Energy Efficiency in Cloud Computing and Optical Networking

Rod Tucker, Kerry Hinton, Rob Ayre

Centre for Energy-Efficient Telecommunications
University of Melbourne
Outline

• Introduction and overview of energy consumption and efficiency in communications networks

• Estimating energy consumption in ICT equipment
 – Telecommunications
 – The “cloud”

• Improving network energy efficiency
 – Technologies
 – Architectures
 – Protocols
 – The cloud
World’s technology capacity

Source: M. Hilbert, P. Lopez, Science, 2011
Internet traffic growth trends

Source: Kilper et al., JSTQE 2011
Projections of data centre traffic

Source: Cisco Cloud Index 2011
Power consumption of the global Internet

- 2010: 1.5 billion users, Power Consumption of Internet (Including servers) ~ 10^{10} W
- 2015: 20% p.a. Growth in user numbers, Power Consumption of Internet (Including servers) ~ 10^{11} W
- 2020: 40% p.a. Data growth, Power Consumption of Internet (Including servers) ~ 10^{12} W

- Global electricity supply, 3% p.a. growth
- 0% p.a. efficiency gains
- 15% p.a. efficiency gains
- 40% p.a. Data growth
- 10% p.a. Growth in user numbers
Why does energy matter?

• If nothing is done to address the growing “efficiency gap”:
 – ICT will consume ever larger proportion of global energy
 – Energy consumption could become a barrier to network growth

• Economic and engineering imperatives:
 – Energy is a growing component of OPEX
 – Increased energy consumption → increased footprint
Estimating ICT power consumption

• Inventory based estimates
 – Look at what is out there
 • Use sales and deployment data from vendors and surveys
 • Accessing accurate data is problematic

• Network design and dimensioning based estimates
 – Design a network that will satisfy current and projected demands
 • Use typical network design rules
 • Difficult to include network inefficiencies, overlays & legacies

• Transaction based estimates
 – Look at services required and design a network to provide them
 • Similar to network design approach
Summary of estimates

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>% national electricity use</th>
<th>Country</th>
<th>PC’s, office equip. & servers</th>
<th>Wireless access</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Huber</td>
<td>1999</td>
<td>13%</td>
<td>USA</td>
<td>Yes</td>
<td>No</td>
<td>Severe over estimate</td>
</tr>
<tr>
<td>Koomey</td>
<td>1999</td>
<td>2%</td>
<td>USA</td>
<td>Yes</td>
<td>No</td>
<td>Users & equipment estimate</td>
</tr>
<tr>
<td>Kawatomo</td>
<td>2001</td>
<td>3%</td>
<td>USA</td>
<td>Yes</td>
<td>No</td>
<td>Users & equipment estimate</td>
</tr>
<tr>
<td>Turk</td>
<td>2001</td>
<td>0.5 - 1.7%</td>
<td>Germany</td>
<td>Yes</td>
<td>No</td>
<td>Users & equipment estimate</td>
</tr>
<tr>
<td>Barthel</td>
<td>2001</td>
<td>0.9 – 1.5%</td>
<td>Germany</td>
<td>Yes</td>
<td>Yes</td>
<td>Users & equipment estimate</td>
</tr>
<tr>
<td>Roth</td>
<td>2002</td>
<td>< 2.3%</td>
<td>USA</td>
<td>Yes</td>
<td>Yes</td>
<td>Users & equipment estimate</td>
</tr>
<tr>
<td>Cremer</td>
<td>2003</td>
<td>7.1%</td>
<td>Germany</td>
<td>Yes</td>
<td>Yes</td>
<td>Users & equipment estimate</td>
</tr>
<tr>
<td>Baliga</td>
<td>2007</td>
<td>0.5%</td>
<td>OECD</td>
<td>No</td>
<td>No</td>
<td>Network design & dimensioning</td>
</tr>
<tr>
<td>Vereecken</td>
<td>2010</td>
<td>Not given</td>
<td>Not given</td>
<td>No</td>
<td>No</td>
<td>Network design & dimensioning</td>
</tr>
<tr>
<td>Lange</td>
<td>2010</td>
<td>Not given</td>
<td>Not given</td>
<td>No</td>
<td>Yes</td>
<td>Network design & dimensioning</td>
</tr>
<tr>
<td>Kilper</td>
<td>2011</td>
<td>Not given</td>
<td>USA</td>
<td>No</td>
<td>Yes</td>
<td>Transaction</td>
</tr>
<tr>
<td>Pickavet</td>
<td>2007</td>
<td>Not given</td>
<td>Global</td>
<td>Yes</td>
<td>Yes</td>
<td>Users and equipment estimate</td>
</tr>
</tbody>
</table>
Design and dimensioning approach

1. Split network into
 - Access
 - Metro/Edge
 - Core
 - Data centres, content storage

2. Model with representative architecture and equipment

3. Dimension network to accommodate expected traffic

4. Calculate power consumption per customer for network

Baliga et al., 2007
Key model parameters

• Peak vs average access speed
 – Contention & aggregation

• Network dimensioning
 – Traffic growth
 • Deployed capacity > demanded capacity
 – Equipment redundancy
 • Multi-homing, back-up storage
 – Service protection
 • 1 + 1, 1:1, 1:N protection

• Router hops between source and destination

• Data centre Power Usage Effectiveness (PUE)
Network segmentation

- **Core Network**
 - Core Router
 - Fiber
 - Hot spots
 - Data Center
 - Storage
 - Server

- **Metro/Edge Network**
 - Broadband Network Gateways
 - Ethernet Switch
 - Edge Routers
 - Content Distribution Network
 - Storage
 - Server

- **Access Network**
 - DSLAM
 - Cu
 - DSL
 - Fiber
 - FTTP
 - PON
 - FTTP
 - ONU
 - DSLAM
 - Cabinet
 - Cu

Key Terms
- Ethernet Switch
- OLT
- Splitter
- FTTP
- DSLAM
- PON
- FTTN
Access network energy consumption

Baliga et al., OFC 2009
Data centers and content servers

- **Racks of Servers**
- **Aggregation Switches**
- **Load-Balancing Switches**
- **Border Routers**

- 80% of traffic stays in data center
- 15% of traffic to users
- 5% of traffic to other data centers

Diagram showing the flow of traffic through the data center with different components and their connections.
Power consumption of equipment

• Which metric(s) are appropriate?
 – Power consumption per “throughput”
 – Power consumption per “good put”
 – Energy per bit, power per bit rate
 – Energy per customer bit
 – etc.

• Different metrics provide different optimal solutions to energy efficiency

• Total power and energy/bit are widely used
Power consumption in routers

\[P = C^{2/3} \]

where \(P \) is in Watts
where \(C \) is in Mb/s

Sources: METI, 2006, Nordman, 2007
Energy efficiency of equipment

2010 Data

- Sub-wavelength
- Wavelength

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Energy per bit (nJ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Router</td>
<td>0.001</td>
</tr>
<tr>
<td>Ethernet Switch</td>
<td>0.01</td>
</tr>
<tr>
<td>WDM Tx/Rx</td>
<td>1</td>
</tr>
<tr>
<td>PIC Tx/Rx</td>
<td>10</td>
</tr>
<tr>
<td>FEC Chip</td>
<td>100</td>
</tr>
<tr>
<td>Optical Amp</td>
<td>100</td>
</tr>
<tr>
<td>MEMS OXC</td>
<td>100</td>
</tr>
</tbody>
</table>

Tucker et al., 2010

[Diagram showing energy per bit for various equipment.]
Equipment Energy Consumption Trends

Router Energy Efficiency

Linear fit gives ~25% improvement per annum

Actual improvement may be declining

Cisco AGS
Wellfleet BCN
Cisco GSR 12000
Cisco GSR 12000b
Avici TSR
Cisco CRS 1
Cisco CRS 3
ALU7750

NIelsen, ECOC 2011
Trends in transport energy consumption

~15% improvement p.a.

Tucker, JSTQE 2011
Putting it all together

• Design and dimensioning approach
• 40% p.a. growth in network traffic
• 10% p.a. growth in user numbers
• 15% p.a. improvement in all technologies
• Projections of data centre traffic
Power consumption of the global Internet

- **Power Consumption (W)**
 - Year
 - 2010: 10^{10}
 - 2015: 10^{11}
 - 2020: 10^{12}

- **Global electricity supply (3% p.a.)**
- **Total (2010 Technology)**
- **Total**
- **Servers**
- **Access (PON)**
- **Core and Metro Switches/Router**
- **Data Center Switches**
- **Global Optical Transport**

- **15% p.a. technology improvement**
Network energy per user bit

Energy per User bit (μJ)

Year

2010
2015
2020

Total
Core and Metro Switches/Routers
PON
Data Center Switches
Optical Transport

Average Access Rate (Mb/s)

0.1
1
10
100

0.01
0.1
1
10
100
Gap between theory and practice

- Access
- Routers and Switches
- GreenTouch
- Transport
- Switches
- Lower Bounds
- Global Network

- Network Energy per Bit (J)

- Year:
 - 2010
 - 2015
 - 2020
 - 2025

Tucker, JSTQE 2011
Gap between theory and practice

Protocols, device efficiency, interconnects, system penalties, system margins, etc.

Management and control overheads, interconnects, power supplies, etc.

\[P_{\text{Total}} \]

\[P_{\text{overhead}} \]

\[P_{\text{function}} \]

Subsystem

Inefficiency

Overhead

Function

Protocols, device efficiency, interconnects, system penalties, system margins, etc.

Management and control overheads, interconnects, power supplies, etc.

Power consumption

Energy per bit

Ideal

Traffic (b/s)

Ideal

Traffic (b/s)
Improving network energy efficiency

• Many ideas for improving energy efficiency
 – Insufficient time to cover all of them

• Key approaches
 – Technologies
 – Architectures
 – Protocols
 – The cloud
A. Technologies

• Fundamental physical technologies for telecommunications:
 – Electronics: primarily CMOS for signal and data processing and storage
 – Improvements by Moore’s Law
 – Optics/photonics, primarily used to transport data
 – More than 99% of network energy is consumed by electronics

• Advances are needed in
 – Optical and electronic switch technologies
 – Optical and electronic interconnects at all levels
B. Architectures

• Architectures that reduce the number of network hops
• Optical bypass
• Layer 2 rather than Layer 3 where possible
• Dedicated content-delivery networks
Bypass options

Without bypass:
• All traffic goes to IP layer for processing
• \(\approx 10\) nJ per bit
• Allows aggregation of incoming traffic flow
• Statistical multiplexing increases utilisation of paths
Bypass options (cont’d)

With bypass:

• TDM Layer
 – Some traffic streams processed at TDM level
 – ~ 1 nJ per bit

• WDM layer
 – Some traffic switched at WDM layer
 – < 0.1 nJ per bit
C. Protocols

- Service transactions and protocols
- Efficiency of multi-layer protocol suite
- XGPON framing
- Sleep and standby states
- Energy-efficient Ethernet
- Dynamic rate adaptation
Service transactions & protocols

Service based energy model reflects how services are transported through the network

Source: Zhong et al., OFC 2012
Efficiency of multi-layer protocol suite

Combining boxes for multi-layer protocol suites can improve efficiency

\[
\text{Efficiency} = \frac{\text{Customer payload} \times \text{IP layer energy}}{\text{Total multi-protocol suite packet energy}}
\]

Source: Zhong et al., OFC 2012
XG-PON framing protocols

Chow et al., ECOC 2012

H – XGEM frame header
P – FEC parity
Solution: BiPON

Bit-Interleaved PON

Conventional PON

Chow et al., ECOC 2012
Energy-efficient protocols

• Sleep & standby states
 – Network devices enter low power state when not in use
 – Can apply to systems and sub-systems
 – Need to ensure network presence is retained
 • Use Network Connection Proxy with sleep protocol
 – Need to account for state transition energy and time
 – May have multiple lower energy states

• IEEE Energy Efficient Ethernet (802.3az)
 – Low power idle mode when no packets are being sent
 – Approved Sept. 2010
 – Currently applies to copper interface only; not optical
PON burst-mode laser driver

Koizumi et al., ECOC 2012

- Driver turned off between bursts
- Power reduced by 93%

![Diagram of PON burst-mode laser driver]

- Power consumption graph showing
 - w/o power saving: 1006 mW (LD on)
 - Power saving: 64 mW (LD off)

- Duty ratio of Tx_EN pulse
 - 0% to 100%
 - 32 branches
Energy-efficient protocols

- Dynamic rate adaptation
 - Modify capacity of network devices in response to traffic demands
 - Change clock frequency, processor voltage
 \[\text{Power} = C \times \text{Voltage}^2 \times \text{Frequency} \]
 - Slower speed to reduce power consumption
 - Need to allow transition time between rates

- Dynamic rate adaptation and standby states can be combined

\[\text{Power} = \text{C} \times \text{Voltage}^2 \times \text{Frequency} \]

Bolla et al., 2011
D. The cloud

• Cloud services widely promoted as greener than on-site facilities:
 – Cloud Computing – The IT Solution for the 21st Century
 • Carbon Disclosure Project Study 2011
 – Salesforce.com & the Environment
 • WSP Environment & Energy 2011

• Strong case for enterprise private cloud

• What about the public cloud?
 – Apple iCloud
 – Google drive
 – Microsoft sky drive
Example: Public storage as a service (SaaS)

Storage of application & data “in the cloud” compared with storing on a local disk. 50 MBytes per download. Modern laptop-style HDD 20% read/write and 80% idle.

Baliga et al., Proc IEEE, 2011
Rethinking the “Green Cloud”

• Need to improve access energy efficiency
 – Small wireless cells
 – PON
• Keep some processing power in user’s device
• Reduce the number of router hops
 – Avoid public Internet
 – Use optical layer by-pass of routers
• Improve protocol efficiency
 – Less overhead bytes
 – Smart scheduling
IPTV over the public Internet

Direct optical link to edge router

- Location of movies is a trade off between energy for storage and energy for delivery
- Each movie is replicated on R servers throughout the network
IPTV over the public Internet

Energy per download (Wh) (log scale)

Downloads per hour

R = 20
R = 200
R = 2000
P2P

R = 2

Baliga et al., OFC, 2009
IPTV over the public Internet

Baliga et al., OFC, 2009
Conclusions

• Energy consumption of the network is growing

• Access network energy dominates
 – Servers in data centres are likely to become dominant in ~2015
 – Core and metro networking to overtake access in ~2020
 – Optical transport is relatively “green”
 – Beware “the cloud”

• Many opportunities for improving network energy efficiency
 – Technologies
 – Architectures
 – Protocols

• If you are inspired, join one of the networks or consortia:
 www.greentouch.org, www.fp7-trend.eu