
Mining Rare Recurring Events in Network Traffic
using Second Order Contrast Patterns

Elaheh Alipourchavary
School of Computing and

Information Systems
The University of Melbourne

Melbourne, Australia
ealipourchav@student.unimelb.edu.au

Sarah M. Erfani
School of Computing and

Information Systems
The University of Melbourne

Melbourne, Australia
sarah.erfani@unimelb.edu.au

Christopher Leckie
School of Computing and

Information Systems
The University of Melbourne

Melbourne, Australia
caleckie@unimelb.edu.au

Abstract—Data mining techniques such as contrast pattern
mining provide a promising approach to detecting and charac-
terizing changes in network traffic. However, a major challenge
for network managers is how to prioritize their analysis of these
changes, without being overwhelmed by uninformative patterns.
In particular, some changes in traffic occur on a regular basis,
such as system backups, and it is important to filter out these
rare recurring events, so that network managers can focus on
new events. In this paper we address the problem of identifying
rare recurring events in network traffic, and we propose a novel
solution to detecting new events based on the approach of mining
second order contrast patterns. Based on an empirical evaluation
using a variety of real traffic sources, we show that our method
can achieve high accuracy and F1-Score in detecting new events.
Our work demonstrates the importance of higher order contrast
pattern mining in practice, and provides an effective method for
finding such higher order patterns in large datasets.

Index Terms—contrast pattern mining, emerging pattern min-
ing, higher order contrast patterns

I. INTRODUCTION

Identifying and characterizing significant changes in the
traffic of a network is a challenging task in network and
security management. For example, changes in the types of
traffic flows in a network may indicate malicious activity,
a network fault, or a change in legitimate users’ behavior.
Contrast pattern mining (CPM) is a promising approach to
extract emerging trends and changes, and it has been used
successfully in many applications such as network traffic
analysis [1], [2], medical diagnosis [3], [4], and customer
behavior analysis [5].

CPM (aka emerging pattern mining [6]) finds contrast
patterns (CPs) that occur frequently in one target dataset and
infrequently in another background dataset (e.g., between two
different days), where a CP is a significant change between
two datasets. While there has been a substantial body of
work on mining CPs [1], [2], [4], [6]–[10], the focus of these
approaches is mainly on extracting all or a substantial subset
of the patterns, where the number of extracted CPs may be
combinatorially large in big, high-dimensional datasets. Thus,
a major challenge for network managers and analysts is how to
prioritize their analysis of these patterns to quickly recognize
what is happening in their network.

In particular, some changes in traffic occur on a regular basis
and exhibit periodic behavior over time, which we call rare
recurring patterns (rare patterns/events for short). These rare
events, which may overload the network and cause congestion,
could be a regular radio competition, weekly scheduled system
backups, or webinars. For example, a webinar that is held once
a week may appear as unusual traffic to security analysts,
and may be misinterpreted as a malicious attack. Given the
resource limitations and the need for a rapid response, security
analysts need to filter out these rare events and prioritize
their focus on the new patterns/events, which are more likely
to be a fault or malicious behavior. While rare events are
still unusual, they have been previously identified by network
managers and a longer-term response plan may already be
in place. By separating out the rare recurring problems from
the new problems that have not been seen before, network
managers can better prioritize their effort. In our approach, we
adapt a model of analysis based on time-windows, to detect
normal and change windows. Change windows can be one of
two different types: rare recurring change windows and new
change windows (rare windows and new windows for short).
Our aim is to detect new change windows, which contain new
events of potential interest to security analysts, while filtering
out rare change windows that contain rare, recurring events.

Example 1: In Fig. 1, the target dataset Dt has four
windows {w1, . . . , w4}. w1 has three records similar to the
reference dataset Db, called a normal window. However w2

to w4, each have five records that are very different to the
reference dataset, and we call them change windows, e.g.,
{bcg} and {dg} are two CPs between w2 and Db, which are
also repeated in w4. Thus, we call w2 and w4 rare recurring
windows. In contrast, {ge} and {efh} are two new CPs
between w3 and Db, that do not repeat in other windows.
Thus, we call w3 a new window.

In this paper, we focus on (i) how to identify all rare
and new windows in a sequence of records. In particular,
we consider (ii) how to filter out the rare windows from
the new windows. Our approach is based on using a special
type of CP, called jumping emerging patterns (JEPs). JEPs are
patterns that appear in a target dataset while being absent in a
background dataset [11]. For example, in Fig. 1, pattern {bcg}

Fig. 1. Example datasets with four windows.

is a JEP that occurs frequently (40%) in the target window w2,
but does not occur in the background dataset Db. Similarly,
the pattern {ge} and {fh} are two JEPs in w3.

We propose a novel solution to identify rare events based
on the approach of mining second order contrast patterns
(SOCPs). While contrast patterns (referred to as first order
contrast pattens (FOCPs) in this work) discover significant
changes between two datasets, SOCPs discover significant
changes between two sets of FOCPs. We propose a new
algorithm, called RCEP (Rare recurring Change detection by
Emerging Patterns), that extracts SOCPs over a sequence of
records in two steps. In the first step, RCEP generates FOCPs
to identify both types of change windows, but in this step
we do not know which are rare windows and which are new
windows. So, in the second step, using SOCP mining, RCEP
filter outs rare windows and identifies any new windows.
An interesting feature of RCEP is that it does not use the
CPs themselves. Instead, it uses statistical measures of the
aggregated CPs (length, frequency and size of the patterns)
to discriminate new and rare windows. To the best of our
knowledge, RCEP is the first algorithm that uses higher order
contrast pattern mining to detect rare recurring events.

Our experimental results show that our proposed RCEP
algorithm achieves considerably higher performance in terms
of accuracy and F1-Score over an existing approach [2]. Our
work also demonstrates the importance of SOCP mining in
practice, and provides an effective method for finding such
higher order patterns in large datasets.

Contributions of this paper: Our main contributions are:
(1) We introduce a new concept of second order contrast
patterns to discriminate between rare events and new events.
(2) We propose a novel algorithm, called RCEP, to extract
FOCPs and SOCPs over a sequence of records. By utilizing
the SOCPs, RCEP is able to detect new events effectively. (3)
We introduce several statistical features of CPs, which are used
by RCEP to discriminate new events from rare events. (4) We
show the practicality of our algorithm on three network traffic
datasets. We evaluate our algorithm in terms of accuracy and
F1-Score, and show that SOCPs are a powerful method for
detecting the new events.

II. RELATED WORK

Many approaches have been proposed for CPM, such as
border-based algorithms [2], [6], tree-based approaches [1],

[9], and Zero-Suppressed Binary Decision Diagrams [10].
Despite the numerous applications presented in the literature
for CPM [1], [3]–[5], [12], we are not aware of any study
for distinguishing between rare events and new events. While
there have been many works in the signal processing literature
for periodic or recurring signal detection [13], [14], those
methods focus on recurring patterns in the amplitude of multi-
dimensional time series, where each dimension of the time
series is usually a continuous, real-valued signal. In contrast,
in our approach we analyse a sequence of records, where each
record comprises a combination of discrete items, and we aim
to find an itemset that identifies the combination of items that
form a pattern. Moreover, while there have been many works
in periodic pattern mining such as [15], those methods search
for repeated patterns under normal conditions and they do
not detect CPs. In contrast, our work aims to discover what
is changing from normal, and then identifies rare patterns to
distinguish them from any new patterns.

In [16], the authors proposed an algorithm to detect periodic
CPs based on a time-window model. However, they simply
check whether a single CP is periodic or not, while our
approach is based on statistical measures for the aggregation
of patterns, and by using SOCPs, we filter out rare windows
and classify different windows as normal or new windows.
In [17], the authors proposed the OCLEP algorithm to detect
masquerader attacks using JEPs. They used the average length
of patterns to classify new test instances. In [2], they proposed
a new offline version for anomaly detection, named OCLEP+,
which is very similar to the OCLEP, except they used the
minimum length statistic as the cutoff threshold. However, our
focus is not anomaly detection. In fact, our problem is a form
of summarization of a sequential dataset. By using SOCPs on a
sequence of records, we filter out the rare windows in order to
summarize the new windows that contain a significant number
of contrast patterns that we have not seen before. In addition,
OCLEP and OCLEP+ use the BorderDiff algorithm [6] to
extract JEPs. BorderDiff only extracts the borders of JEPs
and does not calculate the support count of each pattern, while
RCEP uses the EPClose algorithm [7], which is a tree-based
approach that also extracts the support counts of each pattern.
Since OCLEP+ detects changes by using contrast patterns, we
use this method as a benchmark, and in Section V we explain
how to adapt the offline OCLEP+ method to our sequential
scenario.

III. DEFINITIONS AND PROBLEM STATEMENT

Let I = {i1, i2, . . . , iM} be the set of distinct items in a
transaction dataset D where a transaction T is a non-empty set
of items {i1, i2, . . . , im} and ij ∈ I . A transaction may occur
several times in D. An itemset or pattern X is any subset
of I . We use the terms itemset and pattern interchangeably
throughout this work. An itemset X is contained in a transac-
tion T if X ⊆ T . We define a target dataset Dt of nt as a
sequence of K non-overlapping time-windows (w1, . . . , wK),
where each window is a batch of transactions. We denote
the set of all transactions in a window wi as T S(wi). The
size of each window is the number of transactions it contains,
denoted as nwi . The number of transactions in a window wi

containing pattern X is called the support count of X, denoted
as SC(X,wi). The support of itemset X is the fraction of
transactions in a window wi that contain X, and is given by
supp(X,wi) = SC(X,wi)

nwi
.

Definition 1: The growth rate of a pattern X for a window
wi compared to a background dataset Db, denoted gr(X,wi),
is defined as:

gr(X,wi) =
0 supp(X,wi) = 0 & supp(X,Db) = 0

∞ supp(X,wi) 6= 0 & supp(X,Db) = 0
supp(X,wi)
supp(X,Db)

otherwise.

Definition 2: A contrast pattern X is a pattern whose
support is significantly different from a target window wi to a
background dataset Db. Given a growth rate threshold ρ > 1,
X is a contrast pattern for a window wi if gr(X,wi) ≥ ρ.

Definition 3: A jumping emerging pattern (JEP) for a
window wi compared to a background dataset Db is a sub-
set of contrast patterns such that supp(X,Db) = 0 and
supp(X,wi) > 0, i.e., gr(X,wi) =∞.

Example 2: In Fig. 1, the background dataset Db has 3
transactions with transaction IDs (TID) from 1 to 3. The target
dataset Dt has 18 transactions, i.e., nt = 18, which is divided
into 4 windows w1, . . . , w4. All windows have the same time
period, but the number of transactions in them are not the
same. The size of all windows is 5, except w1 whose size is
3, i.e., nw1

= 3. Each transaction is a subset of the itemset
I = {a, b, c, d, e, f, g, h}. Suppose ρ = 1.5. In w2, the pattern
{bc}(2 : 1)1, is a CP, since its growth rate is gr = 2/1, which
is bigger than the threshold ρ = 1.5; {c}(3 : 1) is another CP
with gr = 3. The patterns {bcg}(2 : 0) and {g}(3 : 0) are two
JEPs of w2, because these patterns did not occur in Db.

We use the EPClose algorithm [7] to extract contrast pat-
terns. EPClose generates all CPs from closed patterns [18],
which are those patterns that have no proper supersets with
the same support. Following the approach in [7], we use
closed jumping emerging patterns (CJEPs), which are the
most specific JEPs, i.e., patterns that are both closed and

1 Given k ≥ 1 {a1a2...ak}(n : m) shows that the pattern {a1a2...ak}
repeats n times in wi and m times in Db

JEPs. We focus on JEPs because their discriminative power
is much stronger than that of ordinary CPs. We use closed
patterns as they can eliminate the most general patterns, and
by reducing the redundant patterns they improve the scalability
of our algorithm. We use EPClose(Dt, Db) to denote the
returned set of CJEPs. For example in Fig. 1 for Dt = w2,
EPClose(w2, Db) = {bcg}(2 : 0), {dg}(1 : 0), {g}(3 :
0), {d}(2 : 0). Here, we introduce a new type of CP, called
second order contrast patterns. In Definition 4, the name
SOCP could more precisely be second order closed jumping
emerging pattern, but since we can apply SOCP to any type
of CPs, and for simplicity, we call it a second order contrast
pattern.

Definition 4: Given two sets of CJEPs, denoted as a
background set ∆b and a target set ∆t, a second order contrast
pattern X ′ is a closed jumping emerging pattern from ∆b to
∆t such that gr(X ′,∆t) =∞.
Problem statement: Given a background dataset Db as
a normal reference dataset, and a target dataset Dt =
{w1, w2, . . . , wk}, comprising a mixture of normal windows,
rare windows wrc, and new windows wnc, we investigate
(i) how to detect all wrc and wnc using FOCPs, denoted
as ∆wi

= EPClose(wi, Db) where i = {1, . . . , k}. In
particular, we consider (ii) how to discriminate between wrc

and wnc in order to identify wnc, using SOCPs, denoted as
∆′wj

= EPClose(∆wj
,∆wi

) where ∆wj
and ∆wi

are FOCPs
and j > i.

IV. OUR APPROACH: RCEP

In this section we introduce our RCEP algorithm for de-
tecting rare and new patterns. It consists of two main phases
of training and testing. In the training phase, RCEP calculates
some statistical measures of the aggregated CJEPs, and then
a cut-off threshold is derived from these measures. In the
test phase, the same statistics are computed for transactions
of each window and labeled as normal or new according to
the training phase cut-off threshold. One interesting feature
of RCEP is that instead of saving all generated CJEPs on
each window in memory, it only needs to save some statistics
of the patterns, which reduces the memory requirements for
RCEP. Another feature of RCEP is that by using SOCPs, it
applies a second stage that filters out rare windows, and thus
prioritises new windows. In this section, we first describe what
kind of statistical measures we can derive from CJEPs. Then,
we explain how to mine FOCPs and SOCPs using the RCEP
algorithm.

A. Observations on Statistical Measures of CJEPs

For the detection of rare and new patterns, utilizing all
generated CJEPs can be prohibitive in terms of memory
requirements. Instead, we propose to use several statistical
measures of aggregated patterns. The measure used for FOCPs
is the maximum support count of patterns in each window,
and the measures stored for each collection of SOCPs are: the
number of generated CJEPs, the minimum length of patterns,
and the variance of the length of patterns in each window.

Fig. 2. Behavioral observation of CPs in Kyoto dataset.

These measures are defined below, and the reason for their
selection is based on the following experimental observations.

Our premise is that CPs extract knowledge between different
classes of data more strongly than the same classes. To verify
this, consider an example based on the Kyoto network traffic
dataset [19]. The Kyoto dataset consists of two classes of
traffic: normal and anomalous. We run two separate exper-
iments: in the first case we use normal data for both the
background and target datasets, and in the second case we
use normal traffic for the background dataset and anomalous
traffic for the target dataset. The background dataset contains
10,000 normal transactions, selected randomly from 15 July
2007 of the Kyoto dataset, and the target dataset consists
of 20,000 transactions in each experiment, selected randomly
from the 16 July 2007 (other settings are the same as in the
Experimental section). Fig. 2 shows the length (the number
of items in each pattern) and the support count of each
pattern in the two experiments. It is evident that these two
measures have significant differences in the two experiments.
When both datasets come from the normal class (Fig. 2(a)),
the minimum length is 6, while in the experiment with two
different classes (Fig. 2(b)), the minimum length is 2. In terms
of support count, when both datasets have the same class the
maximum support count is 137, but for the different classes
it is 8700. The other interesting difference between the two
experiments is the number of patterns and the variance of
the length. When the target dataset is normal, the number
of the generated patterns is 1650, which is far fewer than
when the target dataset is anomalous traffic with 7957 patterns.
In addition the variance of the length is 2.9 and 6.8 for the
two experiments, respectively. These experiments lead to the
following key observation:

Property 1: When Dt and Db contain two different classes,
EPClose(Dt, Db) tends to generate a higher number of
short patterns with high support count and high variance in
length. In contrast, if both datasets contain the same class,
EPClose(Dt, Db) extracts a smaller number of long patterns
with lower support count and low variance in length.

B. Defining the Statistical Measures of CJEPs

In this section we study several statistical measures in more
detail. For FOCP, we use the maximum support count of the
aggregated patterns as a cut-off threshold.

Definition 5: Given a non-empty set S = {(X1 :
SC(X1)), (X2 : SC(X2)), . . . , (Xk : SC(Xk))}
of patterns, where {X1, X2 . . . , Xk} are CJEPs and
{SC(X1), . . . , SC(Xk)} are support counts of the patterns,
the maximum support count metric is defined as follows:

maxSupCount(S) = max(SC(Xi) | i = 1, . . . , k)

For SOCP, we propose a heuristic measure, named novelty,
that is presented in Definition 6, to find the best threshold
to identify new windows. The intuition behind this measure
is that we aim to maximize the gap between the boundaries
of normal patterns and new patterns. This novelty measure is
based on the observations from the previous section that the
number of patterns and the variance of length tends to be
higher for anomalous patterns, while the minimum length of
an anomalous pattern tends to be lower.

Definition 6: Given a non-empty set S =
{X1, X2, . . . , Xk} of patterns, where {X1, X2 . . . , Xk}
are CJEPs, the novelty measure is defined as follows:

minLen(S) = min(|Xi| | Xi ∈ S , i = 1, . . . , k)

varLen(S) =

k∑
i=1

(|Xi|−µ)2/k−1 , where µ =

k∑
i=1

|Xi|/k

novelty(S) =
k ∗ varLen
minLen

C. Mining First and Second Order Contrast Patterns

Fig. 3 gives an overview of the operation of RCEP, while the
complete process of training and testing in RCEP is presented
in Algorithms 1 and 2, respectively. The RCEP algorithm
performs a two-stage training phase. In training, we only use
the normal traffic. Let Db and Dt be the background and the
target datasets, respectively, both consisting of normal traffic.
We divide Dt into K windows, according to Fig. 3. In the first
stage of training, RCEP computes a set of FOCPs on each
window, i.e., ∆wi

= EPClose(T S(wi), Db), in line 2 of
Algorithm 1, and for each ∆wi the maxSupCount measure

Fig. 3. RCEP overview.

Algorithm 1: Training phase
Input: Db: reference dataset, Dt = {w1, . . . , wK}: target

dataset of normal instances with K windows, r:
percentile for SOCP cutoff value, C: initial
windows

Output: FOCPCutoff, SOCPCutoff
1 for wi ∈ {w1, . . . , wK} do
2 ∆wi

= EPClose(T S(wi), Db); // FOCP
3 Calculate maxSupCount(∆wi

) and add it to
MaxSCList;

4 if i > C then
5 ∆′wi

= EPClose(∆wi ,∆w(i−C)
); // SOCP

6 Calculate minLen(∆′wi
), varLen(∆′wi

), |∆′wi
|,

and add them to MinLenList, VarLenList,
PatNumList, respectively;

7 end
8 end
9 FOCPCutoff=Max(SC | SC ∈MaxSCList);

10 Sort the MinLenList in descending order and the
VarLenList and PatNumList in ascending order, and get
r-percentile of them as mlen, maxV arLen and
maxPatNum, respectively;

11 SOCPCutoff=
maxPatNum ∗maxV arLen

mlen
;

is calculated according to Definition 5. After C number of
windows, called the initial windows, RCEP starts the second
stage of training to mine the SOCPs using the generated
FOCPs, i.e., ∆′wi

= EPClose(∆wi
,∆w(i−C)

), in line 5 of
Algorithm 1. In line 6, RCEP computes the number of CJEPs,
the minimum length and the variance of the length of the
patterns for each set of SOCP, and saves them in three separate
lists. After extracting FOCPs and SOCPs for all windows, in
the last step, RCEP calculates the cut-off thresholds from the
saved lists.

For the FOCP cut-off threshold, we simply return the maxi-
mum of the maxSupCount list as the FOCPCutoff threshold.
For SOCP, further steps are needed to select an appropriate
cut-off threshold (lines 10-11). Specifically, we first sort the
variance length list in ascending order. Let m and n be the
minimum and maximum of the variance lengths. Then we
can select any value of r between m and n, m ≤ r ≤ n
as a cut-off value. The same mechanism is applied to the

Algorithm 2: Testing phase
Input: Db: reference dataset, Dt = {w1, . . . , wK}: target

dataset with K windows, C: initial windows,
FOCPCutoff, SOCPCutoff

Output: Is wi normal or new window?
1 for wi ∈ {w1, . . . , wK} do
2 ∆wi = EPClose(T S(wi), Db); // FOCP
3 FOCPMeasure(∆wi

) = maxSupCount(∆wi
);

// Definition 5
4 if FOCPMeasure(∆wi

) > FOCPCutoff then
5 classify wi as change window; otherwise as

normal window;
6 end
7 if i > C then
8 ∆′wi

= EPClose(∆wi
,∆w(i−C)

); // SOCP
9 SOCPMeasure(∆′wi

)=novelty(∆′wi
);

// Definition 6
10 if SOCPMeasure(∆′wi

) > SOCPCutoff
then

11 classify wi as new window; otherwise as
normal window;

12 end
13 end
14 end

pattern number list. For the minimum length list, it is sorted
in descending order. Finally, in line 11, the novelty measure
is calculated according to Definition 6, and is returned as
SOCPCutoff threshold.

Some applications demand low false negative (FN) rates (the
number of positive samples that are classified as negative), or
low false positive (FP) rates (the number of negative samples
that are identified as positive). A higher cut-off threshold r
(i.e., closer to the maximum) leads to a higher FN rate, and
many windows may be detected as normal windows, even
though they are actually anomalous. A lower cut-off threshold
(i.e., closer to the minimum) causes an increase in the FP rate,
resulting in normal windows being identified as anomalous.
For recurring problems, since it is highly desired to reduce
the number of normal windows that are identified as change
windows (a low FP), we select a higher cut-off value for r.

The testing phase (Algorithm 2), similar to the training

phase, also consists of two stages of FOCP and SOCP mining.
The background dataset Db consists of the normal traffic, and
the target dataset Dt, as our test dataset, consists of a mixture
of both normal and anomalous traffic. Similar to the training
phase, Dt is a sequence of K windows. In the first stage,
RCEP applies EPClose to each window and derives a set
of FOCPs in line 2. In the second stage, after C number of
initial windows, RCEP mines the SOCPs, in line 8. By filtering
out the rare windows using SOCPs, windows are classified
as normal or new according to the statistical measures in
Definition 6.

RCEP requires a small amount of space only for saving C
sets of CPs and the list of statistical measures (besides that
used by the training data). The parameter C > 1 depends
on the application and domain knowledge, and it needs to
reflect the typical variation that we see on a regular basis. In
our setting, we would like to see a regular cycle of normal
behaviour over a 24 hour period to analyse a day of network
traffic, hence we choose C = 24 corresponding to the 24
hours of a day. In Algorithm 1 the measures are sorted and
the cut-off is at the rth percentile, where r = 95% in our
experiments.

V. EXPERIMENTAL RESULTS

To evaluate the effectiveness of the proposed RCEP algo-
rithm, we compare it with OCLEP+ [2] (we used the source
code from the author, and both algorithms are in Java). For
empirical evaluation, three benchmark network traffic datasets
are used, namely Kyoto 2006+ [19], KDD’99 and BGU from
the UCI data repository. In the Kyoto dataset, we used the 14
conventional features [19] of 4 days of 15-18 July 2007. For
KDD’99, we randomly selected the 10 features according to
[20]. In BGU, we used all 23 main features in time windows
of 1 minute, and the traffic of three devices (“Ennio doorbell”,
“Ecobee thermostat”, and “SimpleHomeXCS7-1003-WHT se-
curity camera”) are used for evaluation. We combined and
shuffled the benign traffic of these devices. For attack traffic,
different attack types of these devices from the gafgyt botnet
were used. We combined the combo attack of doorbell, scan
attack of thermostat, and junk attack of security camera. After
combining and shuffling the benign and attack traffic we used
it as BGU dataset. The continuous features of the network
traffic datasets were discretized using the equal-frequency
unsupervised discretization method, and the number of bins
for discretization are 4, 5 and 2 in the Kyoto, KDD’99 and
BGU, respectively. Also, the number of generated items after
discritization are 108, 38 and 46 in the Kyoto, KDD’99 and
BGU, respectively. Each dataset consist of two classes of
normal and anomalous traffic. All experiments were run on
a 2.6GHz CPU with 16GB of memory running Windows 7.

Evaluation scenario: At present, there is no existing traffic
dataset with labelled instances of recurring events that is avail-
able for use as a benchmark for our algorithm. To overcome
this, we have made use of several widely used benchmark
traffic datasets as the background traffic for our evaluation,
and introduced some rare and recurring events. This allows

us to evaluate our method under controlled conditions to
systematically assess its accuracy. We used the transactions of
the above mentioned datasets to create a data stream for each
dataset. For example, the Kyoto dataset has nearly 500,000
transactions and we used those transactions to create our de-
signed data stream for different days as follows. In the training
phase, 200 and 54,000 normal transactions were selected as
the background and target datasets, respectively. The target
dataset is divided into 270 windows, each containing 200
transactions. The initial window was set to (C = 24). To select
the r-percentile parameter we conducted a grid-search over the
range r = 80% to r = 100%, and found that the best results
were obtained over all three datasets for r = 95%. In the
testing phase, the same normal background dataset was used,
but for the target dataset we used 192 windows that consist
of a mixture of normal and anomalous traffic, equivalent to 8
days worth of data. It is worth noting that the transactions of
the target dataset in the training phase do not overlap with the
normal traffic of the target dataset in the test phase. We also
set C = 24. The total size of the target test dataset is 66,400
transactions as follows: We injected a mixture of normal and
anomalous traffic into hours (windows) 2 and 4 of each day as
rare recurring traffic. So, in total, we have 16 rare windows.
We also injected a mixture of normal and anomalous traffic
in 12 random windows of 40, 42, 55, 57, 92, 94, 103, 106,
156, 158, 160, 174 as new windows. Both the rare and new
windows have the same size with 1200 transactions, and both
contain 80% of anomalous traffic. For rare traffic we used a
recurring percentage of 80%. The recurring percentage shows
what proportion of the rare traffic would be repeated in each
rare window. The other remaining windows, i.e., 164 windows,
each consist of 200 normal transactions (normal windows).

Adapting OCLEP+ to our scenario: The OCLEP+ algo-
rithm is an anomaly detection method. It extracts only FOCPs,
and then classifies each test instance according to its minimum
length as normal or anomalous. However, our approach is
based on SOCPs to classify each window as normal or new
according to aggregated patterns. So, to adapt OCLEP+ to
our scenario, in each window, we find the minimum length for
each test instance. This produces a set of minimum lengths. We
sort them in decreasing order, and select the minimum length
in the pth percentile of this set as the decision threshold. This
means that if p% of test instances in a window are normal,
then we classify that window as normal. We implemented
OCLEP+ for SOCP in a similar way. To be as fair as possible
to OCLEP+, we set different decision thresholds p not only
for FOCPs and SOCPs separately, but also for each dataset
separately to get the best possible results. The value of p for
FOCPs and SOCPs is 20% and 40% for Kyoto, 30% and 10%
for KDD’99, and 30% and 45% for BGU, respectively.

We measure performance in terms of accuracy and F1-
Score. Accuracy is the ratio of correctly predicted cases to
the total cases, and reflects how many windows are classified
correctly. F1-Score is a harmonic mean of precision and
recall, and gives a better measure of the incorrectly classified
cases than accuracy. Precision is a measure of the correctly

Fig. 4. Results for FOCPs and SOCPs (solid lines show new windows).

TABLE I
PERFORMANCE COMPARISON FOR SOCP (ACC=ACCURACY)

Method RCEP OCLEP+
Dataset Precision Recall F1-Score Acc Precision Recall F1-Score Acc

Kyoto 86 100 92 99 34 92 50 87

KDD’99 92 100 96 99 19 83 31 73

BGU 100 100 100 100 100 100 100 100

Fig. 5. F1-Score comparison for FOCP and SOCP in RCEP.

identified positive cases to all the predicted positive cases,
recall is the correctly identified positive cases to all the actual
positive cases, and F1-Score= 2∗precision∗recall

precision+recall .

The statistical measures of RCEP and OCLEP+ on a
sequence of windows are shown in Fig. 4 for the Kyoto dataset.
Peaks with dotted lines correspond to rare windows, peaks
with solid lines correspond to new windows, and the dashed
lines are normal windows. In RCEP, the cutoff thresholds for
FOCP and SOCP in Kyoto are 184 and 500.18, respectively.
All windows above these thresholds are identified as changes,
and those below the thresholds are labeled as normal. It is
clear that FOCPs are able to detect both rare and new windows

in the target dataset, but are unable to discriminate between
these two types of windows. In contrast, Fig. 4(c), shows that
SOCPs are able to accurately filter out the rare windows and
detect the new windows. In OCLEP+, the cutoff thresholds
of minimum length for both FOCP and SOCP are 2.05 in
the Kyoto dataset. So, all windows with a value less than
these thresholds are identified as changes. Fig. 4(d) shows
that OCLEP+ is not able to discriminate between these two
types of changes. An interesting point is that the decision gap
between normal and change windows in RCEP algorithm is
much larger than OCLEP+, which implies that there is a wider
margin for classifying decisions in RCEP.

The same results were observed for the two other datasets.
Due to space limitations we briefly summarize their SOCP
results in Table I. In terms of the FOCPs of these datasets,
both algorithms detect all change windows, i.e., a recall of
100%. However, in terms of precision, FOCP detects many
false positive and is not able to discriminate between rare and
new windows. In terms of SOCPs, Table I shows that RCEP
considerably outperforms OCLEP+ in the Kyoto and KDD’99
datasets. The main reason for RCEP’s performance is its use
of the novelty measure, which combines several important
properties of CPs as identified in Property 1.

In the above results, we used 80% of repeated traffic in the
rare windows. We tested the effect of varying the recurring
percentage from 0% (all traffic is new in each rare window)
to 100% (the same traffic is used in all rare windows) as
shown in Fig. 5. We observe that the F1-Score of RCEP is
relatively consistent, ranging from 79% to 100% for FOCPs
and from 73% to 100% for SOCPs in all three datasets (while
the lowest accuracy is 92% and 95% for FOCPs and SOCPs,
respectively). This demonstrates that the performance of RCEP
is relatively insensitive to the choice of this parameter.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented a novel approach to discriminate
between rare recurring windows and new windows in network
traffic based on the approach of mining second order contrast
patterns. We proposed a new algorithm, called RCEP, that uses
several statistical measures of contrast patterns to filter out rare
windows on a sequence of transactions. We demonstrated that
the RCEP algorithm can achieve high accuracy and F1-Score
in comparison with an existing approach. As future work, we
will evaluate the use of RCEP for real-life data streams. Also
we will investigate the use of the RCEP approach and second
order contrast patterns for outlier detection.

REFERENCES

[1] E. A. Chavary, S. M. Erfani, and C. Leckie, “Summarizing significant
changes in network traffic using contrast pattern mining,” in CIKM,
pp. 2015–2018, 2017.

[2] G. Dong and S. K. Pentukar, “OCLEP+: One-class anomaly and
intrusion detection using minimal length of emerging patterns,”
arXiv:1811.09842, 2018.

[3] C. Gao, L. Duan, G. Dong, H. Zhang, H. Yang, and C. Tang, “Mining
top-k distinguishing sequential patterns with flexible gap constraints,” in
WAIM, pp. 82–94, 2016.

[4] S. Ghosh, J. Li, L. Cao, and K. Ramamohanarao, “Septic shock
prediction for ICU patients via coupled HMM walking on sequential
contrast patterns,” J. Biomed. Inform, 2017.

[5] L. Li, Contrast Data Mining of Multi-source Heterogeneous Trajectory
Data. PhD thesis, 2020.

[6] G. Dong and J. Li, “Efficient mining of emerging patterns: Discovering
trends and differences,” in SIGKDD, pp. 43–52, 1999.

[7] E. AlipourChavary, S. M. Erfani, and C. Leckie, “Improving scalability
of contrast pattern mining for network traffic using closed patterns,” in
arXiv:2011.14830, 2020.

[8] H. S. Pham, G. Virlet, D. Lavenier, and A. Termier, “Statistically
significant discriminative patterns searching,” in DaWaK, pp. 105–115,
2019.

[9] Y. Kameya, “Towards efficient discriminative pattern mining in hybrid
domains,” arXiv:1908.06801, 2019.

[10] E. Loekito and J. Bailey, “Fast mining of high dimensional expressive
contrast patterns using zero-suppressed binary decision diagrams,” in
SIGKDD, pp. 307–316, 2006.

[11] J. Li, K. Ramamohanarao, and G. Dong, “The space of jumping emerg-
ing patterns and its incremental maintenance algorithms,” in ICML,
pp. 551–558, 2000.

[12] K. Maeda and Y. Kameya, “Associative classification using common
instances among conflicting discriminative patterns,” in TAAI, pp. 1–6,
2019.

[13] N. A. Huynh, W. K. Ng, A. Ulmer, and J. Kohlhammer, “Uncovering
periodic network signals of cyber attacks,” in VizSec, pp. 1–8, 2016.

[14] F. S. Passino and N. A. Heard, “Classification of periodic arrivals in
event time data for filtering computer network traffic,” SC, pp. 1241–
1254, 2020.

[15] P. Fournier-Viger, P. Yang, R. U. Kiran, S. Ventura, and J. M. Luna,
“Mining local periodic patterns in a discrete sequence,” Inf. Sci.,
pp. 519–548, 2020.

[16] C. Loglisci and D. Malerba, “Mining periodic changes in complex
dynamic data through relational pattern discovery,” in NFMCP, pp. 76–
90, 2015.

[17] L. Chen and G. Dong, “Masquerader detection using OCLEP: One-class
classification using length statistics of emerging patterns,” in WAIM,
pp. 5–5, 2006.

[18] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal, “Efficient mining of
association rules using closed itemset lattices,” IS, pp. 25–46, 1999.

[19] J. Song, H. Takakura, and Y. Okabe, “Description of kyoto univer-
sity benchmark data,” www.takakura.com/Kyoto data/BenchmarkData-
Description-v5.pdf, 2006.

[20] A. A. Olusola, A. S. Oladele, and D. O. Abosede, “Analysis of
KDD99 intrusion detection dataset for selection of relevance features,”
in WCECS, pp. 20–22, 2010.

[21] Y. Meidan, M. Bohadana, Y. Mathov, Y. Mirsky, A. Shabtai, D. Breit-
enbacher, and Y. Elovici, “N-baiotnetwork-based detection of iot botnet
attacks using deep autoencoders,” IEEE Pervasive Computing, pp. 12–
22, 2018.

