
Computational Intelligence, Volume 00, Number 000, 2009

Integrating Planning, Execution and Learning to Improve Plan
Execution

Sergio Jiménez, Fernando Fernández and Daniel Borrajo

Departamento de Informáatica, Universidad Carlos III de Madrid.
Avda. de la Universidad, 30. Leganés (Madrid). Spain

Algorithms for planning under uncertainty require accurate action models that explicitly cap-
ture the uncertainty of the environment. Unfortunately, obtaining these models is usually complex.
In environments with uncertainty, actions may produce countless outcomes and hence, specifying
them and their probability is a hard task. As a consequence, when implementing agents with
planning capabilities, practitioners frequently opt for architectures that interleave classical planning
and execution monitoring following a replanning when failure paradigm. Though this approach is
more practical, it may produce fragile plans that need continuous replanning episodes or even
worse, that result in execution dead-ends. In this paper, we propose a new architecture to relieve
these shortcomings. The architecture is based on the integration of a relational learning component
and the traditional planning and execution monitoring components. The new component allows
the architecture to learn probabilistic rules of the success of actions from the execution of plans
and to automatically upgrade the planning model with these rules. The upgraded models can be
used by any classical planner that handles metric functions or, alternatively, by any probabilistic
planner. This architecture proposal is designed to integrate off-the-shelf interchangeable planning
and learning components so it can profit from the last advances in both fields without modifying
the architecture.

Key words: Cognitive architectures, Relational reinforcement learning, Symbolic planning.

1. INTRODUCTION

Symbolic planning algorithms reason about correct and complete action models to
synthesize plans that attain a set of goals (Ghallab et al., 2004). Specifying correct
and complete action models is an arduous task. This task becomes harder in stochastic
environments where actions may produce numerous outcomes with different probabil-
ities. For example, think about simple to code actions like the unstack action from the
classic planning domain Blocksworld. Unstacking the top block from a tower of blocks
in a stochastic Blocksworld can make the tower collapse in a large variety of ways with
different probabilities.

A different approach is to completely relieve humans of the burden of specifying planning action
models. In this case machine learning is used to automatically discover the preconditions and effects
of the actions (Pasula et al., 2007). Action model learning requires dealing with effectively exploring
the environment while learning in an incremental and online manner, similarly to Reinforcement
Learning (RL) (Kaelbling et al., 1996). This approach is difficult to follow in symbolic planning
domains because random explorations of the world do not normally discover correct and complete
models for all the actions. This difficulty is more evident in domains where actions may produce
different effects and can lead to execution dead-ends.

As a consequence, an extended approach for implementing planning capabilities in agents
consists of defining deterministic action models, obtaining plans with a classical planner, monitoring
the execution of these plans and repairing them when necessary (Fox et al., 2006). Though this
approach is frequently more practical, it presents two shortcomings. On the one hand, classical
planners miss execution trajectories. The classical planning action model only considers the nominal
effects of actions. Thus, unexpected outcomes of actions may result in undesired states or even
worse in execution dead-ends. On the other hand, classical planners ignore probabilistic reasoning.
Classical planners reason about the length/cost/duration of plans without considering the probability
of success of the diverse trajectories that reach the goals.

iC 2009 The Authors. Journal Compilation iC 2009 Wiley Periodicals, Inc.

2 Computational Intelligence

In this paper we present the Planning, Execution and Learning Architecture (pela)
to overcome shortcomings of traditional integrations of deterministic planning and
execution. pela is based on introducing a learning component together with the plan-
ning and execution monitoring components. The learning component allows pela to
generate probabilistic rules about the execution of actions. pela generates these rules
from the execution of plans and compiles them to upgrade its deterministic planning
model. The upgraded planning model extends the deterministic model with two kinds
of information, state-dependent probabilities of action success and state-dependent
predictions of execution dead-ends. pela exploits the upgraded action models in future
planning episodes using off-the-shelf classical or probabilistic planners.

The performance of pela is evaluated experimentally in probabilistic planning
domains. In these domains pela starts planning with a deterministic model –a STRIPS
action model– which encodes a simplification of the dynamics of the environment. pela
automatically upgrades this action model as it learns knowledge about the execution
of actions. The upgrade consist of enriching the initial STRIPS action model with
estimates of the probability of success of actions and predictions of execution dead-
ends. Finally, pela uses the upgraded models to plan in the probabilistic domains.
Results show that the upgraded models allow pela to obtain more robust plans than a
traditional integration of deterministic planning and execution.

The second Section of the paper describes pela in more detail. It shows pela’s
information flow and the functionality of its three components: planning, execution
and learning. The third Section explains how the learning component uses a standard
relational learning tool to upgrade pela’s action models. The fourth Section shows an
empirical evaluation of pela’s performance. The fifth Section describes related work
and, finally, the sixth Section discusses some conclusions and future work.

2. THE PLANNING, EXECUTION AND LEARNING ARCHITECTURE

pela displays its three components in a loop: (1) Planning the actions that solve a given
problem. Initially, the planning component plans with an off-the-shelf classical planner and a strips-
like action model A. This model is described in the standard planning language PDDL (Fox and
Long, 2003) and contains no information about the uncertainty of the world. (2) Execution of plans
and classification of the execution outcomes. pela executes plans in the environment and labels the
actions executions according to their outcomes. (3) Learning prediction rules of the action outcomes
to upgrade the action model of the planning component. pela learns these rules from the actions
performance and uses them to generate an upgraded action model A′ with knowledge about the
actions performance in the environment. The upgraded model A′ can have two forms: A′c a PDDL
action model for deterministic cost-based planning over a metric that we call plan fragility or A′p an
action model for probabilistic planning in PPDDL (Younes et al., 2005), the probabilistic version of
PDDL. In the following cycles of pela, the planning component uses either A′c or A′p, depending on
the planner we use, to synthesize robust plans. Figure 1 shows the high level view of this integration
proposal.

The following subsections describe each component of the integration in more detail.

2.1. Planning

The inputs to the planning component are: a planning problem denoted by P and a domain
model denoted by A, in the first planning episode, and by A′c or A′p, in the subsequent ones. The
planning problem P = (I,G) is defined by I, the set of literals describing the initial state and G, the
set of literals describing the problem goals. Each action a ∈ A is a STRIPS-like action consisting of
a tuple (pre(a), add(a), del(a)) where pre(a) represents the action preconditions, add(a) represents
the positive effects of the action and del(a) represents the negative effects of the action.

Each action a ∈ A′c is a tuple (pre(a), eff(a)). Again pre(a) represents the action preconditions
and eff(a) is a set of conditional effects of the form eff(a) = (and(when c1(and o1f1))(when c2(and

Integrating Planning, Execution and Learning to Improve Plan Execution 3

Plan

Observations

(a1,a2,...,an)

state s i+1

PDDL
Domain

Problem
state+goals action i

New Problem

Planning Execution

Learning

a

E
nvironm

ent
N

on−D
eterm

inistic

Domain
PDDL

oi=(si,ai,ci)New Domain
PDDL+Costs

PPDDL

Figure 1. Overview of the planning, execution and learning architecture.

o2f2)) . . . (when ck(and okfk))) where, oi is the outcome of action a and fi is a fluent that represents
the fragility of the outcome under conditions ci. We will define later the fragility of an action.

Each action a ∈ A′p is a tuple (pre(a), eff(a)), pre(a) represents the action preconditions and
eff(a) = (probabilistic p1 o1 p2 o2 . . . pl ol) represents the effects of the action, where oi is the
outcome of a , i.e., a formula over positive and negative effects that occurs with probability pi.

The planning component synthesizes a plan p = (a1, a2, ..., an) consisting of a total ordered
sequence of instantiated actions. When applying p to I, it would generate a sequence of state
transitions (s0, s1, ..., sn) such that si results from executing the action ai in the state si−1 and
sn is a goal state, i.e., G ⊆ sn. When the planning component reasons with the action model A, it
tries to minimize the number of actions in p. When reasoning with action model A′c, the planning
component tries to minimize the value of the fragility metric. In the case of planning with A′p, the
planning component tries to maximize the probability of reaching the goals. In addition, the planning
component can synthesize a plan prandom which contains applicable actions chosen randomly. Though
prandom does not necessarily achieve the problems goals, it allows pela to implement different
exploration/exploitation strategies.

2.2. Execution

The inputs to the execution component are the total ordered plan p = (a1, a2, ..., an) and the
initial STRIPS-like action model A. Both inputs are provided by the planning component. The output
of the execution component is the set of observations O = (o1, . . . , oi, . . . , om) collected during the
executions of plans.

The execution component executes the plan p one action at a time. For each executed action
ai ∈ p, this component stores an observation oi = (si, ai, ci), where:

• si is the conjunction of literals representing the facts holding before the action execution;
• ai is the action executed; and
• ci is the class of the execution. This class is inferred by the execution component from si and

si+1 (the conjunction of literals representing the facts holding after executing ai in si) and the
strips-like action model of ai ∈ A. Specifically, the class ci of an action ai executed in a state si
is:

– SUCCESS. When si+1 matches the strips model of ai defined in A. That is, when it is true that
si+1 = {si/Del(ai)} ∪Add(ai).

– FAILURE. When si+1 does not match the strips model of ai defined in A, but the problem
goals can still be reached from si+1; i.e., the planning component can synthesize a plan that
theoretically reaches the goals from si+1.

– DEAD-END. When si+1 does not match the strips domain model of ai defined in A, and the

4 Computational Intelligence

problem goals cannot be reached from si+1; i.e., the planning component cannot synthesize a
plan that theoretically reaches the goals from si+1.

Figure 2 shows three execution episodes of the action move-car(location,location) from the
Tireworld. In the Tireworld a car needs to move from one location to another. The car can move
between different locations via directional roads. For each movement there is a probability of getting
a flat tire and flat tires can be replaced with spare ones. Unfortunately, some locations do not
contain spare tires which results in execution dead-ends. In the example, the execution of action
move-car(A,B) could result in SUCCESS when the car does not get a flat tire or in DEAD-END when
the car gets a flat tire, because at location B there is no possibility of replacing flat tires. On the
other hand, the execution of action move-car(A,D) is safer. The reason is that move-car(A,D) can
only result in either SUCCESS or FAILURE, because at location D there is a spare tire for replacing
flat tires.

A

B

C

D E

Success State

A

B

C

D E

Failure State

A

B

C

D E

Dead−End State

Figure 2. Execution episodes for the move-car action in the Tireworld.

The algorithm for the execution component of pela is shown in Figure 3. When the execution
of an action ai is classified as SUCCESS, the execution component continues executing the next action
in the plan ai+1 until there are no more actions in the plan. When the execution of an action does
not match its STRIPS model, then the planning component tries to replan and provide a new plan
for solving the planning problem in this new scenario. In case replanning is possible, the execution
is classified as a FAILURE and the execution component continues executing the new plan. In case
replanning is impossible, the execution is classified as a DEAD-END and the execution terminates.

2.3. Learning

The learning component generates rules that generalize the observed performance of actions.
These rules capture the conditions referred to the state of the environment that define each proba-
bility of execution success, failure and dead-end of the domain actions.

Then, it compiles these rules and the strips-like action model A into an upgraded action model
A′ with knowledge about the performance of actions in the environment. The inputs to the learning
component are the set of observations O collected by the execution component and the original
action model A. The output is the upgraded action model A′c defined in PDDL for deterministic
cost-based planning or A′p defined in PPDDL for probabilistic planning.

Learning in PELA assumes actions have nominal effects. This is influenced by the kind of actions
that traditionally appear in planning tasks that typically present a unique good outcome.

The implementation of the learning component is described throughout next section.

3. EXPLOITATION OF EXECUTION EXPERIENCE

This section explains how pela learns rules about the actions performance using a standard
relational classifier and how pela compiles these rules to improve the robustness of the synthesized
plans. In this paper pela focused on learning rules about the success of actions. However, the off-

Integrating Planning, Execution and Learning to Improve Plan Execution 5

Function Execution (InitialState, Plan, Domain):Observations

InitialState: initial state
Plan: list of actions (a1, a2 , ..., an)
Domain: Strips action model
Observations: Collection of Observations

Observations = ∅
state = InitialState
While Plan is not ∅ do

ai = Pop(Plan)
newstate = execute(state, ai)
if match(state, newstate, ai, Domain)

Observations = collectObservation(Observations, state, ai,SUCCESS)
else

Plan = replan(newstate)
If Plan is ∅

Observations = collectObservation(Observations, state, ai,DEAD-END)
else

Observations = collectObservation(Observations, state, ai,FAILURE)
state = newstate

Return Observations;

Figure 3. Execution algorithm for domains with dead-ends.

the-shelf spirit of the architecture allows pela to acquire other useful execution information, such
as the actions durations (Lanchas et al., 2007).

3.1. Learning rules about the actions performance

For each action a ∈ A, pela learns a model of the performance of a in terms of these three
classes: SUCCESS, FAILURE and DEAD-END. A well-known approach for multiclass classification consists
of finding the smallest decision tree that fits a given data set. The common way to find these decision
trees is following a Top-Down Induction of Decision Trees (TDIDT) algorithm (Quinlan, 1986). This
approach builds the decision tree by splitting the learning examples according to the values of a
selected attribute that minimize a measure of variance along the prediction variable. The leaves of
the learned trees are labelled by a class value that fits the examples satisfying the conditions along
the path from the root of the tree to those leaves. Relational decision trees (Blockeel and Raedt, 1998)
are the first-order logic upgrade of the classical decision trees. Unlike the classical ones, relational
trees work with examples described in a relational language such as predicate logic. This means that
each example is not described by a single feature vector but by a set of logic facts. Thus, the nodes of
the tree do not contain tests about the examples attributes, but logic queries about the facts holding
in the examples.

For each action a ∈ A, pela learns a relational decision tree ta. Each branch of the learned
decision tree ta represents a prediction rule of the performance of the corresponding action a:

• The internal nodes of the branch represent the set of conditions under which the rule of perfor-
mance is true.

• The leaf nodes contain the corresponding class; in this case, the action performance (SUCCESS,
FAILURE or DEAD-END) and the number of examples covered by the pattern.

Figure 4 shows the decision tree learned by pela for action move-car(Origin,Destiny) using
352 tagged examples. According to this tree, when there is a spare tire at Destiny, the action failed
97 over 226 times, while when there is no spare tire at Destiny, it caused an execution dead-end in
64 over 126 times.

To build a decision tree ta for an action a, the learning component receives two inputs:

• The language bias specifying the restrictions in the parameters of the predicates to constrain
their instantiation. This bias is automatically extracted from the strips domain definition: (1)
the types of the target concept are extracted from the action definition and (2) the types of the

6 Computational Intelligence

move-car(-A,-B,-C,-D)
spare-in(A,C) ?
+--yes: [failure] [[success:97.0,failure:129.0,deadend:0.0]]
+--no: [deadend] [[success:62.0,failure:0.0,deadend:64.0]]

Figure 4. Relational decision tree for move-car(Origin,Destiny).

rest of literals are extracted from the predicates definition. Predicates are extended with an extra
parameter called example that indicates the identifier of the observation. Besides, the parameters
list of actions is also augmented with a label that describes the class of the learning example
(SUCCESS, FAILURE or DEAD-END). Figure 5 shows the language bias specified for learning the
model of performance of action move-car(Origin,Destiny) from the Tireworld.

% The target concept
type(move_car(example,location,location,class)).
classes([success,failure,deadend]).

% The domain predicates
type(vehicle_at(example,location)).
type(spare_in(example,location)).
type(road(example,location,location)).
type(not_flattire(example)).

Figure 5. Language bias for the Tireworld.

• The knowledge base, specifying the set of examples of the target concept, and the background
knowledge. In pela, both are automatically extracted from the observations collected by the
execution component. The action execution (example of target concept) is linked with the state
literals (background knowledge) through the identifier of the execution observation. Figure 6
shows a piece of the knowledge base for learning the patterns of performance of the action
move-car(Origin,Destiny). Particularly, this example captures the execution examples with
identifier o1, o2 and o3 that resulted in success, failure and dead-end respectively, corresponding
to the action executions of Figure 2.

pela uses TILDE1 for the tree learning but there is nothing that prevents from using any other
relational decision tree learning tool.

3.2. Upgrade of the Action Model with Learned Rules

pela compiles the STRIPS-like action model A and the learned trees into an upgraded action
model. pela implements two different upgrades of the action model: (1) compilation to a metric rep-
resentation; and (2) compilation to a probabilistic representation. Next, there is a detailed description
of the two compilations.

3.2.1. Compilation to a Metric Representation. In this compilation, pela transforms each
action a ∈ A and its corresponding learned tree ta into a new action a′ ∈ A′c which
contains a metric of the fragility of a. The aim of the fragility metric is making pela
generate more robust plans that solve more problems in stochastic domains. This aim
includes two tasks, avoiding execution dead-ends and avoiding replanning episodes,
i.e., maximizing the probability of success of plans. Accordingly, the fragility metric
expresses two types of information: it assigns infinite cost to situations that can cause

1TILDE (Blockeel and Raedt, 1998) is a relational implementation of the Top-Down Induction of Decision

Trees (TDIDT) algorithm (Quinlan, 1986).

Integrating Planning, Execution and Learning to Improve Plan Execution 7

% Example o1
move-car(o1,a,b,success).

% Background knowledge
vehicle-at(o1,a). not-flattire(o1).
spare-in(o1,d). spare-in(o1,e).
road(o1,a,b). road(o1,a,d). road(o1,b,c).
road(o1,d,e). road(o1,e,c).

% Example o2
move-car(o2,a,c,failure).

% Background knowledge
vehicle-at(o2,a).
spare-in(o2,d). spare-in(o2,e).
road(o2,a,b). road(o2,a,d). road(o2,b,c).
road(o2,d,e). road(o2,e,c).

% Example o3
move-car(o3,a,b,deadend).

% Background knowledge
vehicle-at(o3,a).
spare-in(o3,d). spare-in(o3,e).
road(o3,a,b). road(o3,a,d). road(o3,b,c).
road(o3,d,e). road(o3,e,c).

Figure 6. Knowledge base after the executions of Figure 2.

execution dead-ends and it assigns a cost indicating the success probability of actions
when they are not predicted to cause execution dead-ends.

Given prob(ai) as the probability of success of action ai, the probability of success of a total
ordered plan p = (a1, a2, ..., an) can be defined as:

prob(p) =

n∏
i=1

prob(ai).

Intuitively, taking the maximization of prob(p) as a planning metric should guide planners to find
robust solutions. However, planners do not efficiently deal with a product maximization. Thus,
despite this metric is theoretically correct, experimentally it leads to poor results in terms of solutions
quality and computational time. Instead, existing planners are better designed to minimize a sum
of values (like length/cost/duration of plans). This compilation defines a metric indicating not a
product maximization but a sum minimization, so off-the-shelf planners can use it to find robust
plans. The definition of this metric is based on the following property of logarithms:

log(
∏
i

xi) =
∑
i

log(xi)

Specifically, we transform the probability of success of a given action into an action cost called
fragility. The fragility associated to a given action ai is computed as:

fragility(ai) = −log(prob(ai))

The fragility associated to a total ordered plan is computed as:

fragility(p) =

n∑
i=1

fragility(ai).

Note that a minus sign is introduced in the fragility definition to transform the maximization into a
minimization. In this way, the maximization of the product of success probabilities along a plan is
transformed into a minimization of the sum of the fragility costs.

Formally, the compilation is carried out as follows. Each action a ∈ A and its corresponding
learned tree ta are compiled into a new action a′ ∈ A′c where:

8 Computational Intelligence

(1) The parameters of a′ are the parameters of a.
(2) The preconditions of a′ are the preconditions of a.
(3) The effects of a′ are computed as follows. Each branch bj of the tree ta is compiled into a

conditional effect cej of the form cej=(when Bj Ej) where:

(a) Bj=(and bj1...bjm), where bjk are the relational tests of the internal nodes of branch bj (in
the tree of Figure 4 there is only one test, referring to spare-in(A,C));

(b) Ej=(and {effects(a) ∪ (increase (fragility) fj)});
(c) effects(a) are the strips effects of action a; and
(d) (increase (fragility) fj) is a new literal which increases the fragility metric in fj

units. The value of fj is computed as:

• when bj does not cover execution examples resulting in dead-ends,

fj = −log(
1 + s

2 + n
)

where s refers to the number of execution examples covered by bj resulting in success,
and n refers to the total number of examples that bj covers. Regarding the Laplace’s
rule of succession we add 1 to the success examples and 2 to the total number of
examples. Therefore, we assign a probability of success of 0.5 to actions without observed
executions;

• when bj covers execution examples resulting in dead-ends.

fj =∞

pela considers as execution dead-ends states where goals are unreachable
from them. pela focuses on capturing undesired features of the states that
cause dead-ends to include them in the action model. For example, in the
triangle tireworld moving to locations that do not contain spare-wheels. pela
assigns an infinite fragility to the selection of actions in these undesired
situations so the generated plans avoid them because of their high cost.
pela does not capture undesired features of goals because the PDDL and
PPDDL languages do not allow to include goals information in the action
models.

Figure 7 shows the result of compiling the decision tree of Figure 4. In this case, the tree
is compiled into two conditional effects. Given that there is only one test on each branch, each
new conditional effect will only have one condition (spare-in or not(spare-in)). As it does not cover
dead-end examples, the first branch increases the fragility cost in −log(97+1

97+129+2
). The second branch

covers dead-end examples, so it increases the fragility cost in ∞ (or a sufficiently big number in
practice; 999999999 in the example).

(:action move-car
:parameters (?v1 - location ?v2 - location)
:precondition (and (vehicle-at ?v1) (road ?v1 ?v2)

(not-flattire))
:effect (and (when (and (spare-in ?v2))

(and (increase (fragility) 0.845)
(vehicle-at ?v2) (not (vehicle-at ?v1))))

(when (and (not (spare-in ?v2)))
(and (increase (fragility) 999999999)

(vehicle-at ?v2) (not (vehicle-at ?v1))))))

Figure 7. Compilation into a metric representation.

Integrating Planning, Execution and Learning to Improve Plan Execution 9

3.2.2. Compilation to a probabilistic representation. In this case, pela compiles each action
a ∈ A and its corresponding learned tree ta into a new probabilistic action a′ ∈ A′p where:

(1) The parameters of a′ are the parameters of a.
(2) The preconditions of a′ are the preconditions of a.
(3) Each branch bj of the learned tree ta is compiled into a probabilistic effect pej=(when Bj Ej)

where:

(a) Bj=(and bj1...bjm), where bjk are the relational tests of the internal nodes of branch bj ;
(b) Ej=(probabilistic pj effects(a));
(c) effects(a) are the strips effects of action a;
(d) pj is the probability value and it is computed as:

• when bj does not cover execution examples resulting in dead-ends,

pj =
1 + s

2 + n

where s refers to the number of success examples covered by bj , and n refers to the
total number of examples that bj covers. The probability of success is also computed
following the Laplace’s rule of succession to assign a probability of 0.5 to actions without
observed executions;

• when bj covers execution examples resulting in dead-ends,

pj = 0.001

Again, pela does not only try to optimize the probability of success of actions
but it also tries to avoid execution dead-ends. Probabilistic planners will
try to avoid selecting actions in states that can cause execution dead-ends
because of their low success probability.

Figure 8 shows the result of compiling the decision tree of Figure 4 corresponding to the action
move-car(Origin,Destiny). In this compilation, the two branches are coded as two probabilistic
effects. The first one does not cover dead-end examples so it has a probability of 97+1

97+129+2
. The

second branch covers dead-end examples so it has a probability of 0.001.

(:action move-car
:parameters (?v1 - location ?v2 - location)
:precondition (and (vehicle-at ?v1) (road ?v1 ?v2)

(not-flattire))
:effect (and (when (and (spare-in ?v2))

(probabilistic 0.43 (and (vehicle-at ?v2)
(not (vehicle-at ?v1)))))

(when (and (not(spare-in ?v2)))
(probabilistic 0.001 (and (vehicle-at ?v2)

(not (vehicle-at ?v1)))))))

Figure 8. Compilation into a probabilistic representation.

4. EVALUATION

To evaluate pela we use the methodology defined at the probabilistic track of the International
Planning Competition (IPC). This methodology consists of:

• A common representation language. PPDDL was defined as the standard input language for
probabilistic planners.

10 Computational Intelligence

• A simulator of stochastic environments. MDPsim2 was developed to simulate the execution of
actions in stochastic environments. Planners communicate with MDPsim in a high level commu-
nication protocol that follows the client-server paradigm. This protocol is based on the exchange of
messages through TCP sockets. Given a planning problem, the planner sends actions to MDPsim,
MDPsim executes these actions according to a given probabilistic action model described in
PPDDL and sends back the resulting states.

• A performance measure. At IPC probabilistic planners are evaluated regarding these
metrics:

(1) Number of problems solved. The more problems a planner solves, the better the
planner performs. This is the main criterion to evaluate the performance of pela
in our experiments. In stochastic domains, planners need to avoid executions dead-
ends and to reduce the number of replanning episodes to succeed reaching the
problem goals in the given time bound.

(2) Time invested to solve a problem. The less time a planner needs, the better the
planner performs. Our experiments also report this measure to distinguish the
performance of planners when planners solve the same number of problems.

(3) Number of actions to solve a problem. The less actions a planner needs, the better
the planner performs. Though this metric is computed at IPC, we do not use it
to evaluate the performance of pela. Comparing probabilistic planners with this
metric might be confusing. In some cases robust plans are the shortest ones. In
other cases longer plans are the most robust because they avoid execution dead-
ends or because they have a higher probability of success. Like the time-invested
metric, the number of actions could also be used to distinguish the performance of
planners when they solve the same number of problems.

In our experiments both pela and MDPSim share the same problem descriptions. However,
they have different action models. On the one hand, pela tries to solve the problems starting with
a STRIPS-like description of the environment A which ignores the probability of success of actions.
On the other hand, MDPSim simulates the execution of actions according to a PPDDL model of the
environment Aperfect. As execution experience is available pela will learn new action models A′c or
A′p that approach the performance of pela to the performance of planning with the perfect model
of the environment Aperfect.

4.1. The Domains

We evaluate pela over a set of probabilistically interesting domains. A given planning domain
is considered probabilistically interesting (Little and Thiébaux, 2007) when the shortest solutions
to the domain problems do not correspond to the solutions with the highest probability of success.
Given that classical planners prefer short plans, a classical replanning approach fails more often than
a probabilistic planner. These failures mean extra replanning episodes which usually involve more
computation time. And/or when the shortest solutions to the domain problems present execution
dead-ends. Given that classical planners prefer short plans, a classical replanning approach solves
less problems than a probabilistic planner.

Probabilistically interesting domains can be generated from classical domains by increasing their
robustness diversity, i.e., the number of solution plans with different probability of success. In this
paper we propose to artificially increase the robustness diversity of a classical planning domain
following any of the proposed methods:

• Cloning actions. Cloned actions of diverse robustness are added to the domain model. Particularly,
a cloned action a′ keeps the same parameters and preconditions of the original action a but presents
(1) different probability of success and/or (2) a certain probability of producing execution dead-
ends. Given that classical planners handle STRIPS-like action models, they do not reason about

2MDPsim can be freely downloaded at http://icaps-conference.org/

Integrating Planning, Execution and Learning to Improve Plan Execution 11

the probability of success of actions and they arbitrarily choose among cloned actions ignoring
their robustness.

• Adding fragile macro-actions. A macro-action a′ with (1) low probability of success and/or (2)
with a certain probability of producing execution dead-ends is added to the domain. Given that
classical planners ignore robustness and prefer short plans, they tend to select the fragile macro-
actions though they are less likely to succeed.

• Transforming action preconditions into success preferences. Given an action with the set of
preconditions p and effects e, a precondition pi ∈ p is removed and transformed into a condition for
e that (1) increases the probability of success and/or (2) avoids execution dead-ends. For example,
when pi (probability 0.9 (and e1, . . . , ei, . . . , en)) and when ¬pi (probability 0.1 (and e1, . . . , ei, . . . , en)).
Again, classical planners prefer short plans, so they skip the satisfaction of these actions conditions
though they produce plans more likely to fail.

We test the performance of pela over the following set of probabilistically interesting domains:
Blocksworld. This domain is the version of the classical four-actions Blocksworld introduced

at the probabilistic track of IPC-2006. This version extends the original domain with three new
actions that manipulate towers of blocks at once. Generally, off-the-shelf classical planners prefer
manipulating towers because it involves shorter plans. However, these new actions present high
probability of failing and causing no effects.

Slippery-gripper (Pasula et al., 2007). This domain is a version of the four-actions Blocksworld
which includes a nozzle to paint the blocks. Painting a block may wet the gripper, which makes
it more likely to fail when manipulating blocks. The gripper can be dried to move blocks safer.
However, off-the-shelf classical planners will generally skip the dry action, because it involves longer
plans.

Rovers. This domain is a probabilistic version of the IPC-2002 Rovers domain specifically
defined for the evaluation of pela. The original IPC-2002 domain was inspired by the planetary
rovers problem. This domain requires that a collection of rovers equipped with different, but possibly
overlapping, sets of equipment, navigate a planet surface, find samples and communicate them back
to a lander. In this new version, the navigation of rovers between two waypoints can fail. Navigation
fails more often when waypoints are not visible and even more when waypoints are not marked as
traversable. Off-the-shelf classical planners ignore that navigation may fail at certain waypoints, so
their plans fail more often.

OpenStacks. This domain is a probabilistic version of the IPC-2006 OpenStacks domain. The
original IPC-2006 domain is based on the minimum maximum simultaneous open stacks combina-
torial optimization problem. In this problem a manufacturer has a number of orders. Each order
requires a given combination of different products and the manufacturer can only make one product
at a time. Additionally, the total quantity required for each product is made at the same time
(changing from making one product to making another requires a production stop). From the time
that the first product included in an order is made to the time that all products included in the
order have been made, the order is said to be open and during this time it requires a stack (a
temporary storage space). The problem is to plan the production of a set of orders so that the
maximum number of stacks simultaneously used, or equivalently, the number of orders that are
in simultaneous production, is minimized. This new version, specifically defined for the evaluation
of pela, extends the original one with three cloned setup-machine actions and with one macro-
action setup-machine-make-product that may produce execution dead-ends. Off-the-shelf classical
planners ignore the robustness of the cloned setup-machine actions. Besides, they tend to use the
setup-machine-make-product macro-action because it produces shorter plans.

Triangle Tireworld (Little and Thiébaux, 2007). In this version of the Tireworld both the
origin and the destination locations are at the vertex of an equilateral triangle, the shortest path
is never the most probable one to reach the destination, and there is always a trajectory where
execution dead-ends can be avoided. Therefore, an off-the-shelf planner using a strips action model
will generally not take the most robust path.

Satellite. This domain is a probabilistic version of the IPC-2002 domain defined for the eval-
uation of pela. The original domain comes from the satellite observation scheduling problem. This
domain involves planning a collection of observation tasks between multiple satellites, each equipped
with slightly different capabilities. In this new version a satellite can take images without being

12 Computational Intelligence

calibrated. Besides, a satellite can be calibrated at any direction. The plans generated by off-the-shelf
classical planners in this domain skip calibration actions because they produce longer plans. However,
calibrations succeed more often at calibration targets and taking images without a calibration may
cause execution dead-ends.

With the aim of making the analysis of results easier, we group the domains according to two
dimensions, the determinism of the action success and the presence of execution dead-ends. Table 1
shows the topology of the domains chosen for the evaluation of pela.

• Action success. This dimension values the complexity of the learning step. When probabilities
are not state-dependent one can estimate their value counting the number of success and failure
examples. In this regard, it is more complex to correctly capture the success of actions in domains
where action success is state-dependent.

• Execution Dead-Ends. This dimension values the difficulty of solving a problem in the domain.
When there are no execution dead-ends the number of problems solved is only affected by the
combinatorial complexity of the problems. However, when there are execution dead-ends the
number of problems solved depends also on the avoidance of these dead-ends.

Probabilistic State-Dependent + Probabilistic

Dead-Ends Free Blocksworld Slippery-Gripper, Rovers

Dead-Ends Presence OpenStacks Triangle-tireworld, Satellite

Table 1. Topology of the domains chosen for the evaluation of pela.

4.2. Correctness of the pela models

This experiment evaluates the correctness of the action models learned by pela.
The experiment shows how the error of the learned models varies with the number
of learning examples. Note that this experiment focuses on the exploration of the
environment and does not report any exploitation of the learned action models for
problem solving. The off-line integration of learning and planning is described and
evaluated later in the paper, at Section 4.3. Moreover this experiment does not use the
learned models for collecting new examples. The on-line integration of exploration and
exploitation in pela is described and evaluated at Section 4.4.

The experiment is designed as follows: For each domain, pela addresses a set of
randomly-generated problems and learns a new action model after every twenty actions
executions. Once a new model is learned it is evaluated computing the absolute error
between (1) the probability of success of actions in the learned model and (2) the
probability of success of actions in the true model, which is the PPDDL model of the
MDPsim simulator. The probability of success of an action indicates the probability of
producing the nominal effects of the action. Recall that our approach assumes actions
have nominal effects. Since the probability of success may be state-dependent, each
error measure is computed as the mean error over a test set of 1000 states3. In
addition, the experiment reports the absolute deviation of the error measures from
the mean error. These deviations –shown as square brackets– are computed after every
one hundred actions executions and represent a confidence estimate for the obtained
measures.

The experiment compares four different exploration strategies to automatically collect the
execution experience:

3The 1000 test states are extracted from randomly generated problems. Half of the test states are generated
with random walks and the other half with walks guided by LPG plans, because as shown experimentally, in

some planning domains random walks provide poor states diversity given that some actions end up unexplored.

Integrating Planning, Execution and Learning to Improve Plan Execution 13

(1) FF: Under this strategy, pela collects examples executing the actions proposed by the classical
planner Metric-FF (Hoffmann, 2003).

This planner implements a deterministic forward-chaining search. The search is guided by a
domain independent heuristic function which is derived from the solution of a relaxation of the
planning problem.

In this strategy, when the execution of a plan yields an unexpected state, FF replans to find
a new plan for this state.

(2) LPG: In this strategy examples are collected executing the actions proposed by the classical
planner LPG (Gerevini et al., 2003).

LPG implements a stochastic search scheme inspired by the SAT solver Walksat. The search
space of LPG consists of “action graphs” representing partial plans. The search steps are
stochastic graph modifications transforming an action graph into another one.

This stochastic nature of LPG is interesting for covering a wider range of the problem space.
Like the previous strategy, LPG replans to overcome unexpected states.

(3) LPG-εGreedy: With probability ε, examples are collected executing the actions proposed by
LPG. With probability (1 − ε), examples are collected executing an applicable action chosen
randomly. For this experiment the value of ε is 0.75.

(4) Random: In this strategy examples are collected executing applicable actions chosen randomly.

In the Blocksworld domain all actions are applicable in most of the state configurations. As a
consequence, the four strategies explore well the performance of actions and achieve action models
with low error rates and low deviations. Despite the set of training problems is the same for the
four strategies, the Random strategy generates more learning examples because it is not able to
solve problems. Consequently, the Random strategy exhausts the limit of actions per problem. The
training set for this domain consisted of forty five-blocks problems. Figure 9 shows the error rates
and their associated deviations obtained when learning models for the actions of the Blocksworld
domain. Note that the plotted error measures may not be within the deviation intervals
because the intervals are slightly shifted in the X-axis for improving their readability.

 0.0001

 0.001

 0.01

 0.1

 1

 0 500 1000 1500 2000

M
od

el
 E

rr
or

Number or Examples

blocksworld

random
lpgegreedy

lpg
ff

Figure 9. Error of the learned models in the Blocksworld domain.

In the Slippery-gripper there are differences in the speed of convergence of the different strategies.

14 Computational Intelligence

Specifically, pure planning strategies FF and LPG converge slower. In this domain, the success of
actions depends on the state of the gripper (wet or dry). Capturing this knowledge requires examples
of action executions under both types of contexts, i.e., actions executions with a wet gripper and with
a dry gripper. However, pure planning strategies FF and LPG present poor diversity of contexts
because they skip the action dry as it means longer plans.

In the Rovers domain the random strategy does not achieve good error rates because this
strategy does not explore the actions for data communication. The explanation of this effect is
that these actions only satisfy their preconditions with a previous execution of actions navigate and
take-sample. Unfortunately, randomly selecting this sequence of actions with the right parameters
is very unlikely. Figure 10 shows error rates obtained when learning the models for the Slippery-
gripper and the Rovers domain. The training set for the Slippery-gripper consisted of forty five-blocks
problems. The training set for the Rovers domain consisted of sixty problems of ten locations and
three objectives.

 0.0001

 0.001

 0.01

 0.1

 1

 0 500 1000 1500 2000 2500

M
od

el
 E

rr
or

Number or Examples

slippery-gripper

random
lpgegreedy

lpg
ff

 0.0001

 0.001

 0.01

 0.1

 1

 0 500 1000 1500 2000 2500 3000

M
od

el
 E

rr
or

Number or Examples

rovers

Figure 10. Model error in the Slippery-gripper and Rovers domains.

In the Openstacks domain pure planning strategies (FF and LPG) prefer the macro-action for
making products despite it produces dead-ends. As a consequence, the original action for making
products ends up being unexplored. As shown by the LPG-εGreedy strategy, this negative effect is
relieved including extra stochastic behavior in the planner. On the other hand, a full random strategy
ends up with some actions unexplored as happened in the rovers domain.

In the Triangle-tireworld domain, error rates fluctuate roughly because the action model consists

Integrating Planning, Execution and Learning to Improve Plan Execution 15

only of two actions. In this domain the FF strategy does not reach good error rates because the
shortest path to the goals always lack of spare-tires. The performance of the FF strategy could be
improved by initially placing the car in diverse locations of the triangle. Figure 11 shows error rates
obtained for the Openstacks and the Triangle-tireworld domain. The training set for the Openstacks
consisted of one hundred problems of four orders, four products and six stacks. The training set for
the Triangle-tireworld consisted of one hundred problems of size five.

 0.0001

 0.001

 0.01

 0.1

 1

 0 500 1000 1500 2000 2500 3000

M
od

el
 E

rr
or

Number or Examples

openstacks

random
lpgegreedy

lpg
ff

 0.0001

 0.001

 0.01

 0.1

 1

 0 500 1000 1500 2000 2500

M
od

el
 E

rr
or

Number or Examples

triangle-tireworld

Figure 11. Model error in the Openstacks and the Triangle-tireworld domains.

For the Satellite domain we used two sets of training problems. The first one was generated with
the standard problem generator provided by IPC. Accordingly, the goals of these problems always are
either have-image or pointing. Given that in this version of the satellite domain can have images
without calibrating, the action calibrate was only explored by the random strategy. However,
the random strategy cannot explore action take-image because it implies a previous execution of
actions switch-on and turn-to with the right parameters. To avoid these effects and guaranteeing
the exploration of all actions, we built a new problem generator that includes as goals any dynamic
predicate of the domain. Figure 12 shows the results obtained when learning the models with the two
different training sets. As shown in the graph titled satellite2, the second set of training problems
improves the exploration of the configurations guided by planners and achieves models of a higher
quality. The training set for the satellite domain consisted of sixty problems with one satellite and
four objectives.

Overall, the random strategy does not explore actions that involve strong causal dependencies.

16 Computational Intelligence

 0.0001

 0.001

 0.01

 0.1

 1

 0 500 1000 1500 2000 2500 3000

M
od

el
 E

rr
or

Number or Examples

satellite

random
lpgegreedy

lpg
ff

 0.0001

 0.001

 0.01

 0.1

 1

 0 500 1000 1500 2000 2500 3000 3500 4000

M
od

el
 E

rr
or

Number or Examples

satellite2

Figure 12. Error of the learned models in the Satellite domain.

These actions present preconditions that can only be satisfied by specific sequences of actions
which have low probability to be chosen by chance.

Besides, random strategies generate a greater number of learning examples because random
selection of actions is not a valid strategy for solving planning problems. Hence, the random strategy
(and sometimes also the LPGεgreedy) exhausts the limit of actions for addressing the training prob-
lems. This effect is more visible in domains with dead-ends. In these domains FF and LPG generate
fewer examples from the training problems because they usually produce execution dead-ends. On
the other hand one can use a planner for exploring domains with strong causality dependencies.
However, as shown experimentally by the FF strategy, deterministic planners present a strong bias
and in many domains the bias keeps execution contexts unexplored. Even more, in domains with
presence of execution dead-ends in the shortest plans, this strategy may not be able to explore some
actions, though they are considered in the plans.

4.3. pela off-line performance

This experiment evaluates the planning performance of the action models learned off-line by
pela. In the Off-line setup of pela the collection of examples and the action modelling are separated
from the problem solving process. This means that the updated action models are not used for
collecting new observations.

The experiment is designed as follows: for each domain, pela solves fifty small training problems

Integrating Planning, Execution and Learning to Improve Plan Execution 17

and learns a set of decision trees that capture the actions performance. Then pela compiles the
learned trees into a new action model and uses the new action model to address a test set of fifteen
planning problems of increasing difficulty. Given that the used domains are stochastic, each planning
problem from the test set is addressed thirty times. The experiment compares the performance of
four planning configurations:

(1) FF + strips model. This configuration represents the classical re-planning approach in which
no learning is performed and serves as the baseline for comparison. In more detail, FF plans
with the PDDL strips-like action model and re-plans to overcome unexpected states. This
configuration (Yoon et al., 2007) corresponds to the best overall performer at the probabilistic
tracks of IPC-2004 and IPC-2006.

(2) FF + pela metric model. In this configuration Metric-FF plans with the model learned and
compiled by pela. Model learning is performed after the collection of 1000 execution episodes
by the LPGεGREEDY strategy. The learned model is compiled into a metric representation
(Section 3.2.1).

(3) GPT + pela probabilistic model. GPT is a probabilistic planner (Bonet and Geffner, 2004)
for solving MDPs specified in the high-level planning language PPDDL. GPT implements a
deterministic heuristic search over the state space. In this configuration GPT plans with the
action model learned and compiled by pela. This configuration uses the same models than the
previous configuration but, in this case, the learned models are compiled into a probabilistic
representation (Section 3.2.2).

(4) GPT + Perfect model. This configuration is hypothetical given that in many planning domains,
the perfect probabilistic action model is unavailable. Thus, this configuration only serves as
a reference to show how far is pela from the solutions found with a perfect model. In this
configuration the probabilistic planner GPT plans with the exact PPDDL probabilistic domain
model.

Even if pela learned perfect action models, the optimality of the solutions generated
by pela depends on the planner used for problem solving. pela addresses problem solv-
ing with suboptimal planners because its aim is solving problems. Solutions provided
by suboptimal planners cannot be proven to be optimal so we have no measure of
how far pela solutions are from the optimal ones. Nevertheless, as it is shown at IPC,
suboptimal planners success to address large planning tasks achieving good quality
solutions.

In the Blocksworld domain the configurations based on the deterministic planning (FF + strips
model and FF + pela metric model) solve all the problems in the time limit (1000 seconds). On
the contrary, configurations based on probabilistic planning do not solve problems 10, 14 and 15
because considering the diverse probabilistic effects of actions boosts planning complexity. In terms
of planning time, planning with the actions models learned by pela generate plans that fail less
often and require less replanning episodes. In problems where replanning is expensive, i.e., in large
problems (problems 9 to 15), this effect means less planning time. Figure 13 shows the results
obtained by the four planning configurations in the Blocksworld domain. The training set consisted
of fifty five-blocks problems. The test set consisted of five eight-blocks problems, five twelve-blocks
problems and five sixteen-blocks problems.

In the Slippery-gripper domain the FF + strips model configuration is not able to solve all
problems in the time limit. Since this configuration prefers short plans, it tends to skip the dry

action. As a consequence, planning with the strips model fails more often and requires more
replanning episodes. In problems where replanning is expensive, this configuration exceeds the time
limit. Alternatively, the configurations that plan with the models learned by pela include the dry

action because this action reduces the fragility of plans. Consequently, plans fail less often, less
replanning episodes take place and less planning time is required.

In the Rovers domain the probabilistic planning configurations are not able to solve all the
problems because they handle more complex action models and consequently they scale worse. In
terms of planning time, planning with the learned models is not always better (problems 7, 12, 13,
15). In this domain, replanning without the fragility metric is very cheap and it is worthy even if it
generates fragile plans that fail very often. Figure 14 shows the results obtained by the four planning

18 Computational Intelligence

 0
 5

 10
 15
 20
 25
 30

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N
um

be
r

of
 s

ol
ve

d
pr

ob
le

m
s

Problem Instance

blocksworld

FF+STRIPS
FF + metric compilation

GPT + probabilistic compilation
GPT + perfect model

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T
im

e
us

ed
 (

so
lv

ed
 p

ro
bl

em
s)

Problem Instance

Figure 13. Off-line performance of pela in the Blocksworld.

configurations in the Slippery-gripper and the Rovers domain. The training set for the Slippery-
gripper consisted of fifty five-blocks problems. The test set consisted of five eight-blocks problems,
five twelve-blocks problems and five sixteen-blocks problems. The training set for the Rovers domain
consisted of sixty problems of ten locations and three objectives. The test set consisted of five
problems of five objectives and fifteen locations, five problems of six objectives and twenty locations,
and five problems of eight objectives and fifteen locations.

In the Openstacks domain planning with the strips model solves no problem. In this domain
the added macro-action for making products may produce execution dead-ends. Given that the
deterministic planner FF prefers short plans, it tends to systematically select this macro-action and
consequently, it produces execution dead-ends. On the contrary, models learned by pela capture
this knowledge about the performance of this macro-action so it is able to solve problems. However,
they are not able to reach the performance of planning with the perfect model. Though the models
learned by pela correctly capture the performance of actions, they are less compact than the perfect
model so they produce longer planning times. Figure 15 shows the results obtained in the Openstacks
domain.

In the Triangle-tireworld robust plans move the car only between locations with spare tires avail-
able despite these movements mean longer plans. The Strips action model ignores this knowledge
because it assumes the success of actions. On the contrary, pela correctly captures this knowledge
learning from plans execution and consequently, pela solves more problems than the classical

Integrating Planning, Execution and Learning to Improve Plan Execution 19

 0
 5

 10
 15
 20
 25
 30

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N
um

be
r

of
 s

ol
ve

d
pr

ob
le

m
s

Problem Instance

slippery-gripper

FF+STRIPS
FF + metric compilation

GPT + probabilistic compilation
GPT + perfect model

 0
 5

 10
 15
 20
 25
 30

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N
um

be
r

of
 s

ol
ve

d
pr

ob
le

m
s

Problem Instance

rovers

FF+STRIPS
FF + metric compilation

GPT + probabilistic compilation
GPT + perfect model

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T
im

e
us

ed
 (

so
lv

ed
 p

ro
bl

em
s)

Problem Instance

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T
im

e
us

ed
 (

so
lv

ed
 p

ro
bl

em
s)

Problem Instance

Figure 14. Off-line performance of pela in the Slippery-gripper and the Rovers domains.

replanning approach. In terms of time, planning with the models learned by pela means longer
planning times than planning with the perfect models because the learned models are less compact.

In the Satellite domain planning with the strips model solves no problem. In this domain the
application of action take-image without calibrating the instrument of the satellite may produce an
execution dead-end. However, this model assumes that actions always succeed and as FF tends to
prefer short plans, it skips the action calibrate. Therefore, it generates fragile plans that can lead
to execution dead-ends. Figure 16 shows the results obtained in the Triangle-tireworld and Satellite
domain. The training set for the Openstacks consisted of one hundred problems of four orders, four
products and six stacks. The test set consisted of five problems of ten orders, ten products and fifteen
stacks; five problems of twenty orders, twenty products and twenty-five stacks and five problems of
twenty-five orders, twenty-five products and thirty stacks. The training set for the Triangle-tireworld
consisted of one hundred problems of size five. The test set consisted of fifteen problems of increasing
size ranging from size two to size sixteen.

To sum up, in dead-ends free domains planning with the models learned by pela takes less time
to solve a given problem when replanning is expensive, i.e., in large problems or in hard problems
(problems with strong goals interactions). In domains with presence of execution dead-ends, planning
with the models learned by pela solves more problems because dead-ends are skipped when possible.
Otherwise, probabilistic planning usually yields shorter planning times than a replanning approach.
Once a probabilistic planner finds a good policy, then it uses the policy for all the attempts of
a given problem. However, probabilistic planners scale poorly because they handle more complex
action models that produce greater branching factors during search. On the other hand a classical
planner needs to plan from scratch to deal with the unexpected states in each attempt. However, since
they ignore diverse action effects and probabilities, they generally scale better. Table 2 summarizes
the number of problems solved by the four planning configurations in the different domains. For
each domain, each configuration attempted thirty times fifteen problems of increasing difficulty (450
problems per domain). Table 3 summarizes the results obtained in terms of computation time in
the solved problems by the four planning configurations in the different domains. Both tables show

20 Computational Intelligence

 0
 5

 10
 15
 20
 25
 30

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N
um

be
r

of
 s

ol
ve

d
pr

ob
le

m
s

Problem Instance

openstacks

FF+STRIPS
FF + metric compilation

GPT + probabilistic compilation
GPT + perfect model

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T
im

e
us

ed
 (

so
lv

ed
 p

ro
bl

em
s)

Problem Instance

Figure 15. Off-line performance of pela in the Openstacks domain.

results split in two groups: domains without execution dead-ends (Blocksworld, Slippery-Gripper and
Rovers) and domains with execution dead-ends (OpenStacks, Triangle-tireworld, Satellite).

Number of Problems Solved

FF FF+metric model GPT+probabilistic model GPT+perfect model

Blocksworld (450) 443 450 390 390
Slippery-Gripper (450) 369 450 450 450
Rovers (450) 450 421 270 270

OpenStacks (450) 0 90 300 450
Triangle-tireworld (450) 5 50 373 304
Satellite (450) 0 300 300 420

Table 2. Summary of the number of problems solved by the off-line configurations of pela.

The performance of the different planning configurations is also evaluated in terms of actions
used to solve the problems. Figure 17 shows the results obtained according to this metric for all
the domains. Though this metric is computed at the probabilistic track of IPC, comparing the

Integrating Planning, Execution and Learning to Improve Plan Execution 21

 0
 5

 10
 15
 20
 25
 30

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N
um

be
r

of
 s

ol
ve

d
pr

ob
le

m
s

Problem Instance

triangle-tireworld

FF+STRIPS
FF + metric compilation

GPT + probabilistic compilation
GPT + perfect model

 0
 5

 10
 15
 20
 25
 30

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N
um

be
r

of
 s

ol
ve

d
pr

ob
le

m
s

Problem Instance

satellite

FF+STRIPS
FF + metric compilation

GPT + probabilistic compilation
GPT + perfect model

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T
im

e
us

ed
 (

so
lv

ed
 p

ro
bl

em
s)

Problem Instance

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T
im

e
us

ed
 (

so
lv

ed
 p

ro
bl

em
s)

Problem Instance

Figure 16. Off-line performance of pela in the Triangle-tireworld and Satellite domains.

Planning Time of Problems Solved (seconds)

FF FF+metric model GPT+probabilistic model GPT+perfect model

Blocksworld 78, 454.6 35, 267.1 26, 389.4 38, 416.7
Slippery-Gripper 36, 771.1 4, 302.7 1, 238.3 2, 167.1
Rovers 28, 220.0 349, 670.0 18, 635.0 18, 308.9

OpenStacks 0.0 8, 465.3 33, 794.6 12, 848.7
Triangle-tireworld 34.0 306.0 10, 390.1 6, 034.1
Satellite 0.0 17, 244.1 2, 541.3 21, 525.9

Table 3. Summary of the planning time (accumulated) used by the four off-line configurations
of pela.

performance of probabilistic planners regarding the number of actions is tricky. In probabilistically
interesting problems, robust plans are longer than fragile plans. When this is not the case, i.e., robust
plans correspond to short plans, then a classical replanning approach that ignores probabilities will
find robust solutions in less time than a standard probabilistic planner because it handles simpler
action models.

4.4. pela on-line performance

This experiment evaluates the planning performance of the models learned by pela within an
on-line setup.

The on-line setup of pela consists of a closed loop that incrementally upgrades the planning
action model of the architecture as more execution experience is available. In this setup pela uses
the updated action models for collecting new observations.

The experiment is designed as follows: pela starts planning with an initial strips-like action

22 Computational Intelligence

 0
 50

 100
 150
 200
 250
 300

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A
ct

io
ns

 u
se

d
(s

ol
ve

d
pr

ob
le

m
s)

Problem Instance

blocksworld

FF+STRIPS
FF + metric compilation

GPT + probabilistic compilation
GPT + perfect model

 0

 50

 100

 150

 200

 250

 300

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A
ct

io
ns

 u
se

d
(s

ol
ve

d
pr

ob
le

m
s)

Problem Instance

slippery-gripper

 0

 50

 100

 150

 200

 250

 300

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A
ct

io
ns

 u
se

d
(s

ol
ve

d
pr

ob
le

m
s)

Problem Instance

rovers

 0

 50

 100

 150

 200

 250

 300

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A
ct

io
ns

 u
se

d
(s

ol
ve

d
pr

ob
le

m
s)

Problem Instance

openstacks

 0

 50

 100

 150

 200

 250

 300

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A
ct

io
ns

 u
se

d
(s

ol
ve

d
pr

ob
le

m
s)

Problem Instance

triangle-tireworld

 0

 50

 100

 150

 200

 250

 300

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A
ct

io
ns

 u
se

d
(s

ol
ve

d
pr

ob
le

m
s)

Problem Instance

satellite

Figure 17. Actions used for solving the problems by the off-line configurations of pela.

model and every fifty action executions, pela upgrades its current action model. At each upgrade
step, the experiment evaluates the resulting action model over a test set of thirty problems.

The experiment compares the performance of the two baselines described in the previous
experiment (FF + strips and GPT + Perfect model) against five configurations of the pela on-line
setup. Given that the baselines implement no learning, their performance is constant in time. On
the contrary, the on-line configurations of pela vary their performance as more execution experience
is available. These five on-line configurations of pela are named FF-εGreedy and present ε values
of 0, 0.25, 0.5, 0.75 and 1.0 respectively. Accordingly, actions are selected by the planner FF using
the current action model with probability ε and actions are selected randomly among the applicable
ones with probability 1−ε. These configurations range from FF-εGreedy0.0, a fully random selection
of actions among the applicable ones, to FF-εGreedy1.0, an exploration fully guided by FF with the
current action model. The FF-εGreedy1.0 configuration is different from the FF+STRIPS off-line
configuration because it modifies its action model with experience.

These configurations are an adaptation of the most basic exploration/exploitation strategy in RL
to the use of off-the-shelf planners. RL presents more complex ways of exploring in which selection
probabilities are weighted by their relative value functions. For an updated survey see (Wiering,
1999; Reynolds, 2002).

Integrating Planning, Execution and Learning to Improve Plan Execution 23

In the Blocksworld the five on-line configurations of pela achieve action models able to solve the
test problems faster than the classical replanning approach. In particular, except for the pure random
configuration (FF-εGreedy0.0), all pela configurations achieve this performance after one learning
iteration. This effect is due to two factors: (1) in this domain the knowledge about the success of
actions is easy to capture because it is not state-dependent; and (2) in this domain it is not necessary
to capture the exact probability of success of actions for robust planning; it is enough to capture the
differences between the probability of success of actions that handle blocks and actions that handle
towers of blocks.

In the Slippery-gripper domain the convergence of the pela configurations is slower. In fact,
the FF-εGreedy1.0 pela configuration is not able to solve the test problems in the time limit until
completing the fourth learning step. In this domain, the probability of success of actions is more
difficult to capture because it is state-dependent. However, when the pela configurations properly
capture this knowledge, they need less time than the classical replanning approach to solve the test
problems because they require less replanning episodes.

In the Rovers domain the performances of planning with strips-like and planning with perfect
models are very close because in this domain there is no execution dead-ends and replanning is
cheap in terms of computation time. Accordingly, there is not much benefit on upgrading the initial
strips-like action model. Figure 18 shows the results obtained by the on-line configurations of pela
in the Rovers domain.

 0

 5

 10

 15

 20

 25

 30

 0 150 300 450 600 750 900 1050 1200 1350 1500N
um

be
r

of
 p

ro
bl

em
s

so
lv

ed

Examples

rovers

STRIPS
PELA - FF-eGreedy0.0

PELA - FF-eGreedy0.25
PELA - FF-eGreedy0.5

PELA - FF-eGreedy0.75
PELA - FF-eGreedy1.0

perfect model

 100

 1000

 10000

 0 150 300 450 600 750 900 1050 1200 1350 1500

T
im

e(
s)

Examples

Figure 18. On-line performance of pela in the Rovers domain.

24 Computational Intelligence

In the Openstacks domain the FF+Strips baseline does not solve any problem because it gener-
ates plans that do not skip the execution dead-ends. On the contrary, all the on-line configurations
of pela achieve action models able to solve the test problems after one learning step. In terms of
planning time, planning with the pela models spends more time than planning with the perfect
models because they are used in a replanning approach.

In the Triangle-tireworld the FF-εGreedy1.0 configuration is not able to solve more problems
than a classical replanning approach because it provides learning examples that always correspond
to the shortest paths in the triangle. Though the pela configurations solve more problems than a
classical replanning approach, it is far from planning with the perfect model because FF does not
guarantee optimal plans.

In the Satellite domain only the FF-εGreedy1.0 configuration is able to solve the test problems
because the strong causal dependencies of actions of the domain. These configurations are the
only ones capable of capturing the fact that take-image may produce execution dead-ends when
instruments are not calibrated. Figure 19 shows the results obtained in the Satellite domain.

 0

 5

 10

 15

 20

 25

 30

 0 150 300 450 600 750 900 1050 1200 1350 1500N
um

be
r

of
 p

ro
bl

em
s

so
lv

ed

Examples

satellite

STRIPS
PELA - FF-eGreedy0.0

PELA - FF-eGreedy0.25
PELA - FF-eGreedy0.5

PELA - FF-eGreedy0.75
PELA - FF-eGreedy1.0

perfect model

 100

 1000

 10000

 0 150 300 450 600 750 900 1050 1200 1350 1500

T
im

e(
s)

Examples

Figure 19. On-line performance of pela in the Satellite domain.

Overall, the upgrade of the action model performed by pela does not affect to actions causality.
Therefore, the on-line configuration of pela can assimilate execution knowledge without degrading
the coverage performance of a classical replanning approach. In particular, experiments show that
even at the first steps of the on-line learning process (when the learned knowledge is imperfect),

Integrating Planning, Execution and Learning to Improve Plan Execution 25

the introduction of the learned knowledge does not prevent pela to solve problems. On the other
hand, approaches that learn probabilistic action models from scratch by generalizing human provided
observations (Pasula et al., 2007) cannot guarantee the soundness of their intermediate action models.
In particular, these approaches cannot guarantee that a given set of learning examples will produce
an action model able to solve problems with a fixed planning strategy.

Besides, once pela is presented with enough execution experience, the pela on-line configura-
tions address probabilistic planning problems more robustly than the classical replanning approach.
Nevertheless, the action models learned within the on-line setup may not properly capture the
performance of all actions in a given domain. Execution experience may be insufficient (generally
at the first learning steps) or too biased (the training problems may provide learning examples
of the same kind). As shown experimentally, these problems are more noticeable in domains with
execution dead-ends. In these domains, the performance of the pela on-line configurations depend
on capturing some key actions, i.e., the actions that produce execution dead-ends. When a given
configuration does not capture the success of the key actions it will perform poorly. On the other
hand, this effect is less noticeable in domains free from execution dead-ends. In this kind of domains,
configurations can outperform a classical replanning approach though the success of actions is
not exactly captured. Table 4 summarizes the number of problems solved by the seven planning
configurations in the different domains at the end of the on-line learning process. For each domain,
each configuration attempted thirty problems of increasing difficulty. Table 5 summarizes the results
obtained in terms of computation time in the solved problems by the seven planning configurations in
the different domains. Both tables show results split in two groups: domains without execution dead-
ends (Blocksworld, Slippery-Gripper and Rovers) and domains with execution dead-ends (OpenStacks,
Triangle-tireworld, Satellite). The number of problems solved is not revealing in domains without
dead-ends, because the seven configurations solve all the problems. In this kind of domains one must
analyze the planning time, given that fragile plans imply more replanning episodes are needed, and
consequently longer planning times. On the contrary, the number of problems solved is a reliable
performance measure in domains with execution dead ends.

Number of Problems Solved at the end of the online process

Strips εGreedy0.0 εGreedy0.25 εGreedy0.5 εGreedy0.75 εGreedy1.0 Perfect model

Blocksworld (30) 30 30 30 30 30 30 30
Slippery-Gripper (30) 30 30 30 30 30 30 30
Rovers (30) 30 30 30 30 30 30 15

OpenStacks (30) 0 30 30 30 30 30 30
Triangle-tireworld (30 0 2 0 1 0 0 15
Satellite (30) 0 0 0 0 30 0 30

Table 4. Summary of the number of problems solved by the on-line configurations of pela.

Planning Time in the solved problems at the end of the online process

Strips εGreedy0.0 εGreedy0.25 εGreedy0.5 εGreedy0.75 εGreedy1.0 Perfect model

Blocksworld 2, 094.4 1, 183.8 1, 372.6 989.4 1, 137.6 1, 056.0 308.0
Slippery-Gripper 497.6 968.2 424.6 436.6 423.0 415.0 102.2
Rovers 5, 522.2 4, 037.4 4, 526.0 5, 003.4 4, 992.0 4, 233.8 3, 906.2

OpenStacks 0 13, 527.4 12, 221.4 12, 808.4 13, 399.6 12, 936.0 1, 323.4
Triangle-tireworld 0 258.0 0 50.0 0 0 1, 976.0
Satellite 0 0 0 0 5, 730.4 0 881.0

Table 5. Summary of the computation time (accumulated) used by the four on-line configu-
rations of pela.

26 Computational Intelligence

5. RELATED WORK

There is extensive prior work on general architectures for reasoning, execution and learning,
ranging from execution-oriented, as in robotics applications (Peterson and Cook, 2003), to more
cognitive-oriented (Rosenbloom et al., 1993). The most relevant example to our work is rogue (Haigh
and Veloso, 1999) which learned propositional decision trees and used them as control rules for the
prodigy planning architecture (Veloso et al., 1995). These architectures are not based on standard
languages like PDDL or PPDDL for reasoning and learning, and different planning or learning
techniques cannot be easily plugged-in and tested over a variety of domains.

The first approach for the Planning, Execution and Learning Architecture (Jiménez et al., 2005)
captured the performance of instantiated actions as control rules for the Prodigy planner (Veloso
et al., 1995). A second approach (Jiménez et al., 2008), closer to the current architecture also
learned relational trees about the performance of actions. This approach did not implement εGreedy
strategies for the on-line integration of planning and learning and lacked of exhaustive evaluation.

There are recent works that also study how to automatically enrich planning action
models. In many applications it is difficult to code PDDL actions for modeling motions:
the geometry of the environment may be complex to analyze, the duration of these
actions may be difficult to be defined, . . . Instead, these works automatically verify and
build planning actions of this kind using knowledge from motion plans (Choi and Amir,
2009; Wolfe et al., 2010).

5.1. Action modelling

Focusing on the action modelling, we classified the existing learning approaches according to two
features (1) the kind of learned models (deterministic versus probabilistic) and (2) the observability
of the state of the environment (partial versus full).

Despite other classifications are possible, for instance the target of the learning (preconditions,
effects, conditions of effects, probabilities of outcomes, . . .) we believe this one is useful for planning
purposes because each class corresponds to a different planning paradigm

5.1.1. Learning deterministic actions in fully observable environments. This problem is closely
related to the Inductive Logic Programming (ILP) problem. In this regard, the hot spots for planning
are how to generate significant learning examples (how to explore the performance of planning
actions) and how to handle defective learned knowledge (how to plan when the learned action
models are incomplete and incorrect). The LIVE system (Shen and Simon, 1989) alternated problem
solving with rule learning for the automatic definition of STRIPS-like operators. The decision for
alternation mainly depends on surprises, i.e., situations where an action’s consequences violate its
predicted models. When no rule can be found for solving the problem, LIVE will generate and
execute an exploration plan, or a sequence of actions, seeking for surprises to extend the rule set. The
EXPO system (Gil, 1992) refined incomplete planning operators, i.e., operators with some missing
preconditions and effects. EXPO generates plans, monitors their execution and detects differences
between the state predicted according to the internal action model and the observed state. EXPO
constructs a set of specific hypotheses to fix the detected differences. After being heuristically filtered,
each hypothesis is tested in turn with an experiment and a plan is constructed to achieve the situation
required to carry out the experiment.

OBSERVER (Wang, 1994), unlike previous works that refined planning operators by an active
exploration of the environment, learned operators by observing expert agents. The observations of the
expert agent consists of: (1) the sequence of actions being executed, (2) the pre-state and the post-
state resulting from the execution of each action. OBSERVER learned planning operators from these
observation sequences in an incremental fashion utilizing a conservative specific-to-general inductive
generalization process. Eventually, the system solves practice problems with the new operators to
refine them from execution traces. The Lope system (Garcia-Martinez and Borrajo, 2000) learned
planning operators by observing the consequences of executing planned actions in the environment.
At the beginning, the system has no knowledge, it perceives the initial situation, and selects a random
action to execute in the environment. Then it loops by (1) executing an action, (2) perceiving the
resulting situation of the action execution and its utility, (3) learning a model from the perception

Integrating Planning, Execution and Learning to Improve Plan Execution 27

and (4) planning for further interaction with the environment (in case the execution of the plan is
finished, or the system has observed a mismatch between the predicted situation and the situation
perceived). The planning component of LOPE does not explicitly receive a goal input given that
LOPE creates its own goals from the situations with the highest utility.

Because in this category the effects of actions are deterministic and fully observable, they can be
acquired by lifting the delta-state (the set of literals that differ between the pre-state and the post-
state) of an action execution. In this regard, the main difficulty is to extract the actual preconditions
of actions, because the direct lifting of a pre-state may include unnecessary preconditions. Recently,
the work reported in (Walsh and Littman, 2008) succeeds to bound the number of interactions the
learner must have with the environment to learn the preconditions (and effects) of a STRIPS action
model.

5.1.2. Learning deterministic actions in partially observable environments. This category, given
that observations of the current state are incomplete, requires ILP techniques able to deal with noise
in the learning examples. In this category one can find two different approaches. On the one hand,
the ARMS system (Yang et al., 2007) which encodes example plan traces as a weighted maximum
satisfiability problem, from which a candidate STRIPS-like action model is extracted. The output
of ARMS is a single model, which is built heuristically in a hill-climbing fashion. Consequently, the
resulting model is sometimes inconsistent with the input.

On the other hand, Amir and Chang introduced an algorithm that exactly learns all the STRIPS-
like models that could have lead to a historical of observations (Amir and Chang, 2008). Given a
formula representing the initial belief state, a sequence of executed actions (a1, a2, ..., an) and the
corresponding observed states (s1, ..., sn), the learning algorithm updates the formula of the belief
state with every action and observation in the sequence. This update makes sure that the new formula
represents exactly all the transition relations that are consistent with the actions and observations.
The formula returned at the end includes all consistent models, which can be retrieved then with
additional processing. Both techniques do not consider the exploration process needed to extract the
learning examples and assume they are provided by an external expert.

5.1.3. Learning probabilistic actions in fully observable environments. The pela architecture fits
in this category.

The task addressed in this category does not need to handle sets of possible states because
they are fully observable. On the contrary, actions present stochastic effects, so they can not be
learned by just lifting the delta-state. This task is very much related with the induction of stochastic
logic models such as Stochastic Logic Programs (Muggleton, 2001; Cussens, 2001), Bayesian Logic
Programs (Jaeger, 1997; Kersting and Raedt, 2001) or Markov Logic Networks (Richardson and
Domingos, 2006).

One of the earliest works of this kind was the TRAIL system (Benson, 1997) that used Inductive
Logic Programming to learn operators for reactive behavior. Besides preconditions and postcondi-
tions, these operators contained a success rate that indicated the percentage of times when the
operator successfully achieved its postcondition.

The most relevant work in this category (Pasula et al., 2007) is able to learn from scratch
more expressive action models than pela including preconditions and different outcomes of actions.
However, this approach does not generate its own learning examples and requires specific planning
and learning algorithms. Instead, pela explores the world to generate its own learning examples,
captures uncertainty of the environment using existing standard machine learning techniques and
compiles it into standard planning models that can be directly fed into different kinds of off-the-shelf
planners (like cost-based or probabilistic planners). Thus, pela can directly profit from the last
advances in both fields without modifying the source of the architecture. Even more, the off-the-
shelf spirit of the architecture allows pela to change the learning component to acquire other useful
planning information, such as actions duration (Lanchas et al., 2007).

5.1.4. Learning probabilistic actions in partially observable environments. Further studies are
needed for action modelling in stochastic and partially observable environments. Preliminary work (Yoon
and Kambhampati, 2007) addresses this problem using techniques for weighted maximum satisfia-
bility in order to find the action model that better explains the collected observations.

28 Computational Intelligence

5.2. Reinforcement Learning

RL agents interact with the environment to collect experience which, by means of
appropriate algorithms, is processed to generate an optimal policy (Kaelbling et al.,
1996). RL includes two different approaches:

• Model-Based RL uses a model of the environment to generate advise on how to explore
it, so that the agent can find better policies. When model-based techniques use a
relational representation (Croonenborghs et al., 2007b), they produce action models
similar to the ones learned by pela. In this case, the main difference comes from the
fact that pela handles action models that follow the standard planning representation
languages PDDL/PPDDL and that pela delegates problem solving to off-the-shelf
classical/probabilistic planners.

• Model-Free RL does not benefit from a model of the environment. In some domains
there is so much uncertainty that learning to achieve goals is easier than learning
accurate action models. Accordingly, model-free RL algorithms do not model the
decision-making as a function of the state, like value/heuristic functions, but as a
function of pairs < state, action > called action-value functions. The q-function is an
example of an action-value function which provides a measure of the expected reward
for taking action a in state s. Relational representations of the q-function (Dzeroski
et al., 2001) adopt the same representation as symbolic planning to efficiently code
the function in relational space states.

The aims of RL are closely related to the aims of pela. In fact model-Based Re-
lational Reinforcement Learning (RRL) techniques succeed to address some planning
problems. Normally, these techniques rely on complete state enumeration and their
time complexity is polynomial in the size of the state-space. In planning problems,
the size of the state-space grows exponentially with the number of features describing
the problem (objects properties and objects relations). Overcoming the state-space
explosion of model-Based RL in planning problems is an interesting research line. A
promising research direction is using heuristic search algorithms to limit computation to
the states reachable from the initial state. Besides, these algorithms can benefit from
domain-independent heuristics extracted from the planning problem representation,
like the FF heuristic (Hoffmann and Nebel, 2001). This research line includes the LAO*
algorithm (Hansen and Zilberstein, 2001), a generalization of the A* algorithm for
MDPs, or the Learning Depth-First Search (LDFS) algorithm (Bonet and Geffner,
2006), a generalization of the IDA* for MDPs.

Model-Free RRL was also able to learn good policies for some type of planning
problems like building a tower of blocks. However, more research is needed to efficiently
address problems with highly interacting goals. For instance, when building a tower
of specific blocks on(V,W), on(W,X), on(X,Y), on(Y,Z). This is the kind of problems
traditionally addressed in automated planning where the achievement of a particular
goal may undo previously satisfied goals. In these problems, model-Free RRL often
spends a long time exploring regions of the state-action space without learning anything
because no rewards (goal states) are encountered. To provide model-Free RRL with some
positive rewards and relieve the limitations of random exploration, recent works exploit
human-defined policies (Driessens and Matwin, 2004) or transfer learning (Croonenborghs
et al., 2007a).

Besides, learning techniques for planning (Zimmerman and Kambhampati, 2003)
try to learn general knowledge useful when solving any problem of a given domain.
Learning of generalized policies (Khardon, 1999; Martin and Geffner, 2000; Winner and
Veloso, 2003) is an example of capturing this general knowledge. Model-Free RL focuses
learning on addressing particular problems so each time the type of the problem
changes model-Free RL agents need learning from scratch, or at least a transfer learning
process (Fernández and Veloso, 2006; Torrey et al., 2007; Mehta et al., 2008; Taylor and
Stone, 2009). When using a relational representation model-Free RRL can solve problems
of the same type with additional objects without reformulating their learned policies,

Integrating Planning, Execution and Learning to Improve Plan Execution 29

although additional training may be necessary to achieve optimal (or even acceptable)
performance levels.

Works on RL study the convergence of the evaluation function as more experience
is available. This function combines action model and problem solving information. pela
follows greedy strategies for both, learning and problem solving, trading off optimality
in exchange for scalability. In terms of model learning, pela uses techniques for learning
relational decision trees. Because of the huge size of the search space handled by these
techniques pela uses greedy search and heuristic pruning techniques that succeed to
induce compact rule sets in a reasonable time. These rule sets are not proved to be
optimal, because the exhaustive search of this search space is intractable. In terms
of problem solving, there are two approaches in automated planning for guaranteeing
optimality:

• Exploring the whole search space. Unfortunately, state spaces in planning are nor-
mally huge producing combinatorial explosion.

• Following an A* algorithm that explores the search space guided by an admissible
heuristic. Unfortunately, admissible heuristics for planning are poorly informed, so
optimal planners are only able to solve small problem instances. In any case, since
we compile into two different planning schemes, advances in any of those can auto-
matically improve planning under uncertainty as understood in this paper.

6. CONCLUSION AND FUTURE WORK

This paper describes the pela architecture for robust planning in non-deterministic domains. In
order to achieve robust plans within these domains, pela automatically upgrades an initial strips
like planning model with execution knowledge of two kinds: (1) probabilistic knowledge about the
success of actions and (2) predictions of execution dead-ends. Moreover, the upgrade of the action
models performed by pela does not affect the actions causality and hence, it is suitable for on-line
integration of planning and learning. The pela architecture is based on off-the-shelf planning and
learning components and uses standard representation languages like PDDL or PPDDL. Therefore,
different planning and/or learning techniques can be directly plugged-in without modifying the
architecture.

The performance of the architecture has been experimentally evaluated over a diversity of
probabilistic planning domains:

• The model correctness experiments revealed that random explorations of planning domains im-
prove the accuracy of the learned models because they explore the performance of actions in diverse
contexts. However, pure random explorations are inappropriate for planning domains with strong
causal dependencies. Random explorations do not explore actions that require the execution of
a fixed sequence of steps to be applicable. In these domains, the use of planners with stochastic
behavior (such as LPG or ε-greedy strategies) provide diversity to the learning examples, as well
as considering causal dependencies of actions.

• The off-line performance experiments showed that the action models learned by pela make
both, metric-based and probabilistic planners, generate more robust plans than a classical re-
planning approach. In domains with execution dead-ends, planning with the models learned by
pela increases the number of solved problems. In domains without execution dead-ends, planning
with the models learned by pela is beneficial when replanning is expensive. On the other hand,
the action models learned by pela increase the size of the initial strips model, meaning generally
longer planning times. Specifically, the increase in size is proportional to the number of leaf nodes
of the learned trees. One can control the size of the resulting trees by using declarative biases
as the amount of tree pruning desired. However, extensive pruning may result in a less robust
behavior as leaf nodes would not be so fine grained.

• The on-line performance experiments showed that the upgrade of the action models proposed
by pela does not affect to the actions causality and consequently, it is suitable for an on-line
integration of planning and learning. Even at the first learning steps, in which the gathered
experience is frequently scarce and biased, the performance of pela is not worse than a classical

30 Computational Intelligence

replanning approach. When the gathered experience achieves enough quality, pela addresses
probabilistic planning problems more robustly than the classical re-planning approach.

Currently we are working on using pela to acquire more execution information
useful for planning. An example is our previous work on learning actions durations (Lan-
chas et al., 2007). Other interesting direction is learning dead-deads information with
knowledge about the goals and including it in the planning models. With this regard a
possible direction is using the plan constraints and preferences defined at PDDL3.0 (Gerevini
et al., 2009).

Our current version of pela assumes there is an initial action model of the environment which
correctly and completely captures the nominal effects of actions. However, in complex or changing
environments, even defining simple STRIPS-like action models may become a hard task. We have
an evident interest in relaxing this assumption. Recently, Kambhampati introduced the concept of
model-lite planning (Kambhampati, 2007) for encouraging the development of planning techniques
that do not search for a solution plan but for the most plausible solution plan that respects the current
action model. New work on approximate inference (Yoon and Kambhampati, 2007; Thon et al., 2008;
Lang and Toussaint, 2009) seems to be a way of approaching the development of these new planning
techniques. In addition the evaluation of pela assumed full observability of the environment states.
However, observations of the real-world may provide state representations of the environment that
are incomplete or incorrect. Given that decision trees deal with noisy learning examples, a natural
extension of this work is the study of the pela performance in environments where observations
provide states with noisy information.

Contrary to intuition, we have found that it is not always worthy to generate a very accurate
and complete action model, because its expressiveness sometimes does not pay off the complexity
of planning with it. As an example, FF-Replan was the best performer using a STRIPS model of
actions for solving problems with probabilistic encodings at IPC-2004 and IPC-2006. In this way,
further research is needed to determine in which situations learning a complex model and planning
with it is better than learning a simple model and planning with it.

References

Amir, E. and Chang, A. (2008). Learning partially observable deterministic action models. Journal
of Artificial Intelligence Research, 33, 349–402.

Benson, S. S. (1997). Learning Action Models for Reactive Autonomous Agents. Ph.D. thesis,
Stanford University, California.

Blockeel, H. and Raedt, L. D. (1998). Top-down induction of first-order logical decision trees.
Artificial Intelligence, 101(1-2), 285–297.

Bonet, B. and Geffner, H. (2004). mgpt: A probabilistic planner based on heuristic search. Journal
of Artificial Intelligence Research, 24, 933–944.

Bonet, B. and Geffner, H. (2006). Learning depth-first search: A unified approach to heuristic search
in deterministic and non-deterministic settings, and its application to MDPs. In International
Conference on Automated Planning and Scheduling, ICAPS06 .

Choi, J. and Amir, E. (2009). Combining planning and motion planning. In ICRA’09: Proceedings
of the 2009 IEEE international conference on Robotics and Automation, pages 4374–4380,
Piscataway, NJ, USA. IEEE Press.

Croonenborghs, T., Driessens, K., and Bruynooghe, M. (2007a). Learning relational options for
inductive transfer in relational reinforcement learning. In Proceedings of the Seventeenth
Conference on Inductive Logic Programming .

Croonenborghs, T., Ramon, J., Blockeel, H., and Bruynooghe, M. (2007b). Online learning and
exploiting relational models in reinforcement learning. In Proceedings of the 20th International
Joint Conference on Artificial Intelligence, pages 726–731. AAAI press.

Cussens, J. (2001). Parameter estimation in stochastic logic programs. Machine Learning , 44(3),
245–271.

Driessens, K. and Matwin, S. (2004). Integrating guidance into relational reinforcement learning.
Machine Learning , 57, 271–304.

Integrating Planning, Execution and Learning to Improve Plan Execution 31

Dzeroski, S., Raedt, L. D., and Driessens, K. (2001). Relational reinforcement learning. Machine
Learning , 43, 7–52.

Fernández, F. and Veloso, M. (2006). Probabilistic policy reuse in a reinforcement learning. In
International conference on Autonomous Agents and Multiagent Systems (AAMAS).

Fox, M. and Long, D. (2003). PDDL2.1: An extension to PDDL for expressing temporal planning
domains. Journal of Artificial Intelligence Research, 20, 61–124.

Fox, M., Gerevini, A., Long, D., and Serina, I. (2006). Plan stability: Replanning versus plan repair.
International Conference on Automated Planning and Scheduling (ICAPS’06).

Garcia-Martinez, R. and Borrajo, D. (2000). An integrated approach of learning, planning, and
execution. Journal of Intelligent and Robotics Systems, 29, 47–78.

Gerevini, A., Saetti, A., and Serina, I. (2003). Planning through stochastic local search and temporal
action graphs in LPG. Journal of Artificial Intelligence Research, 20, 239–290.

Gerevini, A. E., Haslum, P., Long, D., Saetti, A., and Dimopoulos, Y. (2009). Deterministic planning
in the fifth international planning competition: PDDL3 and experimental evaluation of the
planners. Artificial Intelligence, 173(5-6), 619–668.

Ghallab, M., Nau, D., and Traverso, P. (2004). Automated Planning Theory and Practice. Morgan
Kaufmann.

Gil, Y. (1992). Acquiring Domain Knowledge for Planning by Experimentation. Ph.D. thesis, School
of Computer Science, Carnegie Mellon University, Pittsburgh.

Haigh, K. Z. and Veloso, M. M. (1999). Learning situation-dependent rules. In AAAI Spring
Symposium on Search Techniques for Problem Solving under Uncertainty and Incomplete
Information.

Hansen, E. A. and Zilberstein, S. (2001). LAO * : A heuristic search algorithm that finds solutions
with loops. Artificial Intelligence, 129(1-2), 35–62.

Hoffmann, J. (2003). The metric-FF planning system: Translating ignoring delete lists to numerical
state variables. Journal of Artificial Intelligence Research, 20, 291–341.

Hoffmann, J. and Nebel, B. (2001). The FF planning system: Fast plan generation through heuristic
search. JAIR, 14, 253–302.

Jaeger, M. (1997). Relational bayesian networks. In Conference on Uncertainty in Artificial
Intelligence.

Jiménez, S., Fernández, F., and Borrajo, D. (2005). Machine learning of plan robustness knowledge
about instances. In European Conference on Machine Learning .

Jiménez, S., Fernández, F., and Borrajo, D. (2008). The pela architecture: integrating planning and
learning to improve execution. In National Conference on Artificial Intelligence (AAAI’2008).

Kaelbling, L. P., Littman, M. L., and Moore, A. P. (1996). Reinforcement learning: A survey. Journal
of Artificial Intelligence Research, 4, 237–285.

Kambhampati, S. (2007). Model-lite planning for the web age masses: The challenges of planning
with incomplete and evolving domain models. In Senior Member track of the AAAI , Seattle,
Washington, USA.

Kersting, K. and Raedt, L. D. (2001). Towards combining inductive logic programming with Bayesian
networks. In International Conference on Inductive Logic Programming , pages 118–131.

Khardon, R. (1999). Learning action strategies for planning domains. Artificial Intelligence, 113,
125–148.

Lanchas, J., Jiménez, S., Fernández, F., and Borrajo, D. (2007). Learning action durations from
executions. In Workshop on AI Planning and Learning. ICAPS’07 .

Lang, T. and Toussaint, M. (2009). Approximate inference for planning in stochastic relational
worlds. In International Conference on Machine Learning. ICML.

Little, I. and Thiébaux, S. (2007). Probabilistic planning vs replanning. In Workshop on International
Planning Competition: Past, Present and Future. ICAPS07 .

Martin, M. and Geffner, H. (2000). Learning generalized policies in planning using concept languages.
In International Conference on Artificial Intelligence Planning Systems, AIPS00 .

Mehta, N., Natarajan, S., Tadepalli, P., and Fern, A. (2008). Transfer in variable-reward hierarchical
reinforcement learning. Machine Learning , 73(3), 289–312.

Muggleton, S. (2001). Stochastic logic programs. Journal of Logic Programming .
Pasula, H. M., Zettlemoyer, L. S., and Kaelbling, L. P. (2007). Learning symbolic models of stochastic

32 Computational Intelligence

domains. Journal of Artificial Intelligence Research, 29, 309–352.
Peterson, G. and Cook, D. (2003). Incorporating decision-theoretic planning in a robot architecture.

Robotics and Autonomous Systems, 42(2), 89–106.
Quinlan, J. (1986). Induction of decision trees. Machine Learning , 1(1), 81–106.
Reynolds, S. I. (2002). Reinforcement Learning with Exploration. Ph.D. thesis, The University of

Birmingham, UK.
Richardson, M. and Domingos, P. (2006). Markov logic networks. Machine Learning , 62, 107–136.
Rosenbloom, P. S., Newell, A., and Laird, J. E. (1993). Towards the knowledge level in Soar: the role

of the architecture in the use of knowledge. MIT Press.
Shen, W. and Simon (1989). Rule creation and rule learning through environmental exploration. In

International Joint Conference on Artificial Intelligence, IJCAI-89 .
Taylor, M. E. and Stone, P. (2009). Transfer learning for reinforcement learning domains: A survey.

Journal of Machine Learning Research, 10(1), 1633–1685.
Thon, I., Landwehr, N., and Raedt, L. D. (2008). A Simple Model for Sequences of Relational State

Descriptions. In European Conference on Machine Learning .
Torrey, L., Shavlik, J. W., Walker, T., and Maclin, R. (2007). Relational macros for transfer in

reinforcement learning. In Conference on Inductive Logic Programming , pages 254–268.
Veloso, M., Carbonell, J., Pérez, A., Borrajo, D., Fink, E., and Blythe, J. (1995). Integrating planning

and learning: The PRODIGY architecture. JETAI , 7(1), 81–120.
Walsh, T. J. and Littman, M. L. (2008). Efficient learning of action schemas and web-service

descriptions. In AAAI’08: Proceedings of the 23rd national conference on Artificial intelligence,
pages 714–719. AAAI Press.

Wang, X. (1994). Learning planning operators by observation and practice. In International
Conference on AI Planning Systems, AIPS-94 .

Wiering, M. (1999). Explorations in efficient reinforcement learning . Ph.D. thesis, University of
Amsterdam IDSIA, The Netherlands.

Winner, E. and Veloso, M. (2003). DISTILL: Towards learning domain-specific planners by example.
In International Conference on Machine Learning, ICML’03.

Wolfe, J., Marthi, B., and Russell, S. (2010). Combined task and motion planning for mobile
manipulation. In International Conference on Automated Planning and Scheduling , Toronto,
Canada.

Yang, Q., Wu, K., and Jiang, Y. (2007). Learning action models from plan traces using weighted
max-sat. Artificial Intelligence Journal , 171, 107–143.

Yoon, S. and Kambhampati, S. (2007). Towards model-lite planning: A proposal for learning and
planning with incomplete domain models. In ICAPS2007 Workshop on Artificial Intelligence
Planning and Learning .

Yoon, S., Fern, A., and Givan, B. (2007). Ff-replan: A baseline for probabilistic planning. In
International Conference on Automated Planning and Scheduling (ICAPS ’07).

Younes, H., Littman, M. L., Weissman, D., and Asmuth, J. (2005). The first probabilistic track of
the international planning competition. Journal of Artificial Intelligence Research, 24, 851–887.

Zimmerman, T. and Kambhampati, S. (2003). Learning-assisted automated planning: looking back,
taking stock, going forward. AI Magazine, 24, 73 – 96.

