
Accurate Recognition of the Current Activity in
the Presence of Multiple Activities

Weihao Cheng, Sarah Erfani, Rui Zhang, and Ramamohanarao Kotagiri

School of CIS, The University of Melbourne, Parkville, Australia,
{weihaoc@student.,sarah.erfani@,rui.zhang@,kotagiri@}unimelb.edu.au

Abstract. Sensor based activity recognition (AR) has gained extensive
attention in recent years due to the ubiquitous presence of smart devices,
such as smartphones and smartwatches. One of the major challenges
posed by AR is to reliably recognize the current activity, when a given
window of time series data contains several activities. Most of the tra-
ditional AR methods assume the entire window corresponds to a single
activity, which may cause high error rate in activity recognition. To over-
come this challenge, we propose a Weighted Min-max Activity Recogni-
tion Model (WMARM), which reliably predicts the current activity by
finding an optimal partition of the time series matching the occurred
activities. WMARM can handle the time series containing an arbitrary
number of activities, without having any prior knowledge about the num-
ber of activities. We devise an efficient dynamic programming algorithm
that solves WMARM in O(n2) time complexity, where n is the length of
the window. Extensive experiments conducted on 5 real datasets demon-
strate about 10%-30% improvement on accuracy of WMARM compared
to the state-of-the-art methods.

1 Introduction

Sensor based activity recognition (AR) has become an important research topic
in recent years due to the ubiquitous presence of the smart devices, such as
smartphones and smartwatches. The main goal of AR is to identify the current
activity of a user, e.g., walking, running or being stationary, based on the sen-
sor readings, e.g., acceleration. There are many applications of AR in our daily
life [10], such as fitness tracking, safety monitoring, and context-aware behavior.
Most of the existing AR methods [2,8,12] use segmented time series to train clas-
sifiers for recognition, where each sample represents a single activity. In practice,
such AR systems utilize a window to capture the data stream of sensors in a
fixed time duration, and supply the captured time series data to a trained clas-
sifier to predict the current activity. However, a window of the data stream may
contain more than one activity causing transitions at arbitrary time positions,
see Fig. 1 for an example. Simply using a time series containing multiple activi-
ties for classification that expects input containing single activity can lead to a
poor recognition accuracy. A trivial approach is to use a small window, so that
there is a high probability to capture the exact time series of the current activity



with a minimal chance of transition taking place. But the trade-off is that the
fewer data points will result in lower recognition performance. Therefore, accu-
rate recognition of the current activity in the presence of multiple activities is a
challenging task.

There are a few related studies, which aim to minimize the effects induced
by activity transitions [13], or recognize the transitions [7,14]. Rednic et al. [13]
reported that activity transitions can cause rapid fluctuations in classifier out-
put. They utilized filters to stabilize the prediction, but the approach is unable
to identify the current activity. Some AR systems [7,14] learn a classifier to
recognize the activity transitions in time series. As the transition can provide
information of the activities sequence, this approach can be utilized to infer the
current activity. However, it is unsuitable to handle time series containing sev-
eral transitions, such as stand-walk-run, since there will be a factorial number
of classes that should be trained. For example, if there are N different activities,
and the system demands to handle at most m transitions, then the total number
of required classes is

∑m+1
r=1 PNr , where PNr stands for the number of permu-

tations selecting r ordered objects from N objects. As a consequence, learning
transitions is not an efficient approach for current activity recognition.

To address this difficult problem, an idea is to divide the observed window of
time series into segments matching activities transitions. Thereby, the clean time
series of the current activity, which is represented by the last segment, can be
obtained for recognition. However, the existing time series segmentation meth-
ods [1,3,6,4,9,17,15] have at least one of the following drawbacks: (1) optimal
solution is not guaranteed; (2) requiring the input of an exact or a maximum
number of transitions; (3) only focusing on segmentation without considering
activity recognition performance. A detailed discussion is later provided in the
Related Work section. To address these drawbacks, we propose a Weighted Min-
max Activity Recognition Model (WMARM), which reliably predicts the current
activity by finding an optimal partition of the time series matching the occurred
activities. WMARM calculates a set of segments that the maximum value of
the recognition errors on those segments is minimized, and the current activity
is recognized based on the last segment. WMARM can handle time series con-
taining an arbitrary number of transitions without having any prior knowledge
about the number of transitions. WMARM can also be extended by imposing
weights on the segments to improve recognition accuracy. Since the search space
size of WMARM is O(2n), we provide an efficient algorithm using dynamic pro-
gramming to solve the model in O(n2) time complexity, where n is the length
of the window. Moreover, we propose a computationally efficient implementa-
tion of WMARM that the time series is divided into frames for coarse-grained
processing. We conduct extensive experiments on 5 real datasets. The results
demonstrate the superior performance of WMARM compared to the state-of-
the-art methods when handling time series that contains one or more activity
transitions. We also measure the execution time of WMARM algorithm on a
smartphone, and the results indicate that the model can be effectively used on
such resource constrained devices.



Fig. 1: The time series shown in the curves are 3-axis acceleration signals. There are 3
activities captured in the time series with transition points τ0, τ1, τ2, τ3, where τ0 and
τ3 are two end points. Sitting and standing are the previous activities, walking is the
current activity that we expect to recognize.

τ
τ3τ2τ1τ0

a WalkingStandingSitting

2 Related Work

In this section, we provide a brief survey of the relevant contributions to activity
recognition, activity transition processing, and time series segmentation. Tradi-
tional sensor based AR systems [2,8,12] train classifiers with segmented samples
assuming that each of them contains only one activity. However, they usually
fail to recognize the current activity when the input time series contains two or
more activities. Rednic et al. [13] focused on reducing the fluctuations caused by
activity transitions. They used the Exponentially Weighted Voting filter to avoid
spurious prediction, but the method is unable to detect the current activity dur-
ing transitions. Some works focused on learning and recognizing the transitions
[7,14]. However, such approaches normally require training a factorial number of
classes regarding the number of transitions are considered. Therefore, they are
not efficient for current activity recognition.

Time series segmentation aims to divide a 1-dimension sequence into several
homogeneous segments, and existing methods can be summarized into following
categories: (1) Heuristic based methods [6] use top-down, bottom-up, sliding
window or hybrid ways for time series dividing. The results of heuristic methods
are not stable since the optimal solution cannot be guaranteed. (2) LASSO
based methods [9] solve the segmentation problem via a least-square regression
with a `1-penalty. The methods require the number of maximum transitions as
input. (3) Clustering based methods [17] divide the subsequences in a time series
into K-clusters by using K-mean approach. The methods require the number of
patterns as input. (4) Dynamic programming based methods [1,3,4,15] obtain
an optimal partition of the time series by revealing an optimal structure of the
problem. There are two kinds of dynamic programming approaches. One is for
handling K-segmentation problem [1,3,15], where the number of transitions is
required. The other one [4] can handle an arbitrary number of transitions, but
it does not take into account the recognition performance.

In this paper, we propose a current activity recognition model based on time
series segmentation via dynamic programming. The model reliably recognizes
the current activity while possessing efficient execution time.



3 Methodology

In this section, we first introduce the preliminary concepts of the methodology.
We then propose a Min-max Activity Recognition Model (MARM), which recog-
nizes the current activity by optimally partitioning a given window of time series.
We further improve the model by considering weights on the segments, and pro-
pose a Weighted Min-max Activity Recognition Model (WMARM). Both of the
models can be solved using dynamic programing inO(n2) time complexity, where
n is the length of the window. Finally, we propose an efficient implementation
of WMARM for obtaining high performance on resource constraint devices.

3.1 Problem Statement

Let X = {x1, x2, ..., xn} be a time series observed by a window. We define
Xi:j = {xi, xi+1, ..., xj−1, xj} (1 ≤ i ≤ j ≤ n) as a subsequence of X containing
data points from xi to xj . Suppose there is a set of m transition points τ =
{τ1, τ2, ..., τm} in the time series X. We define τ0 = 0, τm+1 = n and 0 = τ0 <
τ1 < τ2 < ... < τm < τm+1 = n. Therefore, the transitions points divide the time
series X into m+ 1 segments {X1:τ1 , Xτ1+1:τ2 , ..., Xτm+1:n}, where each segment
Xτi+1:τi+1

represents a single activity that is different from its neighbors. For the
reliable prediction of the current activity, we expect to locate those transition
points that the observed time series can be well-divided into clean segments. As
a consequence, the current activity can be exhibited by the last segment and
identified accurately.

3.2 Min-Max Activity Recognition Model (MARM)

Suppose we have a hypothesis P (y |Z), which outputs the probability of the
activity y represented by the time series Z. We define an error function of Z as:

E(Z) = 1−max
y

P (y |Z). (1)

The function E(Z) returns the probability error of the predicted activity ŷ, where
ŷ holds the highest probability and is represented as:

ŷ = argmax
y

P (y |Z). (2)

Thus, given a time series segment Xτi+1:τi+1
, we can obtain the corresponding

error E(Xτi+1:τi+1
) and the activity prediction ŷ = argmaxyP (y |Xτi+1:τi+1

). We
propose a segmentation function F (τ ) of the transition points τ as follows:

F (τ ) = max
τi∈τ

⋃
{τ0}
{E(Xτi+1:τi+1

)}. (3)

The function F (τ ) returns the maximum error of the segments corresponding
to τ . Then, we propose MARM as:

τ ∗ = argmin
τ
{F (τ )}, (4)



where we aim to find an optimal solution τ ∗ = {τ∗1 , τ∗2 , ..., τ∗m} such that the
maximum error of those segments is minimized. After obtaining τ ∗, the current
activity is represented by the last segment Xτ∗

m+1:n
and is predicted as:

ŷ∗ = argmax
y

P (y |Xτ∗
m+1:n

). (5)

The intuitive explanation of solving MARM is to properly place the transition
points by forcing down the upper bound of the recognition errors. Since the space
size of valid τ is O(2n), exhaustive searching the solution is infeasible. However,
we can employ dynamic programming to solve the problem in O(n2) inspired
from the work of [4]. We claim that the problem of optimizing our model exhibits
optimal substructure, i.e., optimal solutions to a problem incorporate optimal
solutions to related subproblems. Let Xk be the simplified notation of the time
series X1:k, and X0 = ∅. Let τ ∗k be an optimal solution on Xk, and τ ∗0 = ∅. We
propose the dynamic programming functional equation (DPFE) to solve MARM
(Equation 4) as follows:

FXl
(τ ∗l ) = min

0≤k<l
{max {FXk

(τ ∗k), E(Xk+1:l)}} (0 < l ≤ n), (6)

where τ ∗1, τ
∗
2, ..., τ

∗
l−1 are the previous optimal solutions that have already been

obtained. Then, τ ∗l is calculated as follows:

τ ∗l = τ ∗p
⋃
{p}, (7)

where p is the last transition point in τ ∗l and is obtained by:

p = argmin
0≤k<l

{max {FXk
(τ ∗k), E(Xk+1:l)}}. (8)

The DPFE in Equation 6 indicates the optimal substructure that an optimal
solution τ ∗l to the problem regarding Xl is derived from the optimal solutions
τ ∗1, ..., τ

∗
l−1 to the subproblems regarding X1, ..., Xl−1, which are the prefixes of

the time series X. We show the correctness of the DPFE in Theorem 1.

Theorem 1. τ ∗l obtained by Equations 7 and 8 is an optimal solution to FXl
(τ ).

Proof. We assume τ ∗l is not an optimal solution of FXl
(τ ), and claim that τ+

l

is an optimal solution. Suppose p is the last transition point of τ ∗l , then

FXl
(τ ∗l ) = max {FXp(τ ∗p), E(Xp+1:n)}, (9)

where τ ∗p = τ ∗l − {p}. Let q be the last transition point of τ+
l , then

FXl
(τ+
l ) = max {FXq

(τ+
q ), E(Xq+1:n)}, (10)

where τ+
q = τ+

l − {q}. Since τ+
l is an optimal solution and τ ∗l is not, then

FXl
(τ+
l ) < FXl

(τ ∗l ). But we have:

FXl
(τ+
l ) = max {FXq

(τ+
q ), E(Xq+1:l)}

≥ max {FXq
(τ ∗q), E(Xq+1:l)}

≥ max {FXp(τ ∗p), E(Xp+1:l)} = FXl
(τ ∗l ), (11)



Algorithm 1 MARM Algorithm

Input: (1) The time series X of length n.
Output: (1) The set of transition points τ ∗; (2) The predicted current activity ŷ∗.
1: τ ∗

0 = ∅
2: ŷ∗ = Unkown
3: FX0(τ ∗

0) = 0
4: while l = 1, 2, ..., n do
5: p = argmin

0≤k<l
{max {FXk (τ ∗

k), E(Xk+1:l)}} . Using Equation 8.

6: τ ∗
l = τ ∗

p

⋃
{p} . Using Equation 7.

7: if l == n then
8: ŷ∗ = argmax

y
P (y |Xp+1:l) . Predicting the current activity.

9: end if
10: end while
11: τ ∗ = τ ∗

n

12: return τ ∗, ŷ∗

which is a contradiction. Therefore, τ ∗l is an optimal solution of FXl
(τ ) on the

time series Xl.

Based on the proposed DPFE, we can use dynamic programming to obtain
an optimal solution τ ∗n ≡ τ ∗ that minimizes FXn

(τ ) ≡ F (τ ). We present the
algorithm of solving MARM in Algorithm 1. We explain and analyze the algo-
rithm in terms of time complexity: In lines 4-10, we iteratively calculate τ ∗l from
l = 1 to n, and each τ ∗l is calculated in lines 5-6 with O(n) time complexity. In
summary, the final solution τ ∗ can be found in O(n2) time complexity. When
calculating τ ∗n, the last segment Xp+1:n is exhibited, and the current activity is
predicted as ŷ∗, which is shown in line 8.

3.3 Weighted Min-Max Activity Recognition Model (WMARM)

MARM finds a set of optimal segments on the observed time series X, and
obtains the prediction of the current activity represented by the last segment.
Normally, we would like to have a more reliable prediction for the current activity.
Therefore, we place emphasis on reducing the error for the last segment. To
deliver a more accurate prediction, we propose a new segmentation function
FLA(τ ) which imposes weights on the last segment and previous segments. Let
p ≡ τm be the last transition point in τ , FLA(τ ) is defined as follows:

FLA(τ ) = max {(1− µ) · FXp(τ − {p}), µ · E(Xp+1:n)}, (12)

in which a weight parameter µ ∈ [0, 1] is multiplied to the error of the last
segment Xp+1:n, and 1−µ to the maximum error of the previous m−1 segments
obtained by FXp

(τ − {p}). We propose WMARM based on FLA(τ ) as follows:

τ ∗ = argmin
τ
{FLA(τ )}. (13)



By setting µ properly, the accuracy of prediction can be improved. If µ is set to
0.5, the model is equivalent to the original MARM without weight. WMARM
(Equation 13) can be solved with Theorem 2.

Theorem 2. Given τ ∗1, τ
∗
2, ..., τ

∗
n−1, which are the optimal solutions of FX1

(τ ),
FX2

(τ ), ..., FXn−1
(τ ), respectively. An optimal solution τ ∗ of FLA(τ ) can be

calculated as:
τ ∗ = τ ∗p

⋃
{p}, (14)

where p is the last transition point of τ ∗ and is obtained by:

p = argmin
0≤k<n

{max {(1− µ) · FXk
(τ ∗k), µ · E(Xk+1:n)}}. (15)

Proof. We assume τ ∗ is not an optimal solution, and claim that τ+ is an optimal
solution, then

FLA(τ ∗) = max {(1− µ) · FXp
(τ ∗p), µ · E(Xp+1:n)}, (16)

where τ ∗p = τ ∗ − {p}. Let q be the last transition point of τ+
l , then

FLA(τ+) = max {(1− µ) · FXq
(τ+
q ), µ · E(Xq+1:n)}, (17)

where τ+
q = τ+ − {q}. Since τ+ is an optimal solution and τ+ is not, then

FLA(τ+) < FLA(τ ∗). But we have:

FLA(τ+) = max {(1− µ) · FXq
(τ+
q ), µ · E(Xq+1:n)}

≥ max {(1− µ) · FXq
(τ ∗q), µ · E(Xq+1:n)}

≥ max {(1− µ) · FXp(τ ∗p), µ · E(Xp+1:n)}
= FLA(τ ∗), (18)

which is a contradiction. Therefore, τ ∗ is an optimal solution of FLA(τ ) on the
time series X.

To find the exact solution of WMARM, we present a dynamic programming
algorithm in Algorithm 2. Similar to Algorithm 1, Algorithm 2 computes τ ∗1, τ ∗2,
..., τ ∗n−1 in O(n2), as shown in lines 4-7. Calculating the last transition point p
needs to iteratively examine the optimal value of FXk

(τ ∗k) from k = 0 to n− 1,
as shown in line 8, which needs O(n) time complexity. Then, the final solution
τ ∗ is obtained by combining p into τ ∗p, shown in line 9. In summary, the total
time complexity of Algorithm 2 is O(n2). Finally, the last segment Xp+1:n is
exhibited when calculating τ ∗, and the current activity is predicted as ŷ∗, which
is shown in line 10.

3.4 Efficient Implementation of WMARM

WMARM partitions the time series on data point level, which results in O(n2)
time complexity. However, the input time series for activity recognition may



Algorithm 2 WMARM Algorithm

Input: (1) The time series X of length n.
Output: (1) The set of transition points τ ∗; (2) The predicted current activity ŷ∗.
1: τ ∗

0 = ∅
2: ŷ∗ = Unkonwn
3: FX0(τ ∗

0) = 0
4: while l = 1, 2, ..., n− 1 do
5: p = argmin

0≤k<l
{max {FXk (τ ∗

k), E(Xk+1:l)}} . Using Equation 8.

6: τ ∗
l = τ ∗

p

⋃
{p} . Using Equation 7.

7: end while
8: p = argmin

0≤k<n
{max {(1− µ) · FXk (τ ∗

k), µ · E(Xk+1:n)}} . Using Equation 15.

9: τ ∗ = τ ∗
p

⋃
{p} . Using Equation 14.

10: ŷ∗ = argmax
y

P (y |Xp+1:n) . Predicting the current activity.

11: return τ ∗, ŷ∗

contain hundreds of data points, which produces a large amount of computation
regarding the quadratic complexity. In practice, we can divide the time series
into several frames of size h, and we treat the frame as the basic element in the
time series. Therefore, running WMARM on the frame level reduces the amount
of computation by a factor of h2. Moreover, the computations of obtaining the
hypothesis P (y |Z) in the training phase is also reduced as a result of coarse-
grained time series.

4 Empirical Evaluation

In this section, we evaluate the performance of WMARM in terms of accuracy
on a desktop platform. The experiment scripts are written in Python 2.7 on
64-bit Ubuntu 14.04 LTS operating system. We also evaluate the execution time
of the proposed WMARM algorithm on an iPhone 6 with iOS 9.0 system. The
source code is written in Objective-C and C++.
Datasets: The experiments are conducted on 5 datasets: (1) Human Activ-
ity Sensing Consortium (HASC) 2011 [5]; (2) Human Activity Recognition on
Smartphones Dataset (HARSD)1; (3) Actitracker dataset (ACTR) [8]; (4) Daily
Sport Activities dataset (DSA)1; (5) Smartphone-Based Recognition of Human
Activities and Postural Transitions Data Set (HAPT)1. We use the acceleration
data of those datasets [11].
Experimental Settings: We use 4-fold cross validation for evaluating, and re-
peated 5 times (the datasets are randomly partitioned each time). We use 3/4
data to generate clean samples (contain only one activity) for training the classi-
fiers, and 1/4 data to generate several 5 seconds time series samples where each
sample is randomly formed by K+1 segments of different activities with K tran-
sitions (K = 0, 1, 2, 3). The length of each activity segment is randomly selected

1 https://archive.ics.uci.edu/ml/datasets.html



with no less than 0.5s. We extract the 1/3 lowest frequency Fourier coefficients of
given time series as features. We set h = n/10 for the efficient implementation of
WMARM. We train 10 classifiers on time series of sizes from 0.5s to 5.0s (every
0.5s), respectively, to form the hypothesis P (y |Z). Each classifier is a random
forest with 10 estimators.
Baselines: We use 5 baseline methods in comparison with WMARM: (1) Naive:
We simply use the entire time series for predicting without segmentation. (2)
GIR: We use Global Iterative Replacement (GIR) algorithm [3] to segment the
time series, where the last segment is used for predicting. (3) OPM: We use
Optimal Partitioning Method (OPM) [4] to segment the time series. (4) RNN:
We use Recurrent Neural Network (RNN) [16] with LSTM + Softmax layers to
predict the current activity. We extract features on every 0.5s time series frames
to form the sequential input of RNN. (5) MSG: We manually obtain the true
segment of the current activity for predicting, and we denote this method as
’ManualSegment’ (MSG).

4.1 Measuring the Accuracy of Current Activity Recognition

To evaluate the accuracy of WMARM for current activity recognition, we com-
pare WMARM with the baselines using datasets: HASC, HARSD, ACTR, and
DSA. In this experiment, we set the weight µ = 0.7 for WMARM since we ex-
perimentally show later that this value of µ obtains the best accuracy among
the cross-validation. According to the results shown in Table 1, WMARM out-
performs Naive, GIR, OPM, and RNN in all cases, except for K = 0 on ACTR
dataset, since WMARM always find the optimal segments for recognizing the
current activity. Generally, it should be expected that no algorithm can obtain a
better accuracy than MSG. However, WMARM outperforms MSG when K = 0
on HASC, HARSD, and DSA datasets. This is because that WMARM finds the
best fitted segment for recognition instead of the true segment, thereby a part
of noise can be excluded. To statistically compare the performance of WMARM
with the baselines, we conduct the Wilcoxon signed-rank test on their results (80
pairs for each test). The returned p-values represent the lowest level of signifi-
cance of a hypothesis that results in rejection. This value allows one to determine
whether two methods have significantly different performance. We set the signif-
icance level α = 0.05 for the comparison. For K = 1, 2, 3, the returned p-values
ranging from 7.747e-15 to 1.199e-13, reject the null hypothesis for the compar-
isons: WMARM vs. all the baselines except for MSG, which indicate superior
performance of WMARM against those methods. For K = 0, only the p-value
2.477e-06 of WMARM vs. GIR, rejects of the null hypothesis, which indicates
the similar performances of the two methods.

4.2 Evaluating the Impact of µ on Accuracy

We conduct experiments to evaluate the performance of WMARM with different
settings of µ. According to the results shown in Fig. 2, when there is no transition
in the data, i.e., K = 0, the accuracy is slightly affected by the weight µ since the



Table 1: Results of accuracy on datasets: HASC, HARSD, ACTR, and DSA. K is the
number of transitions in time series.

HASC HARSD

K Naive GIR OPM RNN WMARM MSG Naive GIR OPM RNN WMARM MSG

0 88.00% 85.00% 88.55% 17.05% 89.50% 88.00% 81.30% 81.00% 82.85% 20.95% 83.65% 81.30%

1 35.90% 59.35% 46.25% 37.35% 72.65% 83.45% 32.35% 53.60% 45.25% 46.90% 77.00% 80.60%

2 22.45% 41.65% 28.45% 40.70% 56.00% 73.30% 20.40% 34.10% 29.20% 53.75% 67.40% 79.05%

3 16.05% 28.20% 19.85% 43.50% 46.45% 69.25% 15.90% 23.85% 22.85% 58.95% 62.25% 77.80%

ACTR DSA

K Naive GIR OPM RNN WMARM MSG Naive GIR OPM RNN WMARM MSG

0 75.30% 73.25% 75.50% 18.65% 71.30% 75.30% 82.00% 76.00% 82.15% 7.00% 84.60% 82.00%

1 30.90% 51.60% 46.15% 43.55% 63.70% 72.85% 25.85% 63.75% 32.75% 19.25% 65.25% 77.30%

2 23.65% 37.55% 32.20% 50.15% 61.15% 70.45% 13.15% 47.80% 18.85% 22.30% 52.30% 73.90%

3 16.30% 25.65% 23.10% 50.00% 54.95% 67.90% 7.40% 31.85% 12.80% 28.50% 45.10% 70.05%

Fig. 2: Accuracy of WMARM with respect to µ on datasets: HASC, HARSD, ACTR,
and DSA. For K = 0, the accuracy slightly improves on HASC, HARSD, and DSA,
and slightly drops on ACTR. For K = 1, 2, 3, the accuracy reaches maximum around
µ = 0.7(±0.1), and then slightly decreases by less than 1% or becomes stable.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

µ

Accuracy

K=3K=2K=1K=0

(a) HASC

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

µ

Accuracy

(b) HARSD

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

µ

Accuracy

(c) ACTR

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

µ

Accuracy

(d) DSA

optimal result should be only one segment. However, when there are transitions
in the data, i.e., K > 0, the accuracy of WMARM significantly improves with
respect to the increase of µ when µ < 0.7, since the model emphasis more on
the last segment, i.e., the current activity. The accuracy normally reaches the
maximum around µ = 0.7(±0.1), then slightly decreases by less than 1%, or
becomes stable in a few cases. Since over emphasizing the weight on the last
segment may impair the segmentation results on the previous segments, so that
the prediction accuracy on the last segment is affected by the previous segments.

4.3 Measuring the Accuracy on Actual Transitions

In the previous experiments, we use splicing testing samples in order to study the
performance of WMARM. In this experiment, we evaluate WMARM on actual
transitions resulting from user’s changing activities, for example changing nat-
urally from running to walking. The samples are extracted from HAPT dataset
[14] which provides several long time series containing a protocol of activities.



We randomly select 70% of the data for training and the rest for testing, and
repeat the experiment 10 times. The training samples are extracted during the
activities, and the testing samples are extracted between transitions. WMARM
obtains 75.41% accuracy, which outperforms the baselines: Naive (30.34%), GIR
(49.44%), OPM (39.97%), and RNN (55.82%), except for MSG (76.69%). To ex-
plore the statistical significance of the performances of the methods on handling
actual transitions, we conduct the Wilcoxon signed-rank test on their results (10
pairs). We set the significance level α = 0.05 for the comparison. The p-values
of WMARM vs. Naive/GIR/OPM/RNN (0.003346 for all), reject the null hy-
pothesis for the accuracy measurements, implying a significant improvement of
WMARM over those methods.

4.4 Evaluating the Execution Time on Smartphone

To evaluate the execution time of the WMARM algorithm, we develop an iOS
app on iPhone 6 using Objective-C, and implement the WMARM algorithm
as an internal function using C++. The app captures the 3-axis acceleration
data with 100 samples per second, which is supplied to WMARM algorithm
for processing. We observe a total execution time for 500 runs, and calculate
the average time. WMARM algorithm only costs averagely 0.0153 seconds for
one execution, which is not expensive for running AR systems on smartphones.
Naive method costs averagely 0.0012 seconds for one execution, but its accuracy
is much lower than WMARM.

5 Conclusions

In this paper, we highlight a problem normally presented in activity recognition
(AR) that traditional methods usually fail to recognize the current activity in
the presence of multiple activities. To solve this problem, we devise a Weighted
Min-max Activity Recognition Model (WMARM), which predicts the current
activity by optimally partitioning the observed window of time series matching
the activities presented. WMARM considers weights on the partitioned segments
to obtain reliable recognition accuracy. WMARM can also effectively process
the time series containing an arbitrary number of transitions without any prior
knowledge about the number of transitions. Instead of exhaustively searching
the optimal solution of WMARM in exponential space, we propose an efficient
dynamic programming algorithm that computes the model in O(n2) time com-
plexity, where n is the length of the window. Moreover, we present an efficient
implementation of WMARM that the computation cost can be further reduced.
Extensive experiments on 5 real datasets have demonstrated the superior perfor-
mance of WMARM on handling time series with one or more activity transitions.
The results show about 10%-30% improvement on the accuracy of current activ-
ity recognition compared to state-of-the-art methods. The experiment on iPhone
6 shows the prominent computational efficiency of WMARM.



References

1. Bellman, R.: On the approximation of curves by line segments using dynamic
programming. Communications of the ACM 4(6), 284 (1961)

2. Hemminki, S., Nurmi, P., Tarkoma, S.: Accelerometer-based transportation mode
detection on smartphones. In: Proceedings of Conference on Embedded Networked
Sensor Systems. p. 13 (2013)

3. Himberg, J., Korpiaho, K., Mannila, H., Tikanmaki, J., Toivonen, H.T.: Time
series segmentation for context recognition in mobile devices. In: Proceedings of
International Conference on Data Mining. pp. 203–210 (2001)

4. Jackson, B., Scargle, J.D., Barnes, D., Arabhi, S., Alt, A., Gioumousis, P., Gwin,
E., Sangtrakulcharoen, P., Tan, L., Tsai, T.T.: An algorithm for optimal partition-
ing of data on an interval. Signal Processing Letters 12(2), 105–108 (2005)

5. Kawaguchi, N., Ogawa, N., Iwasaki, Y., Kaji, K., Terada, T., Murao, K., Inoue,
S., Kawahara, Y., Sumi, Y., Nishio, N.: Hasc challenge: gathering large scale hu-
man activity corpus for the real-world activity understandings. In: Proceedings of
Augmented Human International Conference. p. 27 (2011)

6. Keogh, E., Chu, S., Hart, D., Pazzani, M.: Segmenting time series: A survey and
novel approach. Data mining in Time Series Databases 57, 1–22 (2004)

7. Khan, A.M., Lee, Y.K., Lee, S.Y., Kim, T.S.: A triaxial accelerometer-based
physical-activity recognition via augmented-signal features and a hierarchical rec-
ognizer. Transactions on Information Technology in Biomedicine 14(5), 1166–1172
(2010)

8. Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone
accelerometers. SigKDD Explorations Newsletter 12(2), 74–82 (2011)

9. Levy-leduc, C., Harchaoui, Z.: Catching change-points with lasso. In: Proceedings
of Advances in Neural Information Processing Systems. pp. 617–624 (2008)

10. Lockhart, J.W., Pulickal, T., Weiss, G.M.: Applications of mobile activity recog-
nition. In: Proceedings of Conference on Ubiquitous Computing. pp. 1054–1058
(2012)

11. Nguyen, T., Gupta, S.K., Venkatesh, S., Phung, D.Q.: A bayesian nonparametric
framework for activity recognition using accelerometer data. In: Proceedings of
International Conference on Pattern Recognition. pp. 2017–2022 (2014)

12. Reddy, S., Mun, M., Burke, J., Estrin, D., Hansen, M., Srivastava, M.: Using mo-
bile phones to determine transportation modes. Transactions on Sensor Networks
(TOSN) 6(2), 13 (2010)

13. Rednic, R., Gaura, E., Kemp, J., Brusey, J.: Fielded autonomous posture classifica-
tion systems: design and realistic evaluation. In: Proceedings of ACIS International
Conference on Software Engineering, Artificial Intelligence, Networking and Par-
allel/Distributed Computing. pp. 635–640 (2013)

14. Reyes-Ortiz, J.L., Oneto, L., Samà, A., Parra, X., Anguita, D.: Transition-aware
human activity recognition using smartphones. Neurocomputing 171, 754–767
(2016)

15. Rosman, G., Volkov, M., Feldman, D., Fisher III, J.W., Rus, D.: Coresets for k-
segmentation of streaming data. In: Proceedings of Advances in Neural Information
Processing Systems. pp. 559–567 (2014)

16. Sak, H., Senior, A.W., Beaufays, F.: Long short-term memory recurrent neural net-
work architectures for large scale acoustic modeling. In: Proceedings of Interspeech.
pp. 338–342 (2014)

17. Tseng, V.S., Chen, C.H., Huang, P.C., Hong, T.P.: Cluster-based genetic segmenta-
tion of time series with dwt. Pattern Recognition Letters 30(13), 1190–1197 (2009)


