
Under consideration for publication in Theory and Practice of Logic Programming 1

Horn Clauses as an Intermediate Representation

for Program Analysis and Transformation∗

GRAEME GANGE

Department of Computing and Information Systems

The University of Melbourne, Victoria 3010, Australia

(e-mail: gkgange@unimelb.edu.au)

JORGE A. NAVAS

NASA Ames Research Center, Moffet Field CA

(e-mail: jorge.a.navaslaserna@nasa.gov)

PETER SCHACHTE, HARALD SØNDERGAARD, PETER J. STUCKEY

Department of Computing and Information Systems

The University of Melbourne, Victoria 3010, Australia

(e-mail: {schachte,harald,pstuckey}@unimelb.edu.au)

Abstract

Many recent analyses for conventional imperative programs begin by transforming programs
into logic programs, capitalising on existing LP analyses and simple LP semantics. We propose
using logic programs as an intermediate program representation throughout the compilation
process. With restrictions ensuring determinism and single-modedness, a logic program can
easily be transformed to machine language or other low-level language, while maintaining the
simple semantics that makes it suitable as a language for program analysis and transformation.
We present a simple LP language that enforces determinism and single-modedness, and show
that it makes a convenient program representation for analysis and transformation.

KEYWORDS: compilers, control flow graphs, intermediate representation, program analysis and
transformation, SSA

1 Introduction

Most compilers, regardless of the programming language(s) and paradigms supported,

use some Intermediate Representation (IR) between parsing the input program and emit-

ting the object code. Use of an IR has the significant advantage of allowing a compiler

to target multiple CPU architectures, and even multiple programming languages, with-

out duplicating the bulk of the compiler, which operates exclusively on the IR. Over the

course of the compilation, this representation will be analysed for different characteristics

and transformed in various semantics-preserving ways, in preparation for efficient object

code generation. Thus it is important for an IR to make program analysis and transfor-

mation as simple and convenient as possible. Three-address code has been a popular form

∗ This work was supported by the Australian Research Council through Discovery Project Grant
DP140102194.



2 G. Gange et al.

Prog → Func∗

Func → Head Block Block∗

Block → BlockID : Prim∗BlockExit
BlockExit → return Val

| if Test BlockID BlockID
| goto BlockID

Head → Name(Var∗)
Prim → Var = Val

| Var = Val ⊙ Val
| Name(Val∗)

Test → Val < Val
Val → Var | Const

Fig. 1. A three-address code language

Block → BlockID : Phi∗Prim∗BlockExit
Phi → Var = ϕ(Var∗)

Fig. 2. Changes to three-address language to produce SSA

for this purpose for many years. Figure 1 presents a three-address code language. Here we

assume we are given Name, the set of all possible function names; Var , the set of variable

names; and Const , the set of all primitive constant values. We let Primval = Var∪Const .

To simplify exposition, we let ⊙ stand for all primitive arithmetic and logical operators,

and < stand for all primitive binary comparison operators.

Each basic block of a function is a sequence of function calls and primitive instructions,

ending with a control transfer to another basic block. Once control enters a basic block,

it is guaranteed to reach its end (unless some exceptional circumstance arises). This

guarantee makes analysis of each basic block straightforward.

A popular variant of three-address code is Static Single Assignment (SSA) form (Alpern

et al. 1988; Cytron et al. 1991; Lattner and Adve 2004). SSA was proposed as a way to

generalize value numbering, a technique used to remove redundant computation. In SSA

form, each variable is assigned at most once in its scope. Where a variable would be re-

assigned, a new variable is instead introduced. Since each variable is only assigned once,

it is not necessary to consider the program point when referring to a variable, only the

function it appears in. This makes many analyses simpler and more efficient, because a

single abstract value can be associated with each variable name in a function, and the

set of variable names of interest is limited and easily determined.

A basic block with multiple predecessors presents a complication for SSA: a variable

use in such a block may refer to definitions of those variables in any of the predecessor

blocks. To give such a variable a single definition, SSA introduces the concept of a ϕ

node: the variable is assigned the result of a “fake” function that takes as input the

version of the variable from each predecessor block. A block with multiple predecessors

will contain as many ϕ nodes as it has variables with alternative definitions in earlier

blocks. Figure 2 presents the changes to three-address syntax needed to transform to

SSA: each block may begin with ϕ nodes. Consider, for example, the C code to compute

the greatest common divisor shown in Figure 3 (left side). This code can be converted

into SSA form as shown in Figure 3 (right).

Several researchers have presented program analyses that work by first transforming

an imperative source program (e.g., Spoto et al. (2010) and Albert et al. (2012)), or

Java bytecode (e.g., Benton and Fischer (2007)) into an abstract form based on the

constructs of logic programming, and then analysing this result. Others (e.g., Whaley

et al. (2005)) have used logic programs to represent program analyses. In some cases this



Relational IR 3

int gcd(int a, int b) {

while (b != 0) {

int t = b;

b = a % t;

a = t;

}

return a;

}

entry :
br header

header :
b1 = ϕ(b, b0)
a1 = ϕ(a, a0)
if (b1 6= 0) body tail

body :
t0 = b1
b0 = a1 mod t0
a0 = t0
br header

tail :
return a1

Fig. 3. The gcd function in C (left) and LLVM-style SSA form (right)

benefits from existing logic program analyses, but the greater benefit derives from the

simple, traditional TP semantics for logic programs, and hence simpler and more powerful

analyses. Logic programs have none of the limitations of SSA form that we detail below.

In this paper we propose representing an imperative source program as a logic pro-

gram throughout the compilation process. It may be surprising to think of compiling C

programs by translation to Prolog, rather than the reverse, but we show that placing a

few limitations on the generated logic programs leaves low-level programs suitable for

high-level analysis and transformation, and also for final translation to machine language.

In Section 2 we discuss problematic aspects of SSA and related forms, together with

suggested ways of addressing the problem. In Section 3 we introduce “Logic Programming

(LP) Form” and we show how to translate a three-address code to it. In Sections 4 and

5 we give example analyses for LP form. In Section 6 we discuss related work. Finally,

Section 7 reviews what has been achieved with the proposed LP form, and concludes.

2 SSA and Allied Forms: Problems and Solutions

entry :

if (x < 0) left right

left :

y0 = −x

z0 = x

br tail

right :

y1 = x

z1 = −x

br tail

tail :

y2 = ϕ(y0, y1)

z2 = ϕ(z0, z1)

t = z2− 1

u = y2 mod t

Fig. 4. SSA and branching

While SSA form does simplify a number of common

program analyses, it has significant limitations that

interfere with others. Most of these problems can be

solved, at the cost of further complicating the SSA

form. In this section we will consider these limitations.

2.1 Path obliviousness

Basic blocks do not indicate the constraints that must

be satisfied for them to be entered. These constraints

appear in predecessor blocks. In a forward analysis,

this means constraints must be propagated from con-

ditional branches to their target blocks. A backward

analysis is clumsier: it must peek backward into each

predecessor block to see what conditions hold.

Consider, for example, forward interval analysis of

the code shown in Figure 4. The blocks left and right

both refer to “x” so there is no straightforward way to



4 G. Gange et al.

separate the reasoning that needs to be done under different assumptions about x. The

next section considers the use of different names for x in the separate branches, which

would help in this example. However, as it stands, we cannot assign non-trivial intervals

to y2 and z2 in the absence of path constraints that record how control reached tail.

To solve the path obliviousness problem, Ballance et al. (1990) have proposed the use

of Gated Single-Assignment form (GSA). SSA’s ϕ nodes are replaced by different types

of gating functions. These capture the control conditions that determine which of the

various definitions that reach the node should provide its value. One gating function,

γ, is in essence an if-then-else function. For example we might translate ϕ(x1, x2) to

γ(P, x1, x2), where P is some branch condition from elsewhere in the program. Flow of

definitions inside loops are managed by additional gating functions to handle initial and

loop-carried values (µ nodes) as well as loop-exiting values (η nodes).

This form makes information flow more transparent, but it is extremely complex,

compared to SSA. The form we propose has greater uniformity, as it does not introduce

a variety of different mechanisms for the “joining” or “merging” of information. Moreover,

GSA, as SSA, does not readily lend itself to backward analysis, as discussed next.

2.2 Forward bias

The ϕ nodes of SSA are convenient when analysing each basic block, as they clearly

indicate which variables of which other blocks provide values to the variables of the block.

However, this assumes forward analysis. In this direction, where execution paths join,

each variable with alternative sources is indicated by a ϕ node specifying the different

names for each alternative, and because each variable is only defined once per function,

it naturally receives only one abstract value during forward analysis.

For a backward analysis, however, there is no node dual to a ϕ to indicate the alterna-

tive destinations that may use each variable following a branch instruction. (While the

branch indicates alternative destinations, it does not specify the variables that may be

used there). Importantly, the alternative destinations for a branch all have the same name

for each variable. In a backward analysis, then, different blocks of a function may deter-

mine different abstract values for the same variable name: the virtue of SSA that each

variable has a unique definition in each function does not apply to backward analysis.

Consider Figure 4 and suppose we wish to verify whether the division is safe, i.e. that

t cannot be 0. In a fixed-width integer context (as we assume here), it is convenient to

use “wrapped intervals” (Gange et al. 2015) as an abstract domain, as these allow us to

capture both intervals and complemented intervals. Reasoning backwards, we find the

following sufficient safety condition for the tail block: z0, z1 6∈ [1, 1]. For x, this then

translates to x 6∈ [1, 1] (for left), and x 6∈ [−1,−1] (for right). This allows us to conclude

that all will be well if x 6∈ [−1, 1], but that is insufficient to prove safety.

To address this problem, Ananian (1999) has proposed adding σ nodes to SSA form to

create Static Single Information (SSI) form. Where SSA form has a ϕ node at the top of

each block indicating where the value of each variable in the block comes from, SSI adds

a σ node at the bottom of each branching block indicating where each variable’s value

goes to. This permits reasoning in both directions and provides (variable) names for all

relevant pieces of information. However, it does not address a number of other problems,

as we now explain.



Relational IR 5

2.3 Lack of ϕ node compositionality

For a non-relational value analysis, which assigns each variable a single abstract value,

a ϕ node conveniently specifies that the abstract value for a variable is the join of the

abstract values of the input variables. For a relational analysis, however, a ϕ node does

not have such a simple interpretation. Consider an octagon analysis (Miné 2006) of

the program snippet in Figure 4. For the two transitions to the tail block, we have

x − z0 = 0 ∧ y0 + z0 = 0 and x − y1 = 0 ∧ y1 + z1 = 0. Or, assuming SSI, we have

x0 ≥ 0 ∧ x0 − z0 = 0 ∧ y0 + z0 = 0 and x1 < 0 ∧ x1 − y1 = 0 ∧ y1 + z1 = 0. In either

case, there is no meaningful (abstract) interpretation of the statement y2 = ϕ(y0, y1)

in isolation that does not throw away most of these relationships. In particular, we lose

the fact that y2 + z2 = 0. The two ϕ nodes must be treated together to prevent this

loss of precision. What is really needed is a single node that conveys the information of

(y2, z2) = ϕ((y0, z0), (y1, z1)).

SSI does not help with this problem and in fact the remedies discussed so far appear to

address particular symptoms rather than a more fundamental cause which, in our view,

is an insufficiently abstract view of name management.

2.4 Name management

The ϕ and σ nodes of SSA and SSI form require special treatment during analysis. A

ϕ node v = ϕ(v1, v2, . . .), cannot be treated like a function call, because the variables

mentioned come from alternative blocks—that is, they cannot exist at the same time. For

example, when analysing a basic block beginning with v6 = ϕ(v3, v5), we must find the

analysis results for the two predecessor blocks, rename v3 to v6 in the first and v5 to v6

in the second, and then find the join of the two and project away other variables in the

originating blocks. In essence, all ϕ (and σ) nodes in a block must be treated similarly to

the way a function call is treated: information about actual parameters must be renamed

to match formal parameters (or vice-versa for backward analysis), information about

variables not conveyed in the call must be projected away, and the join of all incoming

calls must be taken.

Appel (1992) and Kelsey (1995) observed similarities between SSA and continuation-

passing style in functional programming. Later Appel (1998) observed that SSA is in a

sense equivalent to functional programming without continuations, and he presented a

transformation from SSA to functional program (FP) form. This form mitigates the name

management problem, using parameter passing to serve the purpose of ϕ nodes: where

SSA form would have a block with a ϕ node for each variable defined in predecessor

blocks, the FP form has a function with a parameter for each variable defined outside.

Likewise, FP form uses function calls in place of jumps between blocks. Since SSA form

supports function call and return in addition to ϕ nodes and jumps between blocks,

FP form is notably simpler than SSA. So while analyses for SSA form are often only

intra-procedural, analyses for FP form will naturally be inter-procedural as well.

Appel’s note “SSA is functional programming” (Appel 1998) conveys these points very

clearly. But a corollary is that functional form also preserves forward bias. We share the

enthusiasm for a declarative formalism but we also point out that a relational view can

offer greater flexibility than a functional view.



6 G. Gange et al.

Prog → Proc∗

Proc → Clause∗

Clause → Head ← Goal∗

Head → Name(Var∗;Var∗)

Goal → ⊙(Val∗;Var∗)
| <(Val ,Val ; )
| Name(Val∗;Var∗)

Val → Var | Const

Fig. 5. An LP form language

2.5 Input/output asymmetry

While each input parameter of a function has a unique name apparent in the function

header, the return value cannot be determined without scanning all the function blocks.

In fact, there may be many alternative variables returned by different blocks. This is

inconvenient for any summarising analysis, which ultimately must project the analysis

result for the function onto the function inputs and output. For example, in Figure 3,

one knows that a1 and b1 are input to the function (this is omitted from the figure to

save space), but must examine all the blocks of the function to see that a1 is the output.

In fact, a function with more than one return may have many different output variables.

These problems can be avoided by first transforming the function replacing all return

statements with jumps to a distinguished new final block containing a ϕ node joining

all return values into a new variable, which is then returned. If the function header is

augmented to record this final variable name along with the function parameters, it would

not be necessary to scan all blocks to find the unique return variable. This extra step is

not difficult, but is unnecessary for LP form.

A related inconvenience is the fact that functions can only return a single result. If, for

example, two functions compute different values through similar computations, and the

two are often called together, it may be desirable to fuse the two functions into a single

one that returns two values. Of course, this may be done by returning a tuple, but in

this case a structure is returned instead of two separate values, which may thwart many

analyses. This can be solved by allowing functions to return multiple separate values.

2.6 Implicit variable scoping

While the ϕ nodes of a block indicate some of the defined variables on entry to the block,

they do not indicate all of them. In fact, a block with only one predecessor will generally

not have any ϕ nodes at all, and so no indication at all of which variables are defined

on entry. Neither does SSA form provide any indication of which variables of one block

are communicated to its successors. For analyses whose efficiency depend on minimising

the number of variables under consideration, knowing which variables enter and leave a

block would allow irrelevant variables to be projected away.

3 LP Form

SSA is a small refinement of three-address code. We argue that a larger refinement, to a

restricted form of logic programming, provides the single-assignment benefits of SSA for

ease of analysis while avoiding the problems outlined in Section 2.



Relational IR 7

Figure 5 presents a restricted Logic Programming language suitable for representing

low-level programs.1 In addition to fitting this grammar, LP form requires that for each

guard (i.e., <) in each clause, there must be at least one other clause for the same

procedure that is identical up to that guard, followed by the complementary guard, and

any two clauses for a procedure must contain complementary guards, up to which they

are identical.2 Furthermore, all clause heads for a given procedure must be identical. This

tames the nondeterminism of logic programming, ensuring that exactly one clause will

succeed for each set of inputs, and makes analysis of procedures with multiple clauses

simpler. That is, only one clause of each procedure will be executed, and no backtracking

will be necessary.

This form also tames the multiple modes of a logic program by explicitly dividing the

arguments into inputs followed by outputs, separated by a semicolon. In calls to primitive

as well as user defined procedures, an input argument must be either a variable or a

constant value, and an output argument must be a variable. All parameters in procedure

heads must be variables. This ensures that variables are free until they are assigned, after

which they are ground. As in Mercury (Somogyi et al. 1996), no dereferencing is ever

needed.

LP form differs from SSA form in the following ways:

• Instead of blocks, LP form has clauses ; a procedure comprises one or more clauses,

exactly one of which will be executed.

• Instead of conditional constructs and computed jumps, LP form has guards, instruc-

tions that can either succeed or fail, determining which clause will be executed.

• It replaces unconditional branches with procedure calls, and loops with recursion.

• All registers (variables) in a clause are either parameters to that procedure or are

defined in that clause, thus it has no need for ϕ nodes.

• It uses parameters to pass data out of, as well as into, procedures, thus it has no

return instruction.

• It explicitly models changes to data structures and input/output operations, allow-

ing pure functions to be recognised and optimised. SSA could do this, but, at least

in the LLVM implementation, does not.

• Where SSA form has four different control transfer operations, plus ϕ nodes, LP

form has only procedure calls and multiple clauses, so LP form is simpler.

One disadvantage of this representation is that the common initial parts of the clauses are

duplicated for each clause, leading to duplicated analysis effort. Our current preliminary

implementation factors out the duplicated code, representing a procedure body as a tree,

with a sequence of goals at each node, and optionally a guard and two child nodes.

This not only avoids duplicated analysis work, but also ensures that the clauses remain

mutually exclusive and exhaustive through any program transformations.

1 Details such as handling of type information and symbol tables are outside the scope of this paper.
Our handling of them is similar to that of other IRs.

2 Note that, in LP form constructed directly from three-address code, there will be at most one guard
in a clause; however, inlining can produce clauses with multiple guards.



8 G. Gange et al.

v = vars(B0, ..Bn) 〈B0, v, id〉 ⇒ 〈B
′
0, C0, θ0〉 · · · 〈Bn, v, id〉 ⇒ 〈B

′
n, Cn, θn〉

H = f(p, st; ret, stθ0) H0 = fB0
(v, st; ret, stθ0)) · · · Hn = fBn(v, st; ret, stθn))

f(p)B0, . . . Bn =⇒ (H ← H0) ∧ (H0 ← B
′
0) ∧ C0 ∧ · · · ∧ (Hn ← B

′
n) ∧ Cn

〈Π, v, θ〉 ⇒ 〈Φ, C1, θ
′〉 〈Ξ, v, θ′〉 ⇒ 〈Θ, C2, θ

′′〉

〈Π;Ξ, v, θ〉 ⇒ 〈Φ ∧Θ, C1 ∧ C2, θ
′′〉

r ∈ Primval newvar v
′

θ
′ = θ[v 7→ v

′]

〈v = r, v, θ〉 ⇒ 〈v′ = rθ, true , θ′〉

newvar v
′

θ
′ = θ[v 7→ v

′] a′ = aθ

〈v = ⊙(a), v, θ〉 ⇒ 〈⊙(a′; v′), true , θ′〉

newvar v
′
, st

′
θ
′ = θ[v 7→ v

′
, st 7→ st

′] a′ = aθ

〈v = g(a), v, θ〉 ⇒ 〈g(a′, st; v′, st′), true , θ′〉

〈return v, v, θ〉 ⇒ 〈ret = vθ, true , θ〉

newvar st
′

θ
′ = θ[st 7→ st

′]

〈goto B, v, θ〉 ⇒ 〈fB(v, st; ret, st′), true , θ′〉

newproc ν Ct = ν(v, st; ret, st′)← vi < vj ∧ fBt(v, st; ret, st
′)

Cf = ν(v, st; ret, st′)← ¬vi < vj ∧ fBf
(v, st; ret, st′)

〈if (vi < vj) Bt Bf , v, θ〉 ⇒ 〈ν(v, st; ret, st
′), Ct ∧ Cf , θ〉

Fig. 6. Translation from three-address code to LP form

3.1 Translation to LP form

To simplify exposition, we assume the source program is presented in three-address code

form.3 We denote by v a sequence of the 0 or more variables comprising the set v.

To track side-effects, our translation uses the distinguished variable st to denote the

state of the computation, including the heap and input/output state. This ensures opera-

tions that may have side-effects will be executed in the correct order, while allowing pure

operations to be reordered. We also use ret to hold the value returned by the function.

Figure 6 presents our translation. Here the notation Φ =⇒ Ψ indicates that the function

definition Φ is transformed to the clauses Ψ. In the remaining transforms, the notation

〈Φ, v, θ〉 ⇒ 〈Ψ, C, θ′〉 means that, in the context of substitution θ and variables v, state-

ments Φ are translated to goals Ψ, with extra clauses C and resulting substitution θ′.

The substitutions are used to ensure each variable has a single assignment, and the extra

clauses are for auxiliary predicates generated to implement conditionals. We let newvar x

and newproc x specify that x is a fresh variable or procedure name, respectively.

As indicated by the first transform, each basic block is transformed into a single clause

procedure, with one extra clause to invoke the first. For simplicity, each of these clauses

takes all the variables appearing in the function, plus the state variable st as inputs, and

the return value variable ret and the state, as modified by the block body, as outputs. The

final transform produces a two-clause procedure for each conditional primitive. Because

these transforms are idempotent and non-overlapping, confluence is assured.

Figure 7 shows the gcd function of Figure 3 translated to LP form. The transformation

is rather simple-minded, threading every variable to each clause. However, the neededness

analysis described in Section 5 allows the removal of unnecessary variable threading,

3 Because variables in LP form are scoped to a single clause, rather than to all the blocks of a function
body, translation from SSA is actually less convenient than from three-address code.



Relational IR 9

gcd(a, b, st; ret, st′)← gcdheader (a, b, t, st; ret, st
′)

gcdheader (a, b, t, st; ret, st
′)← gcdν(a, b, t, st; ret, st

′)

gcdν (a, b, t, st; ret, st
′)← b 6= 0 ∧ gcdbody (a, b, t, st; ret, st

′)

gcdν (a, b, t, st; ret, st
′)← b = 0 ∧ gcdtail (a, b

′
, t, st; ret, st′)

gcdbody (a, b, t, st; ret, st
′)← t

′ = b ∧mod(a, t′; b′) ∧ a
′ = t

′ ∧ gcdheader (a
′
, b

′
, t

′
, st; ret, st′)

gcdtail (a, b, t, st; ret, st)← ret = a

Fig. 7. The gcd program translated to LP form

gcd(a, b; ret)← b 6= 0 ∧mod(a, b; b′) ∧ gcd(b, b′; ret)

gcd(a, b; ret)← b = 0 ∧ ret = a

Fig. 8. The translated gcd program of Figure 7 after simplification

and a simple inlining heuristic can remove unnecessary procedures. Figure 8 shows the

translated gcd program after these transformations.

3.2 Translation from LP form to machine language

The Mercury project (Somogyi et al. 1996) has demonstrated that logic programs can be

translated to very efficient executable code by tracking predicate determinism at compile-

time and eliminating variable dereferencing. LP form likewise eschews unification of “logic

variables” and the need for dereferencing, but goes further, eliminating nondeterminism

and the need for choicepoints and a machine register to track them. Since LP form is

designed to be suitable for any language, it does not provide its own memory management

solution, and so does not need a register to control memory allocation.

In fact, LP form is surprisingly close to the machine language of common computers. Its

ability to express operations with multiple outputs better reflects CPU capabilities than

the functional restriction imposed by common three-address languages. For example, the

x86 architecture’s IDIV instruction produces both a quotient and a remainder in separate

registers, and numerous instructions modify flags in addition to other registers; these are

better abstracted in LP form than in three-address code.

As mentioned above, our implementation actually factors out the common initial part

of all the clauses for a procedure. That is, each procedure is represented as a body, which

is a list of goals optionally ending with a test to select between two (or more) subsequent

bodies. This representation closely matches the structure of the code to be generated:

some straight-line code ending with a conditional branch to one alternative and a fall

through to the other.

The end of each clause is also easily translated through last call optimisation: if the

final operation in a clause is a procedure call, that call is changed to an unconditional

branch to the destination. If it is a primitive, it is followed by a return instruction. Other

than this, machine code generation for LP form is similar to SSA or three-address code.



10 G. Gange et al.

p(x, u)← x < 0 ∧ negate(x, y) ∧ z = x ∧ p1(y, z, u)

p(x, u)← x ≥ 0 ∧ y = x ∧ negate(x, z) ∧ p1(y, z, u)

p1(y, z, u)← sub(z, 1, t) ∧mod(y, t, u)

Fig. 9. Example of Fig 4 in LP form

4 LP form analysis and transformation

In this section we show that LP form does not share the flaws discussed in Section 2, and

discuss its other benefits. Consider again the example program of Figure 4. After simpli-

fication through inlining of simple procedures and elimination of unnecessary dataflow,

this would be expressed in LP form as shown in Figure 9.4 When performing a forward

interval analysis on this code, the x < 0 condition in the first clause gives the interval

[−∞,−1] for x, [1,∞] for y, and [−∞,−1] for z prior to the call to p1. For the second

clause, we infer [0,∞] for x, [0,∞] for y, and [−∞, 0] for z. Computing the join of the

abstract states for the two calls to p1, we have y ∈ [0,∞] ∧ z ∈ [−∞, 0], so analysing

p1 gives us y ∈ [0,∞] ∧ z ∈ [−∞, 0] ∧ t ∈ [−∞,−1] on reaching the first call to mod,

allowing us to certify the safety of the mod operation. The path-awareness of LP form

gives us stronger analysis results without any extra effort.

Since each LP form clause is logically an unordered conjunction, it is equally adept at

forward and backward analysis. Consider a backward analysis of the program of Figure 9

to determine the safety of modulo (division) operations. This will start with the constraint

t 6= 0 at the end of p1, which implies z 6= 1 on entry to p1. Analysing the first clause

of p backwards from its call to p1, we deduce z 6= 1 ∨ x 6= 1 ∨ y 6= −1 before reaching

the x < 0 goal. Handling this goal gives us x < 0 → z 6= 1 ∨ x 6= 1 ∨ y 6= −1 ≡ True,

meaning we have nothing else to prove for that clause. Turning to the second clause of

p, we derive x ≥ 0 → z 6= 1 ∨ x 6= −1 ∨ y 6= −1 ≡ True, and again the proof obligation

is discharged.

Relational analyses do not present any difficulty for LP form, because it has no artificial

ϕ nodes to separately combine alternative versions of variables. This is handled through

conventional procedure calls, where the least upper bound is used to combine results

for multiple calls. Consider an octagon analysis (Miné 2006) of Figure 9. Much like the

analysis discussed in Section 2.3, analysis derives y + x = 0 ∧ z − x = 0 ∧ y + z = 0

leading to the call to p1 from clause 1, and y− x = 0∧x+ z = 0∧ y+ z = 0 for clause 2.

Procedure calls are handled by projecting the abstract state onto the variables appearing

in the call, and computing the least upper bound of the states. In this case, this yields

y+ z = 0⊔y+ z = 0 ≡ y+ z = 0, preserving the strong results obtained for both clauses.

The other issues for SSA and FP form discussed in Section 2 are trivially addressed

by LP form. Lacking ϕ nodes, LP form has no issue with name management. Because

LP form is relational, it has no issue with input/output asymmetry. And because each

clause has its own scope, the scope of each variable is obvious.

4 Since the definition of p1 is so simple, in practice it would be inlined, but that would only give us
stronger analysis results.



Relational IR 11

5 Specialised analyses for LP form

Liveness analysis is a standard program analysis used to determine for each program

point the set of variables whose values may be needed later. The single assignment

property enjoyed by SSA, FP, and LP forms somewhat simplifies this analysis: because

each variable is assigned only once, it is not necessary to take account of variable re-

assignment. Within a single block (clause) of SSA (LP form) code, this is easily done by

traversing the statements backward, noting the first encountered use of each variable,

which will be the last use on forward execution, and each variable assignment, which will

be the definition of that variable. To handle liveness for a whole function, analysis results

must be propagated backward between blocks.

Dead code elimination is a transformation to remove unnecessary code. Any code that

assigns only dead variables can be removed, but doing so may remove variable uses, and

produce stronger results for liveness analysis. Thus it is beneficial to perform liveness

analysis and dead code elimination simultaneously. If this is extended beyond individual

functions to an entire module or even a whole program, more dead code can be eliminated.

We present a two-phase interprocedural neededness analysis, which combines liveness

and dead code elimination. The first phase computes neededness dependencies, conjunc-

tions of implications of the form x → y signifying that if variable x is needed on com-

pletion of a goal, then y is needed on entry. This analysis can be performed bottom-up

over a module’s call graph, one strongly connected component (SCC) at a time, which

ensures that all callers of a given procedure, except those in the same SCC, will be ana-

lyzed before the procedure itself. A fixed point must be computed for each SCC, but no

iteration is necessary between SCCs. This reduces the number of procedures analyzed in

each fixed point iteration, since SCCs are typically fairly small.

Formally, we define our neededness dependency domain N as the set of conjunctions of

variable → variable implications, where an individual implication x → y indicates that if

variable x is needed, then so is y. We let S denote the Goal −→ N neededness dictionary

function space, specifying neededness dependencies for many procedures. We define our

analysis with the following functions:

Pd :: P(Proc) −→ S

Dd :: Proc −→ S

Cd :: Goal∗ −→ S −→ N

Gd :: Goal −→ P(Var) −→ S −→ N

Here Pd gives the neededness dictionary for all the procedures in the module; Dd yields

the dictionary for a single procedure; Cd produces the neededness of a single clause given

a neededness dictionary; and Gd gives the neededness of a single goal given the set of

variables needed later in the clause body and a neededness dictionary.

As shown in Figure 10, the neededness analysis of a module is the least fixed point of

the combination of results for all procedures in the module, and the result for a procedure

is just the conjunction of the neededness of all its clauses, which is the conjunction of

results for all goals in each clause. The analysis result for a primitive operation is the

conjunction of x → y implications for each output x and each input y. For a primitive

comparison operation, it is the conjunction of x → y for each variable x defined later in

the clause (determined by the defs function) and each input y of the comparison. Since

primitive comparisons are guards, they are only needed to determine if the following code

is executed, so they are only needed if some variable defined later is needed.



12 G. Gange et al.

Pd S = lfp

(

⊔

d∈S

Dd d

)

Dd [p(vi; vo)← (B1,∨ · · · ∨Bn)] A = λp(vi; vo) .



∃(Var \ vi \ vo) .
∧

1≤k≤n

Cd Bk A





Cd (g1 ∧ · · · ∧ gn) A =
∧

1≤k≤n

Gd gk defs(gk+1 ∧ · · · ∧ gn) A

Gd ⊙ (vi; vo) V A =
∧

x∈vi

∧

y∈vo

y → x

Gd < (x, y) V A =
∧

v∈V

(v → x ∧ v → y)

Gd p(vi; vo) V A = A p(vi; vo)

Fig. 10. Neededness abstract interpretation

The second analysis phase uses these dependencies to determine which procedure in-

puts and outputs are actually used, beginning by marking all parameters of public (ex-

ported) functions as needed. This analysis then proceeds top-down by SCCs through the

program call graph, with each SCC processed until a fixed point is reached. In each iter-

ation, each clause in the SCC is processed with a needed variable formula, initially the

conjunction of the set of output variables of that procedure that are marked as needed.

Processing of a clause proceeds from last goal to first. If any output of a goal is in the

needed variable formula, the goal is marked as needed, and the called procedure has its

needed outputs marked for when it is processed. Then the neededness dictionary for the

called procedure is conjoined with the current needed variable formula, and the goal’s

output variables are projected out, to produce the new needed variable formula. This

formula then comprises the live variable set for that goal. Primitive goals are simpler: if

any output is in the needed variable formula, it is marked as needed, its inputs are added

to the needed variable formula, and its outputs are projected out. Once a fixed point has

been reached, any goal or parameter not marked as needed can be removed.

6 Related Work

Many variants of SSA have been proposed (Ballance et al. 1990; Gerlek et al. 1995; Chow

et al. 1996; Ananian 1999) and much work has been concerned with how to generate

(compact) SSA and its variants efficiently (Cytron et al. 1991; Tu and Padua 1995;

Ananian 1999). In Section 2 we mentioned the work on FP form by Kelsey (1995) and

Appel (1998). Appel (1998) in fact sketches two translations to FP form, one producing a

“flat” sequence of function definitions, the other producing nested definitions. The latter

uses fewer functions and variables and Appel points out that the structure of function

nesting makes the dominance properties of the original control-flow graph explicit. Appel

(1998) also uses the equivalent of SSI’s “σ nodes” as a pedagogic tool; the σ nodes are

in fact pushed into successor blocks and become mere “renaming” ϕ nodes.

Peralta and Cruz-Carlón (2006) briefly sketched a translation from SSA to CLP, but



Relational IR 13

provided no formal definition of the translation. From their examples it is clear that the

translation differs from the one suggested here. Peralta et al. (1998) showed how to use

CLP analysis tools to analyse imperative programs. Their approach is based on having

an interpreter, written in CLP, for the imperative language and then translating (small)

imperative programs through partial evaluation of the interpreter.

Spoto et al. (2010) implement a termination analyzer for Java bytecode by expressing

path-length reasoning as a CLP program and leveraging from existing CLP termination

analysis tools. The resulting analyzer is robust and entirely automatic, covering the full

language of Java bytecode. Albert et al. (2012) use a similar approach to cost analysis.

Morales et al. (2015) explore the use of a logic programming language for the imple-

mentation of efficient abstract machines and runtime systems. To this end they use a

Prolog variant with certain imperative features (mutable variables) that enables transla-

tion into efficient C-style code while still allowing for high-level program transformations,

such as partial evaluation of instruction definitions.

CLP has been also used as the basis for software model checking (Delzanno and Podel-

ski 1999; Flanagan 2003) of concurrent systems and its use in software verification tools

is rapidly growing. For example, it has been adopted in Threader (Gupta et al. 2011),

UFO (Albarghouthi et al. 2012), SeaHorn (Gurfinkel et al. 2015), HSF (Grebenshchikov

et al. 2012), VeriMAP (De Angelis et al. 2014), Eldarica (Rümmer et al. 2013), and

TRACER (Jaffar et al. 2012). The task of encoding verification conditions is different

to our aim of providing a platform for program compilation, although both require a

convenient representation for reasoning about programs.

7 Conclusions

We have described Static Single Assignment form, and discussed a number of problems it

causes for sophisticated analyses. Many of these problems have been previously addressed,

but no previous work has addressed all of them. One approach that addressed several of

these problems re-conceives a low-level program as a functional program.

We propose going further and viewing a low-level program as a logic program, and

have suggested a simple, deterministic, strongly moded logic programming language as

a compiler intermediate representation. The language is fully declarative; many existing

analyses for logic programming languages will apply directly. We have presented a pow-

erful analysis and transformation for this form. Because LP form uses procedure calls for

all control transfer, operations that cross block boundaries are naturally inter-procedural.

Owing to determinism and single-mode restrictions, LP form is surprisingly close to ma-

chine language, so final code generation is not difficult. Thus LP form is a suitable choice

for a compiler’s intermediate code representation.

We are currently developing an implementation of LP form, which we call LPVM.

This is being used as intermediate representation for a compiler we are developing for a

language combining the benefits of declarative and imperative programming. Since the

procedures of the language support multiple outputs, that facility in LP form is par-

ticularly important. Rather than duplicating the extensive work of the LLVM project

in producing high-quality, peep-hole optimised assembly language for multiple architec-

tures, we plan to do all program analysis and transformation in LP form, and finally

translate to LLVM for final code generation.



14 G. Gange et al.

References

Albarghouthi, A., Li, Y., Gurfinkel, A., and Chechik, M. 2012. Ufo: A framework for
abstraction- and interpolation-based software verification. In Proc. 24rd Int. Conf. Computer
Aided Verification, P. Madhusudan and S. A. Seshia, Eds. Lecture Notes in Computer Science,
vol. 7358. Springer, 672–678.

Albert, E., Arenas, P., Genaim, S., Puebla, G., and Zanardini, D. 2012. Cost analysis
of object-oriented bytecode programs. Theoretical Computer Science 413, 142–159.

Alpern, B., Wegman, M. N., and Zadeck, F. K. 1988. Detecting equality of variables in pro-
grams. In Proc. 15th ACM SIGPLAN-SIGACT Symp. Principles of Programming Languages.
ACM, 1–11.

Ananian, C. S. 1999. The static single information form. M.S. thesis, Princeton University.

Appel, A. W. 1992. Compiling with Continuations. Cambridge University Press.

Appel, A. W. 1998. SSA is functional programming. SIGPLAN Notices 33, 4, 17–20.

Ballance, R. A., Maccabe, A. B., and Ottenstein, K. J. 1990. The program depen-
dence web: A representation supporting control-, data-, and demand-driven interpretation of
imperative languages. In Proc. ACM SIGPLAN Conf. Programming Language Design and
Implementation. ACM, 257–271.

Benton, W. C. and Fischer, C. N. 2007. Interactive, scalable, declarative program analysis:
From prototype to implementation. In Proc. 9th ACM SIGPLAN Int. Conf. Principles and
Practice of Declarative Programming. ACM, 13–24.

Chow, F., Chan, S., Liu, S.-M., Lo, R., and Streich, M. 1996. Effective representation of
aliases and indirect memory operations in SSA form. In Compiler Construction, T. Gyimóthy,
Ed. Lecture Notes in Computer Science, vol. 1060. Springer, 253–267.

Cytron, R., Ferrante, J., Rosen, B. K., Wegman, M. N., and Zadeck, F. K. 1991.
Efficiently computing static single assignment form and the control dependence graph. ACM
Transactions on Programming Languages and Systems 13, 4, 451–490.

De Angelis, E., Fioravanti, F., Pettorossi, A., and Proietti, M. 2014. VeriMAP: A tool
for verifying programs through transformations. In Proc. 20th Int. Conf. Tools and Algorithms
for the Construction and Analysis of Systems, A. Ábrahám and K. Havelund, Eds. Lecture
Notes in Computer Science, vol. 8413. Springer, 568–574.

Delzanno, G. and Podelski, A. 1999. Model checking in CLP. In Proc. 5th Int. Conf. Tools
and Algorithms for the Construction and Analysis of Systems, W. R. Cleaveland, Ed. Lecture
Notes in Computer Science, vol. 1579. 223–239.

Flanagan, C. 2003. Automatic software model checking using CLP. In Programming Languages
and Systems: Proc. 12th European Symp. Programming, P. Degano, Ed. Lecture Notes in
Computer Science, vol. 2618. Springer, 189–203.

Gange, G., Navas, J., Schachte, P., Søndergaard, H., and Stuckey, P. J. 2015. Interval
analysis and machine arithmetic: Why signedness ignorance is bliss. ACM Transactions on
Programming Languages and Systems 37, 1, 1:1–1:35.

Gerlek, M. P., Stolz, E., and Wolfe, M. 1995. Beyond induction variables: Detecting and
classifying sequences using a demand-driven SSA form. ACM Transactions on Programming
Languages and Systems 17, 1, 85–122.

Grebenshchikov, S., Lopes, N. P., Popeea, C., and Rybalchenko, A. 2012. Synthesizing
software verifiers from proof rules. In Proc. ACM SIGPLAN Conf. Programming Language
Design and Implementation. ACM, 405–416.

Gupta, A., Popeea, C., and Rybalchenko, A. 2011. Threader: A constraint-based verifier for
multi-threaded programs. In Proc. 23rd Int. Conf. Computer Aided Verification, G. Gopalakr-
ishnan and S. Qadeer, Eds. Lecture Notes in Computer Science, vol. 6806. Springer, 412–417.

Gurfinkel, A., Kahsai, T., and Navas, J. A. 2015. SeaHorn: A framework for verifying
C programs (competition contribution). In Proc. 21st Int. Conf. Tools and Algorithms for



Relational IR 15

the Construction and Analysis of Systems, C. Baier and C. Timelli, Eds. Vol. 9035. Springer,
447–450.

Jaffar, J., Murali, V., Navas, J. A., and Santosa, A. E. 2012. TRACER: A symbolic
execution tool for verification. In Proc. 24th Int. Conf. Computer Aided verification, P. Mad-
husudan and S. A. Seshia, Eds. Lecture Notes in Computer Science, vol. 7358. Springer,
758–766.

Kelsey, R. A. 1995. A correspondence between continuation passing style and static single
assignment form. SIGPLAN Notices 30, 3, 13–22.

Lattner, C. and Adve, V. 2004. LLVM: A compilation framework for lifelong program analysis
and transformation. In Proc. Int. Symp. Code Generation and Optimization (CGO’04). IEEE
Comp. Soc., 75–86.

Miné, A. 2006. The octagon abstract domain. Higher-Order and Symbolic Computation 19, 1,
31–100.

Morales, J. F., Carro, M., and Hermenegildo, M. 2015. Description and optimization
of abstract machines in a dialect of Prolog. Theory and Practice of Logic Programming . To
appear.

Peralta, J. C. and Cruz-Carlón, J. A. 2006. From static single-assignment form to definite
programs and back. In Pre-Proceedings of 16th International Symposium on Logic Based
Program Synthesis and Transformation (LOPSTR 2006), G. Puebla, Ed. 79–84.

Peralta, J. C., Gallagher, J. P., and Sağlam, H. 1998. Analysis of imperative programs
through analysis of constraint logic programs. In Static Analysis, G. Levi, Ed. Lecture Notes
in Computer Science, vol. 1503. Springer, 246–261.

Rümmer, P., Hojjat, H., and Kuncak, V. 2013. Disjunctive interpolants for Horn-clause
verification. In Proc. 25rd Int. Conf. Computer Aided Verification, N. Sharygina and H. Veith,
Eds. Lecture Notes in Computer Science, vol. 8044. 347–363.

Somogyi, Z., Henderson, F., and Conway, T. 1996. The execution algorithm of Mercury: An
efficient purely declarative logic programming language. Journal of Logic Programming 29, 1–
3, 17–64.

Spoto, F., Mesnard, R., and Payet, É. 2010. A termination analyzer for Java bytecode based
on path-length. ACM Transactions on Programming Languages and Systems 32, 8:1–8:70.

Tu, P. and Padua, D. 1995. Efficient building and placing of gating functions. In Proc. ACM
SIGPLAN Conf. Programming Language Design and Implementation. ACM, 47–55.

Whaley, J., Avots, D., Carbin, M., and Lam, M. S. 2005. Using Datalog with binary
decision diagrams for program analysis. In Proc. Third Asian Symp. Programming Languages
and Systems, K. Yi, Ed. Lecture Notes in Computer Science, vol. 3780. Springer, 97–118.


