturbation to PSNs

enhances data secrecy by concealing measurement values from

cover nodes. However, it suffers from the following issues:

Privacy - Note that the AS could be malicious in PSNs.

Although the cover nodes receive encrypted values, the scheme

is vulnerable to a violation of privacy if there is collusion

between an aggregating cover node and the AS.

Efficiency - BSP requires each source node to inform the AS

about their participation in order to calculate the decryption

key. This is accomplished by forwarding the source node’s ID.

However, it imposes extra communication overhead, especially

when the number of participants is relatively large.

Integrity - Data may become corrupted either due to the

weakness of homomorphic aggregation, where one can add

any artificial message, or accidental causes such as a node

leaving before conveying received messages to the AS.

In the following, first we seek to address the issues of pri-

vacy and efficiency, then we address the problem of integrity.

B. Universal Participation Scheme (UPS)

In order to overcome the issue of privacy in BSP, we use

the approach of data splitting in combination with secret

perturbation to prevent any single node having all the data

from a source node. Moreover, our UPS scheme avoids the

need to transmit the IDs of the participating source nodes by

having all source nodes contribute a value, which can be zero if

the source node has no valid measurement value to contribute.

Inspired by the fact that relying on a single cover node

is not a significant challenge for malicious entities to expose

measurements, as suggested in [9], we apply a splitting tech-

nique to augment users’ privacy. Without loss of generality, we

express measurements and keys as a function of Di = f (di, j)

and Ki = f (ki, j), for j = 1, . . . , s, where s < N. f is an additive

function under which Xi ∈ N is sliced randomly to s number

of pieces subject to Xi =
∑s

j=1 xi, j, xi, j ∈ N.

Let CN i be a set of cover nodes selected at random by sni.

Each source node sni takes the following steps:

i. Slice the data and key as Di =
∑s

j=1 di, j and Ki =
∑s

j=1 ki, j,

for j = 1, . . . , s, and generate Ci, j = (di, j + ki, j) modM
ii. Select s number of cover nodes and send each a Ci, j

The selected cover nodes, similar to the previous scheme,

submit the aggregated ciphertext, e.g., C1,2 + C2,2 to the AS.

With the assumption that all nodes have contributed their data,

on receiving partiality aggregated values from the cover nodes,

the AS performs the following steps:

i. Calculate the SUM of the ciphertexts

S N∑
i=1

s∑
j=1

Ci, j = C1,1 + . . . + CS N,s

ii. Decrypt the aggregated value

S N∑
i=1

Di = (

S N∑
i=1

s∑
j=1

Ci, j −
S N∑
i=1

Ki) modM

Due to slicing, the absolute data Di remains secret unless

the AS as well as all of the cover nodes selected by sni collude.
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Potential Drawbacks - While this scheme is less vulnerable

to collusion due to the use of data splitting, it has two potential

drawbacks of its own. First, this scheme has more risk of

producing an erroneous result, with all the N nodes each sub-

mitting s slices, if any of the source nodes fails to contribute

a value, or if the value is lost in the transmission. Second, if

the number of source nodes with a valid measurement is small

compared to the total number of nodes, then there is a high

communication overhead. Though having all nodes contribute

data is a common solution [11], such an assumption may not

be realistic for PSNs with highly dynamic membership.

C. Key Splitting Scheme (KSS)

In order to address the potential drawbacks of the previous

two schemes, we propose a variation on data splitting with

secret perturbation. This new scheme uses a random key from

each source node, rather than the AS shared key.

Nodes with an observation value to contribute generate a

random integer K̃ and use this value to perturb their data. The

K̃ can be generated by using a pseudo-random function, like

HMAC, taking the K and an arbitrary string. The advantage of

perturbing sensor measurements with K̃, instead of the shared

key K, is that these values can be aggregated and source nodes

are not required to inform the AS by sending their IDs.

On receiving a query, sni generates Ci = (Di + K̃i) modM
and forwards it directly to the AS, while the implemented K̃
can be transmitted via a set of s randomly chosen cover nodes

as K̃i =
∑s

i=1 k̃i, j, using the random slicing technique. In this

way, the malicious AS cannot disclose the perturbed data Ci

unless all the cover nodes CN i are malicious.

Receiving the ciphertexts and the partially aggregated keys,

the AS takes the following steps:

i. Calculate the SUM of the perturbed values and the keys

S N∑
i=1

Ci = (D1 + . . . + DS N + K̃1 + . . . + K̃S N) modM

S N∑
i=1

s∑
j=1

k̃i, j = (k̃1,1 + . . . + k̃S N,s) modM

ii. Decrypt the aggregated data

S N∑
i=1

Di = (

S N∑
i=1

Ci − (

S N∑
i=1

s∑
j=1

k̃i, j)) modM

Potential Drawbacks - While our KSS scheme keeps perturbed

values out of the reach of malicious neighbours, still they

can falsify the key slices k̃. Consequently, we propose the

following approach to address this issue.

D. Key Splitting Scheme with Integrity (KSSI)

Having devised an efficient privacy-preserving data aggrega-

tion scheme, we now address the last issue, data integrity. As

discussed in Section IV-A, transmitted data, whether it is a data

slice of an observation value or a key, can be tampered with

by a malicious node or corrupted unintentionally. For either

reason, falsified data degrades system accuracy and reliability.

Consequently, we equip the AS with an integrity check to

detect distorted results. We propose a secure homomorphic
MAC, and use KSS as our underlying scheme, although our

integrity check can be applied to the other approaches as well.

The proposed MAC is based on the discrete logarithm, and

its homomorphic property allows the AS to verify the integrity

of aggregated keys. Let g be a generator of a multiplicative

cyclic group Gq of prime order q and p be a large prime num-

ber. The AS circulates g and p to all users joining the network

as public values. A source node, sni, generates the MAC of its

randomly generated key as MAC(K̃i, g) = gK̃i mod p and sends

it to the AS. This MAC has the homomorphic property since

MAC(K̃1, g) × MAC(K̃2, g) = gK̃1+K̃2 mod p.

Following KSS, the AS receives partially aggregated key

slices and calculates
∑S N

i=1

∑s
j=1 k̃i, j. The integrity of aggregated

keys can be checked against the MAC(K̃, g) values sent by the

source nodes. To do this, the AS takes the following steps:

i. Aggregate the MAC values

MAC(

S N∑
i=1

K̃i, g) = MAC(K̃1, g) × . . . × MAC(K̃S N , g)

ii. Generate the MAC of the aggregated keys

MAC′(

S N∑
i=1

s∑
j=1

k̃i, j, g) = gk̃1,1+...+k̃S N,s mod p

Any inconsistency between MAC and MAC′ implies that

the keys have been corrupted.

V. Performance Analysis

In the following, we analyse the performance of the afore-

mentioned schemes using the measures introduced in [2].

• Hidden Probability (Hpr): the probability that a sensor

measurement, Di, remains hidden from malicious entities.

• Communication Cost (T ): the total communication over-

head associated with aggregated sensor measurements in

response to a query.

A. Hidden Probability

Hidden probability measures the likelihood that a data

observation cannot be associated with its corresponding source

node. Since both data and keys are shared between cover nodes

and the AS, this metric can be defined in terms of the number

of malicious nodes in the network. In this paper we use ̂ as

a symbol for malicious entities and we assume an average of

Â out of A ASs and N̂ out of N nodes are malicious.

To overcome the privacy issues in PSNs we have used a

splitting technique. Here we study the impact of data splitting

(as in UPS and KSS) on hidden probability compared to the

non-splitting approach (BSP).

Non-Splitting - Since the AS can also be malicious in

PSNs, schemes like BSP that forward their measurements

via other nodes fall short of providing robust privacy. If the

selected neighbour is malicious it can collude with the ÂS and

disclose the data. Recall our assumption that on average, N̂
out of N nodes are malicious, the probability that sni selects a
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malicious cover node is equal to N̂
N . Moreover, if all the source

nodes except for sni are malicious, a malicious ÂS can collud

with them, to breach sni’s privacy by revealing their records.

Suppose Γ(x) is the event that x is malicious, then the hidden

probability Hpr for BSP is estimated as1:

Hpr = 1 − Pr (Γ(AS ) ∩ (Γ(CN i) ∪ Γ(SN\{i})))

= 1 − (
Â
A

Pr (Γ(cn)) +
Â
A

∏
sn∈SN\{i}

Pr (Γ(sn)))

= 1 − (
Â
A

(
N̂
N

) +
Â
A

(
N̂
N

)S N−1)

Splitting - Under UPS and KSS, source nodes share their

perturbed data and key with their neighbours, respectively.

Sharing makes data disclosure more difficult for the ÂS , as

it requires collaboration of all cover nodes CN i or SN\{i} to

obtain Di, otherwise the data remains secret. Therefore, the

hidden probability for UPS can be estimated as:

Hpr = 1 − Pr(Γ(AS ) ∩ (Γ(CN i) ∪ Γ(SN\{i})))

= 1 − (
Â
A

(
N̂
N

)s +
Â
A

(
N̂
N

)S N−1)

B. Communication Overhead

For each of the aforementioned schemes, we measure the

communication overhead associated with each node’s interac-

tion separately. Let TS N−CN and TS N−AS denote the communi-

cation cost incurred due to sending data from source nodes to

their cover nodes and the AS, respectively, and TCN−AS denote

the cost incurred due to transmitting data from selected cover

nodes to the AS. Finally, the total communication cost in each

scheme is obtained as T = TS N−CN + TS N−AS + TCN−AS .

BSP - Usually in PSNs not all users respond to each

query. Using BSP, the AS needs to be informed about the

involved source nodes to derive the decryption key, and it is

accomplished by forwarding source nodes identities.

We first estimate TS N−CN , corresponding to the cost incurred

by route discovery to a cover node, in addition to the cost of

unicasting messages. We assume the average cost associated

with route discovery and the route reply is ϕ bits. Let M� be

the average length of a message in bits, and let S N denote

number of source nodes, then TS N−CN = S N × (M� + ϕ).

Assuming that devices are capable of direct communication,

and I� is the length of an ID in bits, then TCN−AS is obtained

as TS N−AS = S N × I�. However, our scheme is flexible enough

to be extended to hierarchical architectures as well.

Next we model the overhead TCN−AS that results from a set

of cover nodes transmitting the aggregation of data and IDs.

Let NC be the expected number of nodes selected as cover

nodes. A node nl ∈ N is selected as a cover node by a source

node with a probability of 1/(N−1). Therefore, the probability

of the node nl being chosen by at least one source node is

1 − ( N−2
N−1

)S N , and NC is calculated as NC = N × (1 − ( N−2
N−1

)S N).

1For ease of estimating Hpr , we ignore the impact of those source nodes

selected by sni as a cover node, which also overlap with ĈNi.
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Fig. 2 Hidden probability given number of cover nodes.

Hence, the cost incurred from cover nodes communicating to

the AS can be calculated as TCN−AS = NC ×M�.
Using the BSP scheme, the risk of privacy violation poten-

tially increases, as well as the overhead incurred due to the

transmission of all user IDs in large communities.
UPS - In order to avoid the communication overhead of

source nodes sending their IDs in BSP, the UPS scheme

requires every node nl, whether or not nl ∈ SN , to reply to

the disseminated queries. Accordingly, NC can be estimated as

NC = N × (1 − ( N−s−1
N−1

)N).
Since nodes are not required to pass their IDs to the AS the

total communication cost includes TS N−CN = N × s× (M� +ϕ)

and TCN−AS = NC ×M�. Although all the nodes need to send

some form of message, this scheme is beneficial when the

majority of nodes have data to submit.
KSS - To estimate the communication cost of the KSS

scheme where source nodes directly send their perturbed

values C to the AS, the incurred TS N−AS = S N ×M�.
Let K be the size of generated key K̃, which should be at

least the same size as D to ensure enough secrecy [14]. So

the TS N−CN is calculated as TS N−CN = S N × s × (K + ϕ).
The sliced keys are integer values and since data overflow

may occur due to data aggregation, we include a carry-bit

header and estimate its length as Hcb = log NS. Let NS be the

expected number of source nodes choosing a node as a cover

node, then NS = S N ( s
N−1

) and NC = N × (1 − ( N−s−1
N−1

)S N).

Therefore, TCN−AS is obtained as TCN−AS = NC × (K + Hcb).
KSSI - The additional option of an integrity check comes

with a substantial communication overhead, which can be

considered as the trade-off for improved accuracy. Let KM be

the size of K̃ chosen for the KSSI scheme and M� be the size

of the MAC, then TS N−AS = S N × (M� +M�). While TS N−CN

and TCN−AS are essentially the same as in KSS, except with a

key size of KM bits (n.b., at least |KM | ≥ 180 bits).

VI. Evaluation Results

In this section, we evaluate the performance of the proposed

schemes in terms of hidden probability and communication

overhead based on our analytical model and empirical results.

For this purpose, we analysed the number of malicious nodes

N̂, source nodes S N and data slices s on the performance of

a network with 100 participants and an aggregation server.

Table I shows the other default parameter values.

A. Hidden Probability
Fig. 2 illustrates the effect of varying of the number of

cover nodes s and malicious nodes N̂ on hidden probability,
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TABLE I Default Evaluation Parameters

Par. S N N̂ s M� M� K KM I� ϕ
Val. 50 50 2 12 180 7 180 7 10
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Fig. 3 Communication cost under the default settings.
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Fig. 4 Communication cost with CN = 4.
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Fig. 5 Comparison of communication cost for KSSI.

when the AS is malicious. It confirms that selecting a greater

number of cover nodes and sharing information enhances

the hidden probability, regardless of the number of malicious

nodes. As can be seen in Fig. 2, when CN = 1, i.e., non-

splitting, the hidden probability is much lower, and thus

is more vulnerable. As the number of malicious nodes N̂
increases, so does the probability of data exposure. This figure

shows how sensitive user privacy is to the number of malicious

participants. Although the increase in N̂ gradually impacts the

resistance of splitting techniques, it is more significant in the

case of non-splitting. For example, when about half the nodes

are malicious, the risk of violating the privacy of a source

node exceeds 50%. However, with two or more cover nodes

each node can have a confidence of privacy of at least 75%.

B. Communication Overhead

We use the analysis of Section V-B to calculate the total

communication overhead for each scheme as well as the

cost imposed on cover nodes as a result of forwarding their

neighbours’ data. In terms of communication overhead, the

following three factors play the main role in defining the

network communication cost: N, S N and s. Accordingly, we

examine our scheme efficiency in terms of these factors. Fig. 3

shows the communication overhead for the BSP, UPS and KSS
schemes under the default settings. As expected, the cost of

UPS is independent of the number of source nodes, while the

other two schemes experience a linear increase with the growth

of S N. The higher overhead of the UPS scheme implies that

it is not an efficient solution for those networks in which only

a small proportion of nodes are source nodes.

Fig. 4 illustrates the impact of the number of cover nodes

on communication overhead. Doubling the number of cover

nodes (from CN = 2 in Fig. 3 to CN = 4 in Fig. 4), nearly

doubles the transmission cost for UPS and KSS, which can

be considered as the trade-off for privacy. Fig. 5 shows the

overhead incurred by the integrity check. Though including

the option of integrity imposes a greater burden on the system

(especially on the cover nodes), this is the cost of accuracy.

VII. Conclusion

We presented four novel schemes to address the problems

of data privacy and integrity in participatory sensing. Our sim-

ulation results and analytical models show that our approaches

can ensure user privacy with high probability, while defecting

a loss of integrity. As future work, we will investigate other

classes of aggregation queries.
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