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Abstract. The subject of groundness analysis for (constraint) logic pro-

grams has been widely studied, and interesting domains have been pro-

posed. Pos has been recognized as the most suitable domain for capturing

the kind of dependencies arising in groundness analysis, and Reduced Or-

dered Binary Decision Diagrams (ROBDDs) are generally accepted to

be the most e�cient representation for Pos. Unfortunately, the size of an

ROBDDs is, in the worst case, exponential in the number of variables it

depends upon. Earlier work [2] has shown that a hybrid representation

that separates the de�nite information from the dependency information

is considerably more e�cient than keeping the two together. The aim of

the present paper is to push this idea further, also separating out certain

dependency information, in particular all pairs of variables that are al-

ways either both ground or neither ground. We �nd that this new hybrid

representation is a signi�cant improvement over previous work.

1 Introduction

The aim of groundness analysis (sometimes called de�niteness analysis) is to de-

rive statically, for all the program points of interest, which variables are bound to

unique values (or ground). This kind of information is very important: it allows

substantial optimizations to be performed at compile-time, and is also crucial to

most semantics-based program manipulation tools. Moreover, many other anal-

yses are made more precise by the availability of groundness information. For

these reasons, the subject of groundness analysis for (constraint) logic programs

has been widely studied. After the early attempts, some classes of Boolean func-

tions have been recognized as constituting good abstract domains for groundness

analysis [10, 13]. In particular, the set of positive Boolean functions, (namely,

those functions that assume the true value under the valuation assigning true to

all variables), which is denoted by Pos, allows to express Boolean properties of

program variables where the property of one variable may depend on that prop-

erty of other variables. For groundness analysis, since variables can be bound to

terms containing other variables, the groundness of one variable may depend on

?

Much of this work was supported by EPSRC grant GR/L19515.



the groundness of other variables. Pos has been recognized as the most precise

domain for capturing the kind of dependencies arising in groundness analysis.

This ability to express dependencies makes analysis based on Pos very pre-

cise, but also makes it relatively expensive, as many operations on Boolean

formulae have exponential worst case complexity. Armstrong et al. [1] analyzed

many representations of positive Boolean formulae for abstract interpretation,

and found Reduced Ordered Binary Decision Diagrams (ROBDDs) [6] to give

the best performance.

ROBDDs generated during program analysis often contain many variables

that are de�nitely true. In the context of groundness analysis, this means that

the corresponding program variable must be ground at that point in the program.

It is shown in [2] that a hybrid representation for Boolean functions that keeps

these de�nite variables separate is more e�cient than ROBDDs alone. However,

ROBDDs generated during program analysis also contain many pairs of variables

that are equivalent. In terms of groundness, this means that either both variables

are ground, or neither is. Such equivalent variables of course appear for a program

goal of the form X = Y, but they also frequently appear naturally during the

analysis process. For example, for a goal X = [Y|Z], where it can be established

that Y is ground, the analyzer will deduce that X and Z are equivalent. Such

equivalent pairs can greatly increase the size of ROBDDs, which in turn makes

ROBDD operations much more expensive. For example, the ROBDD for the

Boolean function z comprises one node (not counting the 1 and 0 terminal

nodes), while (x $ y) ^ z comprises 4 or 5 (usually 5). However, since x $ y

simply means that x and y are equivalent, we may remove y from the Boolean

function altogether, leaving us again with a single node, and replace y by x in the

formulae being analyzed. Since the time complexity of most ROBDD algorithms

is at best quadratic in the sizes of the graphs involved, this can signi�cantly

speed up analysis.

There is another reason for our interest in equivalent variables. A recursive

de�nition of the form

f(x

1

; : : : ; x

n

) = A _

�

B ^ f(x

1

; : : : ; x

n

)

�

;

always has least �xpoint A, as can be seen by Kleene iteration. This is a special

instance of S�ndergaard's immediate �xpoint theorem [16]. The key point here

is that the formal parameters of the de�nition must be the same as the actual

parameters in the recursive reference. We can establish this if we have a de�nition

of the form

f(x

1

; : : : ; x

n

) = A _

�

B ^ f(y

1

; : : : ; y

n

) ^ (x

1

$ y

1

) ^ � � � ^ (x

n

$ y

n

)

�

:

To show that our de�nition has this form, we need to �nd the equivalent variables

in the recursive arm of the de�nition.

In this paper we present a hybrid representation for Boolean functions that

uses a set to represent de�nite variables, a set of pairs of equivalent variables to

represent equivalences, and an ROBDD to represent more complex dependencies.



This hybrid representation proves to be signi�cantly more e�cient overall than

that of [2].

Notice that Boolean functions are used in the more general context of depen-

dency analysis, including �niteness analysis for deductive database languages

[5] suspension analysis for concurrent (constraint) logic programming languages

[11], and functional dependency (or determinacy) analysis [17]. The hybrid rep-

resentation we propose might be useful also in these contexts, although we have

not studied this yet.

The balance of this paper proceeds as follows. In Sect. 2 we briey review

the usage of Boolean functions for groundness analysis of (constraint) logic pro-

grams (even though we assume familiarity with this subject) and we discuss the

representation we use for Boolean functions. Section 3 presents our hybrid rep-

resentation, with the necessary algorithms appearing in Sect. 4. Experimental

results are presented in Sect. 5, and Sect. 6 concludes with some �nal remarks.

2 Preliminaries

Let U be a set. The set of all subsets of U will be denoted by }(U ). The set of

all �nite subsets of U will be denoted by }

f

(U ). The notation S �

f

T stands for

S 2 }

f

(T ).

2.1 Boolean Functions for Groundness Analysis

After the early approaches to groundness analysis [14, 12], which su�ered from

serious precision drawbacks, the use of Boolean functions [10, 13] has become

customary in the �eld. The reason is that Boolean functions allow to capture in

a very precise way the groundness dependencies that are implicit in uni�cation

constraints such as z = f(g(x); y): the corresponding Boolean function is (x ^

y)$ z, meaning that z is ground if and only if x and y are so. They also capture

dependencies arising from other constraint domains: for instance, under CLP(R)

x+2y+ z = 4 can be abstracted as ((x^ y)! z)^ ((x^ z)! y)^ ((y ^ z)! x),

indicating that determining any two variables is su�cient to determine the third.

Vars is a �xed denumerable set of variable symbols. The variables are ordered

by the total order relation �. For convenience we sometimes use y � x as an

alternative for x � y. We also use x � y and y � x to mean that either x � y

or x = y. We call the least variable �, that is, 8v 2 Vars : � � v. For a set of

variables S we will denote by min

�

(S) the minimum element of S with respect

to �. We also de�ne the succ (successor) function over Vars as follows:

De�nition 1. (The function succ : Vars ! Vars.)

succ(v)

def

= x; if v � x and :9y 2 Vars : v � y � x.

Note that x is unique.

We now introduce Boolean functions based on the notion of Boolean valua-

tion.



De�nition 2. (Boolean valuations.)The set of Boolean valuations overVars

is A

def

= Vars ! f0; 1g. For each a 2 A, each x 2 Vars, and each c 2 f0; 1g the

valuation a[c=x] 2 A is given, for each y 2 Vars, by

a[c=x](y)

def

=

�

c; if x = y;

a(y); otherwise.

For X = fx

1

; x

2

; : : :g � Vars, we write a[c=X] for a[c=x

1

][c=x

2

] � � � .

De�nition 3. (Boolean functions.) The set of Boolean functions over Vars

is F

def

= A ! f0; 1g. The distinguished elements >;? 2 F are the functions

de�ned by >

def

= �a 2 A : 1 and ?

def

= �a 2 A : 0. For f 2 F , x 2 Vars, and

c 2 f0; 1g, the function f [c=x] 2 F is given, for each a 2 A, by f [c=x](a)

def

=

f

�

a[c=x]

�

. When X � Vars, f [c=X] is de�ned in the obvious way. If f 2 F and

x; y 2 Vars the function f [y=x] 2 F is given, for each a 2 A, by

f [y=x](a)

def

= f

�

a

�

a(y)=x

�

�

:

Boolean functions are constructed from the elementary functions corresponding

to variables, and by means of the usual logical connectives. Thus x denotes the

Boolean function f such that, for each a 2 A, f(a) = 1 if and only if a(x) = 1.

For f

1

; f

2

2 F , we write f

1

^ f

2

to denote the function g such that, for each

a 2 A, g(a) = 1 if and only if both f

1

(a) = 1 and f

2

(a) = 1. The other Boolean

connectives and quanti�ers are handled similarly.

The question of whether a Boolean function f entails particular variable x (which

is what, in the context of groundness analysis, we call de�nite groundness in-

formation) is equivalent to the question whether f ! x is a tautology (namely,

f ! x = >). In what follows we will also need the notion of dependent variables

of a function, as well as disentailed, or de�nitely false, variables.

De�nition 4. (Dependent, true, false, and equivalent variables.) For

f 2 F , the set of variables on which f depends, the set of variables necessarily

true for f , the set of variables necessarily false for f , and the set of equivalent

variables for f , are given, respectively, by

vars(f)

def

=

�

x 2 Vars

�

�

9a 2 A : f

�

a[0=x]

�

6= f

�

a[1=x]

�	

;

true(f)

def

=

�

x 2 Vars

�

�

8a 2 A : f(a) = 1 =) a(x) = 1

	

;

false(f)

def

=

�

x 2 Vars

�

�

8a 2 A : f(a) = 1 =) a(x) = 0

	

;

equiv (f)

def

=

�

(x; y) 2 Vars

2

�

�

x 6= y; 8a 2 A : f(a) = 1 =) a(x) = a(y)

	

:

2.2 Binary Decision Diagrams

Binary Decision Diagrams (BDDs) are a well-known representations of Boolean

functions [6, 7]. A BDD is a rooted directed acyclic graph where each internal



node is labeled with a Boolean variable and has two out edges, leading to the

node's true and false successors. External (leaf) nodes are either 1 or 0. The

Boolean function represented by an BDD can be evaluated for a given truth

value assignment by traversing the graph from the root node, taking the true

edge for nodes whose label is assigned 1 and the false edge when the label is

assigned 0. The terminal node reached in this traversal is the function value for

that assignment.

When a total ordering on the variables is available, we can de�ne Ordered Bi-

nary Decision Diagrams (OBDDs) as BDDs with the restriction that the label of

a node is always less than the label of any internal node in its successors. Reduced

Ordered Binary Decision Diagrams (OBDDs) are OBDDs with the additional

condition that they do not contain any two distinct nodes which represent the

same Boolean function. This means that the two terminal nodes must be unique,

no two distinct nodes may have the same label and true and false successors,

and no node may have two identical successors (because then it would represent

the same Boolean function as the successors).

We now de�ne ROBDDs formally. Although an ROBDD is a particular kind

of rooted, directed, and acyclic graph, we prefer not to use the standard notation

for graphs. Thus an ROBDD is identi�ed with the set of its nodes, one of which

is designated as the root, the edges being formally part of the nodes themselves.

De�nition 5. (ROBDD) If N is the set of nodes of an ROBDD then N sat-

is�es

N � f0;1g [Vars �N �N:

The nodes 0 and 1 are called terminal nodes. All the other nodes in N are called

non-terminal nodes. For each non-terminal node n 2 N , n

var

2 Vars denotes

the variable associated with n, n

false

2 N denotes the false successor of n, and

n

true

2 N denotes the true successor of n. With this notation, N must also satisfy

the irredundancy and the ordering conditions: for each non-terminal node n 2 N

n

false

6= n

true

and

�

m = n

false

or m = n

true

�

=)

�

m 2 f0;1g or n

var

� m

var

�

:

Moreover, N is rooted and connected, that is, there exists r 2 N (the root)

such that

8n 2 N n frg : 9m 2 N :

�

n = m

false

or n = m

true

�

:

A ROBDDs is a pair (r;N ) that satis�es the above conditions. The set of all

ROBDDs is denoted by D.

The meaning of an ROBDD is given as follows.

De�nition 6. (Semantics of ROBDDs.) The function J�K

D

: D ! F is given,

for each (r;N ) 2 D, by N

0

def

= N n frg and

q

(r;N )

y

D

def

=

8

>

<

>

:

?; if r = 0;

>; if r = 1;

�

r

var

^

q

(r

true

; N

0

)

y

D

�

_

�

:r

var

^

q

(r

false

; N

0

)

y

D

�

; otherwise.



For simplicity, we will identify an ROBDD with the ROBDD node that con-

stitutes its root, since the set of all the nodes can be recovered by any traversal

that starts from the root.

In the implementation, a new ROBDD node is created, given a label variable

v and true and false successors n and m respectively, by the make node(v; n;m)

function. This is de�ned such that, if n = m, n will be returned. Furthermore, if

an identical call to make node has previously been made, the result of that call

will be returned. This guarantees that if n and m are reduced, then so is the

resulting node. Note that it is an error if v � n

var

or v � m

var

.

ROBDDs have one very important property: they are canonical. This means

that, for each �xed variable ordering, two ROBDDs represent the same function

if and only if they are identical [6]. In fact, the de�nition of make node is such

that two ROBDDs are identical if and only if they are stored at the same memory

address. This is important to the e�ciency of many ROBDD operations.

We will often confuse ROBDDs with the Boolean functions they represent.

For instance, for n 2 D, when we write vars(n) or true(n) what we really mean is

vars(JnK

D

) or true(JnK

D

). This convention of referring to the semantics simpli�es

the presentation and should not cause problems.

3 A New Representation for Pos

We introduce a new representation for Pos. It is made up of three components:

a set of ground variables, a set of equivalent variables, and an ROBDD, whence

the name GER representation.

1

A set of ground variables is trivially an element

of V

def

= }

f

(Vars). For G 2 V we de�ne JGK

V

def

=

V

(G); where

V

fx

1

; : : : ; x

n

g

def

=

x

1

^ � � � ^ x

n

and

V

?

def

= >.

The set of equivalent variables is simply given by a transitively closed set of

ordered pairs of variables.

De�nition 7. (A representation for equivalent variables.) Sets of equiv-

alent variables are represented by means of elements of L � }

f

(Vars � Vars)

such that

1. 8L 2 L : 8x; y 2 Vars : (x; y) 2 L =) x � y;

2. 8L 2 L : 8x; y; z 2 Vars : (x; y); (y; z) 2 L =) (x; z) 2 L.

For L 2 L we use the following notation:

Lj1

def

=

�

x 2 Vars

�

�

(x; y) 2 L

	

; vars(L)

def

= Lj1[ Lj2;

Lj2

def

=

�

y 2 Vars

�

�

(x; y) 2 L

	

:

The family of functions �

L

: Vars ! Vars is de�ned, for each L 2 L and each x 2

Vars, by �

L

(x)

def

= min

�

�

fxg [

�

y 2 Vars

�

�

(y; x) 2 L

	�

: �

L

maps each variable

to the least variable of its equivalence class, which we call its leader. (L;�) is

1

In [2] we had only a set of ground variables and a ROBDD.



clearly a lattice. We will denote the glb and the lub over (L;�) by ^

L

(transitive

closure of the union) and _

L

(intersection), respectively. The semantics function

J�K

L

: L ! F is given by JLK

L

def

=

V

�

x$ y

�

�

(x; y) 2 L

	

:

In the GER representation, an element of Pos is represented by an element

of V � L � D. There are elements of Pos that can be represented by several

such triples and, in the GER representation, we need to make a choice among

those. This choice must be canonical and economical. Economy can be explained

as follows: true variables are most e�ciently represented in the �rst component

(a bit-vector at the implementation level) and should not occur anywhere else

in the representation. Equivalent variables are best represented in the second

component of the GER representation (implemented as a vector of integers). As

equivalent variables partition the space of variables into equivalence classes, only

one variable per equivalence class must occur in the ROBDD constituting the

third component of the representation. If we choose, say, the least variable (with

respect to the � ordering on Vars) of each equivalence class as the representative

of the class, we have also ensured canonicity.

De�nition 8. (GER representation.) The GER representation for Pos is

given by the set

G

def

=

8

>

<

>

:

hG;L; ni

�

�

�

�

�

�

�

G 2 V; L 2 L; n 2 D;

G \ vars(L) = G \ vars(n) = Lj2\ vars(n) = ?;

true(n) = equiv (n) = ?

9

>

=

>

;

:

The meaning of G's elements is given by the function J�K

G

: G ! F :

q

hG;L; ni

y

G

def

= JGK

V

^ JLK

L

^ JnK

D

;

What is required now is a normalization function mapping each element of

V � L�D into the right representative in G.

De�nition 9. (Normalization function �.) The function � : V � L � D !

V �L�D is given by

�

�

hG;L; ni

�

def

= h

^

G;

^

L; n̂i

where

^

G

def

= true

�

q

hG;L; ni

y

G

�

;

^

L

def

= equiv

�

q

hG;L; ni

y

G

�

n

�

(x; y) 2

^

G

2

�

�

x � y

	

;

n̂

def

= n[1=

^

G]

�

�

^

L

(x

1

)=x

1

�

� � �

�

�

^

L

(x

n

)=x

n

�

; if vars(n) n

^

G = fx

1

; : : : ; x

n

g.

A very basic implementation for � is given by the normalize function depicted

in Alg. 1. The need for looping can be understood by means of the following

examples. Forcing a variable to true in a ROBDD can result in new entailed



Require: an element hG;L; ni 2 V � L � D

function normalize

�

hG;L;ni

�

1: G

new

:= G; L

new

:= L; n

new

:= n;

2: repeat

3: G

old

:= G

new

; L

old

:= L

new

; n

old

:= n

new

;

4: G

new

:= G

new

[

�

x; y

�

�

(x; y) 2 L

new

; fx; yg \G

new

6= ?

	

5: L

new

:= L

new

n

�

(x;y) 2 G

2

new

�

�

x � y

	

6: n

new

:= n

new

[1=G

new

];

7: G

new

:= G

new

[ true(n

new

);

8: L

new

:= L

new

^

L

equiv(n

new

);

9: fx

1

; : : : ; x

k

g := vars(n

new

);

10: n

new

:= n

new

�

�

L

new

(x

1

)=x

1

�

� � �

�

�

L

new

(x

k

)=x

k

�

11: until G

new

= G

old

and L

new

= L

old

and n

new

= n

old

;

12: return hG

new

; L

new

; n

new

i;

Algorithm 1: The normalize function.

variables: if n represents x! y then n[1=x] represents y. Renaming a ROBDD

node n by means of a set of equivalent variables L can also give rise to new

entailed variables. Suppose that n represents the Boolean formula x_y and that

L =

�

(x; y)

	

. Then n

�

�

L

(y)=y

�

represents x. Renaming can also result in new

equivalent variables: take n representing x $ (y ^ z) and L =

�

(y; z)

	

for an

example.

Theorem 1. We have that � : V � L � D ! G. Furthermore, for each triple

hG;L;N i 2 V � L�D, we have

q

hG;L;N i

y

G

=

q

�(hG;L;N i)

y

G

:

Finally, the normalize function in Alg. 1 is a correct implementation of �.

It is important to remark that in the actual implementation several special-

izations are used instead of Alg. 1. In other words, for every possible use of

normalize, conditions can be granted so as to use a simpler algorithm instead.

While space limitations do not allows us to be more precise, we just observe that

roughly 50% of the times normalize would be called with the ROBDD 1. This

indicates that de�nitely ground variables and equivalent variables constitute a

signi�cant proportion of the dependencies that arise in practice.

3.1 Operations for the Analysis

Let us briey review the operations we need over Pos for the purpose of ground-

ness analysis. Modeling forward execution of (constraint) logic programs requires

computing the logical conjunction of two functions, the merge over di�erent com-

putation paths amounts to logical disjunction, whereas projection onto a desig-

nated set of variables is handled through existential quanti�cation. Conjunction



with functions of the form x $ (y

1

^ � � � ^ y

k

), for k � 0, accommodate both

abstract mgus and the combination operation in domains like Pat(Pos) [9].

Let 
 be an operation over Pos. The corresponding operation over G can

be speci�ed, roughly speaking, as � � 
 � J�K

G

. However, this is simply a speci-

�cation: the problem is how to compute � � 
 � J�K

G

more e�ciently exploiting

the fact that both de�nitely ground variables and pair of equivalent variables

are kept separate in the GER representation. The intuitive recipe (which has

been extensively validated through experimentation) for achieving e�ciency can

be synthesized in the motto \keep the ROBDD component as small as possible

and touch it as little as possible". The speci�cation above does the contrary: it

pushes all the information into the ROBDD component, performs the operation

on the ROBDD, and normalizes the result. Let us take the conjunction operation

^

G

: G �G ! G and suppose we want to compute hG

1

; L

1

; n

1

i ^

G

hG

2

; L

2

; n

2

i. A

�rst approximation is to compute

�

�

hG

1

[G

2

; L

1

^

L

L

2

; n

1

^

D

n

2

i

�

; (1)

but we can do better if we reduce the ROBDDs n

1

and n

2

before computing the

conjunction (whose complexity is O(jn

1

j � jn

2

j), where jnj denotes the number

of nodes in the ROBDD n). In order to apply the ^

D

operator to the smallest

possible ROBDD nodes we can use the alternative expression

�

�




G

0

1

[G

0

2

; L

0

1

^

L

L

0

2

; n

0

1

^

D

n

0

2

�

�

; (2)

where hG

0

i

; L

0

i

; n

0

i

i = �

�

hG

1

[ G

2

; L

1

^

L

L

2

; n

i

�

, for i = 1, 2. For lack of space

we cannot enter into details, but the current implementation uses an expression

which is intermediate between (1) and (2). Indeed, the attentive reader will have

noticed that there is a tradeo� in the above motto: keeping the ROBDDs as

small as possible, as in (2), implies performing several (possibly fruitless) visits

of the ROBDDs in order to collect entailed and equivalent variables.

Disjunction is computationally less complex than conjunction in that it does

not require normalization through �. This, however, comes at the price of some

extra complication in the de�nition.
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For i = 1, 2, L

0

i

contains the equivalent variables in L

i

plus those implied by the

groundness not shared by the two representations that are about to be disjoined

(since x^ y implies x$ y). Thus L

0

contains the common equivalent pairs. For

i = 1, 2, G

0

i

contains the non-common ground variables to be restored into the

ROBDD components, taking into account the common equivalences. Similarly,

L

00

i

contains the non-common equivalences to be restored into the respective

ROBDD: notice that, for x; y 2 G

i

n G

(imod2)+1

, care is taken not to restore

both x^ y and x$ y.

For the projection operation over G, which is indeed quite simple, we refer

the reader to [4].

4 Some Specialized Algorithms

In order to implement the normalize function, its specializations, and the other

operations for the analysis, we need e�cient algorithms for several operations.

Algorithms for �nding all the variables entailed in an ROBDD have been pre-

sented in [2, 15], while the operation n[1=V ] (called valuation or co-factoring)

can be easily implemented as described in [7].

4.1 Finding Equivalent Variables in ROBDDs

An algorithm for �nding all the pairs of variables in an ROBDD that are equiv-

alent is presented as Alg. 2. The algorithm follows directly from the following

Require: an ROBDD node n

function equiv vars(n)

equiv vars aux(n; fhx; yi : � � x � y � max vars(n)g)

function equiv vars aux(n;U)

if n = 1 then

?

else if n = 0 then

U

else

n

hn

var

; vi

�

�

�

v 2

�

vars entailed(n

true

) \ vars disentailed(n

false

)

�

o

[

�

equiv vars aux(n

true

; U) \ equiv vars aux(n

false

; U)

�

Algorithm 2: The equiv vars function.

theorem.

Theorem 2. JnK

D

entails x$ y where x � y if and only if n = 0, or n

var

= x

and Jn

true

K

D

entails y and Jn

false

K

D

disentails y, or n

var

� x and Jn

true

K

D

and

Jn

false

K

D

both entail x$ y.



We refer the reader to [2, 15] for the possible implementations of vars entailed

(and, by duality, of vars disentailed). Observe that a crucial ingredient for the

e�ciency of the implementation is caching the results of the calls to equiv vars,

vars entailed, and vars disentailed.

4.2 Removing Equivalent Variables

Once we have identi�ed which variables are equivalent to which others, we can

signi�cantly reduce the size of an ROBDD by removing all but one of each

equivalence class of variables. De�ning the leader function for an ROBDD node

n as

�

n

def

= �

equiv(n)

;

our aim is to restrict away all but the �rst variable in each equivalence class,

that is, all variables v such that �

n

(v) 6= v. To motivate the algorithm, we begin

with a simple theorem.

Theorem 3. Given an ROBDD rooted at n, and its corresponding leader func-

tion �

n

, for every node m 6= n appearing in the ROBDD such that �

n

(m

var

) =

n

var

, either m

true

= 0 or m

false

= 0.

We \remove" a variable from a Boolean function using existential quanti�-

cation. For an ROBDD node m, removing m

var

leaves disjoin(m

true

;m

false

): So

Theorem 3 tells us that when �

n

(m

var

) 6= m

var

, either m

true

or m

false

will be 0,

making the disjunction trivial.

This suggests the algorithm shown as Algorithm 3 for removing all the \un-

needed" variables in an ROBDD n given its leader function �

n

. Two obvious

optimizations of this algorithm immediately suggest themselves. Firstly, we may

easily compute the last variable (in the ordering) z such that �

n

(z) 6= z; we

may then add the case else if n

var

> z then n immediately after the initial

if. The second and more important optimization is to avoid recomputing the

squeeze equiv function by the usual caching technique, returning the result of

an earlier call with the same arguments. Since the �

n

function is the same in

all recursive calls to squeeze equiv, we may simplify this by clearing our table of

previous results whenever squeeze equiv is called non-recursively (from outside).

This allows us to use only the n argument as a parameter to this cache.

When we conjoin two Boolean functions in their GER representation, we also

have the opportunity to use the variable equivalences of each argument to reduce

the size of the ROBDD component of the other argument. In order to do this,

we need an algorithm to compute, given any ROBDD m and equivalent variable

set L, the ROBDD n whose semantics is

JnK

D

= 9Lj2 : JLK

L

^ JmK

D

:

Space limitations preclude a full exposition of this algorithm, but it may be

found in [4].



Require: an ROBDD node n and a leader function �

function squeeze equiv(n; �)

if is terminal(n) then

n

else if �(n

var

) = n

var

then

make node

�

n

var

; squeeze equiv(n

true

; �); squeeze equiv(n

false

; �)

�

else if n

true

= 0 then

squeeze equiv(n

false

; �)

else

squeeze equiv(n

true

; �)

Algorithm 3: The squeeze equiv function.

5 Experimental Evaluation

The ideas presented in this section have been experimentally validated in the con-

text of the development of the China analyzer [3]. China is a data-ow analyzer

for CLP(H

N

) languages (i.e., Prolog, CLP(R), clp(FD) and so forth) written

in C

++

and Prolog. It performs bottom-up analysis deriving information about

success-patterns and, optionally, call-patterns by means of program transforma-

tions and optimized �xpoint computation techniques. We have performed the

analysis of a suite comprising 170 programs on the domain Pattern(Pos) (simi-

lar to Pat(Pos) [3]), switching o� all the other domains currently supported by

China

2

, and switching o� the widening operations normally used to throttle the

complexity of the analysis.

A selection of the experimental results is reported in Tables 1 and 2. These

tables give, for each program, the analysis times and the number of ROBDD

nodes allocated for the standard implementation based on ROBDDs only, but

making use of the optimized algorithms described in [15] (R), for the implemen-

tation where de�nitely ground variables are factored out from the ROBDDs as

explained in [2] (GR), and for the implementation based on the ideas presented

in this paper (GER). The analysis has been considered impractical (and thus

stopped) as soon as the amount of memory used by China exceeded 16 MB (for

medium sized programs this corresponds to roughly 320.000 ROBDD nodes).

This is indicated by 1 in Table 1 and by z in Table 2.

The computation times have been taken on a Pentium II machine clocked at

233MHz, with 64 MB of RAM, and running Linux 2.0.32.

As it can be seen from the tables, the proposed technique improves the state-

of-the-art of groundness analysis with Pattern(Pos) considerably. Programs that

were out of reach for previous implementations are now analyzable in reasonable

time, while for most other programs the measured speedup is between a factor

of 2 and an order of magnitude. As far as the the memory requirements of

the analysis are concerned, the new representation allows for big savings, as

indicated by Table 2. Comparing the results with those of [8, page 45], and

2

Namely, numerical bounds and relations, aliasing, freeness, and polymorphic types.



Goal independent Goal dependent

Program R GR GER R GR GER

action.pl 1:59 1:58 0:17 3:21 2:78 1:44

bp0-6.pl 0:18 0:09 0:04 0:18 0:06 0:07

bridge.clpr 0:3 0:33 0:11 0:1 0:02 0:02

chat parser.pl 1 1 0:54 1 1 2:11

critical.clpr 0:18 0:17 0:03 1 1 0:14

cs2.pl 0:11 0:09 0:04 0:08 0:03 0:04

csg.clpr 0:11 0:11 0:01 0:06 0:04 0:02

ime v2-2-1.pl 0:28 0:19 0:08 0:53 0:2 0:12

kalah.pl 0:23 0:1 0:05 0:24 0:09 0:12

log interpreter.pl 0:51 0:43 0:17 2:95 2:56 0:6

peval.pl 0:87 0:73 0:31 1:97 1:58 0:55

read.pl 0:41 0:16 0:1 0:76 0:54 0:24

reducer.pl 0:11 0:1 0:07 0:9 0:83 0:25

rubik.pl 1 1 0:13 1 1 0:64

scc.pl 1 1 0:62 1:04 0:15 0:14

sdda.pl 0:11 0:09 0:03 1:94 1:47 0:16

sim v5-2.pl 0:24 0:21 0:19 0:37 0:25 0:29

simple analyzer.pl 1 1 0:16 1 1 4:2

unify.pl 1:39 0:66 0:14 1 1 0:78

Table 1. Results obtained with China: analysis time in seconds.

Goal independent Goal dependent

Program R GR GER R GR GER

action.pl 228913 228027 6301 186745 173167 20861

bp0-6.pl 33838 12694 2016 12162 1219 103

bridge.clpr 14765 14762 6324 4044 3243 2174

chat parser.pl z z 17291 z z 26634

critical.clpr 14824 14284 1893 z z 7846

cs2.pl 16044 11359 1698 4425 214 64

csg.clpr 317 106 23 196 30 27

ime v2-2-1.pl 42088 21210 3336 59203 20693 2634

kalah.pl 42008 10962 2253 8487 322 114

log interpreter.pl 61249 50083 3070 213388 167080 9354

peval.pl 96883 75218 14256 190905 147545 20357

read.pl 49710 14883 2108 55804 32764 3095

reducer.pl 13534 11542 2435 92485 87306 7317

rubik.pl z z 3825 z z 5261

scc.pl z z 16751 82788 5762 215

sdda.pl 19561 14360 786 201732 157191 2798

sim v5-2.pl 18600 13073 4969 5958 319 120

simple analyzer.pl z z 6772 z z 65125

unify.pl 188476 94923 9569 z z 25679

Table 2. Results obtained with China: number of BDD nodes.



scaling the timings in order to account for the di�erence in performance between

a Pentium-II at 233MHz and a Sun SparcStation 10/30, it can be seen that we

have signi�cantly pushed forward the practicality of Pos.

It is worth noticing that while the analyses based on Pattern(Pos) are compu-

tationallymore complex than those simply based on Pos (Cortesi et al. measured

a slowdown of around 20), they are also signi�cantly more precise [8].

6 Conclusion

We have studied the problem of e�cient dependency analysis, and in particular

groundness analysis, of (constraint) logic programs, using the Pos domain. As

others have concluded that ROBDDs are the most e�cient representation for

use in this sort of analysis, we have concentrated on improving the e�ciency

of the operations needed during program analysis for ROBDDs. However, since

many ROBDD operations have super-linear time cost, we sought to reduce the

size of the ROBDDs being manipulated by removing certain information from

the ROBDDs and representing it in a way specialized to its nature. We remove

de�nite variables as in [2], storing them in a bit vector. The main accomplish-

ment of this work, however, has been to remove all pairs of equivalent variables,

storing them as an array of variable numbers. We have shown how this new

hybrid representation signi�cantly decreases the size of the ROBDDs being ma-

nipulated. More importantly, analysis times are signi�cantly improved beyond

the signi�cant speedup achieved in [2].
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