
A

Interval Analysis and Machine Arithmetic:
Why Signedness Ignorance is Bliss

GRAEME GANGE, The University of Melbourne

JORGE A. NAVAS, NASA Ames Research Center

PETER SCHACHTE, The University of Melbourne

HARALD SØNDERGAARD, The University of Melbourne

PETER J. STUCKEY, The University of Melbourne

The most commonly used integer types have fixed bit-width, making it possible for computations to “wrap
around”, and many programs depend on this behaviour. Yet much work to date on program analysis and
verification of integer computations treats integers as having infinite precision, and most analyses that do
respect fixed width lose precision when overflow is possible. We present a novel integer interval abstract
domain that correctly handles wrap-around. The analysis is signedness agnostic. By treating integers as
strings of bits, only considering signedness for operations that treat them differently, we produce precise,
correct results at a modest cost in execution time.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—compilers; optimiza-
tion; F.3.1 [Logics and Meanings of Programs]: Specifying and Verifying and Reasoning about Pro-
grams—assertions; invariants; logics of programs; mechanical verification; F.3.2 [Logics and Meanings

of Programs]: Semantics of Programming Languages—program analysis; G.1.0 [Numerical Analysis]:
General—Computer arithmetic

General Terms: Algorithms, Languages, Reliability, Theory, Verification

Additional Key Words and Phrases: Abstract interpretation, interval analysis, LLVM, machine arithmetic,
modular arithmetic, overflow, program analysis

1. INTRODUCTION

Most programming languages provide one or more fixed-width integer types. For main-
stream languages these are by far the most widely-used integer types. Arithmetic operations
on these types do not have the usual integer semantics, but instead obey laws of modular
arithmetic. The results of all fixed-width integer operations, including intermediate opera-
tions, are truncated to the bit-width of the integer type involved. Failing to account for this
can easily lead to incorrect results. For example, if signed w-bit integers a and b are known
to be non-negative, it does not follow that their sum is, since signed fixed-width addition
of positive integers can “wrap around” to produce a negative result.
Any program analysis seeking to accurately reflect the behaviour of fixed-width integer

arithmetic must account for the fact that overflow and underflow may lead to incorrect
results. In this paper, we shall consider analyses to determine upper and lower bounds for
integer variables, so-called interval analysis. Most work on interval analysis, for example,

This work is supported by the Australian Research Council, under ARC grant DP110102579.
Authors’ addresses: J. Navas, NASA Ames Research Center, Moffett Field CA 94035, USA; jorge.a.
navaslaserna@nasa.gov. Remaining authors: Department of Computing and Information Systems, The Uni-
versity of Melbourne, Vic. 3010, Australia; {gkgange,schachte,harald,pstuckey}@unimelb.edu.au.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or commercial advantage
and that copies show this notice on the first page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any
component of this work in other works requires prior specific permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA,
fax +1 (212) 869-0481, or permissions@acm.org.
c© YYYY ACM 0164-0925/YYYY/01-ARTA $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 G. Gange et al.

Su and Wagner [2004], Leroux and Sutre [2007], Gawlitza et al. [2009], and Rodrigues
et al. [2013] have ignored this issue of overflow, treating program integers as unbounded,
mathematical integers. In a fixed-precision context this can lead to unsound analysis results.
Consider for example this program fragment:

int i = 1;
while (*) {

i = i+1;
}
assert(i>0);

A verification tool based on mathematical integers will conclude (regardless of the condition
controlling the loop) that the assertion must hold: a value starting at one remains positive
no matter how many times it is incremented. However, this does not reflect the actual
behaviour of fixed-width arithmetic.
This defect is easily corrected by representing the bounds on fixed bit-width integer

variables with fixed bit-width values, and correcting the abstract operations to respect
those bit-widths. While this avoids incorrect conclusions, however, the precision of such a
domain is disappointing. Take the case of a computation z = x + y where x, y, and z are
unsigned 4-bit variables1, x is known to lie in the interval [1100, 1101] and y is confined to
the interval [0010, 0011]. That is, 12 ≤ x ≤ 13 and 2 ≤ y ≤ 3. Treating these as intervals on
Z, we would expect 14 ≤ z ≤ 16, however, 16 is not expressible as a 4 bit integer. Thus z
could lie in the interval [1110, 1111], or it could overflow to give 0000, so the correct interval
for z is [0000, 1111]. That is, all precision is lost.
Ironically, if we treated the same bit patterns as signed numbers, we would not lose

precision. The reader should pause to consider this, bearing in mind that x, y, and z
really are unsigned in our example. In the signed interpretation, x ∈ [1100, 1101] means
−4 ≤ x ≤ −3, so we can conclude z ∈ [1110, 0000]. The same bit patterns do not indicate an
overflow for signed integers, so here we do not lose precision. As long as we treat [1110, 0000]
as a set of bit patterns rather than a set of integers, we can remain indifferent to the
signedness of the actual values.
The same effect can arise when we treat signed integers as unsigned. If we know x ∈

[0100, 0101] and y ∈ [0010, 0011], where both values are treated as signed, then we conclude
z ∈ [1000, 0111] = [−8, 7], and again we lose all precision. However, if the values are treated
as unsigned, we obtain the precise result z ∈ [0110, 1000].
Thus, perhaps surprisingly, we obtain better precision by ignoring any signedness infor-

mation about the numbers being manipulated, instead treating them as just bit patterns.
And virtue becomes necessity when we wish to analyse low-level code, such as machine code
or LLVM, the “Low Level Virtual Machine.” LLVM is rapidly gaining popularity as a target
for compilers for a range of programming languages. As a result, the literature on static
analysis of LLVM code is growing [Falke et al. 2012; Falke et al. 2013; Sen and Srikant 2007;
Teixera and Pereira 2011; Zhang et al. 2010; Zhang et al. 2011]. LLVM IR (Intermediate
Representation) carefully specifies the bit-width of all integer values, but does not specify
whether they are signed or unsigned. Because for most operations two’s complement arith-
metic (treating the inputs as signed numbers) produces the same bit-vectors as unsigned
arithmetic, LLVM IR always omits signedness information except for operations that must
behave differently for signed and unsigned numbers, such as comparisons. In general it is
not possible to determine from LLVM code which values originated as signed variables in
the source program and which originated as unsigned. An analysis for LLVM code benefits
all compilers that target LLVM code as their back end, so it is fortuitous that signedness
information is not needed to infer precise intervals.

1We use 4-bit examples and binary notation to make examples more manageable.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Interval Analysis and Machine Arithmetic A:3

The literature on program analysis is vast, and the reader may ask how our approach
differs from methods that use similar-looking abstract domains, or methods based on other
ideas, such as constraint propagation or bit-blasting. We discuss this in Section 9 when
the reader has become familiar with our method and the sense in which it is “signedness
agnostic”. For now, suffice it to say that our aim has been to develop a static program
analysis which maintains the advantages of classical interval analysis, namely speed and
scalability, while working correctly and showing better precision in the fixed-width integer
context, compared to simpler “overflow aware” approaches. Alternative methods for rea-
soning about integer bounds tend to sacrifice speed, precision and/or scalability in the face
of real-world programs, especially where these involve non-linear arithmetic.
The contributions of this paper can be summarised as follows:

—We adapt the classical integer interval analysis domain to correctly handle fixed-width
integer arithmetic without undue loss of precision. The key idea of this domain, which we
call “wrapped intervals,” is that correctness and precision of analysis can be obtained by
letting abstract operations deal with states that are superpositions of signed and unsigned
states.

—As an abstract domain, wrapped intervals do not form a lattice. We investigate the rami-
fications of this and provide remedies for the undesirable consequences. In particular, we
show how to generalise a binary upper bound operator to one that finds a minimal upper
bound for a set of intervals, without undue precision loss.

—We motivate and provide detailed algorithms for all aspects of the analysis, including
so-called widening. Our widening approach is new and is based on the idea of, roughly,
doubling the size of an interval in each widening step.

—We establish various results about relations with similar-looking abstract domains, includ-
ing the fact that the proposed abstract domain is incomparable with (reduced products
of) previously proposed value domains.

—We evaluate the resulting analysis on a suite of SPEC CPU 2000 benchmarks and show
that it provides higher precision than the classical integer interval analysis for a moderate
added cost.

We assume the reader is familiar with basic lattice theory and concepts from the field of
abstract interpretation, including Moore families, reduced products of abstract domains,
widening and narrowing [Cousot and Cousot 1977; 1979; 1992].
The remainder of this paper is organized as follows. Section 2 reviews the classical integer

interval analysis domain. Section 3 introduces wrapped intervals formally, and discusses
their use in contexts in which it is not known whether values are signed or unsigned.
In Section 4 the abstract domain of wrapped intervals is compared to related reduced-
product domains. Section 5 deals with termination and acceleration of the analysis. Section 6
presents the results of experiments and gives an evaluation of cost and benefits. Section 7
employs the domain to reduce the amount of instrumentation code necessary to detect
runtime overflows and underflows in C programs, and Section 8 discusses further potential
applications. Section 9 discusses previous work to adapt interval analysis to fixed precision
integers. Section 10 describes future work and concludes. A preliminary version of this paper
appeared as Navas et al. [2012].

2. BASIC INTEGER INTERVAL ANALYSES

The goal of interval analysis is to determine an approximation of the sets of possible values
that may be stored in integer-valued variables at various points in a computation. To keep
this tractable, interval analysis approximates such a set using only its smallest and largest
possible values, taking the specified set to be all integers between those bounds.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 G. Gange et al.

⊥

· · · [−2,−2] [−1,−1] [0, 0] [1, 1] [2, 2] · · ·

[−2,−1] [−1, 0] [0, 1] [1, 2]

[−2, 0] [−1, 1] [0, 2]

[−∞,−1] [−2, 1] [−1, 2] [1,∞]

[−∞, 0] [−2, 2] [0,∞]

[−∞, 1] [−1,∞]

[−∞,∞]

Fig. 1. The classical integer interval domain I

2.1. The classical integer interval domain

Interval analysis is well understood [Nielson et al. 1999; Seidl et al. 2012]. The classical
interval lattice I is shown in Figure 1. Apart from the element ⊥, which denotes the empty
interval, the elements are of the form [x, y], where x ranges over Z ∪ {−∞}, y ranges
over Z ∪ {∞}, and x ≤ y. (Here of course ≤ is the natural extension of ≤ on Z, that is,
−∞ ≤ x ≤ ∞ for all x ∈ Z∪ {−∞,∞}.) The ordering ⊑ of such intervals is obvious, albeit
slightly cumbersome to express. Let us define

lo(z) =

{
∞ if z = ⊥
x if z = [x, y]

hi(z) =

{
−∞ if z = ⊥
y if z = [x, y]

Then we can define z ⊑ z′ iff lo(z′) ≤ lo(z) ∧ hi(z) ≤ hi(z′). For the join we have:

z ⊔ z′ =

{
⊥ if z = z′ = ⊥
[min(lo(z), lo(z′)),max(hi(z), hi(z′))] otherwise

For the meet, additional care is needed:

z ⊓ z′ =

{
⊥ if z = ⊥ or z′ = ⊥
⊥ if disjoint(z, z′)
[max(lo(z), lo(z′)),min(hi(z), hi(z′))] otherwise

where disjoint([x, y], [x′, y′]) holds iff y < x′ ∨ y′ < x.
Of central interest in this paper is the handling of arithmetic operations in (wrapped)

integer interval analysis. As a reference point, we conclude this section with the well-known
definitions of the (abstract versions of) the arithmetic operators + and ×. Abstract addition
is defined:

z + z′ =

{
⊥ if z = ⊥ or z′ = ⊥
[lo(z) + lo(z′), hi(z) + hi(z′)] otherwise

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Interval Analysis and Machine Arithmetic A:5

where the + on the right-hand side is addition extended to Z ∪ {−∞,∞}. Abstract multi-
plication is defined:

z × z′ =

⊥ if z = ⊥
or z′ = ⊥

[min(S),max (S)] where
S = {lo(z)× lo(z′), lo(z)× hi(z′), hi(z)× lo(z′), hi(z)× hi(z′)} otherwise

For example, to calculate [−4, 2]×[3, 5], one considers the combinations −4×3,−4×5, 2×3,
and 2 × 5 and identifies the minimum and maximum values. This yields [−4, 2] × [3, 5] =
[−20, 10]. Note carefully the central role played by the functions min and max in this
definition.
As is clear from Figure 1, the classical interval domain has infinite ascending chains.

Implementations of interval analysis invariably include widening [Nielson et al. 1999] to
accelerate or ensure termination of the analysis.

2.2. Fixed-precision integer intervals

Adapting the classical interval analysis to the fixed-precision case is not difficult. For an
interval analysis over the unsigned integers modulo m we define abstract domain Ium. The
elements of this domain are ⊥ (for the empty interval) together with the set of delimited
intervals, {[a, b] | 0 ≤ a ≤ b < m}. For the signed domain Ism, the elements are ⊥ and the
delimited intervals {[a, b] | ⌈−m

2 ⌉ ≤ a ≤ b < m
2 }. For a picture of Ism, simply replace, in

Figure 1, each lower-bound ‘−∞’ by ‘⌈−m
2 ⌉’ and each upper-bound ‘∞’ by ‘⌈m2 ⌉ − 1’. To

picture Ium, first remove all intervals with negative lower bounds, and then replace ‘∞’ by
‘m − 1’. For the lattice operations, perform the same substitutions—these definitions are
unchanged otherwise. For the arithmetic operations we now need to pay attention to the
possibility of overflow. For Ium, we can conservatively define addition as follows:

z + z′ =

{
⊥ if z = ⊥ or z′ = ⊥
[lo(z) + lo(z′), hi(z) + hi(z′)] if hi(z) + hi(z′) < m
[0,m− 1] otherwise

where the + is normal integer addition. In a similar manner we can define the operations
for signed analysis, taking both under- and overflow into account.
Because our interest is in faithfully analysing programs that manipulate (signed or un-

signed) native machine integers, we will largely focus on Is2w and Iu2w , where w is a common
integer bit-width.

3. WRAPPED INTEGER INTERVAL ANALYSIS

To accurately capture the behaviour of fixed bit-width arithmetic, we must limit the concrete
domain to the values representable by the types used in the program, and correct the
implementation of the abstract operations to reflect the actual behaviour of the concrete
operations [Simon and King 2007]. As we have seen, a commitment to ordinary ordered
intervals [x, y] (either signed or unsigned), when wrap-around is possible, can lead to severe
loss of precision.
This suggests that it is better to treat the bounds of an interval as a superposition of

signed and unsigned values, allowing ourselves to accommodate both signed and unsigned
wrap-around. That is, we treat each bound as merely a bit pattern, considering its signedness
only when necessary for the operation involved (such as comparison). We therefore describe
the domain as signedness-agnostic. We treat each interval as the set of bit patterns beginning
with the first bound and obtainable by incrementing this value until the second bound is
reached. Not knowing whether these bit patterns are signed or unsigned, we cannot say
which is the “lower” and which is the “upper” bound.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 G. Gange et al.

10· · ·00

11· · ·1100· · ·00

01· · ·11
N

S

The 0-hemisphere The 1-hemisphere

10· · ·00 01· · ·11 : For signed arithmetic—snip at N
00· · ·00 11· · ·11 : For unsigned arithmetic—snip at S

00· · ·00 01· · ·11

10· · ·00 11· · ·11
: Agnostically—cut at both N and S

Fig. 2. Three different ways to cut the number circle open

Instead of representing bounds over fixed bit-width integer types as a single range of
values on the number line, we handle them as a range of values on a number circle (see
Figure 2), or, in the n-dimensional case, as a (closed convex) region of an n-dimensional
torus. The unsigned numbers begin with 0 near the “south pole,” proceeding clockwise to
the maximum value back near the south pole. The signed numbers begin with the smallest
number near the “north pole,” proceeding clockwise through 0, back to the largest signed
number near the north pole.
“Wrapped” intervals are permitted to cross either (or both) poles. Letting an interval

start and end anywhere has several advantages:

— It allows for a limited and special type of disjunctive interval information. For example,
an interval x ∈ [0111, 1001] means 7 ≤ x ≤ 9 if x is treated as unsigned, and x = 7∨−8 ≤
x ≤ −7 if it is treated as signed.

— It results in an abstract domain that is complemented : For a wrapped interval t, we can
express x 6∈ t just as readily as x ∈ t. For example, in the analysis of if (x == 0) s1
else s2, we can express x’s latitude in each of s1 and s2 exactly (namely, x ∈ [0000, 0000]
in case of s1, and x ∈ [0001, 1111] in case of s2).

—Wrapped interval arithmetic better reflects algebraic properties of the underlying arith-
metic operations than intervals without wrapping, even if signedness information is avail-
able. Consider for example the computation x + y − z. If we know x, y, and z are all
signed 4-bit integers in the interval [0011, 0101], then we determine y − z ∈ [1110, 0010],
whether using wrapped intervals or not. But wrapped intervals will also capture that
x + y ∈ [0110, 1010], while an unwrapped fixed-width interval analysis would see that
this sum could be as large as the largest value 0111 and as small as the smallest 1000,
so would derive no useful bounds. Therefore, wrapped intervals derive the correct bounds
[0001, 0111] for both (x+y)−z and x+(y−z). The use of ordinary (un-wrapped) intervals,
on the other hand, can only derive these bounds for x+(y− z), finding no useful informa-
tion for (x+ y)− z, although wrapping is not necessary to represent the final result. This
ability to allow intermediate results to wrap around is a powerful advantage of wrapped
intervals, even in cases where signedness information is available and final results do not
require wrapping.

All up, this small broadening of the ordinary interval domain allows precise analysis of code
where signedness information is unavailable. Equally importantly, it can provide increased
precision even where all signedness information is provided.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Interval Analysis and Machine Arithmetic A:7

As we shall see, the advantages of wrapped intervals do come at a price. The domain of
wrapped intervals does not form a lattice, and the consequence is the inconvenience of a
great deal of care being necessary in an implementation. In this paper we provide all the
necessary details for an efficient implementation and show that, fortunately, the greater
craft required in implementation does not translate into algorithms that are substantially
slower than those used in classical interval analysis.

3.1. Wrapped intervals, formally

We use Bw to denote the set of all bit-vectors of size w. We will use sequence notation to
construct bit-vectors: bk, where b ∈ {0, 1}, represents k copies of bit b in a row, and s1s2
represents the concatenation of two bit-vectors s1 and s2. For example, 01403 represents
01111000.
We shall apply the usual arithmetic operators, with their usual meanings, to bit-vectors.

That is, unadorned arithmetic operators treat bit-vectors identically to their unsigned in-
teger equivalents. Operators subscripted by a number suggest modular arithmetic; more
precisely, a+n b = (a+ b) mod 2n, and similarly for other operators.
We use ≤ for the usual lexicographic ordering of Bw. For example, 0011 ≤ 1001. In the

context of wrapped intervals, a relative ordering is more useful than an absolute one. We
define

b ≤a c iff b−w a ≤ c−w a

Intuitively, this says that starting from point a on the number circle and travelling clockwise,
b is encountered no later than c. It also means that if the number circle were rotated to put
a at the south pole (the zero point), then b would be lexicographically no larger than c.
Naturally, ≤0 coincides with ≤, and reflects the normal behaviour of <= on unsigned w-

bit integers. Similarly, ≤2w−1 reflects the normal behaviour of <= on signed w-bit integers.
When their arguments are restricted to a single hemisphere (see Figure 2), these orderings
coincide, but ≤0 and ≤2w−1 do not agree across hemispheres.
We view the fixed-width integers we operate on as actually bit-vectors, completely free of

signedness information. This accords exactly with how LLVM and assembly languages view
integers. However, for convenience, when operations on bit-vectors will be independent
of the interpretation, we may sometimes use integers (by default unsigned) to represent
bit-vectors. This is just a matter of convenience: by slight extension it allows us to use
congruence relations and other modular-arithmetic concepts to express bit-vector relations
that are otherwise cumbersome to express. The following definition is a good example.

Definition 3.1. A wrapped interval, or w-interval, is either an empty interval, denoted ⊥,
a full interval, denoted ⊤, or a delimited interval Lx, y M, where x, y are w-width bit-vectors
and x 6= y +w 1.2

Let W2w be the set of w-intervals over width w bit-vectors. The meaning of a w-interval is
given by the function γ :W2w → P(Bw):

γ(⊥) = ∅

γLx, y M =

{
{x, . . . , y} if x ≤ y
{0w, . . . , y} ∪ {x, . . . , 1w} otherwise

γ(⊤) = Bw

For example,

γL 1111, 1001 M = {1111, 0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001}

2The condition, which is independent of signed/unsigned interpretation, avoids duplicate names (such as
L 0011, 0010 M and L 1100, 1011 M) for the full interval.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 G. Gange et al.

(a) (b) (c) (d)

Fig. 3. Four cases of relative position of two w-intervals

represents the signed integers [−1, 7]∪ {−8,−7} or the unsigned integers [0, 9] ∪ {15}. The
cardinality of a w-interval is therefore:

#(⊥) = 0
#Lx, y M = (y −w x+w 1)
#(⊤) = 2w

In an abuse of notation, we define e ∈ u iff e ∈ γ(u). Note that W2w is complemented. We
define the complement of a w-interval:

⊥ = ⊤
⊤ = ⊥

Lx, y M = L y +w 1, x−w 1 M

3.2. Ordering wrapped intervals

We order W2w by inclusion: t1 ⊆ t2 iff γ(t1) ⊆ γ(t2). It is easy to see that ⊆ is a partial
ordering on W2w the set is a finite partial order with least element ⊥ and greatest element
⊤.
We now define membership testing and inclusion for wrapped intervals. For membership

testing:

e ∈ u ≡ u = ⊤ ∨ (u = Lx, y M ∧ e ≤x y)

Inclusion is defined in terms of membership: either the intervals are identical or else both
endpoints of s are in t and at least one endpoint of t is outside s.

s ⊆ t =

{
true if s = ⊥ ∨ t = ⊤ ∨ s = t
false if s = ⊤ ∨ t = ⊥
a ∈ t ∧ b ∈ t ∧ (c 6∈ s ∨ d 6∈ s) if s = L a, b M, t = L c, d M

In guarded definitions like this, the clause that applies is the first (from the top) whose
guard is satisfied; that is, an ‘if’ clause should be read as ‘else if’.
Consider the cases of possible overlap between two w-intervals shown in Figure 3. Only

case (a) depicts containment, but case (b) shows a situation where each w-interval has its
bounds contained in the other. This explains why the third case in the definition of ⊆
requires that c 6∈ s or d 6∈ s.
While (W2w ,⊆) is partially ordered, it is not a lattice. For example, consider the w-

intervals L 0100, 1000 M and L 1100, 0000 M. Two minimal upper bounds are the incomparable
L 0100, 0000 M and L 1100, 1000 M, two sets of the same cardinality. So a join operation is not
available. By duality, neither is a meet operation.
In fact the domain of wrapped intervals is not a Moore family, that is, it is not closed

under conjunction. For example,

γL 1000, 0000 M∩ γL 0000, 1000 M = {0000, 1000},

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Interval Analysis and Machine Arithmetic A:9

a set which does not correspond to a w-interval. Furthermore, the two w-intervals
L 1000, 0000 M and L 0000, 1000 M are minimal candidates describing the set {0000, 1000}
equally well. In other words, there is no unique best abstraction of {0000, 1000}.
The obvious response to the lack of a join is to seek an “over-join” operation ⊔̃ which

selects, from the set of possible resulting w-intervals, the one with smallest cardinality. In
the case of a tie, any convenient mechanism can be used to select a single result.

3.3. Biased over- and under-approximation of bounds

SinceW2w is not a lattice, it does not have meet and join operations. However, it is useful to
define the best approximations of meet and join we can create. In fact, there are two sensible
approximations of each, depending on whether we need an under- or over-approximation:
over-meet ⊓̃ and over-join ⊔̃ produce over-approximations, and under-meet ⊓

˜
and under-

join ⊔
˜
produce under-approximations. These are best understood in terms of the semantic

function γ:

γ(s ⊔̃ t) ⊇ γ(s) ∪ γ(t), minimising #(s ⊔̃ t)

γ(s ⊓
˜
t) ⊆ γ(s) ∩ γ(t), maximising #(s ⊓

˜
t)

γ(s ⊔
˜
t) ⊆ γ(s) ∪ γ(t), maximising #(s ⊔

˜
t)

γ(s ⊓̃ t) ⊇ γ(s) ∩ γ(t), minimising #(s ⊓̃ t)

In particular, note that ⊔̃ produces a minimal upper bound and ⊓
˜

produces a maximal

lower bound. For the analysis presented in this paper, only ⊔̃ and ⊓̃ turn out to be useful.
However, ⊔

˜
and ⊓

˜
would be needed for other analyses, for example a backward analysis

to determine the bounds on arguments to a function that would ensure that calls to the
function can complete without an index out-of-bounds error. Thus it is worth presenting all
four operations.
All four use cardinality to choose among candidate results. To resolve ties we arbitrarily

choose the interval with the (lexicographically) smallest left component; hence these are
biased algorithms. We use duality to simplify the presentation, shown in Figure 4. In the
definition of ⊔̃, the first two cases handle ⊤ and ⊥, as well as Figure 3 (a); the third case
handles Figure 3 (b); the fourth and fifth cases handle Figure 3 (c); and the final two cases
handle Figure 3 (d). Conversely, in the definition of ⊓̃, the first two cases handle ⊤ and ⊥,
as well as Figure 3 (a); the third case handles Figure 3 (d); the fourth and fifth cases handle
Figure 3 (c); and the final two cases handle Figure 3 (b).
Unfortunately all these operations have important shortcomings. First, they are not as-

sociative; in fact, different ways of associating the operands may yield results with different
cardinalities. For example, if x = L 0010, 0110 M, y = L 1000, 1010 M, and z = L 1110, 0000 M,
then (x⊔̃y)⊔̃z = L 1110, 1010 M has smaller cardinality than x⊔̃(y⊔̃z) = L 0010, 0000 M. Second,
none of these operations are monotone. For example, we have L 1111, 0000 M≤ L 1110, 0000 M
and L 0110, 1000 M ⊔̃ L 1111, 0000 M = L 1111, 1000 M. But owing to the left bias, L 0110, 1000 M ⊔̃
L 1110, 0000 M = L 0110, 0000 M. As we do not have L 1111, 1000 M ≤ L 0110, 0000 M, ⊔̃ is not
monotone. We discuss the ramifications of this in Section 5, together with a work-around.

Lack of associativity means we cannot define generalised (variadic)
⊔̃
,
d
˜
,
⊔
˜
, and

d̃
oper-

ations by simply folding the corresponding binary operation over a collection of w-intervals,
as we are accustomed to do for lattice domains. These operations should be carefully de-
fined to produce the smallest w-interval containing all the given w-intervals, the largest
w-interval contained in each of the given w-intervals, the largest w-interval contained in the
union of all the given w-intervals, and the smallest w-interval containing the intersection of
all the given w-intervals, respectively. The necessary specialized algorithms are worthwhile,
because it is not uncommon to use repeated joins in program analysis, for example, when
analysing a basic block with more than two predecessor blocks. Using repeated binary joins

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 G. Gange et al.

s ⊔̃ t =

t if s ⊆ t
s if t ⊆ s
⊤ if s = L a, b M ∧ t = L c, d M ∧ a ∈ t ∧ b ∈ t ∧ c ∈ s ∧ d ∈ s
L a, d M if s = L a, b M ∧ t = L c, d M ∧ b ∈ t ∧ c ∈ s
L c, b M if s = L a, b M ∧ t = L c, d M ∧ d ∈ s ∧ a ∈ t
L a, d M if s = L a, b M ∧ t = L c, d M ∧

(#L b, c M < #L d, a M ∨ (#L b, c M = #L d, a M ∧ a ≤ c))
L c, b M otherwise

s ⊓̃ t =

s if s ⊆ t
t if t ⊆ s
⊥ if s = L a, b M ∧ t = L c, d M ∧ a 6∈ t ∧ b 6∈ t ∧ c 6∈ s ∧ d 6∈ s
L c, b M if s = L a, b M ∧ t = L c, d M ∧ b ∈ t ∧ c ∈ s
L a, d M if s = L a, b M ∧ t = L c, d M ∧ d ∈ s ∧ a ∈ t
L a, b M if s = L a, b M ∧ t = L c, d M ∧

(#L a, b M < #L c, d M ∨ (#L a, b M = #L c, d M ∧ a ≤ c))
L c, d M otherwise

s ⊓
˜
t = s ⊔̃ t

s ⊔
˜
t = s ⊓̃ t

Fig. 4. Over- and under-approximations of extreme bounds

function
⊔̃
(S)

f ← g ← ⊥
for s ∈ S (in order of lex increasing left bound) do

if s = ⊤ ∨ (s = Lx, y M ∧ y ≤0 x) then
f ← extend(f, s)

for s ∈ S (in order of lex increasing left bound) do
g ← bigger(g, gap(f, s))
f ← extend(f, s)

return bigger(g, f)

a

b c

a

b c

d

Fig. 5. Finding a minimal upper bound of a set of w-intervals

in such cases will sometimes give weaker results than the generalised approximate least
upper bound or greatest lower bound operation [Gange et al. 2013a].

Figure 5 gives an algorithm for computing
⊔̃
S. Intuitively, the algorithm returns the

complement of the largest un-covered gap among intervals from S. It identifies this gap by
passing through S once, picking intervals lexicographically by their left bounds. However,
care must be taken to ensure that any apparent gaps, which are in fact covered by w-intervals
that cross the south pole and may only be found later in the iteration, are not mistaken
for actual gaps. We define the gap between two w-intervals as empty if they overlap, or
otherwise the clockwise distance from the end of the first to the start of the second:

gap(s, t) =

{
L c, b M if s = L a, b M ∧ t = L c, d M ∧ b 6∈ t ∧ c 6∈ s

⊥ otherwise

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Interval Analysis and Machine Arithmetic A:11

The operation extend(s, t) produces the w-interval that runs from the start of s to the
end of t, ensuring it includes all of s and t:

extend(s, t) =

t if s ⊆ t
s if t ⊆ s
⊤ if s ⊆ t
L a, d M otherwise, where s = L a, b M, t = L c, d M

The operation bigger(s, t) is defined:

bigger(s, t) =

{
t if # t > # s
s otherwise

The two loops in Figure 5 traverse the set of w-intervals in order of lexicographically in-
creasing left bound; it does not matter where ⊤ and ⊥ appear in this sequence. The first
loop assigns to f the least upper bound of all w-intervals that cross the south pole. The
invariant for the second loop is that g is the largest uncovered gap in f ; thus the loop
can be terminated as soon as f = ⊤. When the loop terminates, all w-intervals have been
incorporated in f , so f is an uncovered gap, and g is the largest uncovered gap in f . Thus
the result is the complement of the bigger of g and f .
Consider Figure 5 (upper right) as an example. Here no intervals cross the south pole, so

at the start of the second loop, f = g = ⊥, and at the end of the loop, g is the gap between
a and b, and f is the interval clockwise from the start of a to the right end of c. Since the
complement of f is larger than g, the result in this case is f : the interval from the start of
a to the end of c.
For the lower right example of Figure 5, interval d does cross the south pole, so at the

start of the second loop, f = d and g = ⊥. Now in the second loop, f extends clockwise to
encompass b and c, and finally also d, at which point f becomes ⊤. But because the loop
starts with f = d, g never holds the gap between a and b; finally it holds the gap between
the end of c and the start of d. Now the complement of f is smaller than g so the final
result is the complement of g, that is, the interval from the start (right end) of d to the end
of c.
The

⊔̃
operation is useful because it may preserve information that would be lost by

repeated use of the over-join. Thus it should always be used when multiple w-intervals must
be joined together, such as in the implementation of multiplication proposed in Section 3.4.
In fact, a general strategy for improving the precision of analysis is to delay the application
of over-joins until all the w-intervals to be joined have become available. Such delays allow

multiple uses of ⊔̃ to be replaced by a single use of
⊔̃
.

While the over-lub of a set of w-intervals S is a smallest w-interval that covers all elements
of S, the generalised under -lub

⊔
˜
S is a largest w-interval that is entirely covered by elements

of S. That is, every value covered by
⊔
˜
S is covered by some element of S. An algorithm for⊔

˜
S is given in Figure 6.

Like
⊔̃
S above, this algorithm works by scanning the intervals in S in order of increasing

left bound. We keep track of the first contiguous interval f0, the current interval f and the
largest contiguous interval so far p. After we have processed all the intervals, it is possible
that the last interval overlaps with the first; if this is the case, we combine the final f with
f0. The largest interval must then be either f or p. We make use of the predicate overlap(s, t)
which checks if there is no gap between the end of s and the beginning of t:

overlap(s, t) ≡ (s = ⊤) ∨ (t = ⊤) ∨ (s = L a, b M ∧ t = L c, d M ∧ c ≤a b)

Consider Figure 6 (upper right). We start with f0 = a and begin scanning from the south
pole. As there is no overlap between f0 and b, the first while loop terminates, and we start

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 G. Gange et al.

function
⊔
˜
([s1, . . . , sn])

[s1, . . . , sn] are in order of lex increasing left bound
f0 ← s1
i = 2
while i ≤ n ∧ overlap(f0, si) do

f0 ← extend(f0, si)
i← i+ 1

p← f ← f0
while i ≤ n do

if overlap(f, si) then
f ← extend(f, si)

else

p← bigger(p, f)
f ← si

i← i+ 1
if overlap(f, f0) then f ← extend(f, f0)

return bigger(f, p)

a

b

d

a

b

c

d

Fig. 6. Finding a maximal under-approximation of a union of w-intervals

the second with f0 = f = p = a. After the first iteration, f0 = p = a, f = b, and after the
second and final iteration, f0 = a, p = b, f = d. Finally, as f overlaps with f0, we expand f
to encompass a and d. However, as p is still larger than f , we have

⊔
˜
{a, b, d} = b.

In the case of Figure 6 (lower right), we have the additional interval c. The algorithm
proceeds exactly as before until the second iteration of the second while loop, where we
encounter c. After this, f0 = a, p = b, f = c. After the third and final iteration, because c
and d overlap, f0 = a, p = b, f = extend(c, d). We then combine f with f0 as before; so, we
have p covering b, and f covering a, c and d. As f is larger than p, we find

⊔
˜
{a, b, c, d} to

be the interval from the beginning of c to the end of a.

Finally, the algorithms for
d̃

and
d
˜

can easily be defined by duality using the
⊔̃

and
⊔
˜operations given above:

l̃
S =

⊔

˜
{s | s ∈ S}

l

˜
S =

⊔̃
{s | s ∈ S}

The intersection of two w-intervals returns one or two w-intervals, and gives the exact
intersection, in the sense that

⋃
{γ(u) | u ∈ s ∩ t} = γ(s) ∩ γ(t).

s ∩ t =

∅ if s = ⊥ or t = ⊥
{t} if s = t ∨ s = ⊤
{s} if t = ⊤
{L a, d M, L c, b M} if s = L a, b M ∧ t = L c, d M ∧ a ∈ t ∧ b ∈ t ∧ c ∈ s ∧ d ∈ s
{s} if s = L a, b M ∧ t = L c, d M ∧ a ∈ t ∧ b ∈ t
{t} if s = L a, b M ∧ t = L c, d M ∧ c ∈ s ∧ d ∈ s
{L a, d M} if s = L a, b M ∧ t = L c, d M ∧ a ∈ t ∧ d ∈ s ∧ b 6∈ t ∧ c 6∈ s
{L c, b M} if s = L a, b M ∧ t = L c, d M ∧ b ∈ t ∧ c ∈ s ∧ a 6∈ t ∧ d 6∈ s
∅ otherwise

Finally, we define interval difference:

s \ t = s ⊓̃ t

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Interval Analysis and Machine Arithmetic A:13

3.4. Analysing arithmetic expressions

Addition and subtraction of w-intervals are defined as follows:

s+ t =

{
⊥ if s = ⊥ or t = ⊥
L a+w c, b+w d M if s = L a, b M, t = L c, d M, and # s+# t ≤ 2w

⊤ otherwise

s− t =

{
⊥ if s = ⊥ or t = ⊥
L a−w d, b−w c M if s = L a, b M, t = L c, d M, and # s+# t ≤ 2w

⊤ otherwise

Here, to detect a possible overflow when adding the two cardinalities, standard addition is
used. Note that +w and −w are signedness-agnostic: treating operands as signed or unsigned
makes no difference. Multiplication on w-intervals is more cumbersome, even when we settle
for a less-than-optimal solution. The reason is that even though unsigned and signed multi-
plication are the same operation on bit-vectors, signed and unsigned interval multiplication
retain different information. The solution requires separating each interval at the north and
south poles, so the segments agree on ordering for both signed and unsigned interpretations,
and then performing both signed and unsigned multiplication on the fragments.
It is convenient to have names for the smallest w-intervals that straddle the poles. Define

the north pole interval np = L 01w−1, 10w−1 M and the south pole interval sp = L 1w, 0w M.
Define the north and south pole splits of a delimited w-interval as follows:

nsplit(s) =

∅ if s = ⊥
{L a, b M} if s = L a, b M and np 6⊆ L a, b M
{L a, 01w−1 M, L 10w−1, b M} if s = L a, b M and np ⊆ L a, b M
{L 0w, 01w−1 M, L 10w−1, 1w M} if s = ⊤

ssplit(s) =

∅ if s = ⊥
{L a, b M} if s = L a, b M and sp 6⊆ L a, b M
{L a, 1w M, L 0w, b M} if s = L a, b M and sp ⊆ L a, b M
{L 10w−1, 1w M, L 0w, 01w−1 M} if s = ⊤

Then let the sphere cut be

cut(u) =
⋃
{ssplit(v) | v ∈ nsplit(u)}

For example, cut(L 1111, 1001 M) = {L 1111, 1111 M, L 0000, 0111 M, L 1000, 1001 M}.
Unsigned ×u and signed ×s multiplication of two delimited w-intervals L a, b M and L c, d M

that do not straddle poles are straightforward:

L a, b M×u L c, d M =
{

L a×w c, b×w d M if b× d− a× c < 2w

⊤ otherwise

And, letting msb be the function that extracts the most significant bit from its argument:

L a, b M×s L c, d M =

L a×w c, b×w d M if msb(a) = msb(b) = msb(c) = msb(d)
∧ b× d− a× c < 2w

L a×w d, b×w c M if msb(a) = msb(b) = 1 ∧msb(c) = msb(d) = 0
∧ b × c− a× d < 2w

L b×w c, a×w d M if msb(a) = msb(b) = 0 ∧msb(c) = msb(d) = 1
∧ a× d− b× c < 2w

⊤ otherwise

Now, signed and unsigned bit-vector multiplication agree for segments that do not straddle
a pole. This is an important observation which gives us a handle on precise multiplication

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 G. Gange et al.

1001

11110001

0000
Fig. 7. Example 3.2’s two intervals to be multiplied

across arbitrary delimited w-intervals:

L a, b M×us L c, d M = (L a, b M×u L c, d M) ∩ (L a, b M×s L c, d M)
The use of intersection in this definition is the source of the added precision. Each of ×u

and ×s gives a correct over-approximation of multiplication, and hence the intersection is
also a correct over-approximation.
This now allows us to do general signedness-agnostic multiplication by joining the seg-

ments obtained from each piecewise hemisphere multiplication:

s× t =
⊔̃
{m | u ∈ cut(s), v ∈ cut(t),m ∈ u×us v}

Example 3.2. Consider the multiplication L 1111, 1001 M × L 0000, 0001 M. The two
multiplicand intervals are shown in Figure 7. The cut of the first w-interval is
{L 1111, 1111 M, L 0000, 0111 M, L 1000, 1001 M}, the cut of the second is {L 0000, 0001 M}. The
three separate segment multiplications give:

(1) L 1111, 1111 M×u L 0000, 0001 M = ⊤, (or, [15, 15]× [0, 1] = ⊤)
L 1111, 1111 M×s L 0000, 0001 M = L 1111, 0000 M (or, [−1,−1]× [0, 1] = [−1, 0])
∴ L 1111, 1111 M×us L 0000, 0001 M = {L 1111, 0000 M}

(2) L 0000, 0111 M×u L 0000, 0001 M = L 0000, 0111 M (or, [0, 7]× [0, 1] = [0, 7])
L 0000, 0111 M×s L 0000, 0001 M = L 0000, 0111 M (or, [0, 7]× [0, 1] = [0, 7])
∴ L 0000, 0111 M×us L 0000, 0001 M = {L 0000, 0111 M}

(3) L 1000, 1001 M×u L 0000, 0001 M = L 0000, 1001 M (or, [8, 9]× [0, 1] = [0, 9])
L 1000, 1001 M×s L 0000, 0001 M = L 1000, 0000 M (or, [−8,−7]× [0, 1] = [−8, 0])
∴ L 1000, 1001 M×us L 0000, 0001 M
= L 0000, 1001 M∩ L 1000, 0000 M
= {L 1000, 1001 M, L 0000, 0000 M}

Applying
⊔̃
, we get the maximally precise result L 1111, 1001 M ([15, 9] or [−1, 9] depending

on signedness). Note the crucial role played by ×us in obtaining this precision. For example,
in the first case above, where we have no information about the result of unsigned multi-
plication (L 1111, 1111 M ×u L 0000, 0001 M = ⊤), we effectively assume that multiplication
is signed, obtaining a much tighter result. The role of ×us is to do signed and unsigned
multiplication simultaneously.

Example 3.2 illustrates a rather important point. In Section 1 we showed how it can
sometimes be advantageous to perform analysis assuming signed integers, while in other
cases it is better to assume unsigned integers. It is natural to ask: Why not simply per-
form two analyses, one under each assumption, and combine the results? Example 3.2
shows clearly the weakness of this idea. For the example, both a “signed” analysis and
an “unsigned” analysis yields ⊤. In an unsigned analysis, this happens since already
L 1111, 1111 M ×u L 0000, 0001 M = ⊤ (case 1). For a signed analysis, note that the three

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Interval Analysis and Machine Arithmetic A:15

outcomes, L 1111, 0000 M, L 0000, 0111 M, and L 1000, 0000 M, together span all possible values,
so again the result is ⊤.
What is different, and important, about our approach is that the signed/unsigned case

analysis happens at the “micro-level,” throughout the computation, rather than performing
the entire computation each way and choosing the best results. This is what we have in mind
when we say that the abstract operations deal with superposed signed/unsigned states. The
superposition idea is general and works for other operations. We can define all abstract
operations by “segment case analysis” similar to Example 3.2’s. However, this does not
always add precision—many abstract operations can be captured using definitions that are
equivalent to the case-by-case analysis, but simpler. Sometimes two cases suffice, sometimes
one will do. As can be seen in the following, some operations need three cases (and apply
cut), others need two (and apply ssplit or nsplit). We have already seen operations that
require no segment case analysis at all (addition and subtraction).
Signed and unsigned division are different operations, owing to the need to round towards

zero. For example, in unsigned 4-bit integer arithmetic, 1001/0010 yields 0100 (9/2 = 4),
while in signed 4-bit integer arithmetic it yields 1101 (-7/2 = -3). We follow LLVM in calling
signed and unsigned division sdiv and udiv, respectively.
For unsigned division we define:

udiv(s, t) =
⊔̃
{u /u (v \ L 0, 0 M) | u ∈ ssplit(s), v ∈ ssplit(t)}

where /u is defined in terms of usual unsigned integer division (note that, in this context,
neither c nor d will be 0):

L a, b M /u L c, d M = L a /u d, b /u c M
Signed interval division is similarly defined:

sdiv(s, t) =
⊔̃
{u /s (v \ L 0, 0 M) | u ∈ cut(s), v ∈ cut(t)}

where

L a, b M /s L c, d M =

L a /s d, b /s c M if msb(a) = msb(c) = 0
L b /s c, a /s d M if msb(a) = msb(c) = 1
L b /s d, a /s c M if msb(a) = 0 and msb(c) = 1
L a /s c, b /s d M if msb(a) = 1 and msb(c) = 0

Example 3.3. Signed-integer interval division sdiv(L 0100, 0111 M, L 1110, 0011 M) (that is,
sdiv(L 4, 7 M, L−2, 3 M)) yields L 0001, 1110 M (that is, L 1,−2 M). In this case, the dividend strad-
dles no pole, but the divisor straddles the south pole, and so is split into L 1110, 1111 M
and L 0001, 0011 M, the 0 having been made an endpoint by cut and excised by the dif-
ference operation. Now dividing L 0100, 0111 M by L 1110, 1111 M (and rounding towards 0)
yields L 1001, 1110 M (that is, L−7,−2 M). And dividing L 0100, 0111 M by L 0001, 0011 M yields
L 0001, 0111 M (that is, L 1, 7 M). Application of

⊔̃
will close the smallest gap between the two:

L 1001, 1110 M ⊔̃ L 0001, 0111 M = L 0001, 1110 M.
LLVM’s remainder operations urem and srem are congruent with division’s use of rounding

towards 0, in the sense that they preserve the invariant n = (n /s k) × k + rem(n, k) for
all n and k. In particular, srem(n, k) has the same sign as n. The Intel X86 instruction
set’s IDIV instruction applied to signed integers, and DIV instruction applied to unsigned
integers, behave similarly (these instructions yield both the quotient and remainder).
In practice, the remainder operations are almost always used with a fixed value k. In

the interval versions, they are more unwieldy than the other arithmetic operations, lacking
certain monotonicity properties. More precisely, even when arguments stay within hemi-
spheres, the interval endpoints a, b, c, and d are not sufficient to determine the endpoints of

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 G. Gange et al.

urem(L a, b M, L c, d M). For example, given the expression urem(L 3, 7 M, L 4, 5 M), and using ‘%’
for the remainder operation on integers, the combinations 3%4, 3%5, 7%4, and 7%5 will
only reveal the resulting values 2 and 3. However, values from the interval L 3, 7 M can also
produce remainders 0, 1 and 4, when divided by 4 or 5.
Hence we design the abstract remainder operation urem(s, t) to ignore s, unless the result

of the division s /u t is a singleton interval. If the result of division is not a singleton then
the remainder is considered maximally ambiguous, that is, only bounded from above, by
the largest possible modulus. So, defining

ambL a, b M = L 0, b− 1 M

we have

urem(s, t) =
⊔̃
{u %u (v \ L 0, 0 M) | u ∈ ssplit(s), v ∈ ssplit(t)}

s %u t =

{
s− (s /u t)× t if # (s /u t) = 1
amb(t) otherwise

For example, urem(L 16, 18 M, L 12, 14 M) = L 2, 6 M, since 16/14 = 18/12 = 1.
The case of srem(s, t) is similar, except for the need to make sure that the resulting sign

is that of s.

srem(s, t) =
⊔̃
{u %s (v \ L 0, 0 M) | u ∈ ssplit(s), v ∈ ssplit(t)}

s %s t =

{
s− (s /s t)× t if # (s /s t) = 1
sign(s)× amb(sign(t)× t) otherwise

Here sign(s) is −1 if msb(s) = 1, and 1 otherwise.

3.5. Analysing bit-manipulating expressions

For the logical operations, it is tempting to simply consider the combinations of interval
endpoints, at least when no interval straddles two hemispheres, but that does not work.
For example, the endpoints of L 1010, 1100 M are not sufficient to determine the endpoints of
L 1010, 1100 M | L 0110, 0110 M. Namely, 1010 | 0110 = 1100 | 0110 = 1110, but 1011 | 0110 =
1111. Instead we use the unsigned versions of algorithms provided by Warren Jr [2003]
(pages 58–62), but adapted to w-intervals using a south pole split. We present the method
for bitwise-or |; those for bitwise-and and bitwise-xor are similar.

s|t =
⊔̃
{u|wv | u ∈ ssplit(s), v ∈ ssplit(t)}

where |w is Warren’s unsigned bitwise or operation for intervals [Warren Jr 2003], an
operation with complexity O(w). Note that the signed and unsigned cases have different
algorithms, both given by Warren Jr [2003]; Figure 8 shows how to compute the lower and
upper bounds in the unsigned case.
Signed and zero extension are defined as follows. We assume words of width w are being

extended to width w + k, with k > 0.

sext(s, k) =
⊔̃
{L (msb(a))ka, (msb(b))kb M | L a, b M ∈ nsplit(s)}

zext(s, k) =
⊔̃
{L 0ka, 0kb M | L a, b M ∈ ssplit(s)}

Truncation of a bit-vector a to k < w bits (integer downcasting), written trunc(a, k), keeps
the lower k bits of a bit-vector of length w. Accordingly, we overload trunc(s, k) to denote

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Interval Analysis and Machine Arithmetic A:17

function minOr(unsigned a,b,c,d) {
unsigned e, m = 0x80000000;

while (m != 0) {
if (~a & c & m) {
e = (a | m) & -m;
if (e <= b) { a = e; break; }

}
else if (a & ~c & m) {
e = (c | m) & -m;
if (e <= d) { c = e; break; }

}
m = m >> 1;

}
return a | c;

}

function maxOr(unsigned a,b,c,d) {
unsigned e, m = 0x80000000;

while (m != 0) {
if (b & d & m) {
e = (b - m) | (m - 1);
if (e >= a) { b = e; break; }
e = (d - m) | (m - 1);
if (e >= c) { d = e; break; }

}
m = m >> 1;

}
return b | d;

}

Fig. 8. Warren’s method (in C) for finding the bounds of L a, b M | L c, d M in the unsigned case, w = 32

a w width w-interval s truncated to a k width w-interval. Truncation is defined as:

trunc(s, k) =

⊥ if s = ⊥
L trunc(a, k), trunc(b, k) M if s = L a, b M ∧ a>>ak = b>>ak

∧ trunc(a, k) ≤ trunc(b, k)
L trunc(a, k), trunc(b, k) M if s = L a, b M ∧ (a>>ak) + 1 ≡2w b>>ak

∧ trunc(a, k) 6≤ trunc(b, k)
⊤ otherwise

where >>a is arithmetic right shift. Once truncation is defined, we can easily define left shift:

s << k =

⊥ if s = ⊥
L a<<k, b<<k M if trunc(s, w − k) = L a, b M
L 0w, 1w−k0k M otherwise

Logical right shifting (>>l) requires testing if the south pole is covered:

s >>l k =

⊥ if s = ⊥
L 0w, 0k1w−k M if sp ⊆ s
L a>>lk, b>>lk M if s = L a, b M

and arithmetic right shifting (>>a) requires testing if the north pole is covered:

s >>a k =

⊥ if s = ⊥
L 1k0w−k, 0k1w−k M if np ⊆ s
L a>>ak, b>>ak M if s = L a, b M

Shifting with variable shift, for example, s << t, can be defined by calculating the (fixed)
shift for each k ∈ L 0, w − 1 M which is an element of t, and over-joining the resulting w-
intervals.

3.6. Dealing with control flow

When dealing with signedness agnostic representations, comparison operations must be
explicitly signed or unsigned. Taking the ‘then’ branch of a conditional with condition
s ≤0 t can be thought of as prefixing the branch with the constraint ‘assume s ≤0 t’. If
we assume the program has been normalised such that s and t are variables, then we can
tighten the bounds on s and t as they apply to statements only executed if this assumption

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 G. Gange et al.

holds. We compute s′ and t′ as updated versions of the bounds s and t, respectively, as
follows:

s′ =

⊥ if t = ⊥
s if 1w ∈ t
s ⊓̃ L 0w, b M if t = L a, b M

t′ =

⊥ if s = ⊥
t if 0w ∈ s
t ⊓̃ L a, 1w M if s = L a, b M

Signed comparison (≤2w−1) is similar, but replaces 1w by 01w−1 and 0w by 10w−1. If either
of s′ and t′ is ⊥, we can conclude that the assumption is not satisfiable, so the following
statements are unreachable.
It may then be possible to propagate these revised bounds back to the variables from

which s and t were computed. For example, if we have the bounds x = L 0000, 0111 M when
executing s = x+1; t = 3; assume s ≤0 t; then we derive bounds s = L 0001, 1000 M, t=
L 0011, 0011 M before the assume, and s′ = L 0000, 0011 M, t′ = L 0011, 0011 M after. From this,
moreover, we can propagate backwards to derive the tighter bounds x′ = L 0000, 0010 M for
x after the assume (using the fact that + and - are inverse operations).
Finally, at confluence points in the program, such as ϕ-nodes in LLVM or targets of

multiple jumps in assembler, we use over-lub
⊔̃

to combine bounds from multiple sources.

4. RELATIONSHIP WITH OTHER DOMAINS

In this section, we establish the relationship between wrapped intervals and a range of
common value domains. For convenience, we use m to denote the modulus of a given integer
domain. We can compare abstract domains with respect to expressiveness. Given abstract
domains A and B approximating a set of values V, we say A is at least as expressive as
B (denoted A � B) if, for every element y ∈ B approximating a set S ⊆ V, there is
some element x ∈ A such that x approximates S, and γA(x) ⊆ γB(y). Two domains are
incomparable iff A 6� B and B 6� A. They are equivalent, denoted ∼=, iff A � B and B � A.
Given a finite (although possibly quite large) set of possible values V, the most expressive

possible abstract domain is the power-set domain P(V).

Proposition 4.1. For m ≤ 3, the wrapped-interval domain Wm
∼= P(Zm).

Proof. For m ≤ 2 or intervals of size 1, this is trivial, since Wm includes ⊤, ⊥ and all
singletons. The following table shows that W3 can express all elements of P(Z3):

Set Interval Set Interval
∅ ⊥ {0, 1} L 0, 1 M
{0} L 0, 0 M {0, 2} L 2, 0 M
{1} L 1, 1 M {1, 2} L 1, 2 M
{2} L 2, 2 M {0, 1, 2} ⊤

Therefore, Wm is exact for m ≤ 3.

For larger m, Wm cannot express {0, 2} exactly, so is less expressive than P(Zm).
One may wonder whether wrapped intervals are equivalent to some finite partitioning of

the number circle, or some reduced product of classical intervals. We introduce the notation
Ikm denote a classical interval domain with the fixed wrapping point k (so the unsigned

interval domain is I0m, and the signed version is I
m/2
m). Let R

{k1,...,kp}
m denote the reduced

product Ik1

m × · · · × I
kp
m .

Proposition 4.2. For m > 3, Wm is incomparable with RK
m for 1 < |K| < m

2 .

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Interval Analysis and Machine Arithmetic A:19

S1 = {0000, 1000}

S2 = {0000, 0111, 1000, 1111}

(a) (b) (c)

Fig. 9. For two sets S1 and S2 of 4-bit values, we show (a) the concrete values, and best approximations
under (b) I0

16
× I8

16
and under (c) W16.

Proof. Let K = {k1, . . . , kp} with the ki in ascending order. As p < m
2 , there must be

some adjacent pair of elements ki, kj , where kj − ki ≥ 3.
Consider the set S = {ki + 1, kj}. Under I

ki
m , S is approximated by [ki + 1, kj]; the

approximation under I
kj
m is [kj , ki+1]. The concrete intersection of these intervals is exactly

S, so this set can be exactly represented under RK
m. The possible approximations underWm

are L ki + 1, kj M and L kj , ki + 1 M. The former contains ki + 2, and the latter contains ki.
Therefore Wm cannot represent S exactly, so Wm 6� R

K
m.

Now consider the set S′ = {k1−1, k1, k2−1, k2, . . . , kp−1, kp}. This set is covered by the
wrapped interval [kj − 1, ki], which excludes (at least) ki + 1. For each component domain
Ikm, we have k ∈ S′, k − 1 ∈ S′; so the best approximation under Ikm is ⊤. As such, the
approximation under RK

m is also ⊤. Therefore, RK
m 6� Wm.

As Wm 6� R
K
m, and RK

m 6� Wm, the two domains are incomparable.

A corollary is that the wrapped interval domain Wm is incomparable with the reduced

product of signed and unsigned analysis (I0m×I
m/2
m). Figure 9 gives two concrete examples

of this behaviour over 4-bit values (Z16). Note how the reduced product gives a superior
representation of S1 = {0000, 1000}: Taking the intersection of the two segments for S1 in
column (b) eliminates the dashed portions and gives back S1 exactly, whereas the wrapped
interval approximation (c) contains additional values, such as 0011. On the other hand,
the reduced product is inferior in the case of S2 = {0000, 0111, 1000, 1111}. Column (b)
shows how the reduced product conflates S2 with ⊤, and column (c) shows the more precise
wrapped interval that results. Also note that if the largest gap between elements of K is 2
(which is possible with |K| ≥ m

2), we have RK
m
∼= P(Zm).

While wrapped analysis is incomparable with the reduced product of up to m/2 classical
interval analyses, it would be nice to think that wrapped intervals were uniformly more accu-

rate than a single interval analysis, such as I
m/2
m or I0m. Unfortunately this it not necessarily

the case. Consider the approximation of the expression ({0110}∪{1001})∩{0110, 0111}. In
I816 the calculation ([0110, 0110]⊔ [1001, 1001])⊓ [0110, 0111] yields [1001, 0110] as the result
of the ⊔ and finally [0110, 0110]. In W16 the calculation (L 0110, 0110 M ⊔̃ L 1001, 1001 M) ⊓̃
L 0110, 0111 M yields L 0110, 1001 M as the result of the ⊔̃ and finally L 0110, 0111 M. Hence the

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 G. Gange et al.

wrapped interval analysis can be less accurate since it can choose an incomparable result
of the join, which turns out later to give less precise results. Of course we can easily modify
wrapped interval analysis to always prefer a wrapped interval that does not cross the north
pole where possible. With that, wrapped interval analysis is uniformly more accurate than
signed interval analysis, since if all descriptions cross the north pole then the signed interval
analysis must return ⊤.

In the following, we assume that transfer functions over I
m/2
m and Wm coincide over the

unwrapped subset of Wm. That is, for a function f and arguments x1, . . . , xn ∈ I
m/2
m :

fI(x1, . . . , xn) = ⊤ ⇔ L m
2 − 1, m

2 M ∈ fW(x1, . . . , xn)
fI(x1, . . . , xn) 6= ⊤ ⇒ fI(x1, . . . , xn) = fW(x1, . . . , xn)

Given implementations of fI and fW which do not necessarily coincide on I
m/2
m , we can

still construct strengthened versions f ′
I and f ′

W that satisfy this requirement (assuming ⊓̃
is north-biased) as follows:

f ′
I(X) =

{
fI(X) ⊓ fW(X) if fW(X) ∈ I

m/2
m

fI(X) otherwise

f ′
W(X) = fI(X) ⊓̃ fW(X)

We also require all operations to be monotone with respect to ⊤.

Definition 4.3. A function f over a partially ordered set (O,⊑) is monotone with respect
to an element x iff ∀x′ . x′ ⊑ x⇒ f(x′) ⊑ f(x), and ∀x′ . x ⊑ x′ ⇒ f(x′) ⊑ f(x).

Hence f is monotone iff it is monotone with respect to all elements of O. It is not hard to
see that all operations on Wm are monotone with respect to ⊤.

Theorem 4.4. Wm modified to favor intervals that do not straddle the north pole is

uniformly more accurate than I
m/2
m .

Proof. Assume there is some function f for which fW is not strictly more accurate

than fI . Then, there must be some elements X ∈ (I
m/2
m)n, X ′ ∈ Wn

m such that:

∀ i ∈ [1, n] . x′
i ⊑ xi, fW(X) 6⊑ fI(X

′)

We have xi ∈ I
m/2
m and x′

i ⊑ xi for all i. Hence either x′
i ∈ I

m/2
m , or xi = ⊤. Now define Y

as follows:

yi =

{
x′
i if x′

i ∈ I
m/2
m

⊤ otherwise

Then we have X ′ ⊑ Y ⊑ X . As fI and fW coincide over I
m/2
m , we have fW(Y) ⊑ fI(X).

But since fW is monotone with respect to ⊤, and Y differs from X ′ only in elements that
are ⊤, we have fW(X ′) ⊑ fW(Y). Therefore, fW(X ′) ⊑ fI(X).

5. NON-TERMINATION AND WIDENING

Let us now revisit the issue mentioned in Section 3, namely that ⊔̃ is neither associative nor
monotone. Although the set of w-intervals is finite, the fact that ⊔̃ is not monotone raises
a major problem: a least fixed point may not exist because multiple fixed points could be
equally precise, and even worse, when ⊔̃ is used in the role of a join operator, the analysis
may not terminate.
Figure 10 shows an example where, for simplicity, we assume that x and y are 2-bit

integers. In annotating program points we use ‘1’ for the w-interval L 01, 01 M, ‘3’ for L 11, 11 M,
‘0’ for L 01, 11 M, and ‘2’ for L 11, 01 M. Note that the result of round 5 is identical to the result

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Interval Analysis and Machine Arithmetic A:21

x = 3

y = 1

if (∗)

x = y

y = x+ 2

0

(⊤,⊤)

(⊥,⊥)

(⊥,⊥)

(⊥,⊥)

(⊥,⊥)

(⊥,⊥)

1

(⊤,⊤)

(3,⊤)

(3, 1)

(3, 1)

(1, 1)

(1, 3)

2

(⊤,⊤)

(3,⊤)

(3, 1)

(2, 2)

(2, 2)

(2, 0)

3

(⊤,⊤)

(3,⊤)

(3, 1)

(2, 0)

(0, 0)

(0, 2)

4

(⊤,⊤)

(3,⊤)

(3, 1)

(0, 2)

(2, 2)

(2, 0)

5

(⊤,⊤)

(3,⊤)

(3, 1)

(2, 0)

(0, 0)

(0, 2)

Fig. 10. Non-terminating analysis; column i shows (x, y) in round i

of round 3, hence the result will oscillate forever between the annotations given by columns
3 and 4.
While this pathological behaviour can be expected to be rare, a correct and terminating

analysis still must take the possibility into account.
In practice, there is an easy solution to the non-termination problem. Since the w-interval

domain contains chains of length O(2w), acceleration is required anyway for practical pur-
poses, even though the domain is finite. Therefore, it seems reasonable to apply a widening
operator. The use of widening will ensure termination in our analysis, avoiding the non-
monotonicity problem of ⊔̃.
In the classical setting, we have a (collecting) semantic domain and an abstract domain,

both assumed to be lattices, and a pair (α, γ) of adjoined functions. However, the concept
of a Galois connection makes sense also if we define it as a pair of mappings between two
posets, or even preordered sets. For now assume that (A,⊑) and (C,≤) are posets. The pair
α : C → A and γ : A→ C form a Galois connection iff

α(x) ⊑ y ⇔ x ≤ γ(y) (1)

From this condition follows that (a) α and γ are monotone, (b) α(γ(y)) ⊑ y for all y ∈ A,
and (c) x ≤ γ(α(x)) for all x ∈ C. In fact, taken together, (a)–(c) are equivalent to (1)
[Cousot and Cousot 1977].
If α moreover is surjective it follows that α◦γ is the identity function, and in this case we

talk about a Galois surjection. Galois surjections are common in applications to program
analysis. However, there are natural examples in program analysis where a non-surjective
Galois connection is used.3

We usually also assume that we are dealing with (complete) lattices C and A. Having
lattices in itself does not guarantee the existence of a Galois connection.
Let C (the concrete domain) be a finite-height meet-semilattice and let f : C → C be

monotone. Let A (the abstract domain) be a partially ordered set with least element ⊥A,

3An example is given by King and Søndergaard [2010] who abstract a Boolean function to its “congruent
closure”, as part of a scheme to improve affine congruence analysis [Granger 1991].

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 G. Gange et al.

and let g : A→ A be a (not necessarily monotone) function approximating f , that is,

∀y ∈ A (f(γ(y)) ⊑ γ(g(y)) (2)

Consider a “g-cycle” Y = {y0, . . . , ym−1} ⊆ A. By this we mean that the set Y satisfies

0 ≤ i < m⇒ g(yi) = yi+1 mod m

Now letting x0 =
d

0≤i<m γ(yi), we have:

f(x0) ⊑ f(γ(yi)) for all 0 ≤ i < m, by monotonicity of f
⊑ γ(g(yi)) for all 0 ≤ i < m, by (2)
= γ(yi+1 mod m) for all 0 ≤ i < m

Hence f(x0) ⊑
d

0≤i<m γ(yi) = x0. Clearly ⊥C ⊑ x0, so by monotonicity of f , and the

transitivity of ⊑, fk(⊥C) ⊑ x0 for all k ∈ N. As C has finite height, lfp(f) ⊑ x0 . In other
words, each element of the g-cycle is a correct result.
Hence we could solve the problem of possible oscillation by checking for cycles at each

iteration. This would mean performing Kleene iteration over g as usual, generating the
sequence of elements ⊥A, g(⊥A), g(g(⊥A)), Call this sequence g0, g1, g2, For each
i > 0, check whether gi−1 ⊑ gi. If so, continue as usual; if not, apply loop checking in the
evaluation of gi+1 and subsequent elements.
In practice, however, we only encounter cycles with constructed, pathological examples.

For this reason, it seems acceptable to apply a less precise approach in the form of widen-
ing, in particular since this is required anyway, to accelerate convergence of the analysis.
Although the set of w-intervals is finite, it contains chains of length O(2w), and acceleration
is regularly needed.
Hence we define an upper bound operator ∇, based on the idea of widening by (roughly)

doubling the size of a w-interval. First, s∇⊥ = ⊥∇s = s, and s∇⊤ = ⊤∇s = ⊤. Addition-
ally,

Lu, v M∇Lx, y M =

Lu, v M if Lx, y M ⊆ Lu, v M
⊤ if # Lu, v M ≥ 2w−1

Lu, y M ⊔̃ Lu, 2v −w u+w 1 M if Lu, v M ⊔̃ Lx, y M = Lu, y M
Lx, v M ⊔̃ L 2u−w v −w 1, v M if Lu, v M ⊔̃ Lx, y M = Lx, v M
Lx, y M ⊔̃ Lx, x +w 2v −w 2u+w 1 M if u ∈ Lx, y M ∧ v ∈ Lx, y M
⊤ otherwise

Then ∇ is an upper bound operator [Nielson et al. 1999] and we have the property

s∇t = s ∨ s∇t = ⊤ ∨ # s∇t ≥ 2# s

Given f :W2w →W2w , we define the accelerated sequence {fn
∇}n as follows:

fn
∇ =

⊥ if n = 0
fn−1
∇ if n > 0 ∧ f(fn−1

∇) ⊑ fn−1
∇

fn−1
∇ ∇f(fn−1

∇) otherwise

Since {fn
∇}n is increasing (whether f is monotone or not) and W2w has finite height, the

accelerated sequence eventually stabilises. It is undesirable to widen at every iteration,
since it gives away precision too eagerly. However, as observed by Gange et al. [2013a],
the common practise of widening every n > 1 iterations is unsafe for non-lattice domains
such as w-intervals, because it is possible that such a sequence will not terminate. Our
implementation performs normal Kleene iteration for the first five steps; if that does not
find a fixed point, we begin widening at every step. Gange et al. [2013a] discuss several
alternative strategies.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Interval Analysis and Machine Arithmetic A:23

Table I. Comparison between unwrapped and wrapped interval analyses with options -widening 5

-narrowing 2

Program TU TW

TW

TU
I PU

PU

I
PW

PW

I
GW

GW

I

164.gzip 0.09s 0.22s 2.4 1511 272 18% 309 20% 44 3%
175.vpr 0.38s 1.46s 3.8 4143 321 8% 378 9% 57 1%
176.gcc 2.10s 4.42s 2.1 16711 5147 31% 5683 34% 570 3%
186.crafty 1.19s 2.15s 1.8 17679 3411 19% 3960 22% 562 3%
197.parser 0.55s 1.96s 3.6 4736 377 8% 445 9% 76 2%
255.vortex 1.16s 2.42s 2.1 22813 887 4% 974 4% 88 0%
256.bzip2 0.35s 1.01s 2.9 2529 411 16% 483 19% 86 3%
300.twolf 0.07s 0.20s 2.9 730 16 2% 20 3% 4 1%

6. EXPERIMENTAL EVALUATION

We implemented wrapped interval analysis for LLVM 3.0 and ran experiments on an Intel
Core with a 2.70Gz clock and 8 GB of memory. For comparison we also implemented an
unwrapped fixed-width interval analysis using the same fixed point algorithm. Since we
analyse LLVM IR, signedness information is in general not available. Therefore, to compare
the precision of “unwrapped” and “wrapped” analysis, we ran the unwrapped analysis as-
suming all integers are signed, similarly to Teixera and Pereira [2011]. We used the Spec CPU
2000 benchmark suite widely used by LLVM testers. The code for the analyses and the fixed
point engine is publicly available at http://code.google.com/p/wrapped-intervals/.
Tables I, II, and III show our evaluation results. Columns TU and TW show analysis times

(average of 5 runs) for the unwrapped and wrapped interval analysis, respectively. Column
I shows the total number of integer intervals considered by the analyses, Column PU shows
the number of cases where the unwrapped analysis infers a delimited interval, and PW does
the same for wrapped intervals. Finally, column GW shows the number of cases in which
the wrapped analysis gave a more precise result (it is never less precise). In some cases,
both analyses produce delimited intervals, but the wrapped interval is more precise. For
instance, for 164.gzip (Table I), there are 7 such cases. This explains why, in most cases,
GW > PW − PU .
Table I shows our results4 when widening is only triggered if an interval has not stabilized

after five fixed point iterations. We implement narrowing simply as two further iterations
of abstract interpretation over the whole program once a fixed point is reached. We have
tested with greater widening and narrowing values but we did not observe any significant
change in terms of precision.
We note that both analyses are fast, and the added cost of wrapped analysis is reasonable.

Regarding precision, the numbers of proper intervals (PU and PW) are remarkably low
compared with the total number of tracked intervals (I). There are three main reasons for
this. First, our analysis is intra-procedural only. Second, it does not track global variables or
pointers. Third, several instructions that cast non-trackable types (for example, ptrtoint,
fptosi) are not supported. In spite of these limitations, the numbers in column GW show
that wrapped interval analysis does infer better bounds.
In our second experiment (Table II) we tried to mitigate two of the limitations while

preserving the widening/narrowing parameter values. The -instcombine option uses an
intra-procedural LLVM optimization that can remove unnecessary casting instructions by
combining two or more instructions into one. The option -inline 300 mitigates the lack
of inter-procedural analysis by performing function inlining if the size of the function is
less than 300 instructions but only if LLVM considers it safe to inline them (function
pointers cannot be inlined, for example). These two optimizations pay off: the number of

4These numbers are the closest to our previous experiment published in Navas et al. [2012]. The main
differences with Navas et al. [2012] are due to two factors: different widening/narrowing parameter values
and some changes after fixing some bugs.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 G. Gange et al.

Table II. Comparison between unwrapped and wrapped interval analyses with options -widening 5

-narrowing 2 -instcombine -inline 300

Pgm TU TW

TW
TU

I PU

PU
I

PW

PW
I

GW

GW
I

164 0.25 0.51 2.04 2781 558 20% 649 23% 101 3%
175 0.97 3.58 3.69 7678 790 10% 1014 13% 283 3%
176 10.15 18.96 1.86 92791 26649 28% 32035 34% 5418 5%
186 1.83 3.52 1.92 24118 5949 24% 6842 28% 918 3%
197 0.96 3.03 3.15 6672 938 14% 1255 18% 340 5%
255 2.02 3.74 1.85 37120 2593 6% 2817 7% 225 0%
256 0.29 1.04 3.58 2447 436 17% 535 21% 113 4%
300 1.56 4.56 2.92 17812 654 3% 979 5% 326 1%

Table III. Comparison between unwrapped and wrapped interval analyses with options -widening 5

-narrowing 2 -instcombine -inline 300 -enable-optimizations

Pgm TU TW

TW
TU

I PU

PU
I

PW

PW
I

GW

GW
I

164 0.18 0.55 3.05 2580 474 18% 543 21% 73 2%
175 0.90 3.32 3.68 6942 610 8% 804 11% 225 3%
176 10.26 19.19 1.87 94943 26641 28% 31718 33% 5099 5%
186 1.66 3.30 1.98 22787 5321 23% 6068 26% 761 3%
197 0.91 2.98 3.27 6744 742 11% 1050 15% 314 4%
255 2.27 4.87 2.14 36981 2599 7% 2800 7% 202 0%
256 0.27 0.92 3.40 2252 378 16% 454 20% 90 3%
300 1.80 5.06 2.81 16475 452 2% 657 3% 205 1%

Table IV. Number of ties comparing with total number of ⊔̃ for the three different options
used in Table I, Table II, and Table III

Program Table I Options Table II Options Table III Options
Joins Ties Joins Ties Joins Ties

164.gzip 20, 695 109 22, 414 149 29, 170 93
175.vpr 79, 506 213 199, 807 492 176, 584 522
176.gcc 878, 707 3102 1, 377, 207 5912 1, 415, 847 6782
186.crafty 83, 668 728 143, 466 667 136, 924 939
197.parser 95, 149 124 136, 156 736 140, 313 798
255.vortex 250, 409 194 312, 739 603 929, 907 764
256.bzip2 44, 613 129 44, 783 130 43, 898 134
300.twolf 224, 425 274 247, 680 306 894, 890 353

proper intervals increases significantly, both in the unwrapped and in the wrapped case.
The analysis time also increases, for each analysis. Note that we only show analysis times
of the wrapped and unwrapped analyses, and we omit the analyses times of the LLVM
optimizations. The number of variables for which wrapped analysis gave a more precise
result is much higher than in the previous experiment, for a reasonable cost in time.
Our third experiment (Table III) repeats the same previous experiment, but with the

option -enable-optimizations. This option allows other LLVM optimizations such as
constant propagation and dead code elimination. Interestingly, these optimizations appear
to have little impact, whether we consider precision or time, for either analysis.
Finally, Table IV shows the number of ties that needed to be resolved during the calcu-

lation of over-joins, ⊔̃. Whenever there is a tie, we choose the interval that avoids covering
the north pole. We also ran the same experiment (but only for Table III Options) where
the opposite choice is made. For that experiment, all results remained the same, except
for 176.gcc where GW came out as 5392 rather than 5418. There were no cases where
unwrapped intervals produced more precise results than wrapped intervals.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Interval Analysis and Machine Arithmetic A:25

Table V. Comparison between unwrapped and wrapped interval analyses in the
context of removing redundant instrumentation using the IOC tool

Program without LLVM optimizations with LLVM optimizations

T RU RW T RU RW

164.gzip 365 210 210 228 55 57
175.vpr 741 136 136 1149 70 70
176.gcc 3027 1442 1471 3030 512 544
186.crafty 3309 1440 1442 1680 265 265
197.parser 751 177 180 727 34 36
255.vortex 746 485 485 288 11 11
256.bzip2 676 271 271 486 85 85
300.twolf 3297 476 479 2873 34 37

7. AN APPLICATION: REMOVAL OF REDUNDANT INSTRUMENTATION

The experiments reported in the previous section show that, on real-world programs,
signedness-agnostic wrapped interval analysis finds tighter bounds in many cases, com-
pared to unwrapped, but sound, fixed-width integer interval analysis. However, the results
in Tables I–III do not say exactly how much tighter the intervals are, nor does it follow from
the results that there are realistic applications (such as program verification) that are able
to capitalize on the tighter bounds. To address this, we have conducted a simple experiment
with code that has been instrumented by the Integer Overflow Checker IOC [Dietz et al.
2012]. IOC instruments each arithmetic instruction that can yield signed integer overflow,
injecting trap handlers. As we use LLVM 3.0, we installed its corresponding IOC version
and compiled programs with option -fcatch-undefined-ansic-behavior.
The results are shown in Table V. Column T shows the total number of trap handlers

inserted in the code by IOC. Column RU shows the number of redundant traps detected by
unwrapped intervals and RW for the case of wrapped intervals. Columns labelled ‘without
LLVM optimizations’ show the case when the analyses are run without any LLVM opti-
mization (only with options -widening 5 -narrowing 2). Columns labelled ‘with LLVM
optimizations’ are executed with all LLVM optimizations enabled, that is, with options
-widening 5 -narrowing 2 -instcombine -inline 300 -enable-optimizations.
Note that the number of redundant traps are often higher in the case of without LLVM

optimizations. The reason is that many traps can be removed by constant propagation (used
if option -enable-optimizations is enabled).
While the improvements are small or absent in most cases, the experiment does indicate

that the improved bounds pay off for some applications.
For most cases where an IOC trap block is deemed necessary, the judgement is based on

a wrapped interval which is ⊤. In some 60% of these cases, the main reason for arriving
at the value ⊤ is the involvement of either (unknown) input or of pointers. This suggests
that inter-procedural wrapped analysis and/or support for pointers may pay off for real
applications. In any case, since the overhead of using wrapped intervals is relatively small,
the wrapped interval analysis appears useful even in its naive form.
Finally, we observe that a wrapped analysis naturally keeps track of “non-zeroness” of

variables, while a signed unwrapped analysis cannot, as non-zeroness is a form of disjunctive
information. A common case is an interval that starts out as ⊤ but is refined by the wrapped
analysis after a conditional of the form if (x 6= 0), turning into the wrapped interval L 1,−1 M.
This tighter interval does not have any impact in the removal of unnecessary IOC trap
blocks but it would be useful for other applications such as CCured [Condit et al. 2003],
if the wrapped interval analysis was enhanced to support pointers. CCured adds memory
safety guarantees to C programs by enforcing a strong type system at compile time. The
parts that cannot be enforced are checked at run time. A wrapped analysis could help
CCured remove runtime checks for null pointer dereferences.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26 G. Gange et al.

Note that the wrapped interval domain is closed under complement. In particular, the
complement of a delimited wrapped interval is always a delimited wrapped interval. In
contrast, for the classical interval domain, the (best approximation of the) complement
of any finite interval is ⊤. This too improves the expressive power of wrapped intervals.
For example, given a conditional if (x>=10 && x<100), both wrapped and unwrapped
intervals derive useful information for the then branch, but only wrapped intervals derive
useful information about x for the else branch.

8. OTHER APPLICATIONS OF WRAPPED INTERVALS

Signedness information is critical in the determination of the potential for under- or over-
flow. In that context, the improved precision of bounds analysis that we offer is an important
contribution.
There is ample evidence [Dietz et al. 2012; Wang et al. 2013] that overflow is very common

in real-world C/C++ code. Dietz et al. [2012] suggest, based on scrutiny of many programs,
that much use of overflow is intentional and safe (though not portable), but also that the
majority is probably accidental. Our interval analysis of course has a broader scope than
C/C++, but it is worth mentioning that even in the context of C/C++, overflow problems
are not necessarily removed by adherence to coding standards. Wang et al. [2013] remind us
of the many aspects of C/C++ that are left undefined by the language specifications. This
lack of definition gives an optimizing compiler considerable license, and Wang et al. [2013]
show that, in practice, this license is often (mis-)used to undermine safe programming, for
example, through removal of mandated overflow checks.
In C/C++, what happens in case of signed over- or underflow is undefined. Many C

programmers, however, rely on overflow behaviour that reflects the nature of the underlying
machine arithmetic. The following snippet, taken from an early version of C’s atoi, is
typical:

char *p;
int f, n;
...
while (*p >= ’0’ && *p <= ’9’)

n = n * 10 + *p++ - ’0’;
return (f ? -n : n);

There are two independent overflow issues. First, in the assignment, if the + is evaluated
before the -, addition may cause overflow. Second, when f is non-zero and n is the smallest
integer, the unary minus causes overflow. This use of overflow is most likely deliberate,
and typical of C programmers’ reliance on language properties that are plausible, but not
guaranteed by the language specification.
Of course the snippet’s problematic assignment may be “repaired” by transforming it to

n = n * 10 + (*p++ - ’0’);

Recent work [Coker and Hafiz 2013; Logozzo and Martel 2013] considers how to perform
such repairs of overflowing expressions automatically. Sometimes a simple rearrangement of
operands may suffice, as above. Other possible repair tools include the introduction of type
casts. For this application, program analysis (say, interval analysis) is needed.
Also possible is the unintended use of wrap-around, owing, for example, to the subtle

semantics of the C language. Simon and King [2007] give this example of a C program
intended to tabulate the distribution of characters in a string s:

char *s;
int dist[256];
...

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Interval Analysis and Machine Arithmetic A:27

while (*s) {
dist[(unsigned int) *s]++;
s++;

}

and point out the subtle error arising because *s is promoted to int before the cast to an
unsigned integer takes place [Simon and King 2007]. As a result, dist can be accessed at
indices [0, . . . , 127]∪ [232−128, . . . , 232−1], a set which, we should point out, is conveniently
captured as a wrapped interval.

9. RELATED WORK

9.1. Intervals using proper integers

Interval analysis is a favourite textbook example of abstract interpretation [Nielson et al.
1999; Seidl et al. 2012]. The classical interval domain I, which uses unbounded integers,
was sketched in Section 2.1. Much of the literature on interval analysis uses this domain [Su
and Wagner 2004; Leroux and Sutre 2007; Gawlitza et al. 2009]. As discussed in Section 1,
such analysis is sound for reasoning about unlimited-precision integers, but unsound in
the context of fixed-width machine arithmetic. In particular, the assumption of unbounded
integers will lead to problems in the context of low-level languages, including assembly
languages, and, as in the case of Rodrigues et al. [2013], LLVM IR.

9.2. Overflow-aware interval analysis

A simple solution to the mismatch between classical interval analysis and the use of finite-
precision integers is to amend the analysis to keep track of possible overflow and deem the
result of the analysis to be⊤, that is, void of information, as sketched in Section 2.2. Abstract
interpretation based tools such as Astree [Blanchet et al. 2002] and cccheck [Fähndrich
and Logozzo 2010] use interval analysis (and other kinds of analysis) in an overflow-aware
manner. These tools are able to identify expressions that cannot possibly create over- or
under-flow. For other expressions, suitable warnings can then be issued.
Regehr and Duongsaa [2006] perform bounds analysis in a wrapping-aware manner, deal-

ing also with bit-wise operations by treating the bounds as bit-vectors. Brauer and King
[2010] show how to synthesize transfer functions for such wrapping-aware bounds analysis.
Simon and King [2007] show how to make polyhedral analysis wrapping-aware without in-
curring a high additional cost. These approaches suffer the problem discussed above: when a
computed interval spans a wrap-around point, the interval always contains both the smallest
and largest possible integer, so all precision is lost.

9.3. Granger’s arithmetical congruence analysis

The congruence analysis by Granger [1989] is another example of an “independent attribute”
analysis. It is orthogonal to interval analysis, but we mention it here as it plays a role in many
proposals for combined analyses. As with classical interval analysis, arithmetical congruence
analysis takes Z as the underlying domain. For the program

x = 3;
while (*) {

x = x+4;
}

congruence analysis yields x ≡4 3, a result which happens to be correct also in the context
of 32- or 64-bit integers. However, in general, the analysis is not sound in the context of
fixed-precision integers, as is easily seen by replacing ‘x+4’ by ‘x+5’.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:28 G. Gange et al.

9.4. Variants of strided intervals

Classical Z-based intervals are sometimes combined with other domains, for added expres-
siveness. The modulo intervals of Nakanishi et al. [1999] are of the form [i, j]n(r), with the
reading

[i, j]n(r) = {k ∈ Z | i ≤ k ≤ j, k = nm+ r,m ∈ Z}

Hence they combine arithmetical congruences with classical integer intervals. They were
proposed as a tool for analysis to support vectorization. From an abstract interpretation
point of view, the set of modulo intervals has shortcomings. Modulo intervals as defined
by Nakanishi et al. [1999] can only express finite sets, and so they do not form a complete
lattice.
In contrast, Balakrishnan and Reps [2004] utilise an abstract domain which is the reduced

product of the classical interval domain and arithmetical congruences. A reduced interval
congruence (RIC) with stride a is a set {ai+ d | i ∈ [b, c]}, where [b, c] is an element of the
classical interval domain I.
Later Reps et al. [2006] introduce the concept of a strided interval which is similar to

a RIC, but intervals are now of the fixed-precision kind. A w-bit strided interval is of the
form s[a, b], with 0 ≤ s ≤ 2w − 1, and with −2w−1 ≤ a ≤ b < 2w−1. It denotes the set
[a, b] ∩ {a + is | i ∈ Z}. Hence all values in s[a, b] are (signed) fixed-precision integers,
evenly distributed inside the interval [a, b]. In other words, the domain of strided intervals
is the reduced product domain that combines fixed-width integer intervals with arithmetical
congruences. The special case when the stride is 1 gives the standard kind of fixed-precision
integer interval.
As with all types of intervals discussed in Sections 9.1–9.4, strided intervals do not allow

wrapping. The set of strided intervals is not closed under complement, and is incomparable
with the set of wrapped intervals. More precisely, strided intervals cannot express intervals
that straddle the north pole, apart from the two-element interval L 2w−1 − 1,−2w−1 M.
Reps et al. [2006] and Balakrishnan [2007] describe strided-interval abstract versions

of many operations. These exclude non-linear arithmetic operations but include bitwise
operations, where they draw on Warren Jr [2003], as we do.

9.5. Variants of wrapped intervals

Sen and Srikant [2007] take the approach of Reps et al. [2006] further, promoting the number
circle view, as we have done in this paper. This leads to a kind of strided wrapped intervals,
which Sen and Srikant [2007] call Circular Linear Progressions (CLPs) and utilise for the
purpose of analysis of binaries. Setting the stride in their CLPs to 1 results in precisely the
concept of wrapped intervals used in this paper. Sen and Srikant [2007] provide abstract
operations, most of which agree with the operations defined in the present paper, although
their analysis is not signedness agnostic in our sense. Multiplication is a case in point; for
example, for w = 4, a multiplication (signed analysis) such as [0, 1] × [7,−8] results in ⊤
when CLPs are used, whereas multiplication as defined in this paper produces L 0,−8 M. Sen
and Srikant [2007] define many operations by case in a manner that is equivalent to what
we have called a north pole cut (as Sen and Srikant [2007] assume signed representation).
They do not say how to resolve ties when their “union” operation faces a choice, and
they repeatedly refer to the “CLP lattice”. However, the CLP domain cannot have lattice
structure, as it reduces to the wrapped interval domain when the stride is set to 1 [Gange
et al. 2013a]. Hence an analysis with CLPs faces the termination problems discussed in
Section 5, unless some remedial action is taken. Sen and Srikant [2007] do not provide an
experimental evaluation of CLPs.
Gotlieb et al. [2010] also study wrapped, or “clockwise,” intervals (without strides). Their

aim is to provide constraint solvers for modular arithmetic for the purpose of software ver-
ification (other work in this area is described in Section 9.6). They show how to implement

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Interval Analysis and Machine Arithmetic A:29

abstract addition and subtraction and also how multiplication by a constant can be handled
efficiently. Again, a claim that clockwise intervals form a lattice cannot be correct. Gotlieb
et al. [2010] assume unsigned representation and general multiplication and bitwise oper-
ations are not discussed. The paper presents the unsigned case only and does not address
the issues that arise when signedness information is absent. The proposed analysis is not
signedness-agnostic in our sense.
In the context of work on the verified C compiler CompCert, Blazy et al. [2013] perform

a value analysis of C programs, based on the reduced product of signed and unsigned
interval analysis. As we showed in Section 4, wrapped intervals and the reduced product
construction are incomparable. The experiments by Blazy et al. [2013] (for w = 32) show
that, on a collection of some 20 benchmarks, the reduced product finds more “bounded
intervals” than the wrapped interval analysis that we have presented here. This is wholly
unsurprising, as the definition of “bounded” intervals excludes all intervals with cardinality
greater than 231, hence avoiding all cases where wrapped intervals are more precise, as well
as such invariants as x ≤s 2 or x ≥u 2. It would be interesting to rerun the experiments of
Blazy et al. [2013] without the restriction to bounded intervals.

9.6. Bit-blasting and constraint propagation approaches

It is natural to think of bit-blasting as a method for reasoning about fixed-precision integers,
because the bit-level view reflects directly the modulo 2w nature of the problem. A main
attraction of bit-level reasoning is that it can utilise sophisticated DPLL-based SAT solvers,
and indeed these are well suited for reasoning about certain bit-twiddling operations. How-
ever, methods based on bit-blasting tend to have serious problems with scalability, and
bit-blasting does not deal gracefully with non-linear arithmetic operations such as multipli-
cation and division, even in the context of words that are much smaller than 32 bits. These
shortcomings are well understood, and we give, in the following, examples of methods have
been proposed to make up for the fact that important numerical properties tend to get “lost
in translation” when integer relations are blasted into bit relations.
When constraint propagation is applied to reason about programs, it is usually to tackle

the problem of program verification, rather than program analysis. This makes a consid-
erable difference. In program verification there is a heavy reliance on constraint solvers,
and program loops create obstacles that are absent when using abstract interpretation. A
constraint solver is a decision procedure, and the constraints of interest are almost always
relational, in the sense that they involve several variables. A program analysis is not a de-
cision procedure, and interval analysis, like many other classical analyses, is not relational,
but rather is an “independent attribute” analysis [Nielson et al. 1999].
Leconte and Berstel [2006] discuss the potential and dangers of the constraint propaga-

tion approach in software verification. A finite-domain constraint satisfaction problem (CSP)
[Marriott and Stuckey 1998] is a constraint (in conjunctive form) over the variables, together
with a mappingD that associates a finite set of values with each variable. The task of a prop-
agator is, given a constraint, to narrow the domains of the variables involved. Consider inte-
ger variables x and y and the constraint 2x+2y = 1. Assume D(x) = D(y) = [−127, 127]. A
standard propagation step will deduce that x’s domain can be narrowed to [− 253

2 , 255
2], that

is, to [−126, 127]. Using this information, y’s domain can now be narrowed to [−126, 126].
This allows x to be further narrowed, and so on. The unsatisfiability of the constraint will
eventually be discovered, but only after very many propagation steps. (Of course, bit-level
reasoning can establish the unsatisfiability of 2x+2y = 1 quite easily.) Leconte and Berstel
[2006] propose the inclusion of arithmetical congruence constraints in the constraint prop-
agation approach, effectively obtaining a CSP analogue of the RIC domain discussed in
Section 9.4, by utilising the analysis of Granger [1989] to develop propagators. This leads
to much faster propagation overall.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:30 G. Gange et al.

Bardin et al. [2010] take the ideas of Leconte and Berstel [2006] a step further, by adding
a bit-vector solver with propagators for what they call the bitlist domain, BL. An element of
this domain is a set of w-width bit-vectors. The set has to be convex in the sense that it can
be written as a single bit-vector, with an asterisk denoting an unknown bit. For example,
〈0∗1∗〉 denotes the set {0010, 0011, 0110, 0111}.5 (Only certain sets of cardinality 2k can
be expressed this way. Most integer intervals cannot be expressed like that, and sets that
can be expressed as partial bit-vectors are not, in general, intervals. For example, 〈0∗1∗〉 =
{2, 3, 6, 7}. This is not an issue for Bardin et al. [2010], as the BL information is meant
to complement interval, and congruence, information.) The aim is to combine reasoning
about arithmetic operations using the interval/congruence propagation machinery, with
reasoning about (certain) bit-twiddling operations using BL. A domain of each type is
associated with each variable and maintained.6 “Channelling” between the different domains
is done by propagators specifically defined for the purpose. There is no description of how
multiplication and division are handled.
Michel and Van Hentenryck [2012] utilise a domain which is isomorphic to the BL domain

of Bardin et al. [2010]. They give algorithms for the bitwise operations, the comparisons,
shifting and addition, providing better propagation for the latter compared with Bardin
et al. [2010]. Michel and Van Hentenryck [2012] focus on bit-vectors which are shorter than
the underlying machine’s bit-width, so can be implemented efficiently using data parallel
machine instructions. They do not give experimental results, nor do they discuss non-linear
arithmetic operations.
To summarise, all the approaches based on bit-level and/or word-level constraint prop-

agation discussed in this section are incomparable with our analysis. From a constraint
reasoning viewpoint, the constraints that we use are simple, “independent attribute” con-
straints that express membership of an interval. The solvers discussed in this section can
reason with more sophisticated properties, including relations that go beyond the “indepen-
dent attribute” kind.

10. CONCLUSION

Integer arithmetic is a crucial component of most software. However, “machine integers”
are a subset of the integers we learned about in school. The dominant use of integers in
computers allows only a fixed amount of space for an integer, so not every integer can be
represented. Instead we get fixed-width integer arithmetic and its idiosyncrasies.
Much of the existing work on interval analysis uses arbitrary precision integers as bounds.

Using such an analysis with programs that manipulate fixed-width integers can lead to
unsound conclusions. We have presented wrapped intervals, an alternative to the classical
interval domain. Our use of wrapped intervals ensures soundness without undue loss of
precision, and for a relatively small cost, as we demonstrated in Section 6.
The key is to treat the bounds as bit patterns, letting a wrapped interval denote the set

of bit patterns beginning with the left bound and repeatedly incrementing it until the right
bound is reached. Wrapped intervals can therefore represent sets that cannot be represented
with ordinary intervals, because they “wrap around.” For example, a wrapped interval
beginning with the largest representable integer and ending with the smallest denotes the
set of only those two values.
Viewing integers as bit patterns, the analysis is indifferent to the signedness of the integers,

except where relevant to the results being produced. This is ideal for analysis of low level
languages such as assembly language and LLVM IR, as these languages treat fixed-width
integers as bit strings; only the operations that behave differently in the signed and unsigned
case come in two versions. While it is possible to analyse programs correctly under the

5Additionally, Bardin et al. [2010] allows the expression of the empty set of bit-vectors.
6More precisely, a set of unsigned integer intervals is maintained per variable.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Interval Analysis and Machine Arithmetic A:31

assumption that all integer values should be interpreted as unsigned (or signed, depending
on taste), such an assumption leads to a significant loss of precision.
It is far better for analysis to be signedness-agnostic. We have shown that, if implemented

carefully, signedness-agnosticism amounts to more than simply “having a bet each way.” Our
key observation is that one can achieve higher precision of analysis by making each individual
abstract operation signedness-agnostic, whenever its concrete counterpart is signedness-
agnostic. This applies to important operations like addition, subtraction and multiplication.
Signedness-agnostic bounds analysis naturally leads to wrapped intervals, since signed

and unsigned representation correspond to two different ways of ordering bit-vectors. In this
paper we have detailed a signedness-agnostic bounds analysis, based on wrapped intervals.
The resulting analysis is efficient and precise. It is beneficial even for programs where all
signedness information is present.
We have observed that the wrapped interval domain is not a lattice. To compensate,

we have presented over- and under-approximations of join and meet. However, these ap-
proximations lack some of the properties we expect of joins and meets: they are neither
associative nor monotone. The lack of associativity means that repeated joins and meets
are not a substitute for variadic least upper bound and greatest lower bound operations,
so we have presented both over- and under-approximating variadic least upper bound and
greatest lower bound operations. These are generally more precise than repeated approxi-
mate binary joins and meets, irrespective of the order in which the binary operations are
applied [Gange et al. 2013a].
The lack of monotonicity of meets and joins means that classical fixed point finding

methods may fail to terminate. We have presented a widening operator that ensures mono-
tonicity, as well as accelerating convergence. The widening strategy is based on the idea of,
roughly, doubling the size of intervals in each widening step. Gange et al. [2013a] discuss, in
more general terms, the issues that arise from the use of non-lattice domains (such as the
domain of wrapped intervals) in abstract interpretation.
As future work we plan to extend our tools to support interprocedural analysis using

wrapped intervals, and also investigate the combination of wrapped intervals with pointer
analyses to improve precision.
A worthwhile line of future research is to find ways of generalizing wrapped interval

analysis to relational analyses, such as those using octagons [Miné 2006]. To this end, Gange
et al. [2013b] study the case of difference logic (constraints x−y ≤ k) and find that classical
approaches such as the Bellman-Ford algorithm cannot readily be adapted to the setting
of modular arithmetic. It appears that much of the large body of work on algorithms for
relational analysis requires thorough review through the lenses of machine arithmetic.

ACKNOWLEDGMENTS

We would like to thank John Regehr, Jie Liu, Douglas Teixeira and Fernando Pereira for helpful discussions
about interval analysis and LLVM.

REFERENCES

Gogul Balakrishnan. 2007. WYSINWYX: What You See Is Not What You Execute. Ph.D. Dissertation.
University of Wisconsin at Madison, Madison, WI, USA.

Gogul Balakrishnan and Thomas Reps. 2004. Analyzing Memory Accesses in x86 Executables. In Compiler
Construction: Proceedings of the 13th International Conference, E. Duesterwald (Ed.). Lecture Notes
in Computer Science, Vol. 2985. Springer, 5–23.

Sébastien Bardin, Philippe Herrmann, and Florian Perroud. 2010. An Alternative to SAT-Based Approaches
for Bit-Vectors. In Proceedings of the 16th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’10), J. Esparza and R. Majumdar (Eds.). Lecture
Notes in Computer Science, Vol. 6015. Springer, 84–98.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:32 G. Gange et al.

Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, David
Monniaux, and Xavier Rival. 2002. Design and Implementation of a Special-Purpose Static Program
Analyzer for Safety-Critical Real-Time Embedded Software. In The Essence of Computation: Complex-
ity, Analysis, Transformation, T. Æ. Mogensen, D. A. Schmidt, and I. H. Sudborough (Eds.). Lecture
Notes in Computer Science, Vol. 2566. Springer, 85–108.

Sandrine Blazy, Vincent Laporte, Andre Maroneze, and David Pichardie. 2013. Formal Verification of a
C Value Analysis Based on Abstract Interpretation. In Static Analysis, F. Logozzo and M. Fähndrich
(Eds.). Lecture Notes in Computer Science, Vol. 7935. Springer, 324–344.

Jörg Brauer and Andy King. 2010. Automatic Abstraction for Intervals Using Boolean Formulae. In Static
Analysis, R. Cousot and M. Martel (Eds.). Lecture Notes in Computer Science, Vol. 6337. Springer,
167–183.

Zack Coker and Munawar Hafiz. 2013. Program Transformations to Fix C Integers. In Proceedings of the
35th International Conference on Software Engineering (ICSE 2013). IEEE, 792–801.

Jeremy Condit, Matthew Harren, Scott McPeak, George C. Necula, and Westley Weimer. 2003. CCured in
the Real World. In ACM SIGPLAN 2003 Conference on Programming Language Design and Imple-
mentation (PLDI’03). ACM, 232–244.

Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints. In Proceedings of the Fourth
ACM Symposium on Principles of Programming Languages. ACM, 238–252.

Patrick Cousot and Radhia Cousot. 1979. Systematic Design of Program Analysis Frameworks. In Proceed-
ings of the Sixth ACM Symposium on Principles of Programming Languages. ACM, 269–282.

Patrick Cousot and Radhia Cousot. 1992. Comparing the Galois Connection and Widening/Narrowing
Approaches to Abstract Interpretation. In International Symposium on Programming Language Imple-
mentation and Logic Programming, M. Bruynooghe and M. Wirsing (Eds.). Lecture Notes in Computer
Science, Vol. 631. Springer, 269–295.

Will Dietz, Peng Li, John Regehr, and Vikram Adve. 2012. Understanding Integer Overflow in C/C++. In
Proceedings of the 34th International Conference on Software Engineering. IEEE, 760–770.

Manuel Fähndrich and Francesco Logozzo. 2010. Static Contract Checking with Abstract Interpretation. In
FoVeOSS, B. Beckert and C. Marché (Eds.). Lecture Notes in Computer Science, Vol. 6528. Springer,
10–30.

Stephan Falke, Deepak Kapur, and Carsten Sinz. 2012. Termination Analysis of Imperative Programs Using
Bitvector Arithmetic. In Verified Software: Theories, Tools, and Experiments, R. Joshi, P. Müller, and
A. Podelski (Eds.). Lecture Notes in Computer Science, Vol. 7152. Springer, 261–277.

Stephan Falke, Florian Merz, and Carsten Sinz. 2013. LLBNC: Improved Bounded Model Checking of
C Programs Using LLVM. In Tools and Algorithms for the Construction and Analysis of Systems,
N. Piterman and S. Smolka (Eds.). Lecture Notes in Computer Science, Vol. 7795. Springer, 623–626.

Graeme Gange, Jorge A. Navas, Peter Schachte, Harald Søndergaard, and Peter J. Stuckey. 2013a. Abstract
Interpretation over Non-Lattice Abstract Domains. In Static Analysis, F. Logozzo and M. Fähndrich
(Eds.). Lecture Notes in Computer Science, Vol. 7935. Springer, 6–24.

Graeme Gange, Harald Søndergaard, Peter J. Stuckey, and Peter Schachte. 2013b. Solving Difference Con-
straints over Modular Arithmetic. In Automated Deduction, M. Bonacina (Ed.). Lecture Notes in Ar-
tificial Intelligence, Vol. 7898. Springer, 215–230.

Thomas Gawlitza, Jérôme Leroux, Jan Reineke, Helmut Seidl, Grégoire Sutre, and Reinhard Wilhelm.
2009. Polynomial Precise Interval Analysis Revisited. In Efficient Algorithms: Essays Dedicated to
Kurt Mehlhorn on the Occasion of His 60th Birthday, S. Albers, H. Alt, and S. Näher (Eds.). Lecture
Notes in Computer Science, Vol. 5760. Springer, 422–437.

Arnaud Gotlieb, Michel Leconte, and Bruno Marre. 2010. Constraint Solving on Modular Integers. In
Proceedings of the Ninth International Workshop on Constraint Modelling and Reformulation (Mod-
Ref’10).

Philippe Granger. 1989. Static Analysis of Arithmetical Congruences. International Journal of Computer
Mathematics 30 (1989), 165–190.

Philippe Granger. 1991. Static Analyses of Linear Congruence Equalities among Variables of a Program. In
Theory and Practice of Software Development. Lecture Notes in Computer Science, Vol. 493. Springer,
167–192.

Andy King and Harald Søndergaard. 2010. Automatic Abstraction for Congruences. In Verification, Model
Checking and Abstract Interpretation, G. Barthe and M. Hermenegildo (Eds.). Lecture Notes in Com-
puter Science, Vol. 5944. Springer, 197–213.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Interval Analysis and Machine Arithmetic A:33

Michel Leconte and Bruno Berstel. 2006. Extending a CP Solver with Congruences as Domains for Program
Verification. In Proceedings of the First Workshop on Software Testing, Verification and Analysis
(CSTVA’06), B. Blanc, A. Gotlieb, and C. Michel (Eds.). 22–33.

Jérôme Leroux and Grégoire Sutre. 2007. Accelerated Data-Flow Analysis. In Static Analysis, H. Riis
Nielson and G. Filé (Eds.). Lecture Notes in Computer Science, Vol. 4634. Springer, 184–199.

Francesco Logozzo and Matthieu Martel. 2013. Automatic Repair of Overflowing Expressions with Abstract
Interpretation. In Semantics, Abstract Interpretation, and Reasoning about Programs, A. Banerjee,
O. Danvy, K.-G. Doh, and J. Hatcliff (Eds.). Electronic Proceedings in Theoretical Computer Science,
Vol. 129. 341–357.

Kim Marriott and Peter J. Stuckey. 1998. Programming with Constraints: An Introduction. MIT Press.

Laurant D. Michel and Pascal Van Hentenryck. 2012. Constraint Satisfaction over Bit-Vectors. In Constraint
Programming: Proceedings of the 2012 Conference, M. Milano (Ed.). Lecture Notes in Computer Sci-
ence, Vol. 7514. Springer, 527–543.

Antoine Miné. 2006. The Octagon Abstract Domain. Higher-Order and Symbolic Computation 19, 1 (2006),
31–100.

Tsuneo Nakanishi, Kazuki Joe, Constantine D. Polychronopoulos, and Akira Fukuda. 1999. The Modulo
Interval: A Simple and Practical Representation for Program Analysis. In Parallel Architecture and
Compilation Techniques. IEEE, 91–96. DOI:http://dx.doi.org/10.1109/PACT.1999.807422

Jorge A. Navas, Peter Schachte, Harald Søndergaard, and Peter J. Stuckey. 2012. Signedness-Agnostic Pro-
gram Analysis: Precise Integer Bounds for Low-Level Code. In Proceedings of the 10th Asian Symposium
on Programming Languages and Systems (APLAS’12), R. Jhala and A. Igarashi (Eds.). Lecture Notes
in Computer Science, Vol. 7705. Springer, 115–130.

Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. 1999. Principles of Program Analysis. Springer.

John Regehr and Usit Duongsaa. 2006. Deriving Abstract Transfer Functions for Analyzing Embedded
Software. In Proceedings of the 2006 SIGPLAN/SIGBED Conference on Language, Compilers, and
Tool Support for Embedded Systems (LCTES’06). ACM Press, 34–43.

Thomas Reps, Gogul Balakrishnan, and Junghee Lim. 2006. Intermediate-Representation Recovery from
Low-Level Code. In Proceedings of the 2006 ACM SIGPLAN Conference on Partial Evaluation and
Semantics-Based Program Manipulation. ACM Press, 100–111.

Raphael E. Rodrigues, Victor H. Sperle Campos, and Fernando M. Quintão Pereira. 2013. A Fast and
Low-Overhead Technique to Secure Programs Against Integer Overflows. In Proceedings of the 2013
IEEE/ACM International Symposium on Code Generation and Optimization (CGO’13). IEEE, 1–11.

Helmut Seidl, Reinhard Wilhelm, and Sebastian Hack. 2012. Compiler Design: Analysis and Transforma-
tion. Springer.

Rathijit Sen and Y. N. Srikant. 2007. Executable Analysis Using Abstract Interpretation with Circular Lin-
ear Progressions. In Proceedings of the Fifth IEEE/ACM International Conference on Formal Methods
and Models for Codesign. IEEE, 39–48.

Axel Simon and Andy King. 2007. Taming the Wrapping of Integer Arithmetic. In Static Analysis, H. Riis
Nielson and G. Filé (Eds.). Lecture Notes in Computer Science, Vol. 4634. Springer, 121–136.

Zhendong Su and David Wagner. 2004. A Class of Polynomially Solvable Range Constraints for Interval
Analysis without Widenings and Narrowings. In Tools and Algorithms for the Construction and Anal-
ysis of Systems, K. Jensen and A. Podelski (Eds.). Lecture Notes in Computer Science, Vol. 2988.
Springer, 280–295.

Douglas d. C. Teixera and Fernando M. Q. Pereira. 2011. The Design and Implementation of a Non-Iterative
Range Analysis Algorithms on a Production Compiler. In Proceedings of the 2011 Brasilian Symposium
on Programming Languages.

Xi Wang, Nickolai Zeldovich, M. Frans Kaashoek, and Armando Solar-Lezama. 2013. Towards Optimization-
Safe Systems: Analyzing the Impact of Undefined Behavior. In Proceedings of 24th ACM Symposium
on Operating Systems Principles. ACM, 260–275.

Henry S. Warren Jr. 2003. Hacker’s Delight. Addison Wesley.

Chao Zhang, Tielei Wang, Tao Wei, Yu Chen, and Wei Zou. 2010. IntPatch: Automatically Fix Integer-
Overflow-to-Buffer-Overflow Vulnerability at Compile-Time. In Computer Sceurity – ESORICS 2010,
D. Gritzalis, B. Preneel, and M. Theoharidou (Eds.). Lecture Notes in Computer Science, Vol. 6345.
Springer, 71–86.

Chao Zhang, Wei Zou, Tielei Wang, Yu Chen, and Tao Wei. 2011. Using Type Analysis in Compiler
to Mitigate Integer-Overflow-to-Buffer-Overflow Threat. Journal of Computer Security 19, 6 (2011),
1083–1107.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:34 G. Gange et al.

Received July 2013; revised March 2014; accepted July 2014

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

