
Controlling Loops in Parallel Mercury Code

Paul Bone ∗ Zoltan Somogyi
Department of Computing and Information Systems

University of Melbourne, Australia
and NICTA Victoria Laboratory, Australia
pbone@student.unimelb.edu.au and

zs@unimelb.edu.au

Peter Schachte
Department of Computing and Information Systems

University of Melbourne, Australia
schachte@unimelb.edu.au

Abstract
Recently we built a system that uses profiling data to automati-
cally parallelize Mercury programs by finding conjunctions with
expensive conjuncts that can run in parallel with minimal synchro-
nization delays. This worked very well in many cases, but in cases
of tail recursion, we got much lower speedups than we expected,
due to excessive memory usage. In this paper, we present a novel
program transformation that eliminates this problem, and also al-
lows recursive calls inside parallel conjunctions to take advantage
of tail recursion optimization. Our benchmark results show that our
new transformation greatly increases the speedups we can get from
parallel Mercury programs; in one case, it changes no speedup into
almost perfect speedup on four cores.

Categories and Subject Descriptors D.3.2 [Programming lan-
guages]: Language classifications(Constraint and logic languages)

General Terms Languages, Performance

1. Introduction
A few years ago, the dominant form of progress in CPU design
changed. Since then, clock speeds have stagnated, but the average
number of cores per CPU chip has continued to climb. Even cheap
PCs now sport dual-core CPUs, and high-end server CPUs are mov-
ing to eight cores and more. This trend is forecast to continue for the
foreseeable future. Therefore if applications are to become faster
or more powerful, it must be through taking advantage of multiple
cores. Yet designing algorithms to effectively exploit multiple cores
is notoriously difficult, and even among computation-intensive pro-
grams, few have been adapted to do so. If compilers were able to
automatically parallelize programs, this could lead to a significant
improvement in the utilization of available computing power.

One impediment to this goal is the control of the granularity of
the computations to be carried out in parallel. Setting up and clean-
ing up after a parallel computation has a significant cost, so running
small tasks in parallel actually slows the computation. In earlier
work [2], we presented our approach for using feedback from pro-
gram profiling to select large-grained parts of a computation that
can be run in parallel with minimal synchronization. For some sorts

∗ Paul’s work is supported by an Australian Postgraduate Award and a
NICTA top-up scholarship.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
DAMP’12, January 28, 2012, Philadelphia, PA, USA.
Copyright c© 2012 ACM 978-1-4503-1117-5/12/01. . . $10.00

map_foldl(M, F, L, Acc0, Acc) :-
(

L = [],
Acc = Acc0

;
L = [H | T],
(

M(H, MappedH),
F(MappedH, Acc0, Acc1)

&
map_foldl(M, F, T, Acc1, Acc)

)
).

Figure 1. Parallel map foldl

of computation, this is able to automatically introduce parallelism
to achieve close to optimal speedups. In this paper, we broaden the
set of programs this technique works well for by controlling mem-
ory use for some patterns of parallel computations.

When a tail recursive parallel computation begins, it first creates
a spark (a record of a task to be executed) for the recursive call, and
then executes the rest of the computation directly. When a CPU is
available to carry out a computation, it allocates stack space and be-
gins to execute the recursive call in parallel, which likewise creates
a spark and begins to execute the other goals in the recursive case,
and so on. When each of these computations finish, however, it
must wait for the result from its recursive call before it can produce
its own result. Thus all these computations, each with its own stack,
must be preserved until the base case is reached, whereupon these
stacks can start to be reclaimed. A tail recursive sequential com-
putation, which runs in constant stack space, has thus been trans-
formed into a parallel computation that allocates a complete stack
for each recursive call. This would quickly exhaust memory, so we
have to place a limit on the number of stacks allocated. When this
limit is reached, Mercury effectively reverts to sequential execution
for the remainder of the tail recursive computation.

In this paper, we propose a transformation for tail recursive
and nearly tail recursive parallel procedures to limit the number of
stacks allocated for their execution. The transformation explicitly
limits the number of stacks allocated to recursive calls to a small
multiple of the number of available cores in the system. This trans-
formation can also be asked to remove the dependency of a parallel
loop iteration on the parent stack frame from which it was spawned,
allowing the parent frame to be reclaimed before the completion of
the recursive call. This allows parallel tail recursive computations
to run in constant stack space. The transformation is applied af-
ter the automatic parallelization transformation, so it benefits both
manually and automatically parallelized Mercury code.

Our benchmark results are very encouraging. Limiting the num-
ber of stacks not only permits deep tail recursions to take advantage

11

of multiple cores, but it also significantly improves performance.
For most of our benchmarks, we get near-optimal speedups.

The structure of the remainder of this paper is as follows. Sec-
tion 2 gives the background needed for the rest of the paper. Sec-
tion 3 describes in more detail the problem that previously caused
parallel Mercury programs with loops to use much more mem-
ory than one would expect. Section 4 describes the program trans-
formation we have developed to control memory consumption by
loops. Section 5 evaluates how our system works in practice on
some benchmarks, and section 6 concludes with some related work.

2. Background
The abstract syntax of the part of Mercury relevant to this paper is:

pred P : p(x1, . . . , xn) ← G predicates
goal G : x = y | x = f(y1, . . . , yn) unifications

| p(x1, . . . , xn) first order calls
| x0(x1, . . . , xn) higher order calls
| (G1, . . . , Gn) sequential conjunctions
| (G1 & . . . &Gn) parallel conjunctions
| (G1; . . . ;Gn) disjunctions
| switch x (. . . ; fi : Gi; . . .) switches
| (if Gc then Gt else Ge) if-then-elses
| not G negations
| some [x1, . . . , xn]G quantifications

The atomic constructs of Mercury are unifications (which the com-
piler breaks down until they contain at most one function symbol
each), plain first-order calls, and higher-order calls. The compos-
ite constructs include sequential and parallel conjunctions, disjunc-
tions, if-then-elses, negations and existential quantifications. These
should all be self-explanatory. A switch is a disjunction in which
each disjunct unifies the same bound variable with a different func-
tion symbol.

Mercury has a strong mode system. The mode system clas-
sifies each argument of each predicate as either input or output;
there are exceptions, but they are not relevant to this paper. If input,
the caller must pass a ground term as the argument. If output, the
caller must pass a distinct free variable, which the predicate will
instantiate to a ground term. It is possible for a predicate to have
more than one mode; we call each mode of a predicate a proce-
dure. The compiler generates separate code for each procedure of
a predicate. The mode checking pass of the compiler is responsible
for reordering conjuncts (in both sequential and parallel conjunc-
tions) as necessary to ensure that for each variable shared between
conjuncts, the goal that generates the value of the variable (the pro-
ducer) comes before all goals that use this value (the consumers).
This means that for each variable in each procedure, the compiler
knows exactly where that variable gets grounded.

Each procedure and goal has a determinism, which may put
upper and lower bounds on the number of its possible solutions
(in the absence of infinite loops and exceptions): det procedures
succeed exactly once; semidet procedures succeed at most once;
multi procedures succeed at least once; and nondet procedures may
succeed any number of times.

The Mercury runtime system has a construct called a Mercury
engine that represents a virtual CPU. Each engine is independently
schedulable by the OS, usually as a POSIX thread. The number
of engines that a parallel Mercury program will allocate on startup
is configurable by the user, but it defaults to the actual number of
CPUs. Another construct in the Mercury runtime system is a con-
text, which represents a computation in progress. An engine may be
idle, or it may be executing a context; a context can be running on
an engine, or it may be suspended. When a context finishes execu-
tion, its storage is put back into a pool of free contexts. The bulk of
this storage consists of the two stacks used by the Mercury abstract
machine: the det stack and the nondet stack. Procedures that can
succeed more than once store their frames on the nondet stack; all
other procedures use the det stack. The only stack that is of inter-

map_foldl(M, F, L, Acc0, Acc) :-
(

L = [],
Acc = Acc0

;
L = [H | T],
new_future(FutureAcc1),
(

M(H, MappedH),
F(MappedH, Acc0, Acc1),
signal_future(FutureAcc1, Acc1)

&
map_foldl_par(M, F, T, FutureAcc1, Acc)

)
).

map_foldl_par(M, F, L, FutureAcc0, Acc) :-
(

L = [],
wait_future(FutureAcc0, Acc0),
Acc = Acc0

;
L = [H | T],
new_future(FutureAcc1),
(

M(H, MappedH),
wait_future(FutureAcc0, Acc0),
F(MappedH, Acc0, Acc1),
signal_future(FutureAcc1, Acc1)

&
map_foldl_par(M, F, T, FutureAcc1, Acc)

)
).

Figure 2. map foldl with synchronization

est in this paper is the det stack, whose behavior is very similar to
the behavior of stacks in imperative languages. Following [7], we
economize on memory by using sparks to represent goals that have
been spawned off but whose execution has not yet been started.

The only parallel construct in Mercury is parallel conjunction,
which is denoted (G1 & . . . & Gn). All the conjuncts must be
det, that is, they must all have exactly one solution. This restric-
tion greatly simplifies the implementation, since it guarantees that
there can never be any need to execute (G2 & . . . & Gn) multiple
times, just because G1 has succeeded multiple times. (Any local
backtracking inside G1 will not be visible to the other conjuncts;
bindings made by det code are never retracted.) However, this is
not a significant limitation. Since the design of Mercury strongly
encourages det code, in our experience, about 75 to 85% of all Mer-
cury procedures are det, and most programs spend an even greater
fraction of their time in det code. Existing algorithms for execut-
ing nondet code in parallel have large overheads, generating slow-
downs by integer factors. Thus we have given priority to paralleliz-
ing det code, which we can do with much lower overhead.

The Mercury compiler implements (G1 &G2 & . . . &Gn) by
creating a data structure representing a barrier, and then spawning
off (G2 & . . . &Gn) as a spark. Since (G2 & . . . &Gn) is itself
a conjunction, it is handled the same way: the context executing it
first spawns off (G3 & . . . & Gn) as a spark that points to the
barrier created earlier, and then executes G2 itself. Eventually, the
spawned-off remainder of the conjunction consists only of the final
conjunct, Gn, and the context just executes it. The code of each
conjunct synchronizes on the barrier once it has completed its job.
When all conjuncts have done so, the original context will continue
execution after the parallel conjunction.

Mercury’s mode system allows a parallel conjunct to consume
variables that are produced by conjuncts to its left, but not to its

12

right. This guarantees the absence of circular dependencies and
hence the absence of deadlocks between the conjuncts, but it does
allow a conjunct to depend on data that is yet to be computed by a
conjunct running in parallel. We handle these dependencies through
a source-to-source transformation [8]. The compiler knows which
variables are produced by one parallel conjunct and consumed by
another. For each of these shared variables, it creates a data struc-
ture called a future [5]. When the producer has finished computing
the value of the variable, it puts the value in the future and signals
its availability. When a consumer needs the value of the variable, it
waits for this signal, and then retrieves the value from the future.

To minimize waiting, the compiler pushes signal operations
as far to the left into the producer conjunct as possible, and it
pushes wait operations as far to the right into each of the consumer
conjuncts as possible. This means not only pushing them into the
body of the predicate called by the conjunct, but also into the bodies
of the predicates they call, with the intention being that each signal
is put immediately after the primitive goal that produces the value
of the variable, and each wait is put immediately before the leftmost
primitive goal that consumes the value of the variable. Since the
compiler has complete information about which goals produce and
consume which variables, the only things that can stop the pushing
process from placing the wait immediately before the value is to
be used and the signal immediately after it is produced are higher
order calls and module boundaries: the compiler cannot push a wait
or signal operation into code it cannot identify or cannot access.

Given the map foldl predicate in Figure 1, this synchroniza-
tion transformation generates the code in Figure 2.

3. The main problem
As Mercury is a declarative programming language, Mercury pro-
grams make heavy use of recursion. Like the compilers for most
declarative languages, the Mercury compiler optimizes tail recur-
sive procedures into code that can run in constant stack space. Since
this generally makes tail recursive computations more efficient than
code using other forms of recursion, typical Mercury code makes
heavy use of tail recursion in particular.

Unfortunately, tail recursive computations are not naturally han-
dled well by Mercury’s implementation of parallel conjunctions.
Consider the map foldl predicate in Figure 1. This code applies
the map predicate M to each element of an input list, and then uses
the fold predicate F to accumulate (in a left-to-right order) all the
results produced by M. The best parallelization of map foldl exe-
cutes M and F in parallel with the recursive call. The programmer
(or an automatic tool) can make this happen in the original sequen-
tial version of map foldl by replacing the comma before the re-
cursive call with the parallel conjunction operator &.

The problem is that the execution of a call to map foldl par
has bad memory behavior. When a context begins execution of a
call to map foldl, it begins by creating a spark for the second
conjunct (which contains the recursive call), and executes the first
conjunct (which starts with the call to M). If another Mercury engine
is available at that time, it will pick up and execute the spark for the
recursive call, itself creating a spark for another recursive call and
executing the next call to M. This will continue until all Mercury
engines are in use and the newest spark for a recursive call must
wait for an engine. When an engine completes execution of M and
F, it posts the value of Acc1 into FutureAcc1. Any computations
waiting for Acc1 will then be woken up; these will be the calls that
wait for Acc0 in the next iteration. In this case, the woken code will
resume execution immediately before the call to F in the recursive
invocation of map foldl par.

One might hope that after a spark for the recursive call has been
created, and once M and F had completed execution and Acc1 has
been signalled, the context used to execute the first conjunct could
be released. Unfortunately, it cannot because this context is the one
that was running when execution entered the parallel conjunction,

and therefore this is the context whose stacks contain the state of
the computation outside the parallel conjunction. If we allowed this
context to be reused, then all this state would be lost.

This means that until the base case of the recursion is reached,
every recursive call must have its own complete execution context.
Since each context contains two stacks, it can occupy a rather
large amount of memory, so it is not practical to simultaneously
preserve an execution context for each and every recursive call to
a tail-recursive predicate. Originally, programs which bumped into
this problem often ran themselves and the operating system out of
memory rather quickly, because the default size of every det stack
was several megabytes. To reduce the scope of the problem, we
made stacks dynamically expandable, which allowed us to reduce
their initial size, but programs with the problem can still run out of
memory, it just takes more iterations to do so. Our runtime system
prevents such crashes by imposing a global limit on the number of
contexts that can be running or suspended at any point: if a context
is needed to execute a spark and allocating the context would
breach this limit, then the spark will not be executed. Eventually,
the context that created the spark will execute it on its own stack,
but this limits the remainder of the recursive computation to use
only that context, so parallelism is curtailed at that point.

A much better solution is to swap the order of the conjuncts in
the parallel conjunction so that the conjunct containing the recur-
sive call is executed first. This means that we will spawn off the
nonrecursive conjuncts, whose contexts can be freed when their
execution is complete. However, since the Mercury mode system
requires that the producer of a variable precede all its consumers,
this is possible only if the conjuncts are independent. The approach
we have taken in this paper is to spawn off the nonrecursive con-
juncts, and continue execution of the recursive call without swap-
ping the order of the conjuncts. We also directly limit the number
of contexts that are used in a loop to a small multiple of the num-
ber of available CPUs. Finally, we can arrange for the inputs and
outputs of the nonrecursive conjuncts to be stored outside the stack
frame of a tail recursive procedure, which allows such procedures
to run in fixed stack space even when executed in parallel. In the
next section, we explain all of these improvements.

4. The loop control transformation
The main aim of loop control is to set an upper bound on the
number of contexts that a loop may use, regardless of how many
iterations of the loop may be executed, without limiting the amount
of parallelism available. The loops we are concerned about are
predicates that we call right recursive: predicates in which the
recursive execution path ends in a parallel conjunction, whose last
conjunct contains the recursive call.1 Most parallel conjunctions
that occur in recursive predicates occur in such predicates, because
programmers have long tended to write loops in this way in order
to benefit from tail recursion. Such predicates also tend to suffer
the most from the problem we described in the previous section.

To guarantee the imposition of an upper bound on the number of
contexts created during one of these loops, we associate with each
loop a data structure that has a fixed number of slots, and require
each iteration of the loop that would spawn off a goal to reserve
a slot for the context of each spawned-off computation. This slot
is marked as in-use until that spawned-off computation finishes, at
which time it becomes available for use by another iteration.

This scheme requires us to use two separate predicates: the first
sets up the data structure (which we call the loop control structure)
and the second actually performs the loop. The rest of the program
knows only about the first predicate; the second predicate is only
ever called from the first predicate and from itself. Figure 3 shows

1 A right recursive procedure may be tail recursive, or it may not be:
the recursive call could be followed by other code either within the last
conjunct, or after the whole parallel conjunction.

13

map_foldl_par(M, F, L, FutureAcc0, Acc) :-
lc_create_loop_control(LC),
map_foldl_par_lc(LC, M, F, L, FutureAcc0, Acc).

map_foldl_par_lc(LC, M, F, L, FutureAcc0, Acc) :-
(

L = [],
% The base case.
wait_future(FutureAcc0, Acc0),
Acc = Acc0,
lc_finish(LC)

;
L = [H | T],
new_future(FutureAcc1),
lc_wait_free_slot(LC, LCslot),
lc_spawn_off(LC, LCslot, (

M(H, MappedH),
wait_future(FutureAcc0, Acc0),
F(MappedH, Acc0, Acc1),
signal_future(FutureAcc1, Acc1),
lc_join_and_terminate(LCslot, LC)

)),
map_foldl_par_lc(LC, M, F, T,

FutureAcc1, Acc)
).

Figure 3. map foldl after the loop control transformation

what these predicates look like. In section 4.1, we describe the loop
control structure and the operations on it; in section 4.2, we give
the algorithm that does the transformation; while in section 4.3, we
discuss its interaction with tail recursion optimization.

4.1 Loop control structures

The loop control structure contains the following fields:

• An array of slots, each of which contains a boolean and a
pointer. The boolean says whether the slot is free, and if it is
not, the pointer points to the context that is currently occupying
it. When the occupying context finishes, the slot is marked as
free again, but the pointer remains in the slot to make it easier
(and faster) for the next computation that uses that slot to find a
free context to reuse.

• The number of slots in the array.

• A count of the number of slots that are currently in use.

• A boolean flag that says whether the loop has finished or not.
It is initialized to false, and is set to true as the first step of the
lc finish operation.

• A possibly null pointer to the master context, the context that
created this structure, and the context that will spawn of all
of the iterations. This slot will point to the master context
whenever it is sleeping, and will be null at all other times.

• A mutex that allows different engines to synchronize their ac-
cesses to the structure.

The finished flag is not strictly needed for the correctness of the
following operations, but it does help the runtime system make
better scheduling decisions. In our description of these operations,
LC is a reference to the whole of a loop control structure, while
LCslot is an index into the array of slots stored within LC.

LC = lc create loop control() This operation creates a new
loop control structure, and initializes its fields. The number of
slots in the array in the structure will be a small multiple of the
number of cores in the system. The multiplier is configurable
by setting an environment variable when the program is run.

LCslot = lc wait free slot(LC) This operation tests whe-
ther LC has any free slots. If it does not, the operation suspends
until a slot becomes available. When some slots are available,
either immediately or after a wait, the operation chooses one
of the free slots, marks it in use, fills in its context pointer and
returns its index. It can get the context to point to from the last
previous user of the slot, from a global list of free contexts, (in
both cases it gets contexts which have been used previously by
computations that have terminated earlier), or by allocating a
new context (which typically happens only soon after startup).

lc spawn off(LC, LCslot, CodeLabel) This operation sets
up the context in the loop control slot, and then puts it on a
queue of ready contexts, where any engine looking for work
can find it.

lc join and terminate(LC, LCslot) This operation marks
the slot named by LCslot in LC as available again. It then ter-
minates the context executing it, allowing the engine that was
running it to look for other work.

lc finish(LC) This operation is executed by the master context
when we know that this loop will not spawn off any more work
packages. It suspends its executing context until all the slots
in LC become free. This will happen only when all the goals
spawned off by the loop have terminated. This is necessary
to ensure that all variables produced by the recursive call that
are not signalled via futures have in fact had values generated
for them. A variable generated by a parallel conjunct that is
consumed by a later parallel conjunct will be signalled via a
future, but if the variable is consumed only by code after the
parallel conjunction, then it is made available by writing its
value directly in its stack slot. Therefore such variables can
exist only if the original predicate had code after the parallel
conjunction. This barrier is the only barrier in the loop and
it is executed just once; in comparison, the normal parallel
conjunction execution mechanism executes one barrier in each
iteration of the loop.

See Figure 3 for an example of how we use these operations. Note
in particular that in this transformed version of map foldl, the
spawned-off computation contains the calls to M and F, with the
main thread of execution making the recursive call. This is the first
step in preserving tail recursion optimization.

4.2 The loop control transformation

Our algorithm for transforming procedures to use loop control is
shown in Figures 4, 5 and 6.

Figure 4 shows the top level of the algorithm, which is mainly
concerned with testing whether the loop control transformation is
applicable to a given procedure, and creating the interface proce-
dure if it is.

We impose conditions (1) and (2) because we need to ensure
that every loop we start for OrigProc is finished exactly once, by
the call to lc finish we insert into its base cases. If OrigProc is
mutually recursive with some other procedure, then the recursion
may terminate in a base case of the other procedure, which our al-
gorithm does not transform. And if OrigProc has some execution
path on which it calls itself twice, then the second call may continue
executing loop iterations after a base case reached through the first
call has finished the loop.

We impose conditions (3) and (4) because the Mercury imple-
mentation does not support the parallel execution of code that is
not deterministic. We do not want a recursive call to be called twice
because some code between the entry point of OrigProc and the
recursive call succeeded twice, and we do not want a recursive call
to be backtracked into because some code between the recursive
call and the exit point of OrigProc has failed. These conditions
prevent both of those situations.

14

loop_control_transform(OrigProc) returns NewProcs:
let OrigGoal be OrigProc’s body
let RecParConjs be the set of parallel conjunctions
in OrigGoal that contain recursive calls

if
(1) OrigProc is directly but not mutually recursive
(2) OrigGoal has at most one recursive call

on all possible execution paths,
(3) OrigGoal has determinism ’det’,
(4) no recursive call is within a disjunction,

a scope that changes the determinism of a goal,
a negation, or the condition of a if-then-else,

(5) no member of RecParConjs is within
another parallel conjunction,

(6) every recursive call is inside
the last conjunct of a member of RecParConjs,

(7) every execution path through
one of these last conjuncts
makes exactly one recursive call

then:
let LC be a new variable
let LCGoal be the call

<lc_create_loop_control(LC)>
let LoopProcName be a unique new predicate name
let OrigArgs be OrigProc’s argument list
LoopArgs := [LC] ++ OrigArgs
let CallLoopGoal be the call

<LoopProcName(LoopArgs)>
let OrigProc’ be OrigProc with its body replaced

by the conjunction <LCGoal, CallLoopGoal>

LoopGoal := create_loop_goal(OrigGoal,
OrigProcName, LoopProcName, RecParConjs, LC),

let LoopProc be a new procedure
with name LoopProcName, arguments LoopArgs
and body LoopGoal

NewProcs := [OrigProc’, LoopProc]
else:
NewProcs := [OrigProc]

Figure 4. The top level of the transformation algorithm

We impose condition (5) because we do not want another in-
stance of loop control, or an instance of the normal parallel con-
junction execution mechanism, to interfere with this instance of
loop control.

We impose condition (6) for two reasons. First, the structure of
our transformation requires right recursive code: we could not ter-
minate the loop in base case code if the call that lead to that code
was followed by any part of an earlier loop iteration. Second, allow-
ing recursion to sometimes occur outside the parallel conjunctions
we are trying to optimize would unnecessarily complicate the algo-
rithm. (We do believe that it should possible to extend our algorithm
to handle recursive calls made outside of parallel conjunctions.)

We impose condition (7) to ensure that our algorithm for trans-
forming base cases (in Figure 6) does not have to process goals
that have already been processed by our algorithm for transforming
recursive calls (in Figure 5).

If the transformation is applicable, we apply it. The transformed
original procedure has only one purpose: to initialize the loop
control structure. Once that is done, it passes a reference to that
structure to LoopProc, the procedure that does the actual work.

The argument list of LoopProc is the argument list of Orig-
Proc plus the LC variable that holds the reference to the loop
control structure. The code of LoopProc is derived from the code
of OrigProc. Some execution paths in this code include a recursive
call; some do not. The execution paths that contain a recursive call
are transformed by the algorithm in Figure 5; the execution paths
that do not are transformed by the algorithm in Figure 6.

We start with the code in Figure 5. Due to condition (6), every
recursive call in OrigGoal will be inside the last conjunct a parallel
conjunction, and the main task of create loop goal is to iterate

create_loop_goal(OrigGoal, OrigProcName, LoopProcName,
RecParConjs, LC) returns LoopGoal:

LoopGoal := OrigGoal
for RecParConj in RecParConjs do:
let RecParConj be <Conjunct_1 & ... & Conjunct_n>
for i := 1 to n-1:

let LCSlot_i be a new variable
let WaitGoal_i be the call
<lc_wait_free_slot(LC, LCSlot_i)>

let JoinGoal_i be the call
<lc_join_and_terminate(LC, LCSlot_i)>

let SpawnGoal_i be a goal
that spawns off the sequential conjunction
<Conjunct_i, JoinGoal_i> as a work package

let Conjunct_i’ be the sequential conjunction
<WaitGoal_i, SpawnGoal_i>

Conjunct_n’ := Conjunct_n
for each recursive call RecCall in Conjunct_n’:

RecCall has the form
<OrigProcName(Args)>

let RecCall’ be the call
<LoopProcName([LC] ++ Args)>

replace RecCall with RecCall’ in Conjunct_n’
let Replacement be the flattened form

of the sequential conjunction
<Conjunct_1’, ..., Conjunct_n’>

replace RecParConj in LoopGoal with Replacement
LoopGoal := put_barriers_in_base_cases(LoopGoal,
RecParConjs, LoopProcName, LC)

Figure 5. Algorithm for transforming the recursive cases

over and transform these parallel conjunctions. (It is possible that
some parallel conjunctions do not contain recursive calls; create-
loop goal will leave these untouched.)

The main aim of the loop control transformation is to limit the
number of work packages spawned off by the loop at any one time,
in order to limit memory consumption. The goals we want to spawn
off as work packages that other cores can pick up and execute are
all the conjuncts before the final recursive conjunct. (Without loop
control, we would spawn off all the later disjuncts.) The first half of
the main loop in create loop goal therefore generates code that
creates and makes available each work package only after it obtains
a slot for it in the loop control structure, waiting for a slot to become
available if necessary. We make the spawned-off computation free
that slot when it finishes.

To implement the spawning off process, we extended the inter-
nal representation of Mercury goals with a new kind of scope. The
only one shown in the abstract syntax in section 2 was the exis-
tential quantification scope, but the Mercury implementation had
several other kinds of scopes already, though none of those are rel-
evant for this paper. We call the new kind of scope the spawn-off
scope, and we make SpawnGoal i be a scope goal of this kind.
When the code generator processes such scopes, it

• generates code for the goal inside the scope (which will end
with a call to lc join and terminate),

• allocates a new label,

• puts the new label in front of that code,

• puts this labelled code aside so that later it can be added to the
end of the current procedure’s code, and

• inserts into the instruction stream a call to lc spawn off that
specifies that the spawned-off computation should start execu-
tion at the label of the set-aside code. The other arguments of
lc spawn off come from the scope kind.

Since we allocate a loop slot LCSlot just before we spawn off
this computation, waiting for a slot to become available if needed,
and free the slot once this computation has finished executing, the
number of computations that have been spawned-off by this loop

15

put_barriers_in_base_cases(LoopGoal,
RecParConjs, LoopProcName, LC) returns LoopGoal’:

if LoopGoal is a parallel conjunction in RecParConjs:
case 1
LoopGoal’ := LoopGoal

else if there no call to LoopProcName in LoopGoal:
case 2
let FinishGoal be the call <lc_finish(LC)>
let LoopGoal’ be the sequential conjunction
<LoopGoal, FinishGoal>

else:
case 3
switch on LoopGoal’s goal type:
case LoopGoal is an if-then-else:

let LoopGoal be <ite(C, T, E)>
T’ := put_barriers_in_base_cases(T,
RecParConjs, LoopProcName, LC)

E’ := put_barriers_in_base_cases(E,
RecParConjs, LoopProcName, LC)

let LoopGoal’ be <ite(C, T’, E’)>
case LoopGoal is a switch:

let LoopGoal be
<switch(V, [Case_1, ..., Case_N])>

for i := 1 to N:
let Case_i be <case(FunctionSymbol_i, Goal_i>
Goal_i’ := put_barriers_in_base_cases(Goal_i,

RecParConjs, LoopProcName, LC)
let Case_i’ be <case(FunctionSymbol_i, Goal_i’>

let LoopGoal’ be
<switch(V, [Case_1’, ..., Case_N’])>

case LoopGoal is a sequential conjunction:
let LoopGoal be <Conj_1, ... Conj_N>
i := 1
while Conj_i does not contain a call
to LoopProcName:
i := i + 1

Conj_i’ := put_barriers_in_base_cases(Conj_i,
RecParConjs, LoopProcName, LC)

let LoopGoal’ be LoopGoal with
Conj_i replaced with Conj_i’

case LoopGoal is a quantification:
let LoopGoal be <some(Vars, SubGoal)>
SubGoal’ := put_barriers_in_base_cases(SubGoal,
RecParConjs, LoopProcName, LC)

let LoopGoal’ be <some(Vars, SubGoal’)>

Figure 6. Algorithm for transforming the base cases

and which have not yet been terminated cannot exceed the number
of slots in the loop control structure.

The second half of the main loop in create loop goal trans-
forms the last conjunct in the parallel conjunction by locating all the
recursive calls inside it and modifying them in two ways. The first
change is to make the call actually call the loop procedure, not the
original procedure, which after the transformation is non-recursive;
the second is to make the list of actual parameters match the loop
procedure’s formal parameters by adding the variable referring to
the loop control structure to the argument list. Due to condition
(6), there can be no recursive call in OrigGoal that is left untrans-
formed when the main loop of create loop goal finishes.

In some cases, the last conjunct may simply be a recursive call.
In some other cases, the last conjunct may be a sequential con-
junction consisting of some unifications and/or some non-recursive
calls as well as a recursive call, with the unifications and nonre-
cursive calls usually constructing and computing some of the argu-
ments of the recursive call. And in yet other cases, the last conjunct
may be an if-then-else or a switch, possibly with other if-then-elses
and/or switches nested inside them. In all these cases, due to condi-
tion (7), the last parallel conjunct will execute exactly one recursive
call on all its possible execution paths.

The last task of create loop goal is to invoke the put bar-
riiers in base cases function that is shown in Figure 6 to

transform the base cases of the goal that will later become the body
of LoopProc. This function recurses on the structure of LoopGoal,
as updated by the main loop in Figure 5.

When put barriiers in base cases is called, its caller
knows that LoopGoal may contain the already processed parallel
conjunctions (those containing recursive calls), it may contain base
cases, or it may contain both. The main if-then-else in put bar-
riiers in base cases handles each of these situations in turn.

If LoopGoal is a parallel conjunction that is in RecParConjs,
then the main loop of create loop goal has already processed
it, and due to condition (7), this function does not need to touch it.
Our objective in imposing condition (7) was to make this possible.

If, on the other hand, LoopGoal contains no call to LoopProc,
then it did not have any recursive calls in the first place, since
(due to condition (6)) they would all have been turned into calls
to LoopProc by the main loop of create loop goal. Therefore
this goal either is a base case of LoopProc, or it is part of a base
case. In either case, we add a call to lc finish(LC) after it. In the
middle of the correctness argument below, we will discuss why this
is the right thing to do.

If both those conditions fail, then LoopGoal definitely contains
some execution paths that execute a recursive call, and may also
contain some execution paths that do not. What we do in that case
(case 3) depends on what kind of goal LoopGoal is.

If LoopGoal is an if-then-else, then we know from condition
(4) that any recursive calls in it must be in the then part or the else
part, and by definition the last part of any base case code in the if-
then-else must be in one of those two places as well. We therefore
recursively process both the then part and the else part. Likewise, if
LoopGoal is a switch (a disjunction in which each disjunct unifies
a variable known to be ground with a different function symbol,
so we know that at most one disjunct may succeed), some arms of
the switch may execute a recursive call and some may not, and we
therefore recursively process all the arms. For both if-then-elses
and switches, if the possible execution paths inside them do not
involve conjunctions, then the recursive invocations of put bar-
riiers in base cases will add a call to lc finish at the end
of each execution path that does not make recursive calls.

What if those execution paths do involve conjunctions? If
LoopGoal is a conjunction, then we recursively transform the first
conjunct that makes recursive calls, and leave the conjuncts both
before and after it (if any) untouched. There is guaranteed to be at
least one conjunct that makes a recursive call, because if there were
not, the second condition would have succeeded, and we would
never get to the switch on the goal type. We also know at most one
conjunct makes a recursive call. If more than one did, then there
would be an execution path through those conjuncts that would
make more than one recursive call, condition (2) would have failed,
and the loop control transformation would not be applicable.

Correctness argument. One can view the procedure body, or in-
deed any goal, as a set of execution paths that diverge from each
other in if-then-elses and switches (on entry to the then or else
parts and the switch arms respectively) and then converge again
(when execution continues after the if-then-else or switch). Our al-
gorithm inserts calls to lc finish into the procedure body at all
the places needed to ensure that every nonrecursive execution path
executes such a call exactly once, and does so after the last goal
in the nonrecursive execution path that is not shared with a recur-
sive execution path. These places are the ends of nonrecursive then
parts whose corresponding else parts are recursive, the ends of non-
recursive else parts whose corresponding then parts are recursive,
and the ends of nonrecursive switch arms where at least one other
switch arm is recursive. Condition (4) tests for recursive calls in the
conditions of if-then-elses (which are rare in any case) specifically
to make this correctness argument possible.

Note that for most kinds of goals, execution cannot reach
case 3. Unifications are not parallel conjunctions and cannot con-
tain calls, so if LoopGoal is a unification, we will execute case 2.

16

If LoopGoal is a first order call, we will also execute case 2, be-
cause due to condition (6), all recursive calls are inside parallel
conjunctions; since case 1 does not recurse, we never get to those
recursive calls. LoopGoal cannot be a higher order call, since if the
body of OrigGoal contains a higher order call, we cannot rule out
the original procedure being mutually recursive with another pro-
cedure through that call, and condition (1) would fail. If LoopGoal
is a parallel conjunction, then it is either in RecParConj, in which
case we execute case 1, or (due to condition (5)) it does not contain
any recursive calls, in which case we execute case 2. Condition (4)
also guarantees that we will execute case 2 if LoopGoal is a dis-
junction, negation, or a quantification that changes the determinism
of a goal by cutting away (indistinguishable) solutions. The only
other goal type for which execution may get to case 3 are quantifi-
cation scopes that have no effect on the subgoal they wrap, whose
handling is trivial.

We can view the execution of a procedure body that satisfies
condition (2) and therefore has at most one recursive call on every
execution path as a descent from a top level invocation from another
procedure to a base case, followed by ascent back to the top. During
the descent, each invocation of the procedure executes the part
of a recursive execution path up to the recursive call; during the
ascent, after each return we execute the part of the chosen recursive
execution path after the recursive call. At the bottom, we execute
exactly one of the nonrecursive execution paths.

In our case, conditions (5) and (6) guarantee that all the goals
we spawn off will be spawned off during the descent phase. When
we get to the bottom and commit to a nonrecursive execution path
through the procedure body, we know that we will not spawn off
any more goals, which is why we can invoke lc finish at that
point. We can call lc finish at any point in LoopGoal that is after
the point where we have committed to a nonrecursive execution
path, and before the point where that nonrecursive execution path
joins back up with some recursive execution paths.

The code at case 2 puts the call to lc finish at the last allowed
point, not the first, or a point somewhere in the middle. We chose
to do this because after the code executing LoopProc has spawned
off one or more goals one level above the base case, we expect
that other cores will be busy executing those spawned off goals
for rather longer than it takes this core to execute the base case.
By making this core do as much useful work as possible before
must suspend to wait for the spawned-off goals to finish, we expect
to reduce the amount of work remaining to be done after the call
to lc finish by a small but possibly useful amount. lc finish
returns after all the spawned-off goals have finished, so any code
placed after it (such as if lc finish were placed at the first valid
point) would be executed sequentially after the loop; where it
would definitely add to the overall runtime. Therefore, we prefer to
place lc finish as late as possible, so that this code occurs before
lc finish and is executed in parallel with the rest of the loop,
where it may have no effect on the overall runtime of the program;
it will just put to good use what would otherwise be dead time.

We must of course be sure that every loop, and therefore every
execution of any base case of LoopGoal, will call lc finish ex-
actly once: no more, no less. (It should be clear that our transforma-
tion never puts that call on an execution path that includes a recur-
sive call.) Now any nonrecursive execution path through LoopGoal
will share a (possibly empty) initial part and a (possibly empty) fi-
nal part with some recursive execution paths. On any nonrecursive
execution path, put barriiers in base cases will put the call
lc finish just before the first point where that path rejoins a re-
cursive execution path. Since LoopProc is det (condition (3)), all
recursive execution paths must consist entirely of det goals and the
conditions of if-then-elses, and (due to condition (4)) cannot go
through disjunctions. The difference between a nonrecursive exe-
cution path and the recursive path it rejoins must be either that one
takes the then part of an if-then-else and the other takes the else
part, or that they take different arms of a switch. Such an if-then-

else or switch must be det: if it were semidet, LoopProc would be
too, and if it were nondet or multi, then its extra solutions could
be thrown away only by an existential quantification that quantifies
away all the output variables of the goal inside it. But by condi-
tion (4), the part of the recursive execution path that distinguishes
it from a nonrecursive path, the recursive call itself, cannot appear
inside such scopes. This guarantees that the middle part of the non-
recursive execution path, which is not part of either a prefix or a
suffix shared with some recursive paths, must also be det overall,
though it may have nondeterminism inside it. Any code put after
the second of these three parts of the execution path (shared prefix,
middle, shared suffix), all three of which are det, is guaranteed to
be executed exactly once.

4.3 Loop control and tail recursion

When a parallel conjunction spawns off a conjunct as a work pack-
age that other cores can pick up, the code that executes that conjunct
has to know where it should pick up its inputs, where it should put
its outputs, and where it should store its local variables. All the
inputs come from the stack frame of the procedure that executes
the parallel conjunction, and all the outputs go there as well, so
the simplest solution, and the one used by the Mercury system, is
for the spawned-off conjunct to do all its work in the exact same
stack frame. Normally, Mercury code accesses stack slots via off-
sets from the standard stack pointer. Spawned-off code accesses
stack slots using a special Mercury abstract machine register called
the parent stack pointer, which the code that spawns off goals sets
up to point to the stack frame of the procedure doing the spawn-
ing. That same spawning-off code sets up the normal stack pointer
to point to the start of the stack in the context executing the work
package, so any calls made by the spawned-off goal will allocate
their stack frames in that stack, but the spawned-off conjunct will
use the original frame in the stack of the parent context.

This approach works, and is simple to implement: the code
generator generates code for spawned-off conjuncts normally, and
then just substitutes the base pointer in all references to stack slots.
However, it does have an obvious drawback: until the spawned-off
computation finishes execution, it may make references to the stack
frame of the parallel conjunction, whose space therefore cannot be
reused until then. This means that even if a recursive call in the
last conjunct of the parallel conjunction happens to be a tail call, it
cannot have the usual tail call optimization applied to it.

Before this work, this did not matter, because the barrier syn-
chronization needed at the end of the parallel conjunction, which
had to be executed at every level of recursion except the base case,
prevented tail recursion optimization anyway. However, the loop
control transformation eliminates that barrier, replacing it with the
single call to lc finish in the base case. So now this limitation
does matter in cases where all of the recursive calls in the last con-
junct of a parallel conjunction are tail recursive.

If at least one call is not tail recursive, then it prevents the
reuse of the original stack frame, so our system will still follow the
scheme described above. However, if they all are, then our system
can now be asked to follow a different approach. The code that
spawns off a conjunct will allocate a frame at the start of the stack in
the child context, and will copy the input variables of the spawned-
off conjunct into it. The local variables of the spawned-off goal will
also be stored in this stack frame. The question of where its output
variables are stored is moot: there cannot be any output variables
whose stack slots would need to be assigned to.

The reason this is true has to do with the way the Mercury
compiler handles synchronization between parallel conjuncts. Any
variable whose value is generated by one parallel conjunct and
consumed by one or more other conjuncts in that conjunction will
have a future created for it. The generating conjunct, once it has
computed the value of the variable, will execute a signal future
on the variable’s future to wake up any consumers that may be
waiting for the value of this variable. Those consumers will get

17

the value of the original variable from the future, and will store that
value in a variable that is local to each consumer. Since futures are
always stored on the heap, the communication of bindings from one
parallel conjunct to another does not go through the stack frame.

A variable whose value is generated by a parallel conjunct and is
consumed by code after the parallel conjunction does need to have
its value put into its stack slot, so that the code after the parallel
conjunction can find it. However, if all the recursive calls in the
last conjunct are in fact tail calls, then by definition there can be
no code after the parallel conjunction. Since neither code later in
the parallel conjunction, nor code after the parallel conjunction,
requires the values of variables generated by a conjunct to be stored
in the original stack frame, storing it in the spawned-off goal’s child
stack frame is good enough.

In our current system, the stack frame used by the spawned-
off goal has exactly the same layout as its parent. This means that
in general, both the parent and child stack frames will have some
unused slots, slots used only in the other stack frame. This is triv-
ial to implement, and we have not found the wasted space to be
a problem. This may be because we have mostly been working
with automatically parallelized programs, and our automatic par-
allelization tools put much effort into granularity control [2]: the
rarer spawning-off a goal is, the less the effect of any wasted space.

5. Performance evaluation
We ran all our benchmarks on a Dell Optiplex 980 desktop PC
with a 2.8 GHz Intel i7 860 CPU (four cores, each with two
hyperthreads) running Linux 2.6.35 in 64-bit mode. Each test was
run ten times with both Speedstep and TurboBoost disabled; we
discarded the highest and lowest times, and averaged the rest.

We have benchmarked our system with four different programs:

mandelbrot generates a mandelbrot image. It renders the rows of
the image in parallel using map foldl from Figure 1.

raytracer is a raytracer written for the ICFP programming com-
petition in 2000. Like mandelbrot, it renders the rows of the
generated image in parallel, but it does not use map foldl.

matrixmult multiplies two large matrices. It computes the rows of
the result in parallel.

spectralnorm computes the eigenvalue of a large matrix using the
power method. It has two parallel loops, both of which are
executed multiple times. 2

All these benchmarks have dependent AND-parallelism, but for
two of the benchmarks, matrixmult and spectralnorm, we have
created versions that use independent AND-parallelism as well.
The difference between the dependent and independent versions
is just the location of a unification that constructs a cell from
the results of two parallel conjuncts: the unification is outside the
parallel conjunction in the independent versions, while it is in the
last parallel conjunct in the dependent versions.

Tables 1 and 2 presents our memory consumption and timing
results respectively. In both tables, the columns list the benchmark
programs, while the rows show the different ways the programs can
be compiled and executed. Due to space limits, each table shows
only a subset of the rows, those with the most interesting results.
These subsets are different for the two tables.

In Table 1, each box has two numbers. The first reports the max-
imum number of contexts alive at the same time, while the second
reports the maximum number of megabytes ever used to store the
stacks of these contexts. In Table 2, each box has three numbers.
The first is the execution time of that benchmark in seconds when it
is compiled and executed in the manner prescribed by the row. The

2 Spectralnorm was donated by Chris King, see http://adventuresin-
mercury.blogspot.com/search/label/parallelization. We have
modified Chris’ code slightly.

second and third numbers (the ones in parentheses) show respec-
tively the speedup this time represents over the sequential version
of the benchmark (the first row), and over the base parallel version
(the second row). Some of the numbers are affected by rounding.

In both tables, the first row compiles the program without using
any parallelism at all, asking the compiler to automatically convert
all parallel conjunctions into sequential conjunctions. Obviously,
the resulting program will execute on one core.

The second row compiles the program in a way that prepares it
for parallel execution, but it still asks the compiler to automatically
convert all parallel conjunctions into sequential conjunctions. The
resulting executables will differ from the versions in the first row
in two main ways. First, they will incur some overheads that the
versions in the first row do not, overheads that are needed to support
the possibility of parallel execution. The most important of these
overheads is that potentially-parallel code needs a way to access
thread-specific data, and therefore when a program is compiled
for parallel execution, the Mercury compiler has to reserve one
machine register to hold a pointer to this data, making that machine
register unavailable to the rest of the Mercury abstract machine.
Given the dearth of callee-save machine registers on the x86 64
(we are not set up to use caller-save registers), this can lead to very
significant slowdowns: for our benchmarks, as much as 30%. The
second difference is that, the garbage collector and the rest of the
runtime system must be thread safe, and this incurs a runtime cost
that leads to slowdowns in most cases, even when using a single
core for user code. (The garbage collector uses one core in all of our
tests). However, the mandelbrot program speeds up when thread
safety is enabled; it does not do very much memory allocation and
is therefore affected less by the overheads of thread safety in the
garbage collector. Its slight speedup may be due to its different code
and data layouts interacting with the cache system differently.

All the later rows compile the program for parallel execution,
and leave the parallel conjunctions in the program intact. They
execute the program on 1 to 4 cores (1c to 4c). The versions
that execute on the same number of cores differ from each other
mainly in how they handle loops. The rows marked nolc are the
controls. They do not use the loop control mechanism described in
this paper; instead, they rely on our system’s overall limit on the
number of contexts that may be created, as we described at the end
of Section 3. The actual limit is the number of engines multiplied
by a specified parameter, which we have set to 128 in c128 rows and
to 512 in c512 rows. Our code checks this limit in a non-thread-safe
manner, which means that in the presence of races, the limit can be
exceeded by one or two contexts. Since different contexts can have
different sized stacks, the limit is only an approximate control over
memory consumption anyway, so this is an acceptable price to pay
for reduced synchronization overhead.

The rows marked lcN do use our loop control mechanism, with
the value of N indicating the value of another parameter we specify
when the program is run. When the lc create loop control
instruction creates a loop control structure, it computes the number
of slots to create in it, by multiplying the configured number of
Mercury engines (each of which can execute on its own core) with
this parameter. We have memory consumption results for N=1, 2
and 4. We have timing results for all of these too, but show only the
results for N=2, since the timing results for N=1 and N=4 are almost
identical to these. It seems that as long as we put a reasonably small
limit on the number of stacks a loop control structure can use, speed
is not much affected by the precise value of the limit.

The rows marked lcN,tr are like the corresponding lcN rows, but
they also switch on tail recursion preservation in the two bench-
marks (mandelbrot and raytracer) whose parallel loops are natu-
rally tail recursive. The implementation of parallelism without loop
control destroys this tail recursion, and so does loop control un-
less we ask it to preserve it. That means that mandelbrot and ray-
tracer use tail recursion in all the test setups except for the parallel,
non-loop control ones, and loop control ones without tail recur-

18

mandelbrot mmult-depi mmult-indep raytracer spectral-dep spectral-indep
seq 1 0.62 1 0.62 1 0.62 1 0.62 1 0.62 1 0.62
par, no & 1 0.62 1 0.62 1 0.62 1 0.62 1 0.62 1 0.62
par, &, 1c, nolc, c128 1 0.62 1 0.62 1 0.62 1 0.62 1 1.12 1 1.12
par, &, 1c, nolc, c512 1 0.62 1 0.62 1 0.62 1 0.62 1 1.12 1 1.12
par, &, 1c, lc1 2 1.25 2 1.25 n/a n/a 2 1.25 2 1.75 n/a n/a
par, &, 1c, lc2 3 1.88 3 1.88 n/a n/a 3 1.88 3 2.38 n/a n/a
par, &, 1c, lc4 5 3.12 5 3.12 n/a n/a 5 3.12 5 3.62 n/a n/a
par, &, 2c, nolc, c128 257 160.62 257 160.62 2 1.25 257 160.62 257 161.12 2 1.75
par, &, 2c, nolc, c512 601 375.62 1025 640.62 2 1.25 1025 640.62 1025 641.12 2 1.75
par, &, 2c, lc1 4 2.50 3 1.88 n/a n/a 4 2.50 3 2.38 n/a n/a
par, &, 2c, lc2 6 3.75 5 3.12 n/a n/a 6 3.75 5 3.62 n/a n/a
par, &, 2c, lc4 10 6.25 9 5.62 n/a n/a 10 6.25 9 6.12 n/a n/a
par, &, 3c, nolc, c128 385 240.62 385 240.62 3 1.88 385 240.62 385 241.12 3 2.38
par, &, 3c, nolc, c512 601 375.62 1200 750.00 3 1.88 1201 750.62 1537 961.12 3 2.38
par, &, 3c, lc1 5 3.12 4 2.50 n/a n/a 5 3.12 4 3.00 n/a n/a
par, &, 3c, lc2 8 5.00 7 4.38 n/a n/a 8 5.00 7 4.88 n/a n/a
par, &, 3c, lc4 14 8.75 13 8.12 n/a n/a 14 8.75 13 8.62 n/a n/a
par, &, 4c, nolc, c128 513 320.62 513 320.62 4 2.50 513 320.62 513 321.12 4 3.00
par, &, 4c, nolc, c512 601 375.62 1201 750.62 4 2.50 1201 750.62 2049 1281.12 4 3.00
par, &, 4c, lc1 6 3.75 5 3.12 n/a n/a 6 3.75 5 3.62 n/a n/a
par, &, 4c, lc2 10 6.25 9 5.62 n/a n/a 10 6.25 9 6.12 n/a n/a
par, &, 4c, lc4 18 11.25 17 10.62 n/a n/a 18 11.25 17 11.12 n/a n/a

Table 1. Peak number of contexts used, and peak memory usage for stacks, measured in megabytes

mandelbrot mmult-dep mmult-indep raytracer spectral-dep spectral-indep
seq 19.37 (1.00, 0.97) 7.69 (1.00, 1.42) 7.69 (1.00, 1.42) 19.50 (1.00, 1.21) 16.07 (1.00, 1.19) 16.06 (1.00, 1.19)
par, no & 18.75 (1.03, 1.00) 10.93 (0.70, 1.00) 10.93 (0.70, 1.00) 23.55 (0.83, 1.00) 19.07 (0.84, 1.00) 19.07 (0.84, 1.00)
par, &, 1c, nolc, c128 18.74 (1.03, 1.00) 10.94 (0.70, 1.00) 10.93 (0.70, 1.00) 23.46 (0.83, 1.00) 19.30 (0.83, 0.99) 19.12 (0.84, 1.00)
par, &, 1c, nolc, c512 18.74 (1.03, 1.00) 10.94 (0.70, 1.00) 10.93 (0.70, 1.00) 23.43 (0.83, 1.00) 19.30 (0.83, 0.99) 19.12 (0.84, 1.00)
par, &, 1c, lc2 18.74 (1.03, 1.00) 10.93 (0.70, 1.00) n/a 23.54 (0.83, 1.00) 19.30 (0.83, 0.99) n/a
par, &, 1c, lc2, tr 18.74 (1.03, 1.00) n/a n/a 23.79 (0.82, 0.99) n/a n/a
par, &, 2c, nolc, c128 17.82 (1.09, 1.05) 9.82 (0.78, 1.11) 5.49 (1.40, 1.99) 25.68 (0.76, 0.92) 19.25 (0.83, 0.99) 9.56 (1.68, 2.00)
par, &, 2c, nolc, c512 9.60 (2.02, 1.95) 6.63 (1.16, 1.65) 5.49 (1.40, 1.99) 20.34 (0.96, 1.16) 18.54 (0.87, 1.03) 9.56 (1.68, 2.00)
par, &, 2c, lc2 9.69 (2.00, 1.94) 5.48 (1.40, 1.99) n/a 14.14 (1.38, 1.67) 9.96 (1.61, 1.91) n/a
par, &, 2c, lc2, tr 9.78 (1.98, 1.92) n/a n/a 14.04 (1.39, 1.68) n/a n/a
par, &, 3c, nolc, c128 13.69 (1.42, 1.37) 8.70 (0.88, 1.26) 3.72 (2.07, 2.94) 26.58 (0.73, 0.89) 19.32 (0.83, 0.99) 6.44 (2.50, 2.96)
par, &, 3c, nolc, c512 6.39 (3.03, 2.93) 4.06 (1.89, 2.69) 3.72 (2.07, 2.94) 15.40 (1.27, 1.53) 17.57 (0.91, 1.09) 6.41 (2.50, 2.97)
par, &, 3c, lc2 6.29 (3.08, 2.98) 3.68 (2.09, 2.97) n/a 10.72 (1.82, 2.20) 6.62 (2.43, 2.88) n/a
par, &, 3c, lc2, tr 6.31 (3.07, 2.97) n/a n/a 10.80 (1.81, 2.18) n/a n/a
par, &, 4c, nolc, c128 8.35 (2.32, 2.25) 7.55 (1.02, 1.45) 2.82 (2.73, 3.88) 26.93 (0.72, 0.87) 18.91 (0.85, 1.01) 4.85 (3.31, 3.93)
par, &, 4c, nolc, c512 4.84 (4.01, 3.88) 3.15 (2.44, 3.48) 2.82 (2.73, 3.88) 14.12 (1.38, 1.67) 16.83 (0.95, 1.13) 4.85 (3.31, 3.93)
par, &, 4c, lc2 4.74 (4.09, 3.96) 2.79 (2.75, 3.92) n/a 9.35 (2.09, 2.52) 4.98 (3.23, 3.83) n/a
par, &, 4c, lc2, tr 4.76 (4.07, 3.94) n/a n/a 9.41 (2.07, 2.50) n/a n/a

Table 2. Execution times measured in seconds, and speedups

sion. Since the other benchmarks are not naturally tail recursive,
they won’t be tail recursive however they are compiled. There are
no such rows in Table 1 since the results in each lcN,tr row would
be identical to the corresponding lcN row.

There are several things to note in Table 1. The most important
is that when the programs are run on more than one core, switch-
ing on loop control yields a dramatic reduction in the maximum
number of contexts used at any one time, and therefore also in the
maximum amount of memory used by stacks. (The total amount
of memory used by these benchmarks is approximately the max-
imum of this number and the configured initial size of the heap.)
This shows that we have achieved our main objective. Without loop
control, the execution of three of our four dependent benchmarks
(mandelbrot, matrixmult and raytracer) require the simultaneous
existence of a context for every parallel task that the program can
spawn off. For example, mandelbot generates an image with 600
rows, so the original context can never spawn off more than 600
other contexts.

On one core, the nolc versions spawn off sparks, but since there
is no other engine to pick them up, the one engine eventually
picks them up itself, and executes them in the original context. By
contrast, the lc versions directly spawn off new contexts, not sparks.

This avoids the overhead of converting a spark to a context, but we
can do it only because we know we won’t create too many contexts.

When executing on two or more cores, mandelbrot and raytracer
use one more context that one would expect. Before the compiler
applies the loop control transformation, it adds the synchronization
operations needed by dependent parallel conjunctions. As shown
by Figure 2, this duplicates the original procedure. Only the inner
procedure is recursive, so the compiler performs the loop control
transformation only on it. The extra context is the conjunct spawned
off by the parallel conjunction in the outer procedure.

There are several things to note in Table 2 as well. The first
is that in the absence of loop control, increasing the per-engine
context limit from 128 to 512 yields significant speedups for three
out of four the dependent benchmarks. Nevertheless, the versions
with loop control significantly outperform the versions without,
even c512, for all these benchmarks except mandelbrot. On man-
delbrot, c512 already gets a near-perfect speedup, yet loop control
still gets a small improvement. Thus on all our dependent bench-
marks, switching on loop control yields a speedup while greatly
reducing memory consumption.

Overall, the versions with loop control get excellent speedups
on three of the benchmarks: speedups of 3.94, 3.92 and 3.83 on four
CPUs for mandelbrot, matrixmult and spectralnorm respectively.

19

The one apparent exception, raytracer, is very memory-allocation-
intensive, because it does lots of floating point arithmetic: the
Mercury backend we use always boxes floating point numbers, so
each floating point operation adds a new cell to the heap. Because
of this, memory bandwidth may also be an issue for it, but its bigger
problem is garbage collection; for another paper, we have measured
it taking 40% of the runtime when run on four CPUs. Therefore the
best speedup we can hope for is (4×0.6+0.4)/(0.6+0.4) = 2.8,
and we do come close to that.

Second, loop control is crucial for getting this kind of speedup,
unless you are willing to waste lots of memory. On four cores, loop
control raises the speedup compared to c128 from 2.25 to 3.96 for
mandelbrot, from 1.45 to 3.92 for matrixmult, from 0.87 to 2.52 for
raytracer, and from 1.01 to 3.83 for spectralnorm. Those are pretty
impressive improvements.

Third, for the benchmarks that have versions using indepen-
dent parallelism, the independent versions are faster than the de-
pendent versions without loop control, while there is no signifi-
cant difference between the speeds of the independent versions and
the dependent loop control versions. For matrix multiplication, the
loop control dependent version is faster, while for spectral-norm,
the independent version is faster, but in both cases the difference
is small. This shows that on these benchmarks, loop control com-
pletely avoids the problems described in Section 3.

Fourth, preserving tail recursion has a mixed effect on speed:
of the six relevant cases (mandelbrot and raytracer on 2, 3 and 4
cores), one case gets a slight speedup, while the others get slight
slowdowns. Due to the extra copying required, this tilt towards
slowdowns is to be expected. However, the effect is very small:
always within 1%, and usually in the noise. (For example, spectral-
indep on three cores does everything exactly the same with c512 as
with c128, so the difference between 6.44s and 6.41s is just noise.)
The possibility of such slight slowdowns is an acceptable price to
pay for allowing parallel code to recurse arbitrarily deeply while
using constant stack space.

6. Conclusion
Ever since the first parallel implementations of declarative lan-
guages in the 1980s, researchers have known that getting more par-
allelism out of a program than the hardware could use can be a ma-
jor problem, because the excess parallelism brings no benefits, only
overhead, and these overheads could swamp the speedups the sys-
tem would otherwise have gotten. Accordingly, they have devised
systems to throttle parallelism, keeping it at a reasonable level.

However, most throttling mechanisms we know of have been
general in nature, such as granularity control systems [6]. These
have similar objectives, but use totally different methods: restrict-
ing the set of places in a program where they choose to exploit
parallelism, not changing how they choose to exploit it.

We know of one system that tries to preserve tail recursion even
when the tail comes from a parallel conjunction. The ACE sys-
tem [4] normally generates one parcall frame for each parallel con-
junction, but it will flatten two or more nested parcall frames into
one if runtime determinacy tests indicate it is safe to do so. While
these tests usually succeed for loops, they can also succeed for other
code, and (unlike our system) the ACE compiler does not identify
in advance the places where the optimization may apply. The other
main difference from our system is the motivation: the main mo-
tivation of this mechanism in the ACE system is neither throttling
nor the ability to handle unbounded input in constant stack space,
but reducing the overheads of backtracking. This is totally irrele-
vant for us, since our restrictions prevent any interaction between
AND-parallel code and code that can backtrack.

The only work on specially loop-oriented parallelism in logic
languages that we are aware of is Reform Prolog [1]. This system
was not designed for throttling either, but it is more general than
ours in one sense (it can handle recursion in the middle of a clause)

and less general in other senses (it cannot handle parallelism in
any form other than loops, and it cannot execute one parallel loop
inside another). It also has significantly higher overheads than our
system: it traverses the whole spine of the data structure being
iterated over (typically a list) before starting parallel execution;
in some cases it synchronizes computations by busy waiting; and
it requires variables stored on the heap to have a timestamp. To
avoid even higher overheads, it imposes the same restriction we
do: it parallelizes only deterministic code (though the definition of
“deterministic” it uses is a bit different).

The only work on loop-oriented parallelism in functional lan-
guages we know of is Sisal [3]. It shares two of Reform Prolog’s
limits: no parallelism anywhere except loops, and no nesting of par-
allel computations inside one another. Since it was designed for
number crunching on supercomputers, it had to have lower over-
heads than Reform Prolog, but it achieved those low overheads
primarily by limiting the use of parallelism to loops whose iter-
ations are independent of each other, which makes the problem
much easier. Similarly, while ACE Prolog supports both AND- and
OR-parallelism, the only form of AND-parallelism it supports is
independent.

Our system is designed to throttle loops with dependent itera-
tions, and it seems to be quite effective. By placing a hard bound
on the number of contexts that may be needed to handle a single
loop, our transformation allows parallel Mercury programs to do
their work in a reasonable amount of memory, and since it does
so without adding significant overhead, permits them to live up to
their full potential. For one of our benchmarks, loop control makes
a huge difference: on four cores, it turns a speedup of 1.13 into a
speedup of 3.83. It significantly improves speedups on two other
benchmarks, and it even helps the fourth and last benchmark, even
though that was already close to the maximum possible speedup.

The other main advantage of our system is that it allows pro-
cedures to keep exploiting tail recursion optimization. If TRO is
applicable to the sequential version of a procedure, then it will
stay applicable to its parallel version. Many programs cannot han-
dle large inputs without TRO, so they cannot be parallelized at all
without this capability. The previous advantage may be specific to
systems that resemble the Mercury implementation, but this should
apply to the implementation of every eager declarative language.

We would like to thank Chris King for allowing us to use his
spectralnorm benchmark.

References
[1] Johan Bevemyr, Thomas Lindgren, and Hkan Millroth. Reform Prolog:

the language and its implementation. In In Proc. of the 10th Int’l
Conference on Logic Programming, pages 283–298. MIT Press, 1993.

[2] Paul Bone, Zoltan Somogyi, and Peter Schachte. Estimating the overlap
between dependent computations for automatic parallelization. Theory
and Practice of Logic Programming, 11(4–5):575–591, 2011.

[3] John T. Feo, David C. Cann, and Rodney R. Oldehoeeft. A report on the
Sisal language project. Journal of Parallel and Disributed Computing,
10:349–366, 1990.

[4] Gopal Gupta and p Enrico Pontelli. Optimization schemas for parallel
implementation of non-deterministic languages and systems. Software:
Practice and Experience, 31(12):1143–1181, 2001.

[5] Robert H Halstead. Implementation of Multilisp: Lisp on a multiproces-
sor. In Proceedings of the 1984 ACM Symposium on List and Functional
Programming, pages 9–17, Austin, Texas, 1984.

[6] P. Lopez, M. Hermenegildo, and S. Debray. A methodology for
granularity-based control of parallelism in logic programs. Journal of
Symbolic Computation, 22(4):715–734, 1996.

[7] Simon Marlow, Simon Peyton Jones, and Satnam Singh. Runtime
support for multicore Haskell. SIGPLAN Notices, 44(9):65–78, 2009.

[8] Peter Wang and Zoltan Somogyi. Minimizing the overheads of depen-
dent AND-parallelism. In Proceedings of the 27th International Con-
ference on Logic Programming, Lexington, Kentucky, 2011.

20

