Reviewing: Golynski, Munro, Rao: Rank/Select Operations on Large Alphabets: a Tool for Text Indexing

Simon Gog

May 21, 2012
Time complexities of basic operations on sequences

Given sequence T of length n over alphabet Σ of length σ.

<table>
<thead>
<tr>
<th></th>
<th>$\text{access}(T, i)$</th>
<th>$\text{rank}(T, i, c)$</th>
<th>$\text{select}(T, i, c)$</th>
<th>space</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>$\log \sigma$</td>
<td>$\log \sigma$</td>
<td>$\log \sigma$</td>
<td>$n \log \sigma + o(n \log \sigma)$</td>
</tr>
<tr>
<td>G-1</td>
<td>$\sigma \cdot \log \log \sigma$</td>
<td>$\log \log \sigma$</td>
<td>1</td>
<td>$nH_0 + O(n)$*</td>
</tr>
<tr>
<td>G-2</td>
<td>$\log \log \sigma$</td>
<td>$\log \log \sigma$</td>
<td>1</td>
<td>$n \log \sigma + o(n \log \sigma)$**</td>
</tr>
<tr>
<td>G-2a</td>
<td>1</td>
<td>$\log \log \sigma \cdot \log \log \log \sigma$</td>
<td>$\log \log \sigma$</td>
<td>$n \log \sigma + o(n \log \sigma)$**</td>
</tr>
</tbody>
</table>

We have omitted $O(\cdot)$ at the specification of the time complexities.

* actually $2n + o(n)$

** $4n + o(n)$ hidden in $o(n \log \sigma)$
Solution overview

- (1) Divide sequence into blocks of length σ.
- (2) Calculate rank and select on the block level.
- (3) Calculate in-block rank and select.
- Step (1) and (2) are used in all solutions
Relation between binary rank/select and general rank/select

- Conceptionally introduce a bitvector for each symbol
- Concatenated in row major order: Array A
- Size of A: $n\sigma$

```
  e y y y m m m m m _ _ _ $ e a a r r r r r r a
$ 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
_ 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1
e 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
m 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
r 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0
y 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
```
Relation between binary rank/select and general rank/select

If we can answer rank/select on A in constant time, we can answer it on T as well.

\[
\begin{align*}
 \text{rank}(T, i, c) &= \text{rank}(A, c \cdot n + i, 1) - \text{rank}(A, c \cdot n, 1) \quad (1) \\
 \text{select}(T, i, c) &= \text{select}(A, \text{rank}(A, c \cdot n, 1) + i + 1, 1) \quad (2)
\end{align*}
\]

But: A uses too much space!
Compressing A

- Divide A into blocks of length σ
- Count the number of ones in each block A
- Resulting array is C of length n, so $|C| = n \log \sigma$ bits.

e	y	y	y	m	m	m	m	-	-	-	$\$	e	a	a	r	r	r	r	r	a	
$\$	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	
-	0	0	0	0	0	0	0	0	1	1	3	0	0	0	0	0	0	0	0	0	
a	0	0	0	0	0	0	0	0	0	0	1	0	0	1	1	0	0	2	0	0	1
e	1	0	0	1	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0
m	0	0	0	3	1	1	1	1	0	0	1	0	0	0	0	0	0	0	0	0	0
r	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	5	1	1	0
y	0	1	1	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Compressing A

\[C = 0 \ 1 \ 0 \ 0 \ 3 \ 0 \ 0 \ 1 \ 2 \ 1 \ 1 \ 0 \ 3 \ 1 \ 0 \ 0 \ 0 \ 5 \ 3 \ 0 \ 0 \]

- The sum of all entries in C is n.
- So store it with unary code in array B with \(\Rightarrow |B| = 2n \) bits

\[B = 101110001110100101011000101111000001000111 \]

- Now C is compressed. But how do we answer rank and select with B?
- By adding a select data structure to B we can navigate to blocks in A!
- We jump to block i in A by doing $\text{select}(B, i, 1)$
- \(\text{rank}'(A, \sigma i) = \text{rank}(B, \text{select}(B, i, 1), 0) = \text{select}(B, i, 1) + 1 - i \)
Rank and select on blocks A

$$B = 101110001111010010101011000101111000001000111$$

1. $\text{rank}'(A, \sigma i) = \text{select}(B, i, 1) + 1 - i$
2. $\text{select}'(A, i) = \text{rank}(B, \text{select}(B, i, 0), 1) = \text{select}(B, i, 0) + 1 - i$
In-block rank and select (G-1)

- For each block A_j, we store the positions in the range $[0..\sigma-1]$ of the set bits in increasing order in an array E_j.
- Total space: $n \log \sigma$.

Answering select

- Block $x = select'(A, i, 1)$ contains the ith one. There are $y = rank'(A, \sigma x, 0)$ ones before block x ⇒ $select(A, i, 1) = x \cdot \sigma + E_x[i - y]$

Answering rank

- i with $j = \lfloor \frac{i}{\sigma} \rfloor$ and $r = i - j \cdot \sigma$
 $rank(A, i, 1) = rank'(A, i \cdot \text{sigma}) + \max\{\{k \mid E_j[k] < r\} \cup \{-1\}\} + 1$

 Use y-fast trie for second part to get $O(\log \log \sigma)$ time
Solution for rank/select and access (G-2)

- Divide T in chunks of size of size σ.
- In each chunk C: For each $c \in \Sigma$ (in lex. order) write its occurrences in C. We get a permutation π.
- Also store a bitvector X which contains the number of occurrences decoded in unary.

$$\pi = \begin{array}{cccccccccccccccccccccccc}
0 & 4 & 5 & 6 & 1 & 2 & 3 & 4 & 1 & 2 & 3 & 6 & 5 & 0 & 0 & 6 & 1 & 2 & 3 & 4 & 5
\end{array}$$

$$X = \begin{array}{cccccccccccccccccccccccc}
0 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}$$
Solution for rank/select and access (G-2)

- $\text{select}(T, i, c)$: First we determine by rank and select on A chunk x and the argument j for select on C_x.
- $\text{select}(C_x, j, c) = \pi_X[\text{select}(X, c, 1) + j - c]

$$
\begin{array}{cccccccccccc}
\pi = & 0 & 4 & 5 & 6 & 1 & 2 & 3 & 4 & 1 & 2 & 3 & 6 & 5 & 0 & 0 & 6 & 1 & 2 & 3 & 4 & 5 \\
X = & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\end{array}
$$
Solution for rank/select and access (G-2)

- \(y = \pi^{-1}(i) \) tells us the corresponding 0 in \(X \).
- Ones before \(y \) in \(X \) the corresponding character.
- I.e. \(\text{select}(X, y, 0) - y - 1 \)

\[
\pi = \begin{array}{cccccccccccc}
0 & 4 & 5 & 6 & 1 & 2 & 3 & 4 & 1 & 2 & 3 & 6 & 5 & 0 & 0 & 6 & 1 & 2 & 3 & 4 & 5 \\
\end{array}
\]

\[
X = 111101000110001010001010101111100111000001 \\
$_{a\ e\ m\ r\ y}$ $_{a\ e\ m\ r\ y}$ $._{a\ e\ m\ r\ y}$ $._{a\ e\ m\ r}$
\]
Solution for rank/select and access (G-2)

- Use X to select the range $[sp..ep]$ of position of c in π.
- Solve predecessor query on $\pi[sp..ep]$

$$\pi = \begin{array}{cccccccccccccc}
0 & 4 & 5 & 6 & 1 & 2 & 3 & 4 & 1 & 2 & 3 & 6 & 5 & 0 & 0 & 6 & 1 & 2 & 3 & 4 & 5
\end{array}$$

$$X = \begin{array}{cccccccccccccccccccc}
1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}$$