
Markov Dynamic Subsequence Ensemble for Energy-Efficient
Activity Recognition

Weihao Cheng
School of CIS, The University of Melbourne

weihaoc@student.unimelb.edu.au

Sarah M. Erfani
School of CIS, The University of Melbourne

sarah.erfani@unimelb.edu.au

Rui Zhang
School of CIS, The University of Melbourne

rui.zhang@unimelb.edu.au

Kotagiri Ramamohanarao
School of CIS, The University of Melbourne

kotagiri@unimelb.edu.au

ABSTRACT
Ubiquitous mobile computing technology provides opportunities
for accurate Activity Recognition (AR). Recently, ensemble models
using multiple feature representations based on time series subse-
quences have demonstrated excellent performance on recognition
accuracy. However, these models can significantly increase the en-
ergy overhead and shorten battery lifespans of the mobile devices.
We formalize a dynamic subsequence selection problem that min-
imizes the computational cost while persevering high recognition
accuracy. To solve the problem, we propose Markov Dynamic Sub-
sequence Ensemble (MDSE), an algorithm for the selection of the
subsequences as a Markov Decision Process (MDP), where a pol-
icy is learned for choosing the best subsequence given the state
of prediction. Regarding MDSE, we derive an upper bound of the
expected ensemble size, so that the energy consumption caused by
the computations of the proposed method is guaranteed. Extensive
experiments are conducted on 6 real AR datasets to evaluate the
effectiveness of MDSE. Compared to the state-of-the-art methods,
MDSE reduces 70.8% computational cost which is 3.42 times more
energy efficient, and achieves a comparably high accuracy.

CCS CONCEPTS
• Human-centered computing → Ubiquitous and mobile com-
puting;

KEYWORDS
Activity Recognition, Energy Efficiency, Markov Decision Process

ACM Reference format:
Weihao Cheng, Sarah M. Erfani, Rui Zhang, and Kotagiri Ramamohanarao.
. Markov Dynamic Subsequence Ensemble for Energy-Efficient Activity
Recognition. In Proceedings of MobiQuitous, Australia, 2017, 10 pages.
https://doi.org/10.475/123_4

1 INTRODUCTION
The rapid development of ubiquitous computing technology enables
individuals using smartphones to monitor their daily activities, such

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
MobiQuitous, 2017, Australia
© 2017 Copyright held by the owner/author(s).
ACM ISBN 123-4567-24-567/08/06. . . $15.00
https://doi.org/10.475/123_4

as walking, running and cycling [8, 11, 19, 28, 30]. The built-in
sensors, e.g., accelerometer and gyroscope, provide valuable infor-
mation regarding an individual’s degree of functional ability and
lifestyle. Accordingly, many applications of Activity Recognition
(AR) including fitness tracking, safety monitoring, context-aware
behavior, etc [12, 23, 24, 36] have been developed. However, these
applications mostly require continuously sensing in the background,
which can consume a lot of energy. Existing works [7, 10, 13–
15, 17, 18, 25, 31–34] handle this problem by scheduling the usage
of a customized set of sensors. However, there is no guarantee of
a specific hardware environment that all the required sensors can
be used or configured freely. Therefore, it is an emergent challenge
for developing an energy efficient AR method given only the sensor
data.

The task of AR is to recognize the activity using sensor collected
time series data. Recently, the models of using multiple feature
representations from time series subsequences have demonstrated
excellent performance on accuracy [3, 39]. For example, a Subwin-
dow Ensemble Model (SWEM) [39] uses multiple sized windows to
capture the time series for generating diverse feature representations,
and infers activity with an ensemble of the predictions based on
those features. Although SWEM delivers remarkable accuracy in
practice, it is computationally expensive when compared to tradi-
tional methods. Both training and inference processes using multiple
time series subsequences impose a high computational cost. For
ordinary AR applications, the training cost is insignificant as the
model can be computed offline, but the inference cost is crucial
as this process is performed on the portable device in real time.
Considering the limited battery life of smartphones and the energy
overhead of continuously running AR applets in the background, the
above state-of-the-art AR models [3, 39] are unsuitable for resource
constrained mobile platforms.

In this paper, we aim to design a method that can reduce the
computational cost while maintaining a competitive recognition ac-
curacy. A drawback of SWEM is that it indiscriminately uses a fixed
set of subsequences to predict every incoming time series instance.
However, many instances can be accurately predicted with fewer
subsequences thus saving a huge amount of energy, and only using
many subsequences when predicts challenging instances, such as
a fast walking instance, which can be confused with running. We
formalize a problem of dynamically selecting a set of subsequences
for an ensemble that minimizes the computational cost with required
confidence in the prediction. We present two constraints for the
problem which can ensure a certain level of accuracy. To solve the

https://doi.org/10.475/123_4
https://doi.org/10.475/123_4

MobiQuitous, 2017, Australia Weihao Cheng et al.

Timeτ2τ1

Acc.

𝒲n

...

𝒲i+1
...

𝒲j

𝒲1
𝒲2

...
𝒲i

Figure 1: The time series shown in red, green and blue curves
are 3-axis acceleration data.𝒲1, ...,𝒲n are n overlapping win-
dows, which observes different ranges of the time series from
timestamp τ1 to τ2.𝒲1,𝒲2, ...,𝒲i share one size with 50% over-
laps. Similarly, 𝒲i+1, ...,𝒲j share another size, and there are
several different sizes of windows.

minimization problem with the presented constraints, we propose
Markov Dynamic Subsequence Ensemble (MDSE), an algorithm
capable of dynamically choosing an optimal subsequence set for a
given testing time series instance. The selection of the subsequences
is modeled as a Markov Decision Process (MDP), where a policy
is learned for choosing the best subsequence regarding the state of
prediction. Due to the dynamic number of used subsequences (en-
semble size), the computational cost can be extensively reduced. We
further show the guaranteed computational efficiency of MDSE by
deriving an upper bound of the expected ensemble size. Specifically,
our main contributions are as follows:

● To improve energy efficiency for accurate AR, we formal-
ize a problem that minimizes the computational cost with
required confidence in the prediction, by finding an optimal
set of the subsequences for ensemble prediction.

● We present two constraints for the optimization problem
and prove their effectiveness on ensuring a certain level of
generalization accuracy.

● We propose MDSE to solve the constrained minimization
problem. The selection of the subsequences is modeled as
an MDP, where a policy is learned to choose the best sub-
sequence during the dynamic process under the proposed
constraints

● We derive an upper bound of the expected ensemble size
of MDSE, which indicates a guaranteed computational effi-
ciency of MDSE.

We conduct extensive experiments on 6 real human activity datasets.
The results of mathematical estimation show that MDSE can re-
duce average 74.41% of the original SWEM’s computations on all
datasets, and obtains similarly high accuracies which are only 1-2%
less than SWEM. We also use a Google Nexus 5X to evaluate the
energy expenditure of MDSE. The results show about 70.8% energy
reduction, which demonstrates significant improvement in energy
efficiency by our proposed method.

2 RELATED WORKS
Reducing energy cost for Activity Recognition (AR) on mobile
devices has been studied for a decade. Many methods specifically

manage the usage of sensors to reduce unnecessary energy expen-
diture. Lu et al. [25] propose Jigsaw system which controls the
usage of high power GPS based on an accelerometer. Bhargava et
al. [5] propose SenseMe system which uses linear accelerometer
and rotation vector sensor as a means to suppress the usage of GPS.
Bloch et al. [7] propose to use a low power cellular network in-
formation to detect user stationary/movement status which avoids
battery-exhausting transportation mode detection. Some general sen-
sor management methods have also been proposed. Kang et al. [14]
propose SeeMon system which reduces the energy cost by iteratively
selecting cost-efficient sensors in a greedy manner. Wang et al. [33]
present a hierarchical sensor management scheme for power control.
Gordon et al. [10] choose the sensors to use based on the estimated
future activity and quantified activity-sensor dependencies. How-
ever, those methods generally rely on a set of sensors, which lose
practicability on the constrained hardware environments. Another
type of methods reduces the energy cost by managing the sampling
rate of a single sensor. Krause et al. [18] dynamically reduce sen-
sor sampling rate to conserve energy. Wang et al. [32] obtain a
Markov-optimal sensor sampling policy that minimizes user state
estimation error under a given energy consumption budget. Yan et
al. [34] choose the best sampling frequency based on the empirical
rules and thresholds. However, these methods fail to be applied in
the situations that the sampling frequency cannot be adjusted freely.
According to the shortcomings of the above methods, we need to
propose an energy efficient AR algorithm which is independent of
sensor environments. In other words, we want to handle the energy
issue from the classification point of view, that the algorithm can
work in conjunction with the above methods to further reduce energy
consumption.

Recently, Deep Learning (DL) has delivered remarkable classifi-
cation accuracy in many areas [20]. A few works investigate using
DL for the recognition of human activities [35, 37], where a Convo-
lutional Neural Network (CNN) with convolutional layer is applied
to learn features from time series subsequences in multiple temporal
ranges. It is commonly known that the deep neural nets are computa-
tionally expensive even just for the inference, therefore, researchers
propose special layers [6] for reducing computational and space
complexity regarding resource constrained device. Although these
studies reduce the computations of DL, they cannot dynamically
minimize the cost for different instances which is more important to
long-term sensing.

The ensemble learning framework is based on solid mathemati-
cal foundation and can deliver high classification accuracy as well
[1, 40]. The ensemble models using multiple subsequence based
feature representations demonstrated state-of-the-art performance
in AR. Zheng et al. [39] find that a time series with fixed length
cannot properly represent all the activities at the same time, because
of the fact that activity patterns occur at different temporal scales.
Therefore, they propose Subwindow Ensemble Model (SWEM) to
overcome this weakness. SWEM uses multiple windows to cap-
ture a given time series for obtaining subsequences of different
ranges, shown in Figure 1. SWEM generates feature representation
for each subsequence, and predicts the activity with an ensemble of
the classifiers for those features, thereby the accuracy is significantly
improved. However, SWEM is not computationally efficient, since

Markov Dynamic Subsequence Ensemble for Energy-Efficient Activity Recognition MobiQuitous, 2017, Australia

the use of each subsequence incurs computations on feature extrac-
tion and prediction, then the total cost of SWEM equals the sum of
all these subsequence costs, which is several times than traditional
methods. Due to such an overhead, running of SWEM on mobile
devices drains the battery quickly that affects the general daily use.
Therefore, our goal is to improve the performance of SWEM by
alleviating its energy consumption, without sacrificing the accuracy.

3 PROPOSED METHOD
In this section, we propose an energy efficient Activity Recognition
(AR) method with a high recognition accuracy. We first formal-
ize a dynamic subsequence selection problem that minimizes the
computational cost with our presented constraints for ensuring the
recognition accuracy. We then propose a Markov Dynamic Subse-
quence Ensemble (MDSE) method using Markov Decision Process
(MDP) to solve the problem. Regarding the presented constraints,
we provide theoretical analysis to verify their effectiveness. Finally,
we show that the computational efficiency of MDSE is guaranteed
by deriving an upper bound of the expected ensemble size of MDSE.
We summarize the frequently used symbols in Table 1.

Symbol Explanation

X Time series data.

y Activity label of X .

m Total number of activities.

N Number of subsequences regarding X .

Xi The i-th subsequence of X .

H Subsequence set.

C Computational cost.

d Voting vector by a classifier.

v Voting proportion vector.

v̂ The highest voting proportion.

β , η Parameters of the proposed constraints.

𝒮 State space of MDP.

s A state s ∈ 𝒮.

𝒜 Action space of MDP.

a An action a ∈ 𝒜.

π Policy of MDP.

R(a) Penalty function given an action a.

V (s) Value function given an state s.

Ω Expected ensemble size of MDSE.

Table 1: Major expressions used in the paper

3.1 Markov Dynamic Subsequence Ensemble
(MDSE)

Suppose there are m activities which are labeled from 1 to m. The
task of AR is to recognize the current activity y based on a seg-
ment of time series data X collected from one or more sensors
(e.g. accelerometer). Suppose (X ,y) is drawn from a distribution
𝒟, i.e. (X ,y) ∼ 𝒟, where the length of X is L. We define a set of
subsequences: HX = {X1,X2, ...,XN }, where Xi ≡ Xτi,1∶τi,2 is a sub-
sequence of X , ranging from timestamp τi,1 to τi,2, and 1 ≤ τi,1 <

τi,2 ≤ L. For each subsequence Xi , we can generate a feature repre-
sentation ϕ(Xi), and then a classifier based on ϕ(Xi) can predict a
voting vector d(Xi) ∈ {0,1}m :

d(Xi) = (d1,d2, ...,dm), (1)

where dj = 1 (1 ≤ j ≤m) implies that the activity j receives the vote
from the classifier, and we have d1 +d2 + ...+dm = 1. We denote the
computational cost of utilizing Xi asC(Xi). Given a subset H ⊆ HX ,
the ensemble voting vector of using all the subsequences in H is
defined as:

dH = ∑
Xi ∈H

d(Xi), (2)

and the ensemble voting proportion vector is defined as:

vH =
1
⋃︀H ⋃︀dH . (3)

Thereby, we calculate the predicted activity as follows:

ŷH = argmax{vH }, (4)

where ŷH is the activity with the maximum number of votes. The
total computational cost of using H is defined as:

CH = ∑
Xi ∈H

C(Xi). (5)

To improve computational efficiency for accurate AR, we define a
problem that minimizes the computational cost while maintaining
the accuracy at a certain level. Let ρ be a selection function which
can dynamically choose a subset H ρ

X = ρ(HX) of HX based on a
latent policy. Then, our problem can be formalized as minimizing
the expected computational cost with a constraint of generalization
accuracy:

min
ρ

E(X ,y)∼𝒟CH ρ
X
, (6)

s .t . P(X ,y)∼𝒟(ŷH ρ
X
= y) ≥ α , (7)

where α ∈ (0.5,1) is the parameter bounding the generalization
accuracy P(X ,y)∼𝒟(ŷH ρ

X
= y), i.e., the probability of ŷH ρ

X
= y.

Since numerically ensuring a generalization accuracy is non-trivial,
we present two alternative constraints to replace (7), and formalize
an alternative problem as follows:

min
ρ

E(X ,y)∼𝒟CH ρ
X
, (8)

s .t . max{vH ρ
X
} ≥ β , (9)

⋃︀H ρ
X ⋃︀ ≥ η, (10)

where β ∈ (0.5,1) and η ∈ (0,N ⌋︀ are predefined parameters. Later
in section 3.2, we provide theoretical analysis to show that the
constraints (9) and (10) can ensure a certain level of generalization
accuracy regarding β and η.

To solve the above problem, we propose a Markov Dynamic
Subsequence Ensemble (MDSE) method where the obtaining of H ρ

X
is modeled as a Markov Decision Process (MDP):

● 𝒮 is a set of states. A state s ∈ 𝒮 is defined as a tuple
s = (H , max{dH }).

● 𝒜 is a set of actions, where 𝒜 = {1,2, ...,N ,N + 1}. An
action a ∈ 𝒜 implies: (i) Using the subsequence Xa to
make a prediction, if 1 ≤ a ≤ N . (ii) Stopping the process,
if a = N + 1.

MobiQuitous, 2017, Australia Weihao Cheng et al.

● R(a): 𝒜 ↦ R is the penalty function. It represents a valu-
able penalties by taking an action a. We define the penalty
function as:

R(a) =
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

C(Xa) 1 ≤ a ≤ N
0 a = N + 1

. (11)

We design a policy π ∶ 𝒮 ↦ 𝒜, which returns the best actions for
each state s ∈ 𝒮:

π(s) =
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

N + 1 max{vH } ≥ β ∧ ⋃︀H ⋃︀ ≥ η
M(s) otherwise

, (12)

where M(s) is a hash mapping from 𝒮 to 𝒜. Given a state s =
(H ,max{dH }), we can obtain an action a = π(s) for s, then the
next state s′ = s′a by taking the action a is obtained as:

s′a =
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

(H ⋂{Xa},max{dH ⋂{Xa}}) 1 ≤ a ≤ N
s a = N + 1 (stop action)

.

(13)
When the action a = N + 1 is obtained from π , we stop the MDP
and return the final state as the output of the MDP. The subset H
of the final state is considered as H ρ

X . Given the policy π , an initial
state s0, and an X , the MDP will visit a series of states s1, ...,sK by
taking actions a0,a1, ...,aK−1, respectively. The total penalty of this
process can be measured by a value function V π (s) ∶ 𝒮 ↦ R as:

V π (s) = R(a0) + R(a1) + ... + R(aK−1) ⋃︀ s = s0, (14)

which can also be written as Bellman’s equation:

V π (s) =
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

R(π(s)) +V π (s′π(s)) 1 ≤ π(s) ≤ N
R(π(s)) π(s) = N + 1

. (15)

We can convert our problem into minimizing the value function
regarding the policy π :

min
ρ

E(X ,y)∼𝒟CH ρ
X
, s .t . max{vH ρ

X
} ≥ β , ⋃︀H ρ

X ⋃︀ ≥ η (16)

=min
π

E(X ,y)∼𝒟(︀R(a0) + R(a1) + R(a2) + ...⌋︀ (17)

=min
π

E(X ,y)∼𝒟(︀V
π (s0) ⋃︀ s0 = (∅,0)⌋︀. (18)

LetV ∗X (s) be the minimal value function for an X . Since 𝒮 is a finite
state space, V ∗X (s) can be represented as follows:

V ∗X (s) =
)︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀]︀

0 max{vH } ≥ β ∧ ⋃︀H ⋃︀ ≥ η
min

a∈𝒜,Xa∉H
{R(a) +V ∗X (s′a)} otherwise ,

(19)
where the restriction Xa ∉ H is to avoid the re-selection of a used
subsequence which brings no diversity effect to the ensemble perfor-
mance. Then, we initialize V ∗X (s) = +∞ for each s ∈ 𝒮, and use the
value iteration algorithm [27] to repeatedly calculate V ∗X (s) using
(19) until convergence. Finally, the optimal policy π∗(s) on the
distribution 𝒟 is learned as follows:

π∗(s) =
)︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀]︀

N + 1 max{vH } ≥ β ∧ ⋃︀H ⋃︀ ≥ η
argmin

a∈𝒜,Xa∉H
{R(a) + E(X ,y)∼𝒟V

∗
X (s′a)} otherwise .

(20)
After obtaining the policy π = π∗, MDSE can predict the activity of
X by incorporating the MDP. The pseudocode of MDSE is presented
in Algorithm 1.

Algorithm 1 Markov Dynamic Subsequence Ensemble (MDSE)

1: Input: A time series X , policy π
2: Output: Predicted Activity ŷ
3: H ← ∅, dH ← 0
4: while ⋃︀H ⋃︀ < N do
5: s ← (H ,max{dH })
6: a ← π(s)
7: if a = N + 1 then
8: break
9: end if

10: H ← H ⋂{Xa}
11: dH ← dH +dXa
12: end while
13: return ŷ = argmax{dH }

3.2 Theoretical Analysis of the Accuracy
Constraints in MDSE

We provide theoretical analysis to explain that the constraints (9) and
(10) collaboratively ensure the solution of MDSE having a certain
level of generalization accuracy regarding the parameters β and η.
For the convenience of discussion, we use simplified notations in
this section. We denote H = H ρ

X , ŷ = ŷH , and let v̂ ∈ (︀0,1⌋︀ be the
highest voting proportion, which is defined as:

v̂ = max{vH }. (21)

Thereby, the two constraints are expressed as: v̂ ≥ β and ⋃︀H ⋃︀ ≥ η.

3.2.1 Analysis of the 1st Constraint. We theoretically ex-
plain the effectiveness of (9) by showing that: given v̂ ≥ β and a
fixed ⋃︀H ⋃︀, the generalized recognition accuracy increases monotoni-
cally with respect to β ∈ (0.5,1). Let n = ⋃︀H ⋃︀, then with the ensemble
of n subsequences, the generalization accuracy of the ensemble pre-
diction given v̂ ≥ β is written as the probability P(ŷ = y ⋃︀ v̂ ≥ β),
which can be calculated based on the Bayes rule:

P(ŷ = y ⋃︀ v̂ ≥ β) = P(v̂ ≥ β , ŷ = y)
∑mj=1 P(v̂ ≥ β , ŷ = j)

(22)

= P(v̂ ≥ β , ŷ = y)
P(v̂ ≥ β , ŷ = y) +∑j≠y P(v̂ ≥ β , ŷ = j)

.

Suppose the predictions of the n subsequences are independent with
the identical generalization error rate ϵ . The chance of seeing exact
k incorrect votes among the n classifiers is (nk)ϵ

k(1 − ϵ)n−k . Let
n̂ be the number of votes that the predicted activity ŷ received, i.e.,
n̂ = nv̂. If ŷ = y, then those n̂ votes are considered to be correct, and
the other n − n̂ votes are considered to be incorrect. When v̂ ≥ β ,
then n̂ ≥ [︂nβ⌉︂ and correspondingly n− n̂ ≤ n−[︂nβ⌉︂. Since β > 0.5, ŷ
is the only activity receives votes more than n⇑2, thus the probability
P(v̂ ≥ β , ŷ = y) can be expressed as:

P(v̂ ≥ β , ŷ = y) =
n−[︂nβ⌉︂
∑
k=0

(n
k
)ϵk(1 − ϵ)n−k . (23)

If ŷ = j for j ≠ y, then those n̂ votes are considered to be incorrect,
and the correctnesses of the other n − n̂ votes are not able to judge.
For simplicity, we assume the error ϵ is equally shared on the other
m − 1 activities, then the chance of a classifier voting for activity

Markov Dynamic Subsequence Ensemble for Energy-Efficient Activity Recognition MobiQuitous, 2017, Australia

j (j ≠ y) is:

ϵ̃ = ϵ

m − 1 , (24)

and the chance of a classifier voting for any activity other than j is
1 − ϵ̃ . Similar to (23), the probability P(v̂ ≥ β , ŷ = j) for j ≠ y can
be expressed as:

P(v̂ ≥ β , ŷ = j) =
n−[︂nβ⌉︂
∑
k=0

(n
k
)(1 − ϵ̃)k ϵ̃n−k . (25)

We define f (β) ≡ P(ŷ = y ⋃︀ v̂ ≥ β) as a function of β , which can be
written as:

f (β) = (26)

∑n−[︂nβ⌉︂
k=0 (nk)ϵ

k(1 − ϵ)n−k

∑n−[︂nβ⌉︂
k=0 (nk)ϵk(1 − ϵ)n−k + (m − 1)∑

n−[︂nβ⌉︂
k=0 (nk)(1 − ϵ̃)k ϵ̃n−k

.

We assume ϵ < 0.5 that the classifier outperforms random choice.
The following theorem shows that f (β) is a monotonically increas-
ing function.

THEOREM 3.1. Given ϵ ∈ (0,0.5), f (β) is a monotonically
increasing function.

PROOF. Let t = n − [︂nβ⌉︂, and 0 ≤ t ≤ n. We construct a new
function д(t) on t ∈ Z+ as:

д(t) = ∑t
k=0 (

n
k)ϵ

k(1 − ϵ)n−k

∑t
k=0 (

n
k)ϵk(1 − ϵ)n−k + (m − 1)∑

t
k=0 (

n
k)(1 − ϵ̃)k ϵ̃n−k

.

(27)
Let γ = [︂nβ⌉︂ − nβ . Since t = n − [︂nβ⌉︂ ⇒ β = (n − t − γ)⇑n,

then д(t) = f (n−t−γn), and we have f (n−t−γ
′

n) = f (n−tn) for any
γ ′ ∈ (︀0,1). Consequently, if д(t) is a monotonically decreasing
function, then f (β) is a monotonically increasing function. We
rewrite д(t) as:

д(t) = 1
1 + (m − 1)u(t) , (28)

where u(t) is:

u(t) = ∑
t
k=0 (

n
k)(1 − ϵ̃)

k ϵ̃n−k

∑t
k=0 (

n
k)ϵk(1 − ϵ)n−k

. (29)

Since m − 1 > 0, if u(t) is proved to be a monotonically increas-
ing function, then д(t) is a monotonically decreasing function. Let
θ1(k) = (nk)(1 − ϵ̃)

k ϵ̃n−k , and θ2(k) = (nk)ϵ
k(1 − ϵ)n−k , then:

θ1(k)
θ2(k)

= (ϵ̃

1 − ϵ)
n(1 − ϵ̃

ϵ̃
)k(1 − ϵ

ϵ
)k . (30)

Since 0 < ϵ̃ ≤ ϵ < 0.5, then (1 − ϵ̃)⇑ϵ̃ > 1 and (1 − ϵ)⇑ϵ > 1, thus we
have:

θ1(k)
θ2(k)

> θ1(k − 1)
θ2(k − 1)

. (31)

As a result, we can infer that:

u(t + 1) −u(t) = ∑
t
k=0 θ1(k) + θ1(t + 1)
∑t
k=0 θ2(k) + θ2(t + 1)

− ∑
t
k=0 θ1(k)
∑t
k=0 θ2(k)

> 0 (32)

According to the above derivation, we claim that u(t) is a monoton-
ically increasing function. Consequently, f (β) is a monotonically
increasing function. □

We prove the monotonic property of P(ŷ = y ⋃︀ v̂ ≥ β) on β ∈
(0.5,1). Therefore, we can increase β ∈ (0.5,1) to improve the
recognition accuracy of MDSE.

3.2.2 Analysis of the 2nd Constraint. We theoretically ex-
plain the effectiveness of (10) by showing that: given ⋃︀H ⋃︀ ≥ η and
a fixed v̂ ∈ (0.5,1), the generalized recognition accuracy increases
monotonically with respect to η ∈ (0,N ⌋︀. Let n = ⋃︀H ⋃︀, the generaliza-
tion accuracy of the ensemble prediction given n ≥ η is written as
the probability P(ŷ = y ⋃︀n ≥ η), which can be calculated based on
the Bayes rule:

P(ŷ = y ⋃︀n ≥ η) = P(n ≥ η , ŷ = y)
P(n ≥ η , ŷ = y) +∑j≠y P(n ≥ η , ŷ = j)

. (33)

Similar to the analysis of the 1st constraint, we define f (η) ≡ P(ŷ =
y ⋃︀n ≥ η) as a function of η, which can be written as:

f (η) = (34)

∑N
n=η (n

[︂nv̂⌉︂)ϵ
n−nv̂(1 − ϵ)nv̂

∑N
n=η (n

[︂nv̂⌉︂)ϵn−nv̂(1 − ϵ)nv̂ + (m − 1)∑
N
n=η (n

[︂nv̂⌉︂)(1 − ϵ̃)n−nv̂ ϵ̃nv̂
.

THEOREM 3.2. Given ϵ ∈ (0,0.5), f (η) is a monotonically in-
creasing function.

PROOF. Similar to the proof of Theorem 3.1, we rewrite f (η)
as:

f (η) = 1
1 + (m − 1)u(η) , (35)

where u(η) is:

u(η) =
∑N
n=η (n

[︂nv̂⌉︂)(1 − ϵ̃)
n−nv̂ ϵ̃nv̂

∑N
n=η (n

[︂nv̂⌉︂)ϵn−nv̂(1 − ϵ)nv̂
(36)

If we can prove u(η) is a monotonically decreasing function, then
f (η) is a monotonically increasing function. Let θ1(n) = (n

[︂nv̂⌉︂)(1−
ϵ̃)n−nv̂ ϵ̃nv̂ , and θ2(n) = (n

[︂nv̂⌉︂)ϵ
n−nv̂(1 − ϵ)nv̂ , then:

θ1(n)
θ2(n)

= (1 − ϵ̃
ϵ

)n−nv̂(ϵ̃

1 − ϵ)
nv̂ (37)

= (︀(1 − ϵ̃
ϵ

)1−2v̂(ϵ̃(1 − ϵ̃)
ϵ(1 − ϵ))

v̂ ⌋︀n (38)

Since 0 < ϵ̃ ≤ ϵ < 0.5 and v̂ > 0.5, then we have (︀(1− ϵ̃)⇑ϵ⌋︀1−2v̂ < 1,
and (︀(ϵ̃(1 − ϵ̃))⇑(ϵ(1 − ϵ))⌋︀v̂ < 1. Therefore:

θ1(n)
θ2(n)

< θ1(n − 1)
θ2(n − 1)

. (39)

As a result, we can infer that:

u(η + 1) −u(η) =
∑N
n=η+1 θ1(n)
∑N
n=η+1 θ2(n)

−
∑N
n=η+1 θ1(n) + θ1(η)
∑N
n=η+1 θ2(n) + θ2(η)

< 0.

(40)
According to the above derivation, we claim that u(η) is a monoton-
ically decreasing function. Consequently, f (η) is a monotonically
increasing function. □

We prove the monotonic property of P(ŷ = y ⋃︀n ≥ η) on η ∈ (0,N ⌋︀.
Therefore, we can increase η ∈ (0,N ⌋︀ to improve the recognition
accuracy of MDSE. We generally set 1 < η < N for obtaining a
reasonable performance of MDSE. If we set η = 1, MDSE will

MobiQuitous, 2017, Australia Weihao Cheng et al.

constantly make prediction based on only one subsequence. This is
because that, when the first prediction is obtained, the algorithm finds
⋃︀H ⋃︀ = 1 ≥ η as well as v̂ = 1 ≥ β , and then stops the dynamic process
immediately without taking other subsequences into consideration.
If we set η = N , MDSE will constantly take all the subsequences into
ensemble that degenerate into SWEM, since the constraint ⋃︀H ⋃︀ ≥ η
can only be fulfilled when ⋃︀H ⋃︀ = N .

3.3 Computational Efficiency of MDSE
A significant advantage of MDSE is that its computational efficiency
is guaranteed, toward which we provide theoretical analysis in this
section. Let l be an integer, and Pl be the probability that the ensem-
ble size ⋃︀H ⋃︀ equals l when MDSE returns. The expected ensemble
size Ω is calculated as:

Ω =
N
∑
l=η

lPl . (41)

Let v̂(l) be the highest voting proportion by the first l chosen subse-
quences, then Pl can be expressed as:

Pl =
)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

P(v̂(η) ≥ β), if l = η
P(v̂(η) < β , ...,v̂(l−1) < β ,v̂(l) ≥ β), if η < l < N
P(v̂(η) < β , ...,v̂(N−2) < β ,v̂(N−1) < β), if l = N

(42)
Due to the non-triviality of Pl , the expected ensemble size Ω is hard
to estimate. However, it is obvious that ∑N

l=η Pl = 1, then we can
derive an upper bound for Ω:

Ω = ηPη +
N
∑

l=η+1
lPl ≤ ηPη + N

N
∑

l=η+1
Pl (43)

= ηPη + N (1 − Pη) = η + (N − η)(1 − Pη)

= η + (N − η)P(v̂(η) < β).

We present the probability P(v̂(η) < β) using the representation of
multinomial cumulative distribution function proposed in [22]. Let
v
(η) = {v(η)1 ,v

(η)
2 , ...,v

(η)
m } be the voting proportion vector, and

v̂(η) = max{v(η)1 ,v
(η)
2 , ...,v

(η)
m }. Let ηj = ηv

(η)
j be the votes of

the activity j. Then, P(v̂(η) < β) can be written as:

P(v̂(η) < β) = P(v(η)1 < β ,v(η)2 < β , ...,v(η)m < β) (44)

= P(η1 ≤ [︂ηβ⌉︂ − 1,η2 ≤ [︂ηβ⌉︂ − 1, ...,ηm ≤ [︂ηβ⌉︂ − 1).

Suppose each of the classifiers votes to activities 1,2, ...,m with
probabilities p1,p2, ...,pm , respectively. The multinomial cumulative
distribution function can be presented as follows:

P(η1 ≤ [︂ηβ⌉︂ − 1,η2 ≤ [︂ηβ⌉︂ − 1, ...,ηm ≤ [︂ηβ⌉︂ − 1) (45)

= η!
ηηe−η

{
m
∏
j=1

P(Wj ≤ [︂ηβ⌉︂ − 1)}P(
m
∑
j=1

Z j = η),

where Wj ∼ P(ηpj) = Poisson distribution, and Z j ∼ TP(ηpj) =
truncated Poisson distribution with range 0,1,2, ...,[︂ηβ⌉︂− 1. Without
loss of generality, we set p1 as 1 − ϵ and set p2, ...,pm as ϵ̃ to obtain
those distributions. Since the probability P(∑mj=1 Z j = η) is hard to

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

4

8

12

16

20

β

Upper bound of Ω

η = 4
η = 5
η = 6
η = 7
η = 8

Figure 2: Given N = 20 (subsequences), m = 6 (activities) and
ϵ = 0.2, the curves show the upper bound of Ω as function of β
with different η.

calculate, we approximate it using normal distribution:

P(
m
∑
j=1

Z j = η) =
1⌉︂

2π ∑mj=1 σ 2
j

exp{−1
2
(
η −∑mj=1 µ j⌉︂
∑mj=1 σ 2

j

)2}, (46)

where µ j = E(Z j) and σ 2
j = Var(Z j). These two moments of Zi can

be calculated as:

µ j = ηpj(1 −
P(Wj = [︂ηβ⌉︂ − 1)
P(Wj ≤ [︂ηβ⌉︂ − 1)

), (47)

σ 2
j = µ j − ([︂ηβ⌉︂ − 1 − µ j)(ηpj − µ j). (48)

A more precise estimation for P(∑mj=1 Z j = η) can be obtained by
Edgeworth approximation [22], which additionally incorporates 2nd
to 4th central moments. We omit the details here due to the page
limitation. In summary, the expected ensemble size Ω of MDSE is
bounded by:

Ω ≤ η+(N −η) η!
ηηe−η

{
m
∏
j=1

P(Wj ≤ [︂ηβ⌉︂ − 1)}P(
m
∑
j=1

Z j = η). (49)

We intuitively show the upper bound of Ω in Figure 2, where the
curves of the upper bounds are plotted with various settings of β and
η. Let Ωub be the derived bound from (49), we can infer that the
expected computational cost of MDSE is bounded by∑[︂Ωub ⌉︂i=1 C(Xi)
assuming C(X1) ≥ C(X2) ≥ ... ≥ C(XN).

4 EMPIRICAL EVALUATIONS
In this section, we evaluate the performance of Markov Dynamic
Subsequence Ensemble (MDSE) with respect to accuracy and com-
putational cost, and compare it with 4 baseline methods. The experi-
ments are conducted on both desktop and mobile platforms. For the
experiments on the desktop platform, we implement the methods
with Python 2.7, and test the methods on a DELL PC with Intel (R)
Core (TM) i7-4470 CPU 3.40 GHz, 16G RAM and 64-bit Ubuntu
14.04 LTS operating system. For the experiments on the mobile
platform, we implement the methods with Java, and test the methods
on a Google Nexus 5X with Android 6.0 system.
Datasets: We use the 3-axis acceleration data of 6 human activity
datasets to evaluate the performance of MDSE: (1) Human Ac-
tivity Sensing Consortium (HASC) 2011 [16]: The data of all 6
activities was collected with 100 readings per second by 7 subjects
using iPhone/iPod. (2) Human Activity Recognition on Smartphones
Dataset (HARSD) [2]: The data of all 6 activities was collected with

Markov Dynamic Subsequence Ensemble for Energy-Efficient Activity Recognition MobiQuitous, 2017, Australia

50 readings per second by 30 subjects using a Samsung Galaxy S II.
(3) Actitracker dataset (ACTR) [21]: The data of all 6 activities was
collected with 20 readings per second by 36 users using Android
phones. (4) Daily Sport Activities dataset (DSA) [4]: The data of all
19 activities was collected with 25 readings per second by 8 subjects
using an accelerometer placed on torso. (5) Opportunity Dataset
(OPP) [29]: The data of selected 5 arm activities (’close’, ’reach’,
’open’, ’release’, ’move’) was collected with 30 readings per second
by 4 subjects using an accelerometer placed on left arm. (6) CHEST
[9]: The data of selected 4 activities (’working at computer’, ’stand-
ing’, ’working’, ’up/down stairs’) was collected with 52 readings per
second by 15 participants using an accelerometer placed on chest.
Data Preparations: Let 𝒟 be a dataset, we randomly split 𝒟 into
three groups: 𝒟1, 𝒟2 and 𝒟3, where ⋃︀𝒟1⋃︀ = 0.5⋃︀𝒟⋃︀, ⋃︀𝒟2⋃︀ = 0.25⋃︀𝒟⋃︀
and ⋃︀𝒟3⋃︀ = 0.25⋃︀𝒟⋃︀. For the time series in each group, we sequen-
tially extract a number of 5 seconds segments as our instances, i.e,
X . For 𝒟1 and 𝒟3, we perform the extraction for every 1.5 seconds.
For 𝒟2, we perform the extraction for every 0.5 seconds. We use the
instances of 𝒟1 to train the classifiers of MDSE and baselines. We
use the 𝒟2 to learn the Markov Decision Process (MDP) for MDSE.
We use the instances of 𝒟3 for testing.
Settings of MDSE: Let τ be the number of readings in one second,
and Xk1τ ∶k2τ be the subsequence of X containing readings from the
k1-th second to τ2-th second. We generate the subsequence set HX as
{X0∶2τ ,X1τ ∶3τ ,X2τ ∶4τ ,X3τ ∶5τ ,X0∶2.5τ ,X1.25τ ∶3.75τ ,X2.5τ ∶5τ ,X0∶3τ ,
Xτ ∶4τ ,X2τ ∶5τ ,X0∶3.5τ ,X1.5τ ∶5τ ,X0∶4τ ,Xτ ∶5τ ,X0∶4.5τ ,X0.5τ ∶5τ ,X0∶5τ },
where ⋃︀HX ⋃︀ = 17. For each Xi ∈ HX , we perform Fast Fourier Trans-
form (FFT) on each axis channel of the time series, and combine the
Fourier coefficients of the 3 channels as the feature ϕ(Xi) [26]. The
cost C(Xi) of using Xi is set as C(Xi) = Li logLi where Li is the
length of Xi . Since the subsequences can be grouped by 6 different
lengths: 2τ , 2.5τ , 3τ , 3.5τ , 4τ , 4.5τ , and 5τ , we build base classifiers
one for each length. The choosing of classification model for the
base classifier is varied, where the details are described in the latter
section.
Settings of Baselines: We test 4 baseline methods in comparison
with MDSE: (i) Single Base Classifier (SBC): We classify X using
a single base classifier. (ii) Subwindow Ensemble Model (SWEM):
We classify X by combing all the base classifiers which are trained
based on the subsequences of HX in the same manner of MDSE. (iii)
Convolutional Neural Network (CNN): We classify X by a CNN,
whose structure is referenced from [37]. The CNN consists of a con-
volutional layer of 20 feature mappings with 1s length filter striding
0.5s, a max-pooling layer with 0.5s length filter, a hidden layer with
1024 output units, a hidden layer with 30 output units, and a softmax
layer. We set learning rate to 0.001 and batch size to 10 for training
the CNN. (iv) Recurrent Neural Network (RNN): We classify X by
a RNN which consists of a LSTM layer and a Softmax layer. We
divide X into a sequence of 0.5 seconds chunks, which are used as
input of the RNN. We set learning rate to 0.001 and batch size to 10
for training the RNN. We examine Decision Tree (DT), Logistic Re-
gression (LR) and K-Nearest Neighbor (KNN) as the base classifier
for SBC, SWEM and MDSE. The settings of DT, LR and KNN are:
(i) DT: We use Classification and Regression Tree (CART) as the
Decision Tree algorithm. (ii) LR: We set the regularization weight
parameter to 1. (iii) KNN: We set the neighbor number to 1.

X1 X3 X5 X7 X9 X11 X13 X15 X17
0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Subsequence

Accuracy

CHEST
OPP
DSA
ACTR
HARSD
HASC

Figure 3: Accuracies of Decision Trees (DTs) using the subse-
quences from X1 to X17 on different datasets.

0.5 0.6 0.7 0.8 0.9 1.0
0.84
0.86
0.88
0.90
0.92
0.94
0.96

β

Accuracy
η = 3 η = 4 η = 5

(a) Accuracy

0.5 0.6 0.7 0.8 0.9 1.0
0.10

0.20

0.30

0.40

0.50

0.60

β

Cost (%)

(b) Percentage of Cost

Figure 4: Accuracy and Cost (%) of Markov Dynamic Subse-
quence Ensemble (MDSE) as functions of β with different η.

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

0.0

0.1

0.2

0.3

0.4

0.5

0.6

β

∆Accuracy / ∆Cost

η = 3
η = 4
η = 5

Figure 5: ∆Accuracy/∆Cost of MDSE as functions of β with dif-
ferent η.

4.1 Performances of Different Subsequences
We conduct experiments to investigate the accuracy of DT for each
single subsequence Xi ∈ HX . Figure 3 shows the accuracies of
using the subsequences from X1 to X17, on the 6 datasets. As can be
seen in the figure, all the subsequences have different accuracies. A
smaller subsequence usually result in low accuracy, since only a few
data points are captured which many not be a good representative
of the activity. A larger subsequences capture more data points
which generally deliver a higher accuracy. However, this is not
exactly correct, since a subsequence with more data points may not
represents the activity properly. Therefore, we perform AR using
a number of feature representations based on multiple time series
subsequences.

4.2 Markov Dynamic Subsequence Ensemble
We study the performance of the proposed MDSE regarding accuracy
and computational efficiency. We compare the evaluation results of
MDSE to SBC and SWEM, where DT, LR and KNN are used

MobiQuitous, 2017, Australia Weihao Cheng et al.

HASC HARSD ACTR

Method Accuracy #Sub Cost Cost (%) Time Accuracy #Sub Cost Cost (%) Time Accuracy #Sub Cost Cost (%) Time

SBC + DT 83.18% 1 4482.89 10.02% 0.224 80.60% 1 1991.45 10.11% 0.149 75.66% 1 664.39 10.28% 0.090

SWEM + DT 93.47% 17 44741.59 100% 2.780 85.86% 17 19695.79 100% 1.996 87.35% 17 6463.85 100% 1.346

MDSE + DT 91.59% 5.17 10339.73 23.11% 0.769 84.62% 4.02 3142.80 15.96% 0.428 86.54% 5.32 1550.86 23.99% 0.420

SBC + LR 90.04% 1 4482.89 10.02% 0.249 83.92% 1 1991.45 10.11% 0.155 89.38% 1 664.39 10.28% 0.102

SWEM + LR 94.83% 17 44741.59 100% 3.141 85.17% 17 19695.79 100% 2.047 90.93% 17 6463.85 100% 1.485

MDSE + LR 93.66% 5.10 10335.02 23.10% 0.890 85.31% 6.30 6208.77 31.52% 0.760 90.89% 5.82 1804.69 27.92% 0.523

SBC + KNN 88.94% 1 4482.89 10.02% 2.591 83.65% 1 1991.45 10.11% 1.013 83.25% 1 664.39 10.28% 2.787

SWEM + KNN 91.85% 17 44741.59 100% 34.144 84.55% 17 19695.79 100% 14.768 85.28% 17 6463.85 100% 35.983

MDSE + KNN 92.43% 3.89 6872.99 15.36% 6.213 84.13% 3.54 2611.47 13.26% 2.861 85.39% 4.21 1087.78 16.83% 7.055

DSA OPP CHEST

Method Accuracy #Sub Cost Cost (%) Time Accuracy #Sub Cost Cost (%) Time Accuracy #Sub Cost Cost (%) Time

SBC + DT 73.95% 1 870.72 10.20% 0.104 68.49% 1 1084.32 10.20% 0.124 59.90% 1 1991.45 10.11% 0.169

SWEM + DT 94.12% 17 8537.68 100% 1.566 76.71% 17 10634.65 100% 1.648 73.31% 17 19695.79 100% 2.165

MDSE + DT 93.60% 5.46 2096.86 24.56% 0.483 75.34% 6.94 3651.18 34.33% 0.704 72.13% 6.55 6198.73 31.47% 0.791

SBC + LR 85.04% 1 870.72 10.20% 0.109 76.71% 1 1084.32 10.20% 0.123 69.31% 1 1991.45 10.11% 0.177

SWEM + LR 89.47% 17 8537.68 100% 1.607 77.05% 17 10634.65 100% 1.665 71.08% 17 19695.79 100% 2.386

MDSE + LR 89.47% 8.80 4019.88 47.08% 0.886 77.40% 7.41 4055.15 38.13% 0.768 71.21% 10.68 11719.38 59.50% 1.492

SBC + KNN 94.34% 1 870.72 10.20% 0.952 72.95% 1 1084.32 10.20% 0.719 64.13% 1 1991.45 10.11% 1.536

SWEM + KNN 95.88% 17 8537.68 100% 17.549 78.77% 17 10634.65 100% 11.687 67.15% 17 19695.79 100% 21.378

MDSE + KNN 95.66% 3.66 1165.30 13.65% 3.327 79.45% 6.05 3000.77 28.22% 4.252 67.32% 5.23 4657.79 23.65% 6.166

Table 2: Comparing MDSE with SBC and SWEM using base classifiers: DT, LR and KNN.

HASC HARSD ACTR DSA OPP CHEST

91.6%
84.6% 86.5%

93.6%

75.3% 72.1%
83.7%

91.2%
76.8%

87.1%

69.9%
62.7%61.5%

85.7%

65.5%

44.9%

74.3% 73.6%

MDSE CNN RNN

Figure 6: Comparing accuracy of MDSE with CNN and RNN on different datasets.

as base classifier separately. The parameters of MDSE are set as
β = 0.7, η = 3. We use 5 indicators for the comparison including: (1)
‘Accuracy’; (2) ‘#Sub’: the number of used subsequences; (3) ‘Cost’:
the average cost for one instance; (4) ‘Cost (%)’: the percentage of
‘Cost’, where the ‘Cost (%)’ of SWEM is set to 100%, and the others
are represented as proportional rates to the ‘Cost’ of SWEM; (5)
‘Time’: the average execution time for one instance (millisecond).
The experimental results on 6 datasets are shown in Table 2. For
accuracy comparison, MDSE performs only approximately 1-2%
less than SWEM. However, for computational cost comparison,
MDSE reduces average 74.41% of the SWEM’s computational cost.
Specifically, MDSE reduces average 74.32% with DT, 67.41% with
LR, and 81.51% with KNN. To explore the statistical significance
of the performances of MDSE and SWEM, we conduct Wilcoxon
signed-rank test on their results (18 pairs). The returned p-values
represent the lowest level of significance of a hypothesis that results
in rejection. This value allows one to determine whether two methods
have significantly different performance. We set the significance

level α = 0.05 for the following statistical comparisons. For the
accuracy comparison between MDSE and SWEM, the returned
p-value = 0.102434 > α fails to reject the null hypothesis of the
comparison, implying a similar accuracy performance of the two
methods. For the computational cost comparison between MDSE
and SWEM, the returned p-value = 0.000196 < α rejects the null
hypothesis, implying a significant cost efficiency of MDSE against
SWEM. We also compare the accuracy of MDSE to the CNN and
RNN. The results on 6 datasets are shown in Figure 6. MDSE obtains
better performances than both CNN and RNN on 4 out of 6 datasets.
The CNN only shows a better result on HARSD dataset, and the
RNN only shows better results on HARSD and CHEST datasets.
Designing widely applicable deep neural nets for AR still need more
investigations which can be our future work.

We further evaluate the effectiveness of MDSE by comparing
it with a method called Random K which randomly chooses K
subsequences for ensemble prediction. We test Random K from
K = 1 to ⋃︀HX ⋃︀. According to the comparison results shown in Table 3,

Markov Dynamic Subsequence Ensemble for Energy-Efficient Activity Recognition MobiQuitous, 2017, Australia

HASC HARSD ACTR

Method Accuracy #Sub Cost Cost (%) Accuracy #Sub Cost Cost (%) Accuracy #Sub Cost Cost (%)

Random K − 2 89.20% 4 10424.912 23.30% 83.99% 3 3433.619 17.43% 84.18% 4 1518.817 23.50%

Random K − 1 90.17% 5 13054.256 29.18% 84.48% 4 4593.724 23.32% 84.37% 5 1896.888 29.35%

MDSE 91.59% 5.17 10339.734 23.11% 84.62% 4.02 3142.803 15.96% 86.54% 5.32 1550.862 23.99%

Random K 90.88% 6 15732.360 35.16% 85.17% 5 5752.307 29.21% 85.42% 6 2277.220 35.23%

Random K + 1 91.72% 7 18366.606 41.05% 85.03% 6 6928.949 35.18% 85.46% 7 2657.417 41.11%

Random All (SWEM) 93.47% 17 44741.588 100.00% 85.86% 17 19695.794 100.00% 87.35% 17 6463.855 100.00%

DSA OPP CHEST

Method Accuracy #Sub Cost Cost (%) Accuracy #Sub Cost Cost (%) Accuracy #Sub Cost Cost (%)

Random K − 2 88.16% 4 1994.436 23.36% 71.92% 5 3107.821 29.22% 69.42% 5 5774.697 29.32%

Random K − 1 89.96% 5 2494.316 29.22% 73.63% 6 3758.417 35.34% 70.12% 6 6937.692 35.22%

MDSE 93.60% 5.46 2096.855 24.56% 75.34% 6.94 3651.182 34.33% 72.13% 6.55 6198.734 31.47%

Random K 90.61% 6 3001.907 35.16% 75.34% 7 4371.330 41.10% 70.38% 7 8102.068 41.14%

Random K + 1 91.80% 7 3505.834 41.06% 77.05% 8 5000.964 47.03% 71.01% 8 9265.011 47.04%

Random All (SWEM) 94.12% 17 8537.676 100.00% 76.71% 17 10634.647 100.00% 73.31% 17 19695.794 100.00%

Table 3: Comparing MDSE with Random K methods (DT as base classifier). Due to the page limitation, we only show the results of
Random K − 2, K − 1, K , K + 1 and All, where K is set as the smallest integer that greater than the obtained ensemble size of MDSE.

when MDSE uses a similar number of subsequences to the Random
K , MDSE achieves a higher or similar accuracy, and spends less
computational cost.

4.3 The Accuracy Constraints
The recognition accuracy can be ensured by the presented constraints
(9) and (10), since we can prove that the accuracy is monotonically
increasing with respect to the parameters β and η. Therefore, we
conduct experiments to study the effects of increasing β and η to
accuracy and computational cost. We test MDSE on HASC dataset
with β varying from 0.55 to 0.95, and η ∈ {3,4,5}. The ‘Accuracy’
and ‘Cost (%)’ results are shown in Figure 4a and Figure 4b, re-
spectively. The accuracy improves by increasing β and η, which
verifies our analysis. The computational cost is also increased, since
that the more restrictive constraints will cause MDSE take more
subsequences into ensemble, which results in more computations.

A critical problem is how to choose β and η. Given a fixed η,
we can use ∆Accuracy/∆Cost as an indicator to express the ratio
of accuracy increment and cost increment by increasing β . We test
∆Accuracy/∆Cost with respect to β and η, where 𝒟2 is used as
testing data. The curves of ∆Accuracy/∆Cost are plotted in Figure 5.
We can observe a significant peak when β = 0.7 and η = 3. Therefore,
using β = 0.7 and η = 3 is an empirically optimal choice for MDSE.

4.4 The Computational Efficiency of MDSE
The computational efficiency of MDSE is guaranteed, since we
can estimate an upper bound of the expected ensemble size Ω. We
evaluate the correctness of the upper bound which is presented
in (49). We conduct experiments on HASC dataset to obtain the
empirical Ω (average ensemble size) of MDSE. We estimate the
upper bound of Ω using (49), where the generalization error ϵ is set
as the largest empirical error of the base classifiers. According to the
results shown in Figure 7, the curve of empirical Ω is consistently

0.55 0.65 0.75 0.85 0.95
0
2
4
6
8

10
12
14
16

β

Ω

Empricial Ω Upper bound of Ω

(a) η = 3

0.55 0.65 0.75 0.85 0.95
0
2
4
6
8

10
12
14
16

β

Ω

(b) η = 6

Figure 7: The dashed curve shows the upper bound of Ω with
respect to β , and the solid curve shows the empirical Ω.

below the curve of the estimated upper bound, which verifies the
correctness of our derived bound for Ω.

4.5 Evaluation on Smartphone
We study the performance of MDSE on smartphone regarding ac-
curacy, energy cost and model memory usage. We compare the
evaluation results of MDSE to SBC and SWEM, where DT is used
as base classifier. The methods are implemented using Java with
Weka Machine Learning Library 1, and tested on a Google Nexus
5X. In order to measure the pure algorithm running cost exclud-
ing the impact from sensors, we import the HASC dataset to the
smartphone where the data is prepared following our previous Data
Preparation steps. We run the methods on the data of testing group
(939 instances), and use PowerTutor [38] to measure a total power
consumption. We run each method for 3 times to calculate the aver-
age results. According to Table 4, MDSE obtains an accuracy about
1.4% less than the SWEM, but reduces about 70.8% energy of the
SWEM. Hence, the memory usage of MDSE is insignificant which
demonstrates the feasibility of applying MDSE on mobile devices.

1http://www.cs.waikato.ac.nz/ml/weka/

MobiQuitous, 2017, Australia Weihao Cheng et al.

Method Accuracy Energy Cost Memory Usage

SBC 82.22% 0.95 J 87 KB

SWEM 92.65% 10.03 J 1367 KB

MDSE 91.27% 2.93 J 2958 KB

Table 4: Performances on a Google Nexus 5X.

5 CONCLUSION
State-of-the-art models using feature representations based on multi-
ple time series subsequences have shown to be effective in Activity
Recognition (AR). However, they have large energy cost when they
are deployed on mobile devices. In this article, we address this major
issue by formalizing a dynamic subsequence selection problem that
minimizes the computational cost with constraints for ensuring the
accuracy. We theoretically show that our presented constraints can
guarantee the generalization accuracy at a certain level. To solve
the problem, We propose Markov Dynamic Subsequence Ensemble
(MDSE) method, which learns a policy that chooses the best subse-
quence given a state of prediction. We then derive an upper bound
of the expected ensemble size of MDSE, thus the computational
efficiency is guaranteed. We conduct experiments on 6 real human
activity datasets to evaluate the performance of MDSE. Comparing
to the state-of-the-arts, MDSE demonstrates 70.8% energy reduction
that is 3.42 times more energy efficiency, and achieves a similarly
high accuracy.

REFERENCES
[1] M. A. U. Alam, N. Pathak, and N. Roy. 2015. Mobeacon: An iBeacon-Assisted

Smartphone-Based Real Time Activity Recognition Framework. In Proceedings
of MobiQuitous. 130–139.

[2] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L Reyes-Ortiz. 2013. A public
domain dataset for human activity recognition using smartphones. In Proceedings
of ESANN.

[3] O. Banos, J.-M. Galvez, M. Damas, A. Guillen, L.-J. Herrera, H. Pomares, I.
Rojas, C. Villalonga, C. S. Hong, and S. Lee. 2015. Multiwindow Fusion for
Wearable Activity Recognition. 290–297.

[4] B. Barshan and M. C. Yüksek. 2014. Recognizing daily and sports activities in
two open source machine learning environments using body-worn sensor units.
Comput. J. (2014), bxt075.

[5] P. Bhargava, N. Gramsky, and A. Agrawala. 2014. SenseMe: A System for
Continuous, On-device, and Multi-dimensional Context and Activity Recognition.
In Proceedings of MobiQuitous. 40–49.

[6] S. Bhattacharya and N. D. Lane. 2016. Sparsification and Separation of Deep
Learning Layers for Constrained Resource Inference on Wearables. In Proceed-
ings of SenSys. 176–189.

[7] A. Bloch, R. Erdin, S. Meyer, T. Keller, and A. d. Spindler. 2015. Battery-
Efficient Transportation Mode Detection on Mobile Devices. In Proceedings of
MDM, Vol. 1. 185–190.

[8] A. Bulling, U. Blanke, and B. Schiele. 2014. A Tutorial on Human Activity
Recognition Using Body-worn Inertial Sensors. ACM Comput. Surv. 46, 3, Article
33 (2014), 33 pages.

[9] P. Casale, O. Pujol, and P. Radeva. 2012. Personalization and User Verification
in Wearable Systems Using Biometric Walking Patterns. Personal Ubiquitous
Comput. 16, 5 (2012), 563–580.

[10] D. Gordon, J. Czerny, T. Miyaki, and M. Beigl. 2012. Energy-Efficient Activity
Recognition Using Prediction. In Proceedings of ISWC. 29–36.

[11] S. Hemminki, P. Nurmi, and S. Tarkoma. 2013. Accelerometer-based Transporta-
tion Mode Detection on Smartphones. In Proceedings of SenSys. 13:1–13:14.

[12] S. Inoue, N. Ueda, Y. Nohara, and N. Nakashima. 2015. Mobile Activity Recog-
nition for a Whole Day: Recognizing Real Nursing Activities with Big Dataset.
In Proceedings of UbiComp. 1269–1280.

[13] Y. Jiang, D. Li, and Q. Lv. 2013. Thinking fast and slow: An approach to energy-
efficient human activity recognition on mobile devices. AI Magazine 34, 2 (2013).

[14] S. Kang, J. Lee, H. Jang, H. Lee, Y. Lee, S. Park, T. Park, and J. Song. 2008.
SeeMon: Scalable and Energy-efficient Context Monitoring Framework for

Sensor-rich Mobile Environments. In Proceedings of MobiSys. 267–280.
[15] Y. Kashimoto, K. Hata, H. Suwa, M. Fujimoto, Y. Arakawa, T. Shigezumi, K.

Komiya, K. Konishi, and K. Yasumoto. 2016. Low-cost and Device-free Ac-
tivity Recognition System with Energy Harvesting PIR and Door Sensors. In
Proceedings of MobiQuitous. 6–11.

[16] N. Kawaguchi, Y. Yang, T. Yang, N. Ogawa, Y. Iwasaki, K. Kaji, T. Terada, K.
Murao, S. Inoue, Y. Kawahara, Y. Sumi, and N. Nishio. 2011. HASC2011Corpus:
Towards the Common Ground of Human Activity Recognition. In Proceedings of
UbiComp. 571–572.

[17] S. Khalifa, M. Hassan, and A. Seneviratne. 2015. Pervasive self-powered human
activity recognition without the accelerometer. In Proceedings of PerCom. 79–86.

[18] A. Krause, M. Ihmig, E. Rankin, D. Leong, Smriti Gupta, D. Siewiorek, A.
Smailagic, M. Deisher, and U. Sengupta. 2005. Trading off prediction accuracy
and power consumption for context-aware wearable computing. In Proceedings
of ISWC. 20–26.

[19] N. C Krishnan and D. J Cook. 2014. Activity recognition on streaming sensor
data. Pervasive and mobile computing 10 (2014), 138–154.

[20] A. Krizhevsky, I. Sutskever, and G. E. Hinton. 2012. ImageNet Classification
with Deep Convolutional Neural Networks. In Proceedings of NIPS. 1097–1105.

[21] J. R. Kwapisz, G. M. Weiss, and S. A. Moore. 2011. Activity Recognition Using
Cell Phone Accelerometers. SIGKDD Explor. Newsl. 12, 2 (2011), 74–82.

[22] B. Levin et al. 1981. A representation for multinomial cumulative distribution
functions. The Annals of Statistics 9, 5 (1981).

[23] Y. Liang, X. Zhou, Z. Yu, and B. Guo. 2014. Energy-efficient motion related
activity recognition on mobile devices for pervasive healthcare. Mobile Networks
and Applications 19, 3 (2014), 303.

[24] J. W. Lockhart, T. Pulickal, and G. M. Weiss. 2012. Applications of Mobile
Activity Recognition. In Proceedings of UbiComp. 1054–1058.

[25] H. Lu, J. Yang, Z. Liu, N. D. Lane, T. Choudhury, and A. T. Campbell. 2010. The
Jigsaw Continuous Sensing Engine for Mobile Phone Applications. In Proceed-
ings of SenSys. 71–84.

[26] T. Plötz, N. Y. Hammerla, and P. Olivier. 2011. Feature Learning for Activity
Recognition in Ubiquitous Computing. In Proceedings of IJCAI. 1729–1734.

[27] M. L. Puterman. 1994. Markov Decision Processes: Discrete Stochastic Dynamic
Programming.

[28] D. Riboni and C. Bettini. 2011. COSAR: Hybrid Reasoning for Context-aware
Activity Recognition. Personal Ubiquitous Comput. 15, 3 (2011), 271–289.

[29] D. Roggen, A. Calatroni, M. Rossi, T. Holleczek, K. Förster, G. Tröster, P. Lukow-
icz, D. Bannach, G. Pirkl, A. Ferscha, J. Doppler, C. Holzmann, M. Kurz, G. Holl,
R. Chavarriaga, H. Sagha, H. Bayati, M. Creatura, and J. d. R. Millàn. 2010. Col-
lecting complex activity datasets in highly rich networked sensor environments.
In Proceedings of INSS. 233–240.

[30] M. Shoaib, S. Bosch, O. D. Incel, H. Scholten, and P. J.M. Havinga. 2015. A
Survey of Online Activity Recognition Using Mobile Phones. Sensors 15, 1
(2015), 2059–2085.

[31] Y. Tang and C. Ono. 2016. Detecting Activities of Daily Living from Low
Frequency Power Consumption Data. In Proceedings of MobiQuitous. 38–46.

[32] Y. Wang, B. Krishnamachari, Q. Zhao, and M. Annavaram. 2010. Markov-optimal
Sensing Policy for User State Estimation in Mobile Devices. In Proceedings of
IPSN. 268–278.

[33] Y. Wang, J. Lin, M. Annavaram, Q. A. Jacobson, J. Hong, B. Krishnamachari, and
N. Sadeh. 2009. A Framework of Energy Efficient Mobile Sensing for Automatic
User State Recognition. In Proceedings of MobiSys. 179–192.

[34] Z. Yan, V. Subbaraju, D. Chakraborty, A. Misra, and K. Aberer. 2012. Energy-
Efficient Continuous Activity Recognition on Mobile Phones: An Activity-
Adaptive Approach. In Proceedings of ISWC. 17–24.

[35] J. B. Yang, M. N. Nguyen, P. P. San, X. L. Li, and S. Krishnaswamy. 2015. Deep
Convolutional Neural Networks on Multichannel Time Series for Human Activity
Recognition. In Proceedings of IJCAI. 3995–4001.

[36] L. Yao, Q. Z. Sheng, X. Li, S. Wang, T. Gu, W. Ruan, and W. Zou. 2015. Freedom:
Online Activity Recognition via Dictionary-Based Sparse Representation of RFID
Sensing Data. In Proceedings of ICDM. 1087–1092.

[37] M. Zeng, L. T. Nguyen, B. Yu, O. J. Mengshoel, J. Zhu, P. Wu, and J. Zhang. 2014.
Convolutional Neural Networks for human activity recognition using mobile
sensors. In Proceedings of MobiCASE. 197–205.

[38] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M. Mao, and L. Yang. 2010.
Accurate Online Power Estimation and Automatic Battery Behavior Based Power
Model Generation for Smartphones. In Proceedings of CODES/ISSS. 105–114.

[39] Y. Zheng, W.-K. Wong, X. Guan, and S. Trost. 2013. Physical Activity Recog-
nition from Accelerometer Data Using a Multi-Scale Ensemble Method.. In
Proceedings of IAAI. 1575–1581.

[40] Z.-H. Zhou. 2012. Ensemble methods: foundations and algorithms. CRC press.

	Abstract
	1 Introduction
	2 Related Works
	3 Proposed Method
	3.1 Markov Dynamic Subsequence Ensemble (MDSE)
	3.2 Theoretical Analysis of the Accuracy Constraints in MDSE
	3.2.1 Analysis of the 1st Constraint
	3.2.2 Analysis of the 2nd Constraint

	3.3 Computational Efficiency of MDSE

	4 Empirical Evaluations
	4.1 Performances of Different Subsequences
	4.2 Markov Dynamic Subsequence Ensemble
	4.3 The Accuracy Constraints
	4.4 The Computational Efficiency of MDSE
	4.5 Evaluation on Smartphone

	5 Conclusion
	References

