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Abstract—An important challenge in network management 
and intrusion detection is the problem of data stream 
classification to identify new and abnormal traffic flows. An 
open research issue in this context is concept-evolution, 
which involves the emergence of a new class in the data 
stream. Most traditional data classification techniques are 
based on the assumption that the number of classes does not 
change over time. However, that is not the case in real world 
networks, and existing methods generally do not have the 
capability of identifying the evolution of a new class in the 
data stream. In this paper, we present a novel approach to 
the detection of novel classes in data streams that exhibit 
concept-evolution. In particular, our approach is able to 
improve both accuracy and computational efficiency by 
eliminating “noise” clusters in the analysis of concept 
evolution. Through an evaluation on simulated and 
benchmark data sets, we demonstrate that our approach 
achieves comparable accuracy to an existing scheme from 
the literature with a significant reduction in computational 
complexity. 
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1 INTRODUCTION  
Data stream mining is the process of extracting hidden 
knowledge or patterns from continuous sequences of data 
records. It is mostly used for analyzing records in sensor 
networks, financial transactions, fraud detection, web 
searches and computer network traffic. For example, in 
computer networks there is a need to choose the main types 
of traffic flows, so that we can detect abnormal and 
malicious traffic. The challenge in this context is how to 
model “normal” behavior, given that the traffic patterns are 
constantly evolving over time.  
Specifically, in data stream classification, the temporal 
behavior and dynamic nature of streams pose a number of 
open challenges. Two well-studied and challenging 
problems are “infinite length” and “concept-drift”. As far as 
the first problem is concerned, traditional multi-pass 
algorithms are not practical, since they require infinite 
storage to keep all records for training purposes.  To tackle 
this problem, several solutions have been proposed [3], [4]. 
The second problem, concept-drift, occurs when over time 
the underlying concepts and statistical properties of data 
change in an unforeseen way. Therefore, classification 
models need to be constantly modified and updated. Several 
solutions to this problem have been proposed [5] [7] [15]. 

However, another important characteristic of data streams, 
“concept-evolution”, has rarely been addressed in previous 
studies [1][6][13]. Concept evolution occurs when new 
classes emerge in records. Most traditional data stream 
classifiers assume that the number of classes remains 
constant over time. In the real world, however, evolution of 
a new class may happen frequently in data patterns. 
Determining and resolving this problem is of vital 
importance to certain high security systems such as network 
traffic analysis, intrusion detection or fault detection as they 
are very sensitive to any slight change. However, user 
behavior is constantly changing in networks. 
In this paper, we build on the previous work of Masud et al. 
[1] to address these data stream problems. In our study, we 
address the problems of infinite length, concept-drift and 
concept evolution. We introduce a step-by-step novel class 
detection technique, which greatly enhances the 
performance of previous works and decreases the risk of 
false-alarms. The technique consists of the following stages. 
First, in the training procedure, a set of cluster based 
decision boundaries are built as the basis for anomaly 
detection. Second, any outliers are detected, based on these 
decision boundaries. Finally, in three steps we eliminate the 
outliers to make an informed decision about any novel 
classes that have emerged in the data stream. 
We introduce a new measure, to detect false negative 
instances and purify the outliers, known as P-outliers. This 
reduces the error rate and helps overcome the problem of 
concept-drift. In the next step, we employ a measure called 
the discrete Silhouette Coefficient to determine the cohesion 
among P-outliers, and the separation from other records in 
the training data. This measure allows us to differentiate the 
P-outliers meeting the requirements of novel instances. 
Finally, we apply a graph-based technique to identify 
multiple novel classes. To improve this approach, we 
introduce a complimentary technique that is able to detect 
and eliminate any unneeded clusters that arise from the 
clustering step. 
We evaluated our algorithm with a benchmark network 
dataset. The training and testing data were both selected 
from the KDD Cup 1999. In comparison to an existing 
method [1], our results show that our method gives 
improved accuracy with up to a 25% reduction in 
computation time. 
The rest of the paper is structured as follows. Section 2 gives 
a general survey of related work in data stream classification 
and novel class detection. Section 3 gives an overview of 
our approach. Section 4 describes and illustrates our 



algorithm in detail. Section 5 presents our experiments and 
results. Section 6 concludes with directions for further 
research. 

2 RELATED WORK 
Our approach addresses both data stream classification and 
novel class detection. In the following we discuss several 
previous studies in these areas. 

2.1 DATA STREAM CLASSIFICATION 
Data stream mining has been an active research topic in 
recent years, and the resulting techniques can generally be 
classified into two main categories: single model and 
ensemble model classification. The first category includes 
studies that, to address concept-drift, incrementally modify 
and update a single classification model. An example of the 
single method study is [8]; it proposes a framework, which 
can adapt micro-clusters quickly to changes in the 
underlying data stream. Other studies include [7], [11], [15], 
[16]. The second category includes studies that replace an 
older model with a high error-rate with a newer, more 
accurate model. One such study, for example, evaluates the 
newly trained classifiers in the ensemble based on their 
expected classification accuracy [5]. Since the ensemble 
model is more accurate and efficient in handling concept-
drift and can efficiently update the current model, we have 
chosen this approach. Our approach, however, differs by 
making a more practical method of outlier detection. We 
also consider novel class detection, which has not been 
addressed in these previous studies. 

2.2 NOVEL CLASS DETECTION 
Markou and Singh [10] classify novelty detection 
approaches into two main categories: parametric and non-
parametric. In parametric approaches, a given data 
distribution is considered and the distribution parameters 
from the normal data are measured. If any test data does not 
follow this distribution, it is assumed to be a case of a novel 
instance [12]. Our approach is non-parametric, meaning it is 
not constrained to any data distribution. Some examples of 
non-parametric approaches include kernel-based methods 
[9] and k-nearest neighbor (k-NN) based approaches [16]. 
There are two main differences between our approach and 
the above approaches. First, most of these approaches are 
based on the assumption that the normal model is static. 
This indicates, for example, that concept-drift does not occur 
in the dataset. Our approach, however, is able to identify 
novel classes even when there is concept-drift. Second, the 
other approaches only test if there is a major difference 
between a test instance and the training data. However, in 
addition to estimating the difference between test data and 
the normal data, we consider the similarities among the test 
data. 
Spinosa et al. [14] apply a cluster-based technique to data 
streams to detect novel classes. This technique considers 
only one normal class and assumes all others as novel 
classes. As a result, it is not suitable for multi-class 
detection, where multiple classes are considered as normal. 
Our approach, however, is more efficient as it does not 
depend on the number of existing classes. What is more, 
Spinosa et al. [14] consider novel classes as having convex 

topological shapes, which is not always true in real datasets. 
A few studies have used a multi-class classifier for detecting 
novel classes [1][13]. While [13] has not examined the 
occurrence of multiple novel classes, [1] propose a 
classification and novel class detection technique. This study 
not only tackles the challenge of infinite length, concept-
drift and concept evolution in data streams, but can also 
handle the simultaneous appearance of more than one novel 
class as well.   
Masud et al. [1] chose K-means as their clustering method. 
Although, K-means clustering is one of the popular 
clustering methods in data-mining and intrusion detection 
[2], it has several potential limitations in this context. One of 
the main disadvantages of K-means clustering that 
significantly affects the performance of these proposed 
approach is the predefined number of clusters. In this 
clustering method, the number of clusters should be defined 
by the user. The value K plays a determining role in 
producing the final result. Opting for a lower value of K, 
respective to the operation of K-means, generates larger 
clusters to cover all the potential novel classes. The larger 
the sizes of clusters, the higher the probability of covering 
outliers. On the other hand, a high value of K results in the 
generation of unneeded clusters that only contain outliers. 
Finally, both approaches can increase the false-positive rate 
of the algorithm. In this study, we follow the approach of 
[1], but improve it in a number of ways. 
To alleviate the problems of K-means, we introduce a 
technique to remove any superfluous generated clusters. In 
our approach we prefer to define the value of K slightly 
higher to prevent losing novel instances and decreasing the 
detection rate. In contrast, we identify those clusters with a 
low density and high intra-instance distances. These clusters 
are not genuine novel classes and they are mislabeled as 
novel classes. By doing so, we give sufficient flexibility to 
the K-means algorithm to recognize the higher density 
classes, maximizing novel instance identification. In 
addition, we remove the extra clusters to minimize the error 
rate. 
Note that identifying ineligible clusters not only reduces the 
false-positive rate, but also improves the performance of the 
algorithm and reduces the overhead. The computational 
complexity of the algorithm is also reduced substantially by 
eliminating inappropriate clusters. 

3 PRELIMINARIES 
We use the ensemble model for data stream classification 
where our stream classifier is an ensemble of M classifiers, 
C={C1,…,CM}. The stream is divided into equal size chunks, 
and each chunk is used to train a k-NN based classification 
model. This input for k-NN is a set of training instances or 
data records. We employed a semi-supervised K-means 
clustering algorithm to build K clusters for each chunk. 
These clusters represent the classification models. A 
summary of each cluster is saved, comprising the centroid, 
radius and the number of data instances in the cluster. The 
centroid of a cluster is the center or mean of all its instances. 
The radius of a cluster is the distance from the centroid of 
the cluster to its farthest data-point (belonging to the 
cluster). However, although the cluster summaries are kept, 
the raw data-points cannot be discarded since they are 
required for more accurate novel class detection. In Section 



4.2, we examine the trade off between memory space and 
accuracy. 
Before describing our approach, we formally define the key 
concept of a novel class.  
 
Definition 1 (Decision Boundary). The union of the 
classification models constitutes the decision boundary, 
which is used as the basis for outlier detection. 
 
Definition 2 (Novel class and Existing class). A class ς is 
identified as a novel class if and only if it does not occur in 
any of the M classifiers. Otherwise, it is an existing class. In 
other words, when any of the classifiers Ci has been trained 
with the instances of class ς, the class is indicated as an 
existing class. 

4 PROPOSED APPROACH 
In this paper we propose our enhanced and time efficient 
approach to novel class detection in four main stages, as can 
be seen in Figure 1. At the first stage, the outliers on the 
fringe of clusters, such as instance t in Figure 2 (Stage 1), 
are detected and labeled as belonging to existing classes. At 
the second stage, the regions with a high density of outliers 
are identified.  Next, the approximate number of novel 
clusters present in the test data is determined, and any 
ineligible clusters are identified and eliminated. Finally, any 
closely connected clusters are merged. 
 

 
 

Figure 1. Illustration of the stages of proposed approach. (Steps marked 
with an asterisk have been introduced by us, while the two other steps were 

introduced in [1]) 
 
The open problem that we address is how to identify new 
clusters in the test data, given that we do not know a priori 
how many new clusters are present. As a result, clustering 
methods such as K-means may lead to unneeded clusters 
that are artefacts of the algorithm. To detect these unneeded 
clusters, we have developed a new technique to refine the 
set of new clusters. In Figure 2, for example, five clusters A, 
B, C, D and E are generated at this level. But only A, B, 
C and D meet the eligibility condition of novel classes. In 
contrast, cluster E is generated as an artefact from the 
difficulty in knowing the correct number of clusters a priori. 
As discussed in Section 4.3 in more detail, this extra cluster 
is identified as an artefact and removed. In the last stage, 
once only the eligible novel classes remain, we construct a 
graph of connected (close) clusters. This graph, as shown in 
Figure 2 (Stage 4), classifies clusters A, B and C as a group 
and that can be merged into a single cluster, whereas the 
identified cluster D remains as an independent cluster. 
  

	  
Stage	  1	  

	  
Stage	  2	  

	  
Stage	  3	  

	  
Stage	  4	  

	   	  
 

Figure 2. Illustration of the main four stages of the approach 

4.1 IDENTIFYING AND PURIFYING OUTLIERS  
Definition 3 (Existing Instance and Outlier). In order to 
detect outliers, we require a decision boundary that defines 
the border between the outliers and the existing classes. The 
test instances placed inside (or on) the decision boundary are 
classified as existing class instances. On the other hand, the 
test data placed outside the decision boundaries of all classes 
are classified as outliers. 
Similarly, a test data record is defined as an outlier if it is 
outside the radius of all the existing clusters. As a result, the 
instances that are outside the cluster surface but still very 
close to them are considered as outliers. For example, see 
data point t in Figure 2. However, this might occur 
frequently because of noise or concept-drift, causing normal 
instances to lie just outside the fringe of a cluster. This 
results in an increase in the false alarm rate, due to existing 
instances being labeled as novel data. To address this 
problem, we define the concept of the weight of a test 
instance. 
 
Definition 4 (Weight). Let t be a test instance, and ς be the 
nearest cluster with a radius of Cr. Let Td be the distance 
from instance t to the centroid of the cluster, as illustrated in 
Figure 3. The weight of t is defined as: weight(t)=eCr-Td. If 
the instance is inside the cluster then Cr≥Td , and 
weight(t)≥1 (t2 in Figure 3). Otherwise, t is an outlier and 
weight(t)<1 (t1 in Figure 3). The reason for employing this 
exponential function is that it generates values ranging from 
0 to 1 for outlier instances. The outliers farther from the 
decision boundary have a lower value of weight (closer to 
0). 



 
 

Figure 3. Illustration of centroid distance of two test instances for weight 
calculation 

 
In order to identify outliers, first, all the test data is checked 
for records that are outside the decision boundary. The 
detected outliers are temporarily stored in a buffer, 
TempBuf. However, as discussed earlier, some of 
the TempBuf instances may be genuine existing instances 
misclassified as outliers, i.e, because of noise or concept-
drift. Then we use the outlier-purifying technique to remove 
genuine data instances from the buffer, calling the remaining 
outliers P-outliers. 
 
Definition 5 (Outlier-Purifying). The purifying process is 
based on the weight, discussed in Definition 4, of each data 
instance in the TempBuf. We define a threshold wth=0.7, 
where if the weight of a TempBuf instance is higher than the 
wth (0.7<weight<1), we label this data as an existing class 
instance. Otherwise, if its weight is less than or equal to the 
threshold, the data is identified as a P-outlier. Algorithm 1 
describes this step in detail: 
 
Algorithm	  1.	  Outlier	  Purifying	  
for	  i=1	  to	  size	  of	  TempBuf	  
	  	  	  calculate	  weight	  for	  instance	  TempBuf	  (i)	  
	  	  	  if	  	  0<weight(TempBuf	  (i))≤0.7	  
	  	  	  	  	  	  	  add	  TempBuf	  (i)	  to	  POutliers	  
	  	  	  end	  if	  
end	  for	  
 

4.2 NOVEL CLASS DETECTION 
In data streams, a major source of outliers can be the 
presence of new clusters due to concept-evolution. Once the 
outliers in the test data have been detected, we perform 
several computations on P-outliers to recognize the 
occurrence of novel classes. As the first step, the regions 
of P-outliers with a high density are recognized. As 
mentioned in [13] “a data-point should be closer to the data-
points of its own class (cohesion) and farther apart from the 
data-points of other classes (separation)”. In other words, a 
novel class is constructed if there is sufficient cohesion 
among the outliers and enough separation from the existing 
classes, presented in Figure 2 (Stage 2). To acquire this 
measure, we use the n-nearest neighbor Silhouette 
Coefficient (n-SC) [1]. 
 
Definition 6 (n-Nearest Neighbors).  The n nearest P-
outlier neighbors of an instance, t, refers to a set of n data-
points, among all the outliers, having minimum distance 
to t. Similarly, the nearest n existing instances to t refers to 
the n closest existing data among all the existing instances of 
all classes. The nearest outliers and existing instances are 
illustrated with o and e in Figure 4, respectively. 

 

 
 

Figure 4. Illustrates the two nearest existing and outlier instances to the 
instance t 

 
Definition 7 (n-SC). Let Dnp(x) be the average distance 
from a P-outlier x, to its n-nearest P-outliers. Dnp(x) 
represents the cohesion among the outlier, x, and 
the n closest outlier neighbors. In contrast, Dnclass(x) is the 
average distance of x to the n nearest existing class 
instances, and indicates the separation of x from them. We 
define the n-Silhouette Coefficient n-SC as:  
 

!_!" ! =
!!" x −   !!"#$%% x

max  (!!" x ,!!"#$%% x )
 

 
The definition n-SC returns a value between -1 and 1. A 
positive result shows that x has high cohesion with P-
outliers and high separation from class instances. It is closer 
to other outliers and farther away from existing class 
instances. The outliers having negative n-SC, can be 
removed from the P-outliers, since they are regarded as 
existing data. 
It is to be noted that choosing a higher value of n gives us 
greater certainty and confidence in deciding whether an 
instance belongs to a novel class. However, if n is too large, 
the algorithm fails to detect a novel class when the number 
of novel class instances is less than the value of n. We find a 
value for n empirically, as explained in Section 5. 
 
 
Algorithm	  2.	  Novel	  Class	  Detection	  
for	  i=1	  to	  the	  size	  of	  POutliers	  
	  	  	  find	  n	  nearest	  outliers	  to	  POutliers	  (i)	  
	  	  find	  n	  nearest	  existing	  instances	  to	  POutliers	  (i)	  
	  	  	  	  	  	  	  if	  	  0<n-‐SC	  (POutliers	  (i))≤	  1	  
	  	  	  	  	  	  	  	  	  calculate	  N-‐rate	  for	  POutliers	  (i)	  
	  	  	  	  	  	  end	  if	  
end	  for	  
 
In the next step of novel class detection, to distinguish the P-
outliers occurring due to the concept-evolution of data 
streams, we employ a metric called the discrete Gini 
Coeffcient. We have found that if the result of this metric is 
higher that a given value then we can determine the 
emergence of concept-evolution in our stream. 
 
Definition 8 (N-rate). Novelty rate (N-rate) is a metric to 
determine the likelihood of an outlier belonging to a novel 
class. It consists of two parts. In the first part the distance of 
an outlier to its nearest existing class instance is measured. 
The higher value, as expected, indicates a greater separation. 
The second part calculates the distance of the outlier to its 
closest outliers. It should be noted that the N-rate is only 
computed for instances with positive n-SC value, i.e, high 
cohesion with P-outliers and high separation from existing 



instances. The N-rate for each P-outlier is obtained by using 
the calculated weight and n-SC of that instance in 
Definitions 4 and 7 respectively. The term minweight in the 
N-rate equation indicates the minimum weight of all the P-
outliers, which have positive n-SC. The value of N-rate(x) is 
within the range of [0,1], and a higher value implies a 
greater likelihood of x being a novel data instance. 
 

!!"#$ ! =
1 −   weight x
1 −minweight

×!_!"(!) 

 
Analyzing the distribution of N-rate values provides a 
clearer image of the novelty of the P-outliers. We discretise 
the values of N-rate(x) into l equal intervals, and generate a 
cumulative distribution function (CDF) denoted as s of the 
N-rate values where {yi ;i=1,…,m}. Now we apply the 
discrete Gini Coefficient metric GC(s), for a random sample 
of yi , to make the final decision about the novelty of each P-
outlier. 
  

!" ! =
1
!
+ (! + 1 − 2(

! + 1 − ! !!!
!!!

!!!
!!!

) 

 
Let yi be the CDF value for the ith interval (1≤ i ≤m). We 
categorize the behavior of GC(s) into three main cases: 

I. !" s = 0, this occurs when all N-rate values 
are generally very low and lie in the first 
interval. Then yi would be equal to 1 for all the 
intervals. This shows that all the outliers 
belong to the existing class but are 
misclassified as outliers. 
 

                        !"(s) = !
!
+ (! + 1 − 2 !!!!! !!

!!!
!!

!!!
= 0 

II. !"(s) = !!!
!

, in contrast with case Ι, this 
occurs when all N-rate values are generally 
high and lie in the last interval. Therefore, all 
the outliers belong to the novel class. 
Then ym =1 and yi=0 for all i < m. This implies 
that all the outliers belong to the novel class. 
After simplification, GC(s) becomes: 
 

 !"(s) = !
!
+ (! + 1 − 2 !

!
= !!!

!
 

 
III. !(s) = !!!

!!
, this is occurs when the 

distribution is a mixture of, for example, some 
novel class instances and noise or concept-
drift. Therefore, the distribution of N-rate 
values is relatively uniform across all the 
intervals. The value of yi for all intervals is yi = 
i/m. After simplification, GC(s) becomes: 
 

                        !"(s) = !
!
+ (! + 1 − 2 !!!!! !!

!!!
!!

!!!
= !!!

!!
 

To summarize, by examining the three possible cases with 
the aim of identifying the evolution of a novel class, we 

came up with a threshold for the Gini Coefficient. 
If !" ! > !!!

!!
 then a novel class is declared and the P-

outlier instances are labeled as novel class instances [1]. 

4.3 DETECTION OF MULTIPLE SIMULTANEOUS 
NOVEL CLASSES  
One of the challenges of novel class detection is recognizing 
the evolution of more than one class at the same time. The 
occurrence of multiple new classes in data streams, such 
as Twitter [1], is a common scenario. This poses problems 
since it needs to be performed in an unsupervised 
environment. To solve this problem, we construct a graph to 
define the connected components (nodes), which correspond 
to a subset of closely related novel clusters. 
 
Definition 9 (Connected components). A connected 
component represents a set of novel classes, such that the 
cohesion between all novel class instances is higher than the 
distance between each pair of the classes (separation). 
Prior to identifying the connected components, the novel 
instances, detected in Section 4.2, should be classified as 
different novel classes. Since defining the required number 
of novel classes (clusters) has a significant impact on the 
accuracy of the final result, we use a combination of two 
methods. First, we use K-means clustering to generate the 
clusters, and opt for an a choice of K value that over 
estimates the true number of clusters, which is defined as 
follows: 

!! =
!×!"
!ℎ!"#$

 

where NI is the number of novel instances, K is the initial 
number of clusters and ChSize the chunk size. Kn indicates 
the number of required clusters. After constructing the novel 
classes using K-means with Kn, we measure the density of 
each cluster. The density of a novel class can be measured 
by dividing the number of cluster instances by the mean 
distance among them. 

!"#$%&'( =
!"#$%

!"#$    !!"
 

In general, Kn may not be precise and may not return the 
exact number of novel clusters.   Inevitably, some extra 
clusters are generated containing no or only a few novel 
instances along with some outliers or existing instances. 
This leads to an increase in the false alarm rate.  To tackle 
this problem, we define a threshold for the cluster density. If 
the cluster density is lower than the threshold, thDens=0.5 and 
the number of its instances is less than 10, we eliminate that 
cluster and its instances from the novel classes. Only the 
novel clusters with high density remain, which we call 
eligible classes or e-classes. 
Once the eligible novel classes have been identified, we 
build a graph G= (V, E) to detect the connected components, 
where each of the e-classes is considered as a vertex of G 
and is connected to the nearest neighbor having a minimum 
centroid distance. To do so, we use the Silhouette 
Coefficient equation:  

!_!" =
!. !! − !. !"#$

max  (!. !!, !. !"#$)
 



where d.nn  represents the centroid distance of an e-
class from its nearest neighbor, and µ.inst is the mean 
distance of all the instances belonging to the e-class from its 
centroid. A low value of c-SC (closer to zero) indicates that 
the e-class is not a tight cluster and is close to its nearest 
neighbor. On the other hand, a higher c-SC (close to 1) 
indicates that the e-class is a tight cluster and far from its 
closest cluster. We introduce a threshold thc=0.8 such that if 
the value of c-SC is less than thc we add an edge to G, 
showing that the two clusters are not separable. 
Once the graph G is constructed with all the connected 
nodes, the centroid distance between each pair of nodes is 
measured. Let ȵ1 and ȵ2 be two nodes of the graph G, where 
Dȵ1 and Dȵ2 are the mean distance of their instances. We 
merge the two nodes if the sum of Dȵ1 and Dȵ2 is twice as 
much as the distance between the centers of the two nodes. 
Finally, the final number of novel classes is equal to the 
number of merged clusters plus the unmerged clusters. For 
example, in Figure 2 (Stage 4), clusters A, B and C are 
merged into one novel class and cluster D is defined as a 
separate class. Algorithm 3 describes our method in detail: 
 
Algorithm	  3.	  Novel	  Class	  Detection	  
Calculate	  the	  number	  of	  required	  novel	  clusters,	  Kn	  
for	  i=1	  to	  size	  of	  Kn	  
	  	  	  if	  	  NDensity	  of	  cluster(i)>thDens	  &	  #	  cluster	  instances	  >10	  
	  	  	  	  	  	  	  define	  cluster(i)	  as	  an	  e-‐class	  
	  	  	  end	  if	  
end	  for	  
for	  j=1	  to	  the	  number	  of	  e-‐classes	  	  
	  	  	  find	  the	  connected	  components	  to	  class(j)	  
end	  for	  
for	  p=1	  to	  the	  number	  of	  e-‐classes	  	  
	  	  	  for	  q=1	  to	  the	  number	  of	  connected	  components	  to	  the	  e-‐	  
	  	  	  classes(p)	  
	  	  	  	  	  	  	  	  if	  	  Dȵ(q)+	  Dȵ(p)>2×(centroid	  distance	  between	  class(p)	  
	  	  	  	  	  	  	  	  and	  class(q))	  
	  	  	  	  	  	  	  	  	  	  	  merge	  the	  clusters	  
	  	  	  	  	  	  	  end	  if	  
	  	  	  	  end	  for	  
end	  for	  

5 EVALUATION 
The aim of our evaluation is to measure the accuracy and 
efficiency of our proposed scheme in terms of detecting 
multiple simultaneous novel classes. In our experiment we 
use synthetic datasets to measure the accuracy of our 
algorithm and visualize its performance. In addition, we 
apply a benchmark dataset to evaluate the applicability of 
our approach to a real-world networking scenario. 
We implemented our novel class detection algorithm in 
Matlab and used the following parameter settings: K 
(number of initial clusters)=3, C (number of classifiers)=3, n 
(minimum number nearest neighbors)=12. With these 
settings we examined our approach using various amounts 
of data. For each of the experiments, the false positive and 
false negative rates were calculated.  
Since the aim of the algorithm is to detect novel clusters, a 
‘positive’ is anything labeled by the algorithm as a member 
of a novel class. A ‘negative’ is anything labeled by the 
algorithm as outlier or a member of an existing class. Then, 
a false positive (FP) occurs when an outlier or a member of 

an existing class is labeled as a member of a novel class. A 
false negative (FN) occurs if a member of a novel class is 
labeled by the algorithm as an outlier or an existing class 
instance. 
True positive (TP) and true negative (TN) represent the 
number of correctly detected novel instances, and outlier or 
existing class members, respectively. 
The false positive rate (FP-rate) is the ratio of the number of 
false positive instances generated by the algorithm to the 
total number of true negatives and false positives. 

• FP-rate = FP/(TN+FP) 
Similarly, false negative rate (FN-rate) is the ratio of the 
number of false negative data instances to the total number 
of true positives and false negatives.  

• FN-rate = FN/(TP+FN)  
The detection rate is: 

• DR=1- FN-rate 

5.1 SYNTHETIC DATASET 
Our synthetic dataset consists of three classes. The first class 
is used to build some initial (existing) classes, as can be seen 
in Figure 2. Another set of data is used as outliers, and is a 
low-density dataset dispersed over the data range. The last 
dataset is defined as ‘normal’ instances, and includes some 
classes with different densities and distances. To evaluate 
our approach, first the initial instances are applied to 
generate the classifiers and decision boundary. Next, the 
algorithm is applied to the unlabeled outlier and normal 
data. We applied both our approach and the method of 
Masud et al.[1] to the data, and the resulting FP, DR and 
processing time are shown in Table 1. The ROC curves in 
terms of the resulting FN and DR of the two methods are 
presented in Figure 5.  The value of the Area Under the 
ROC curve (AUC) obtained from the approach of Masud et 
al.[1] is 0.79, while, the AUC of our approach is 0.88. What 
is more, in comparison, the average of the computation time 
of the two approaches reveals an almost 25% improvement 
when using our approach. 
 
 

 
 
Figure 5. ROC curves of ourapproach (New) and approach of [1] (Old) on 

synthetic data set. 
 

5.2 KDD CUP DATASET 
The KDD Cup 1999 dataset was derived from the 1998 
DARPA Intrusion Detection Evaluation Program organized 
by the MIT Lincoln Labs. In this data, a military LAN was 



emulated along with various types of attacks over a period 
of nine weeks. The first seven weeks of traffic generate the 
training dataset with about 4.9 million connections. The two 
other weeks consist of a test dataset with about 300,000 
connections, which also includes several different types of 
attacks compared with the training data. The entire dataset 
was gathered from the binary TCP dump and converted into 
sets of connection records. We have extracted a subset of 
this data set for our evaluation. Each of the records contains 
82 various features and a label, defining whether the data is 
normal or an attack. 
 

 
 
Figure 6. ROC curves of our approach (New) and approach of [1] (Old) on 

KDD Cup dataset. 
 
The ROC curves resulting from the KDD Cup dataset for the 
two approaches are presented in Figure 6.  The value of the 
AUC obtained from the approach of Masud et al.[1] is 0.87, 
whereas the AUC resulting from our approach is 0.92. 
Similar to the synthetic datasets, the average computational 
time of the two approaches reveals an almost 28% 
improvement in our approach. 
 

	   	   FP-‐rate	   DR	   Process	  Time*	  
Number	  
of	  Test	  
Data	  

	  
New	  

	  
Old	  

	  
New	  

	  
Old	  

	  
New	  

	  
Old	  

	  
Synthetic	  

2200	   0.067	   0.112	   0.657	   0.657	   394	   448	  
2200	   0.091	   0.198	   0.774	   0.801	   487	   563	  
1200	   0.092	   0.254	   0.887	   0.887	   56	   96	  
2400	   0.141	   0.283	   0.942	   0.95	   434	   612	  

Average	   	   	   	   	   	   342.75	   429.75	  
	  

KDD	  Cup	  
2380	   0.097	   0.253	   0.634	   0.642	   13,107	   20,590	  
2380	   0.161	   0.262	   0.812	   0.808	   20,243	   28,433	  
1180	   0.200	   0.294	   0.874	   0.901	   788	   903	  
1180	   0.227	   0.325	   0.937	   0.937	   764	   785	  

Average	   	   	   	   	   	   8,726	   12,678	  
 

Table 1. Results of our approach (New) and approach of [1] (Old) on 
synthetic and KDD Cup datasets. * Process time in seconds. 

6 CONCLUSION 
In this paper, we proposed a novel class detection scheme, 
which is also capable of identifying multiple classes 
simultaneously. We have evaluated the scheme on both 
simulated and benchmark datasets and shown that our 
approach is able to achieve a comparable detection rate, 

while reducing the false positive rate, compared to an 
existing approach. In addition, this accuracy was achieved 
with a reduction in the required computation time.  
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