
Information Systems Educators Conference 2011 ISECON Proceedings
Wilmington North Carolina, USA v28 n1619

©2011 EDSIG (Education Special Interest Group of the AITP) Page 1

www.aitp-edsig.org

Creating Visualizations from Multimedia Building

Blocks: A Simple Approach to Teaching
Programming Concepts

Tanya Linden

tanya.linden@vu.edu.au
School of Management and Information Systems

Victoria University
Melbourne, Victoria, Australia

Reeva Lederman

reeva.lederman@unimelb.edu.au

Department of Information Systems
The University of Melbourne

Melbourne, Victoria, Australia

Abstract

Academics teaching programming are faced with the challenge of teaching dynamic concepts using
static media. Despite multiple tools developed in the past to support learning of programming con-
cepts, access to these tools is very limited and many educators have to create their own support ma-
terials and tools which is often time-consuming, complex and expensive. In this paper we share our
experience of producing simple animations using widely and/or freely available software packages to

develop small building blocks that are customizable and reusable and can be mixed and matched to
meet the learning requirements of individual students. Positive student feedback from using these
tools has encouraged the continued exploration of options for developing animations illustrating pro-
gramming concepts.

Keywords: programming concepts, program visualization, multimedia repository

1. BACKGROUND

The majority of publications on teaching intro-
ductory programming concepts suggest that
students experience difficulties learning the con-

cepts and academics find teaching these pro-
gramming concepts to novices challenging
(Bennedsen, E.Caspersen, & Kölling, 2008;
Jenkins, 2001; Matthews, Hin, & Choo, 2009;
Prasad & Fielden, 2003; Rudder, Bernard, &
Mohammed, 2007; Stone & Clark, 2011). Over
years there has been a change in the program-

ming languages being taught (e.g. from Pascal

and C to Visual Basic and Java), more creative
teaching approaches have evolved and techno-

logical developments have been applied, howev-
er academics are still experiencing the problems
associated with teaching programming to novic-

es (Hadjerrouit, 2008; Spronken-Smith &
Harland, 2009). Researchers have investigated
various reasons for the difficulties of learning
programming concepts (Gomes & Mendes, 2007;
Jenkins, 2002).

One of the challenges is teaching dynamic con-

cepts using static materials (Gomes & Mendes,

Information Systems Educators Conference 2011 ISECON Proceedings
Wilmington North Carolina, USA v28 n1619

©2011 EDSIG (Education Special Interest Group of the AITP) Page 2

www.aitp-edsig.org

2007). Teaching staff use whiteboards, static
presentations and printed materials, such as
notes and textbooks, in order to explain con-
cepts such as program behavior, dynamic

memory allocation or change of variables’ values
during program execution. Students learning
these concepts often find it hard to imagine how
each source code instruction is processed by the
computer and what is happening inside RAM as
program statements are executed. However, this
understanding is important if students are to

learn how to write programs.

Unfortunately, despite gaining sophistication and
improved user friendliness over the years, mod-

ern programming environments are still not very
friendly when it comes to use by novice pro-

grammers. From a teaching perspective one of
the weaknesses of professional environments
lies in the fact that they do not offer a beginner-
friendly way of tracing program execution and
seeing what is happening in RAM. So those aca-
demics who resolved to use visualization, i.e.
application of visual technology to graphically

illustrate abstract concepts (Naps, et al., 2003),
are confronted with the problem: how do we
provide a “window” into RAM? This paper pro-
poses a solution to this question, a solution that
can be implemented by any programming in-
structor without the difficulty of mastering a so-

phisticated development environment or a com-

plex implementation curve.

The solution developed in this research is based
on theories of active learning and adaptive
learning. Active learning is defined as learning
modes that “involve students in doing things and

thinking about the things they are doing” (Bon-
well & Eison, 1991, p.2). This theory suggests
that students who play an active role in con-
structing knowledge will have both greater re-
tention and greater learning enjoyment than
students involved in passive pedagogical teach-
ing approaches (Dufresne, Gerace, Leonard,

Mestre, & Wenk, 1996). Approaches to adaptive

learning recommend employing individualized
learning programs adapted to student capabili-
ties and preferred learning modes (Magoulas,
Papanikolaou, & Grigoriadou, 2003).

Our solution applies these theories in creating

student centered tools tailored to individual stu-
dent abilities. The proposed tools development
relies on the features supported by readily avail-
able software, such as easily modifiable Power-
Point animations, mp3 recording of explanations
and screen capture. The software packages of-

fering these capabilities are either available at
most educational institutions or can be down-
loaded as freeware or evaluation copies from the
Internet. Additionally, there is no difficult learn-

ing curve for developers as all the mentioned
packages have a very friendly user interface.

2. VISUALIZATIONS IN TEACHING

PROGRAMMING

Previous research has demonstrated that infor-

mation visualization amplifies cognition (Card,
Mackinlay, & Shneiderman, 1999). Since the
1980‘s there has been a growing interest in
computer-supported visualization in artificial in-

telligence and computer graphics communities.

In programming two main approaches to visuali-
zation in support of teaching can be identified
(Pears, et al., 2007; Smith & Webb, 2000):
 algorithm animation which aims at illustrat-

ing how an algorithm works and is largely
programming language independent, and

 program visualization, which is programming

language dependent and focuses on animat-
ing source code execution as well as show-
ing changes in the variables states.

There is a strong belief among computer science
educators that visualizations help in understand-

ing programming concepts (Naps, et al., 2003),

however there is little empirical evidence show-
ing that beginner programmers benefit by using
visualization tools. A thorough examination of
the research literature reveals only one experi-
mental study that compared understanding of
programming concepts by students with access

to a visualization environment and students
without such access. This was conducted by
Smith and Webb (2000). Their findings provide
some preliminary support for what many educa-
tors already believe from their experience that
visualization tools are of great help to learners.

Despite lack of significant empirical evidence on

the advantages of using visualization tools in
teaching introductory programming concepts
(Hundhausen & Douglas, 2000), academics have
developed a wide range of such tools that illus-
trate program execution line by line, for example
Teaching Machine (Bruce-Lockhart & Norvell,

2000), AnimPascal (Satratzemi, Dagdilelis, &
Evagelidis, 2001), VINCE (Rowe & Thorburn,
2000), OGRE (Milne & Rowe, 2004), a web-
based tool (Donmez & Inceoglu, 2008). Bruce-
Lockhart and Norvell (2000), as well as develop-
ing the software also produced video demonstra-

Information Systems Educators Conference 2011 ISECON Proceedings
Wilmington North Carolina, USA v28 n1619

©2011 EDSIG (Education Special Interest Group of the AITP) Page 3

www.aitp-edsig.org

tions of program executions as supplementary
materials to traditional lectures.

Despite this plethora of tools discussed in the

literature, educators still don’t have wide access
to those tools. There are multiple reasons for
that (Pears, et al., 2007). Most tools are devel-
oped as part of research projects. As a result
development may stop as soon as either the
working prototype meets the research objectives
or research funding runs out. Developers move

on to other projects while the tools still require
fine tuning before they can be considered ready
for distribution to other educators. Some tools
are developed to meet the requirements of aca-

demics delivering specific courses. These tools
are often not flexible enough to be adapted by

other institutions or for other courses. Some ac-
ademics experience “not invented here” syn-
drome. As a result despite multiple tools pro-
duced for similar purposes, every educator may
need to ‘re-invent the wheel’. Even enthusiastic
educators of programming admit that embed-
ding visualization technology into teaching adds

significant overhead to workload (Naps, et al.,
2003). Based on the difficulties experienced by
educators and using knowledge on active and
adaptive learning, we have developed an ap-
proach based on the principles of reuse, custom-
ization and minimized coupling (Boyle, 2003). In

his work Boyle outlines a framework for creating

reusable and “re-purposable” learning objects
(ibid, p.1) using principles from software engi-
neering and pedagogy.

3. AN APPROACH TO DEVELOPING
VISUALIZATIONS

This paper focuses specifically on the teaching of
concepts related to RAM. This aspect of learning
programming is in the centre of this investiga-
tion because the literature suggests that stu-
dents find topics related to RAM handling during
program execution particularly difficult (Milne &

Rowe, 2004). This was also the experience of

the authors of this paper. It was a constant
struggle semester after semester: how to ex-
plain memory allocation for variables, how to
illustrate an assignment statement not being the
same as equality, how to show the difference
between passing parameters by value and by

reference. Both teaching experience and previ-
ous research suggest that graphical illustration
can help understanding (Card, et al., 1999;
Hundhausen & Douglas, 2000).

Here we present a study based on interpretive
case study research. Research investigations
focusing on understanding dynamics within a
particular setting often employ case study as a

research strategy (Yin, 1994). In this study we
examined the teaching of programming concepts
to first year students using the Visual Basic envi-
ronment as a tool for concepts teaching and
learning. Unfortunately as is the case in most
universities (Prasad & Fielden, 2003), the sub-
ject was timetabled as teacher-centered lectures

and separate laboratory classes where students
were engaged in practical learning activities.
However, due to small enrolment numbers (20-
40 students), it was possible to introduce a large

interactive component into the lectures, engag-
ing students in exercises and discussions of pro-

gramming concepts.

In the past the authors’ classroom approach was
to draw RAM on a whiteboard as a collection of
cells and use different colored markers to show
changes during program execution. But it was
always messy, and often students while trying to

listen and make notes would lose track of which
instruction execution was being explained. Be-
cause of the ephemeral nature of the drawings
this approach was also of little help for students
who missed the class or who did not remember
the explanation and needed to view it again.

To demonstrate dynamic changes in program
execution these examples were embedded into
lectures as animated PowerPoint presentations.
A separate slide was devoted to each statement
in the code (or even a specific part of the line in
the code which was emphasized in the explana-

tion). That line of code was enlarged to stand
out. At the same time an animation was showing
what happens when this bit of code executes
with narration providing a verbal explanation of
what the eyes see. For example, the slide cap-

tured on Error! Reference source not

found.(a) demonstrates the creation of value

parameter Y (i.e. a copy of the actual parame-

ter). In the figure memory locations used by the

procedure Button1_Click() are depicted in red
and memory locations used by the procedure
calculateSum() are in blue. The intention of color
coding is to help students better understand
memory allocation and use during program exe-
cution. The figure depicts the enlarged actual
parameter Y in the procedure call and the en-

larged corresponding formal parameter from the
procedure header - “By Val Y As Integer”. At the
same time in the RAM area a blue box labeled Y

Information Systems Educators Conference 2011 ISECON Proceedings
Wilmington North Carolina, USA v28 n1619

©2011 EDSIG (Education Special Interest Group of the AITP) Page 4

www.aitp-edsig.org

appears and PowerPoint shows an arrow from
the red box Y to the blue box Y, meaning that at
run time the value of 40 from the red box will be
copied to the blue box. The color change effect

is used to show that red Y with the value of 40 is
controlled by the procedure Button1_Click()
whereas the blue box Y belongs to the procedure
calculateSum(). When 40 moves from the red
box to the blue box it gradually changes its color
from red to blue.

In response to the positive feedback from stu-
dents on these presentations multiple examples
of small animated program excerpts illustrating
a programming concept were produced. Using

one presentation as a template it was easy to
develop multiple similar presentations showing

simple programs with small modifications (e.g.
by changing values and/or variable names).

Over time a library of such presentations was
accumulated. However, while this approach
helped students attending lectures it did not
solve the problem of concepts revision or help

students who missed the class. However modern
technology and software developments can now
easily solve these problems. There are user
friendly screen capturing packages with voice
recording (for example Adobe Captivate, Camta-
sia, BB Flashback). Using these packages we

developed videos containing animated explana-

tions of concepts with narration. These videos
were produced as Flash animations for viewing
over the Web as well as avi and exe files that
students could run on their computers without
depending on the Internet and website availabil-
ity.

In the process of developing the videos we no-
ticed that certain explanation statements are
repeated again and again. Some slides were also
repeated from one presentation to another and
the explanation of those slides had to be narrat-
ed in exactly the same way again and again. It

made more sense to record explanations as

short mp3 files and attach them to slides.

Since Australia is a multicultural country and
many academics are migrants speaking English
with various accents, accents sometimes inter-
fere with student understanding of the explana-

tions. Sometimes the difficulty is not in under-
standing the material as in understanding what
the instructor is saying. Since narrations in this
project were recorded in mp3 format, we ex-
plored text to speech software utilization in re-
placement of self-recording. (Conversion facili-

ties are available as standalone software such as
Natural Reader or through the Web, e.g.
http://vozme.com or http://spokentext.net).

The multimedia library for teaching program-
ming is now comprised of PowerPoint slides and
reusable audio files. The slides can be easily
modified to show program excerpts in another
programming language whereas the same narra-
tion explaining concepts are still applicable. Mul-
tiple building blocks that can be mixed and

matched to create new learning materials have
been collected. These building blocks are being
developed in accordance with the principles of
reuse, low coupling and easy customization as

suggested by Boyle (2003).

To evaluate students’ views on the use of visual-
izations in lectures and workshops, and for revi-
sion, we asked them to provide their opinions in
a feedback questionnaire (the full questionnaire
as well as the summary of responses are pre-
sented in the Appendix A). 28 students in the
class replied to this questionnaire. On the ques-

tion “Which of the two methods was more help-
ful in understanding the concepts of parameter
passing? a) diagrams on the whiteboard; b)
PowerPoint animations” 2 student selected (a), 6
students selected both and 20 students selected
(b). On the second question “Would PowerPoint

animations with recorded narration be sufficient

for you to understand the concepts without at-
tending the class?” 24 students replied “yes” and
only 4 said “No”.

Past research has shown that passively watching
videos is of lower educational value than active

learning engagement (Naps, et al., 2003) even
though video materials are a valuable supple-
ment to lectures and revision sessions. Conse-
quently, several approaches to more active ways
of engaging students were explored.

One such approach engaged students construct-

ing their own visualizations as recommended by

Hundhausen and Douglas (2000). Building on
this idea we approached some of the students
who responded to the questionnaire and asked
them to develop animations illustrating code
segments that were used as exercises for manu-
al tracing in class. As the next step students

were asked to produce their own code examples
and develop animations in PowerPoint illustrat-
ing changes in RAM as their code executes. Their
feedback acknowledged the benefit of such addi-
tional activities.

http://vozme.com/
http://spokentext.net/

Information Systems Educators Conference 2011 ISECON Proceedings
Wilmington North Carolina, USA v28 n1619

©2011 EDSIG (Education Special Interest Group of the AITP) Page 5

www.aitp-edsig.org

The activities were extended further with past
programming students who were using skills
learnt previously and applying them in the last
year subjects developing software for real cli-

ents. Information Systems courses often have
multimedia subjects or computer project sub-
jects where students are learning to work with
real clients. The authors signed up as clients for
one of these subjects and ex-students developed
some of the materials to support future teach-
ing. Students involved in this activity were de-

briefed at the end and their feedback indicated
that they valued this work because in addition to
learning about real workplace environment they
got the opportunity to revise the programming

concepts in the context of a real project.

Benefits

Every instructor has their own way of presenting
material. Having access to such building blocks
of teaching materials makes it easy to choose
the most applicable for the concept to be ex-
plained or even to easily replace any block with

an improved version.

Creating the described materials does not create
a significant additional workload for instructors.

Students can be involved in the learning materi-

als development and therefore get additional

opportunities for their own learning.

The described approach illustrates a way of pro-
ducing multiple additional learning modules with
a gradual increase of difficulty levels and tailor-
ing them to individual students’ needs as rec-

ommended in adaptive learning frameworks. For
example, for fast learners 3-4 modules explain-
ing parameter passing could be sufficient,
whereas for slower learning students 6 or more
modules could be assembled to gradually take
them from the concepts of passing parameters
by value to passing by reference. Appendix B

presents a sample of six exercises that could be

used for animations and code tracing. These ex-
ercises show gradual introduction of the parame-
ter passing concepts from a business context to
an abstract concept and from value parameters
to the mix of value and reference parameters.
For fast learning students the exercises 1, 4 and

6 could be sufficient for the understanding of
these concepts. However, slower learning stu-
dents may need a more gradual increase in the
difficulty level, which is easy to achieve by ap-
plying small modifications to the existing slides
and developing audio narration by adjusting pre-

existing textual explanations and converting
them to audio. When the multimedia library has
a sufficient number of examples, it is possible
for the instructor to suggest a longer set of ex-

ercises to a student or it can be left to a student
to control the learning speed. It is also possible
to give exercises to students for manual tracing
and provide animated solutions for verification of
answers.

4. CONCLUSIONS

This paper describes an approach for using read-
ily available technologies and software to pro-
duce teaching and learning materials as small

building blocks. The proposed and tested ap-
proach was implemented for teaching program-

ming concepts within the frameworks supporting
active and adaptive learning environments. The
techniques discussed make it easier for instruc-
tors to develop customized learning modules,
adapted to meet the individual needs of their
students. This approach provides opportunities
to engage students both in learning activities

using the developed materials and to involve
them actively in the material development pro-
cess. Future work will harness the capabilities of
interactive materials and the software support-
ing their development to even further promote
active learning.

5. REFERENCES

Bennedsen, J., E.Caspersen, M., & Kölling, M.
(Eds.). (2008). Reflections on the Teaching
of Programming. Methods and Implementa-
tions (Vol. 4821): Springer-Verlag.

Bonwell, C. C., & Eison, J. A. (1991). Active
Learning: Creating Excitement in the Class-
room. Washington, DC, USA: George Wash-
ington University.

Boyle, T. (2003). Design Principles for Authoring
Dynamic, Reusable Learning Objects. Aus-
tralian Journal of Educational Technology,

19(1), 46-58.

Bruce-Lockhart, M. P., & Norvell, T. S. (2000).
Lifting the Hood of the Computer: Program
Animation with the Teaching Machine. Paper
presented at the Canadian Conference on
Electrical and Computer Engineering, Halifax,
NS , Canada.

Card, S. K., Mackinlay, J., & Shneiderman, B.
(1999). Readings in Information Visualiza-

Information Systems Educators Conference 2011 ISECON Proceedings
Wilmington North Carolina, USA v28 n1619

©2011 EDSIG (Education Special Interest Group of the AITP) Page 6

www.aitp-edsig.org

tion: Using Vision to Think. San Francisco,
California, USA: Morgan Kaufmann.

Donmez, O., & Inceoglu, M. M. (2008). A Web
Based Tool for Novice Programmers: Interac-

tion in Use. Paper presented at the the 8th
International Conference on Computational
Science and Its Applications (ICCSA 2008),
Perugia, Italy.

Dufresne, R. J., Gerace, W. J., Leonard, W. J.,
Mestre, J. P., & Wenk, L. (1996). Classtalk:
A Classroom Communication System for Ac-

tive Learning. Journal of Computing in High-
er Education, 7(2), 3-47.

Gomes, A., & Mendes, A. J. (2007). Learning to
Program - Difficulties and Solutions. Paper
presented at the International Conference on
Engineering Education - ICEE 2007, Coim-

bra, Portugal.

Hadjerrouit, S. (2008). Towards a Blended
Learning Model for Teaching and Learning
Computer Programming : A Case Study. In-
formatics in Education, 7(2), 181-210.

Hundhausen, C. D., & Douglas, S. (2000). Visu-
alizations to Learn Algorithms: Should Stu-

dents Construct Their Own, or View an Ex-
pert's? Paper presented at the IEEE Sympo-
sium on Visual Languages, Los Alamitos, Cal-

ifornia.

Jenkins, T. (2001). Teaching Programming - A
Journey from Teacher to Motivator. Paper
presented at the 2nd Annual Conference of

LTSN Centre for Information and Computer
Science, Loughborough, UK.

Jenkins, T. (2002). On the Difficulty of Learning
to Program. Paper presented at the 3rd An-
nual Conference of LTSN Centre for Infor-
mation and Computer Science, Loughbor-

ough, UK.

Magoulas, G. D., Papanikolaou, K., & Grigori-
adou, M. (2003). Adaptive Web-Based
Learning: Accommodating Individual Differ-

ences through System’s Adaptation. British
Journal of Educational Technology, 34(4),
511-527.

Matthews, R., Hin, H. S., & Choo, K. A. (2009).
Multimedia Learning Object to Build Cogni-
tive Understanding in Learning Introductory
Programming. Paper presented at the 7th In-
ternational Conference on Advances in Mo-
bile Computing and Multimedia (MoMM '09).

Milne, I., & Rowe, G. (2004). OGRE: Three-
Dimensional Program Visualization for Novice
Programmers. Education and Information
Technologies, 9(3), 219–237.

Naps, T. L., Rößling, G., Almstrum, V., Dann,
W., Fleischer, R., Hundhausen, C., et al.
(2003). Exploring the Role of Visualization
and Engagement in Computer Science Edu-
cation. ACM SIGCSE Bulletin, 35(2), 131-
152.

Pears, A., Seidman, S., Malmi, L., Mannila, L.,

Adams, E., Bennedsen, J., et al. (2007). A
Survey of Literature on the Teaching of In-
troductory Programming. ACM SIGCSE Bulle-

tin 39(4), 204-223.

Prasad, C., & Fielden, K. (2003). Introducing
Programming: A Balanced Approach. New

Zealand Journal of Applied Computing and
Information Technology, 7(1), 89-94.

Rowe, G., & Thorburn, G. (2000). VINCE - an
On-line Tutorial Tool for Teaching Introduc-
tory Programming. British Journal of Educa-
tional Technology, 31(4), 359-369.

Rudder, A., Bernard, M., & Mohammed, S.

(2007). Teaching Programming Using Visual-
ization. Paper presented at the 6th IASTED
International Conference on Web-Based Edu-

cation (WBE'07), Chamonix, France.

Satratzemi, M., Dagdilelis, V., & Evagelidis, G.
(2001). A System for Program Visualization
and Problem-Solving Path Assessment of

Novice Programmers. ACM SIGCSE Bulletin,
33(3), 137-140.

Smith, P. A., & Webb, G. I. (2000). The Efficacy
of a Low-Level Program Visualization Tool for
Teaching Programming Concepts to Novice C
Programmers. Journal of Educational Com-

puting Research, 22(2), 187-215.

Spronken-Smith, R., & Harland, T. (2009).
Learning to Teach with Problem-Based
Learning. Active Learning in Higher Educa-

tion, 10(2), 138-153.

Stone, J., & Clark, T. (2011). The Impact of
Problem-Oriented Animated Learning Mod-

ules in a CS1-Style Course. Paper presented
at the ACM Special Interest Group on Com-
puter Science Education Conference (SIGCSE
2011).

Yin, R. K. (1994). Case Study Research. Design
and Methods (Second ed. Vol. 5). Thousand
Oaks, CA: Sage Publications, Inc.

Information Systems Educators Conference 2011 ISECON Proceedings
Wilmington North Carolina, USA v28 n1619

©2011 EDSIG (Education Special Interest Group of the AITP) Page 7

www.aitp-edsig.org

(a) Screenshot of one of the PowerPoint animations: the slide shows creation of the val-
ue parameter Y in RAM

(b) Screenshots of the playing avi file

Figure 1 Animations on passing parameters

Information Systems Educators Conference 2011 ISECON Proceedings
Wilmington North Carolina, USA v28 n1619

©2011 EDSIG (Education Special Interest Group of the AITP) Page 8

www.aitp-edsig.org

Appendix A. The questionnaire distributed to students

Dear student,

The following questionnaire is confidential, anonymous and participation is voluntary.

For explanation of differences between value and reference parameters you were shown exam-

ples similar to the one below:

Private Sub calculateSum(ByVal X As Integer,_ ByVal Y As Integer, ByRef Z As Integer)
 Z = X + Y
 X = 0
end sub

Private Sub Button1_Click()…
Dim X, Y, Z As integer
 X = 50
 Y = 40
 Call calculateSum(X, Y, Z)
end sub

Solutions were explained in two ways: by drawing diagrams on the whiteboard and by using

PowerPoint animations with the lecturer narration. Please give us your feedback on the suitabil-

ity of each of the methods:

1. Which of the two methods was more helpful in understanding the concepts of parameter

passing:

a. diagrams on the whiteboard

b. PowerPoint animations

2. Would PowerPoint animations with recorded narration be sufficient for you to understand

the concepts without attending the class?

Yes / No

3. Would you use PowerPoint animations for revision in your own time as addition to class

sessions?

Yes / No

4. If you have any suggestions regarding animations, please use the space below to share

your thoughts with us.

Information Systems Educators Conference 2011 ISECON Proceedings
Wilmington North Carolina, USA v28 n1619

©2011 EDSIG (Education Special Interest Group of the AITP) Page 9

www.aitp-edsig.org

Summary of students replies to the questionnaire:

Question 1:

Chose “a” – 2 students, “b” – 20 students, wrote “both” – 6 students

Question 2:

Answered “yes” – 24 students, “no” – 4 students

Question 3:

Answered “yes” – 25 students, “no” – 3 students

Question 4:

9 students put additional comments. Most of the comments were stating that animations were

a big help in understanding the concepts. 2 students mentioned that it would be good to see

previous state of RAM as well. 1 student commented that whiteboard drawings are sufficient

if different color markers are used. 1 student stated that whiteboard drawing and animations

were equally good for understanding of the concepts.

Information Systems Educators Conference 2011 ISECON Proceedings
Wilmington North Carolina, USA v28 n1619

©2011 EDSIG (Education Special Interest Group of the AITP) Page 10

www.aitp-edsig.org

Appendix B. Sample exercises on parameter passing

Example 1. Passing parameters by a value in
a business context

Private Function calcArea(ByVal w As Integer,
ByVal h As Integer) As Integer
 return w * h
End Function

Private Sub btnCalculate_Click(...)…
Dim width, height, area As Integer
 width=3
 height=4
 area = calcArea(width, height)
End Sub

Example 2. Passing parameters by value in
an abstract context

Private Function calcSum(ByVal p As Integer,
ByVal q As Integer, ByVal r As Integer) As Integer
 return p + q + r
End Function

Private Sub btnCalculate_Click(...)…
Dim num1, num2, num3, num4 As Integer
 num1=5
 num3=7
 num4=9
 num2 = calcSum(num4, num1, num3)
End Sub

Example 3. Passing parameters by value in
an abstract context

Private Sub makeChanges(ByVal A As Integer,

ByVal B As Integer)

 B = 4

 A = 5

end Sub

Private Sub Button1_Click()…

Dim X, Y As integer

 X = 10

 Y = 20

 Call makeChanges(Y, X)

End Sub

Example 4. Passing parameters by value and
by reference in an abstract context

Private Sub makeChanges(ByVal A As Integer,

ByRef B As Integer)

 B = 4

 A = 5

end Sub

Private Sub Button1_Click()…

Dim X, Y As integer

 X = 10

 Y = 20

 Call makeChanges(Y, X)

End Sub

Example 5. Passing parameters by value and
by reference in an abstract context

Private Sub mixUp(ByVal X As Integer, ByRef Y

As Integer, ByRef Z As Integer)

 Z = X + Y

 X = 0

End Sub

Private Sub Button1_Click(…)…

Dim X, Y, Z As Integer

 X = 2

 Y = 8

 Call mixUp(X, Y, Z)

End Sub

Example 6. Passing parameters by value and
by reference in an abstract context

Private Sub mixUp(ByVal X As Integer, ByRef Y

As Integer, ByRef Z As Integer)

 Z = X + Y

 X = 0

End Sub

Private Sub Button1_Click(…)…

Dim X, Y As Integer

 X = 50

 Y = 40

 Call mixUp(X, Y, Y)

End Sub

