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Abstract
Deep neural network classifiers suffer from ad-
versarial vulnerability: well-crafted, unnoticeable
changes to the input data can affect the classifier
decision. In this regard, the study of powerful ad-
versarial attacks can help shed light on sources of
this malicious behavior. In this paper, we propose
a novel black-box adversarial attack using normal-
izing flows. We show how an adversary can be
found by searching over a pre-trained flow-based
model base distribution. This way, we can gen-
erate adversaries that resemble the original data
closely as the perturbations are in the shape of
the data. We then demonstrate the competitive
performance of the proposed approach against
well-known black-box adversarial attack meth-
ods.

1. Introduction
Deep neural network (DNN) classifiers have been success-
fully applied to many object recognition tasks. However,
Szegedy et al. (2014) pointed out that even the slightest
intentional changes to a DNN input, widely known as ad-
versarial attacks, can change the classifier decision. This
observation is peculiar as those changes are tiny and can
barely affect a human’s judgment about the object class.
Since their emergence, many adversarial attack methods
have been devised. These studies are often helpful in rec-
ognizing sources of this misbehavior, which ultimately can
lead to more robust DNN classifiers.

There are many attributes by which adversarial attacks can
be categorized (Yuan et al., 2019). Perhaps the most famous
one is with respect to the adversary’s knowledge about the
target DNN. In this sense, threat models are divided into
white- and black-box attacks. In white-box attacks, it is

1School of Computing and Information Sys-
tems, The University of Melbourne, Victoria, Aus-
tralia. Correspondence to: Hadi M. Dolatabadi
<hadi.mohagheghdolatabadi@student.unimelb.edu.au>.

Second workshop on Invertible Neural Networks, Normalizing
Flows, and Explicit Likelihood Models (ICML 2020), Virtual Con-
ference.

assumed that the adversary has full access to the internal
weights of the target DNN, and can leverage this knowledge
in generating adversarial examples by using the DNN gradi-
ents. In contrast, black-box adversarial attacks are assumed
to have access to solely the input and output of a classifier.
As a result, they have to utilize this limited capacity in order
to construct their adversarial examples.

There has been some research on the use of generative mod-
els in the construction of adversarial examples, for instance,
Baluja & Fischer (2018); Xiao et al. (2018); Song et al.
(2018); Wang & Yu (2019). These works are mostly con-
cerned with training a generative model on a target network
so that the samples generated by them are adversarial. To
this end, they often require taking the gradient of the target
network, and hence, are mostly suitable for white-box set-
tings. To adapt themselves to the black-box scenario, they
often replace the target network with a substitute version.
Thus, the performance of such approaches heavily depends
on the resemblance of the target network to the substitute
one. Moreover, for various types of defenses, such meth-
ods often require re-training their generator on a different
substitute network.

In this paper, we propose using pre-trained flow-based mod-
els to generate adversarial attacks for the black-box setting.
We first formulate the problem of adversarial example gen-
eration. Then, we show how searching over the base distri-
bution of a pre-trained normalizing flow can be related to
generating adversaries. Finally, we show the effectiveness
of the proposed method in attacking vanilla and defended
models. We see that the perturbations generated by our
method follow the shape of the data closely. However, this
is generally not the case for other existing methods, as they
often look like an additive noise.

To the best of our knowledge, this is the first work that ex-
ploits normalizing flows to generate adversarial examples.
Through the experimental results, we see how this method
can be used to make adversarial perturbations less notice-
able. We hope our work can be a stepping stone into model-
ing adversaries using exact likelihood approaches with their
ability to model the data distribution closely. Hopefully,
such works can lead to the statistical treatment of DNNs’
adversarial vulnerability.
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2. Background
2.1. Normalizing Flows

Normalizing flows (Tabak & Turner, 2013; Dinh et al., 2015;
Rezende & Mohamed, 2015) are a relatively novel family
of generative models. They use invertible neural networks
(INN) to transform a simple density into data distribution.
To this end, they exploit the change of variables theorem. In
particular, assume that Z ∈ Rd denote an arbitrary random
vector from a uniform or standard normal distribution. If we
construct a new random vector X ∈ Rd by applying a dif-
ferentiable INN f(·) : Rd → Rd to Z, then the relationship
between their corresponding densities can be written as

p(x) = p(z)

∣∣∣∣det(∂f∂z)
∣∣∣∣−1 . (1)

The multiplicative term on the RHS is known as the Ja-
cobian determinant. This term accounts for normalizing
the base distribution p(z) such that the density p(x) rep-
resents the data distribution. To make modeling of high-
dimensional data feasible, the Jacobian determinant must be
computed efficiently. Otherwise, this calculation can hinder
the application of such models to high-dimensional data
as the cost of computing the determinant grows cubically
with the data dimension. Once set, we can use maximum
likelihood to fit the flow-based model of Eq. (1) to data ob-
servations. This fitting is done using numerical optimization
methods such as Adam (Kingma & Ba, 2015).

One of the earliest INN designs for flow-based modeling
is Real NVP (Dinh et al., 2017). This network uses affine
transformations in conjunction with ordinary neural net-
works such as ResNets (He et al., 2016) to construct a
normalizing flow. In this paper, we use a reformulation
of Real NVP (Dinh et al., 2017) introduced by Ardizzone
et al. (2019). This transformation is defined by stacking two
consecutive layers of ordinary Real NVP together

x1 = z1 � exp
(
s1(z2)

)
+ t1(z2)

x2 = z2 � exp
(
s2(x1)

)
+ t2(x1). (2)

Here, s1,2(·) and t1,2(·) represent the scaling and transla-
tion functions, and they are implemented using ordinary
neural networks as they are not required to be invertible.
For more information about flow-based models and archi-
tectures, we refer the interested reader to Kobyzev et al.
(2019); Papamakarios et al. (2019).

2.2. Adversarial Example Generation

Let C(·) denote a DNN classifier. Assume that this network
is defined so that it takes an image x as its input, and outputs
a vector whose y-th element indicates the probability of the
input belonging to class y. Now, we can solve the following

optimization problem to find an adversarial example for x

xadv = argmin
‖x′−x‖p≤ε

L(x′). (3)

Here, L(x′) = max
(
0, log C(x′)y −maxc6=y log C(x′)c

)
is the Carlini & Wagner (2017) (C&W) loss. This objec-
tive function is always non-negative. Upon becoming zero,
it indicates that we have found a category for which the
classifier outputs a higher probability than the data, and
hence, constructed an adversarial example. Moreover, we
limit our search to the images whose `p norm lies within the
ε-boundary of the original image. This constraint is in place
to ensure that the adversarial image looks like the clean data.

White-box attacks can leverage the network architecture
and internal weights to solve the objective of Eq. (3) via
back-propagating through the classifier C(·). However, in
black-box attacks, we are restricted to querying the classifier
C(·) and working with its outputs only. In this paper, we
are going to solve Eq. (3) for an adversarial image in the
black-box setting.

3. Proposed Method
Consider a flow-based model that is trained on some image
dataset in an unsupervised manner. It was empirically shown
that given such a generator, all the latent points in a neigh-
borhood tend to generate visually similar pictures. This
property is the result of the invertibility and differentiability
of normalizing flows, which causes the image manifolds
to be smooth (Kingma & Dhariwal, 2018). We can exploit
this property of flow-based models to generate adversarial
examples. To this end, we need to search in the vicinity of
the latent representation of an image, and find the one that
minimizes the cost function of Eq. (3). We can achieve this
goal by assuming an adjustable base distribution around a
given image’s latent representation. Then we tune this base
distribution so that it generates an adversarial example. The
natural way of doing so is to consider an isometric Gaussian
with non-zero mean as the base distribution of the normal-
izing flow, as opposed to the standard Gaussian, which is
used in training it.

In particular, let f(·) denote our pre-trained normalizing
flow. Furthermore, let zclean = f−1(xclean) be the base
distribution representation of the clean test image xclean.
Given the smoothness property of the generated images
manifold, we assume that the adversarial example is being
generated from

zadv = zclean + µ+ σε (4)

on the latent space of the flow-based model. Here, µ ∈ Rd
and σ ∈ R are the parameters that control the movement of
our algorithm in the base distribution space. We set σ ∈ R
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Figure 1. Adversarial example generation with pre-trained flow-based model f(·).

via hyper-parameter tuning, and keep µ as an adjustable
parameter in our algorithm. Furthermore, we assume ε to
come from a standard normal distribution. In other words,
Eq (4) defines a vicinity of the target image x in the base
distribution space. We then try to adjust the positioning of
this distribution through parameter µ so that it generates
adversarial examples.

In order to generate an adversarial example, we propose
the following iterative algorithm. First, we initialize µ to
a small random vector. Next, n samples of zadv are drawn
according to Eq. (4). These samples are then translated into
their corresponding images using the pre-trained flow-based
model f(·). Afterward, we compute the C&W loss for all
of these samples by querying the target DNN C(·). Out of
these samples, we select the top-k ones for which the C&W
objective is the lowest. We then update the vector µ by
averaging over the base distribution representation of the
k chosen samples that result in the lowest C&W costs. This
procedure is repeated until we reach an adversarial exam-
ple or hit the quota for the maximum number of classifier
queries. Note that in order to satisfy ‖xadv − x‖p ≤ ε, we
have to project the generated data into their corresponding
images for which they satisfy this constraint in each iteration.
Figure 1 shows a schematic of the proposed framework.

A key advantage of our proposed method is that the adversar-
ial perturbations found lie on the image manifold, and hence,
should reflect the structure of the clean image. This property
is in contrast to traditional methods whose perturbations do
not necessarily follow the image manifold.

4. Experiments
To evaluate our proposed method, we first train a flow-based
model on the training part of the CIFAR-10 (Krizhevsky &
Hinton, 2009) dataset. To this end, we use the framework of

Ardizzone et al. (2019) for invertible generative modeling.1

We use a two-level architecture for our normalizing flow. At
level one, the data first goes through 4 layers of modified
Real-NVP (Eq. (2)). We then reduce the image resolution us-
ing RevNet downsamplers (Jacobsen et al., 2018). Next, the
image is sent through 6 layers of low-resolution invertible
mappings. In this first level, all the transformations exploit
convolutional neural networks. Afterward, three-quarters
of the data is sent directly to the output. The rest then goes
under another round of transformations that consists of 6
fully-connected layers. Table 3 in the Appendix summarizes
the hyperparameters used for training the flow-based part of
our black-box attack.

Note that although here we use Real NVP (Dinh et al.,
2017) as our flow-based model, we are not restricted to use
this method. In fact, any other normalizing flow that has
an easy-to-compute inverse (such as NICE (Dinh et al.,
2015), Glow (Kingma & Dhariwal, 2018), and spline-
based flows (Müller et al., 2019; Durkan et al., 2019a;b;
Dolatabadi et al., 2020)) can be used within our approach.

Next, we select a Wide-ResNet-32 (Zagoruyko & Ko-
modakis, 2016) with width 10 as our classifier architec-
ture. This classifier is trained in both vanilla and defended
fashions. For the defended case, we use free (Shafahi
et al., 2019) and fast (Wong et al., 2020) adversarial
training alongside adversarial training with auxiliary rota-
tions (Hendrycks et al., 2019). Each one of these classifiers
is trained with respect to the `∞ norm with ε = 8/255.

Once the training is done, we can then perform our proposed
black-box adversarial attack. To this end, we try to generate
an adversary from CIFAR-10 unseen test data. An attack
is counted successful if it can change the classifier deci-
sion about a correctly classified image in less than 10, 000

1github.com/VLL-HD/FrEIA

https://github.com/VLL-HD/FrEIA


Black-box Adversarial Example Generation with Normalizing Flows

Figure 2. Magnified perturbation and adversarial examples generated by our proposed method vs. bandit attacks (Ilyas et al., 2019). As
can be seen, the proposed method generates more realistic adversaries by using a flow-based model as its prior. (a) our method magnified
perturbation (b) our method adversarial example (c) clean image (d) bandits adversarial example (e) bandits magnified perturbation.

Table 1. Attack success rate (in %, higher is better) to generate an adversarial example for CIFAR-10 (Krizhevsky & Hinton, 2009) test
data. Clean data accuracy and white-box PGD-100 attack success rate are also shown as a reference. All attacks are with respect to the `∞
norm with ε = 8/255.

Attack

Defense Clean Acc.(%) PGD-100 NES Bandits Flow-based (ours)

Vanilla 91.77 100 99.53 98.68 99.12
FreeAdv 81.29 47.52 23.45 37.10 41.06
FastAdv 86.33 46.37 20.15 36.70 40.06

RotNetAdv 86.58 46.59 20.64 36.67 40.50

Table 2. Average and median of the number of queries used to generate an adversarial example for scenarios of Table 1.

Avg. of Queries ↓ Med. of Queries ↓
Defense NES Bandits Flow-based (ours) NES Bandits Flow-based (ours)

Vanilla 458.50 524.14 991.98 300 156 460
FreeAdv 629.38 1430.30 842.37 100 463 180
FastAdv 1465.51 1425.78 904.78 800 454 200

RotNetAdv 1526.46 1470.35 821.80 800 520 180

queries. We compare our method against NES (Ilyas et al.,
2018) and bandits with time and data-dependent priors (Ilyas
et al., 2019). The hyperparameters of each method are given
in Tables 4-6 in the Appendix.

Tables 1 and 2 show the attack success rate as well as the
average and median of the number of queries for attacking
nominated DNN classifiers. As can be seen, the proposed
method can improve the performance of baselines in at-
tacking defended classifiers in both attack strength (success
rate) and efficiency (number of queries). Also, we see that

the number of required queries for the proposed method
remains almost consistent for both vanilla and defended
classifiers. However, this is not generally the case for the
other methods, and their performance heavily depends on
the classifier type. Furthermore, as shown in Figure 2, the
adversarial examples generated by the proposed method
look less suspicious in contrast to bandit attacks (Ilyas et al.,
2019). Also, we see that the perturbations generated by our
approach are disguised in the underlying image structure.
However, bandit attack (Ilyas et al., 2019) perturbations do
not have this property and look like an additive noise.
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5. Conclusion
In this paper, we proposed a novel black-box adversarial
attack method using normalizing flows. In particular, we uti-
lize a pre-trained flow-based model to search in the vicinity
of the base distribution representation of the target image
and generate an adversarial example. Due to the smoothness
of image manifolds in normalizing flows, our adversarial
examples look natural and unnoticeable. This way, we
can generate adversaries that can compete with well-known
methods in terms of strength and efficiency. We hope that
this work can be inspiring in exploiting such methods for
adversarial machine learning and lead to finding statistical
treatments to DNNs’ adversarial vulnerabilities.
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Appendix

A. Experimental Settings

Table 3. Hyperparameters used in training flow-based part of our
approach.

Optimizer Adam
Scheduler Exponential
Initial learning rate 10−4

Final learning rate 10−6

Batch size 64
Epochs 350

Multi-scale levels 2
Each level network type CNN-FC
High-res transformation blocks 4
Low-res transformation blocks 6
FC transformation blocks 6
α (clamping hyperparameter) 1.5
CNN layers hidden channels 128
FC layers internal width 128
Activation function Leaky ReLU
Leaky slope 0.1

Table 4. Hyperparameters of query-limited NES attack (Ilyas et al.,
2018).

Hyperparameter Vanilla Defended

σ (noise std.) 0.1 0.001
Sample size 50 100
Learning rate 0.01 0.01

Table 5. Hyperparameters of bandits with time and data-dependent
priors (Ilyas et al., 2019).

Hyperparameter Vanilla Defended

OCO learning rate 100 0.1
Image learning rate 0.01 0.01
Bandit exploration 0.1 0.1
Finite difference probe 0.1 0.1
Tile size (6px)2 (4px)2

Table 6. Hyperparameters of our flow-based adversarial attack.

Hyperparameter Value

σ (noise std.) 0.1
Sample size 20
k (samples used to update µ) 4
Maximum iteration 500


