
Incremental Satisfiability and Implication for UTVPI
Constraints

Andreas Schutt, Peter J. Stuckey
National ICT Australia Victoria Laboratory, Department of Computer Science & Software Engineering,

The University of Melbourne, Victoria, 3010, Australia, {aschutt,pjs}@csse.unimelb.edu.au

Unit two-variable-per-inequality (UTVPI) constraints form one of the largest class of integer

constraints which are polynomial time solvable (unless P=NP). There is considerable interest

in their use for constraint solving, abstract interpretation, spatial databases, and theorem

proving. In this paper we develop new incremental algorithms for UTVPI constraint satis-

faction and implication checking that require O(m + n log n + p) time and O(n + m + p)

space to incrementally check satisfiability of m UTVPI constraints on n variables and check

implication of p UTVPI constraints. The algorithms can be straightforwardly extended to

create non-incremental implication checking and generation of all (non-redundant) implied

constraints, as well as generate minimal unsatisfiable subsets and minimal implicants.

Key words: unit two variable per inequality constraints; satisfaction; implication

1. Introduction

The unit two-variable-per-inequality (UTVPI) constraints form one of the largest class of

integer constraints which are polynomial time solvable (unless P=NP). There is considerable

interest in their use for constraint solving (Jaffar et al., 1994; Harvey and Stuckey, 1997),

abstract interpretation (Miné, 2006), spatial databases (Sitzmann and Stuckey, 2000) and

theorem proving (Lahiri and Musuvathi, 2005).

Most uses of UTVPI constraint are inherently incremental. UTVPI constraint solving

repeatedly asks satisfiability questions in an incremental manner in order to drive a search in

a large search space. Abstract interpretation uses of UTVPI (Miné, 2006) build descriptions

of program points in an incremental manner by taking the description of the previous pro-

gram point and adding new constraints to generate a description for the next program point.

Theorem proving may be non-incremental as in Lahiri and Musuvathi (2005) where UTVPI

problems arise as subproblems required by a verification system, but modern techniques

such as SAT Modulo Theories (Niewenhuis et al., 2005), require incremental satisfaction and

1

implication algorithms as well as algorithms for explanation. In this paper we develop new

incremental algorithms for UTVPI constraint satisfaction and implication.

A UTVPI constraint has the form ax + by ≤ d where x, y are integer variables, d ∈ Z
and a, b ∈ {−1, 0, 1}. For example x + y ≤ 2, x − y ≤ −1, 0 ≤ −1 and x ≤ 2 are

UTVPI constraints. UTVPI constraint solving is based on transitive closure: The constraints

ax− y ≤ d1 and y + bz ≤ d2 imply the constraint ax + bz ≤ d1 + d2. We can determine all

the UTVPI consequences of a set of UTVPI constraints by transitive closure, but we need

to tighten some constraints. The transitive closure procedure can generate constraints of the

form x + x ≤ d and −x − x ≤ d, which need to be tightened to x ≤
⌊
d
2

⌋
and −x ≤

⌊
d
2

⌋
respectively.

Jaffar et al. (1994) and Harvey and Stuckey (1997) present incremental consistency check-

ing algorithms for adding a UTVPI constraint c to a set φ of UTVPI constraints. They are

based on maintaining the transitive and tight closure of the set of UTVPI constraints φ in-

volving n variables. Both algorithms require O(n2) time and O(n2) space for an incremental

satisfaction check. Both algorithms can also be used to incrementally check implication of

UTVPI constraints by φ∪{c}. These algorithms require O(n2 +p) time and O(n2 +p) space

for incremental implication checking, where p is the number of constraints we need to check

for implication. In order to (non-incrementally) check satisfiability of m UTVPI constraints

on n variables these approaches require O(n2m) time, and to check implication they require

O(n2m+ p) time.

An improvement on the complexity of non-incremental satisfiability for UTVPI con-

straints was devised by Lahiri and Musuvathi (2005). They define a non-incremental satisfi-

ability algorithm requiring O(nm) time and O(n+m) space. The key behind their approach

is to map UTVPI constraints to difference constraints (also called separation theory con-

straints) of the form x− y ≤ d, where x and y are integer variables and d ∈ Z.

The difference constraints are a well studied class of constraints because of their con-

nection to shortest path problems. We can consider the constraint x − y ≤ d as a directed

edge x→ y with weight d. Satisfiability of difference constraints corresponds to the problem

of negative weight cycle detection, and implication of difference constraints corresponds to

finding shortest paths (see e.g. Cotton and Maler (2006) for details).

The mapping of UTVPI to difference constraints by Lahiri and Musuvathi (2005) is

a relaxation of the problem. The relaxed problem is solved by a negative (weight) cycle

detection algorithm but it guarantees only the satisfiability in Q for the UTVPI problem.

2

In order to check satisfiability in Z they need to construct an auxiliary graph and check for

certain paths in this graph.

In this paper we first extend Lahiri and Musuvathi’s algorithm (see Lahiri and Musuvathi

(2005)) to check satisfaction incrementally in O(n log n+m) and O(n+m) space. Then we

show how to build an incremental satisfiability and implication algorithm using the relaxation

of Lahiri and Musuvathi and incremental implication approaches for difference constraints

of Cotton and Maler (2006), which can incrementally check implication in O(n log n+m+p)

time and O(n+m+ p) space.

We give experimental results showing that our algorithms improve upon the previous

incremental algorithms for UTVPI satisfaction and implication checking unless the constraint

graph is dense.

We then consider using our incremental approach as a basis for a non-incremental al-

gorithm for implication checking in O(n2 log n + nm + p) time and O(n + m + p) space.

Similarly we can generate all implied constraints in O(n2 log n+nm) time and O(n+m+p)

space, where here p is the number of generated implied constraints.

One of the interests of solving UTVPI constraints is in solving Boolean combinations of

UTVPI constraints, e.g. (x − y ≤ 3 ∨ y − x ≤ 4) → (x − z ≤ 2 ∧ z − y ≤ 1). Seshia

et al. (2007) discuss how to encode Boolean combinations of UTVPI constraints in CNF by

giving a tight bound on the region of satisfiability. An alternate approach is to use incre-

mental satisfaction and implication algorithms in a Satisfiability Modulo Theories (SMT)

solver (Niewenhuis et al., 2005). This requires that one can efficiently discover unsatisfiable

subsets and implicants of implied constraints. We discuss how to extend the incremental

algorithm to discover minimal unsatisfiable subsets and minimal implicants in O(n) time.

Surprisingly this is not as simple as the case for difference constraints.

In summary the contributions of this paper are:

• A new incremental satisfiability algorithm for UTVPI based on the approach of Lahiri

and Musuvathi, which is asymptotically better than previous algorithms for this prob-

lem.

• A new incremental implication algorithm for UTVPI, based on a fundamental new un-

derstanding of how we can compute the tightened transitive closure, which is asymp-

totically better than previous algorithms for this problem.

3

• Experiments illustrating that for sparse problems our algorithms are significantly better

than existing algorithms for these problems

• New non-incremental algorithms for implication checking and implication generation

which are asymptotically better than existing algorithms for this.

• The first algorithms we are aware of specifically for generation of minimal unsatisfiable

subsets and minimal implicants for UTVPI problems.

The remainder of the paper is organized as follows. In the next section we give prelim-

inary definitions. In Section 3 we explain the approach of Lahiri and Musuvathi (2005) to

UTVPI satisfaction. In Section 4 we show how can modify their approach to perform incre-

mental satisfaction. In Section 5 we show how to do incremental implication checking, which

also introduces a new way to do incremental satisfiability checking. In Section 6 we give

experimental comparisons of the algorithms for satisfiability and implication. In Section 7

we show how we can create non-incremental implication checking from the incremental algo-

rithms. In Section 8 we explain how to generate minimal explanations of the unsatisfiability

and implication for use in a SMT solver. Finally in Section 9 we conclude.

2. Preliminaries

In this section we give notations and preliminary concepts.

A weighted directed graph G = (V,E) is made up of vertices V and a set E of weighted

directed edges (u, v, d) from vertex u ∈ V to vertex v ∈ V with weight d. We also use the

notation u
d→ v to denote the edge (u, v, d).

A path P from v0 to vk in graph G, denoted v0 vk, is a sequence of edges e1, . . . , ek

where ei = (vi−1, vi, di) ∈ E and k ∈ N. Let |P | be the number of edges appearing in P . A

simple path P is a path where vi 6= vj, 0 ≤ i < j ≤ k.

A (simple) cycle P is a path P where v0 = vk and vi 6= vj, 0 ≤ i < j ∧ k∧ (i 6= 0∨ j 6= k).

The path weight of a path P , denoted w(P) is Σk
i=1di.

Let G be a graph without negative weight cycles, that is without a cycle P where w(P) <

0. Then we can define the shortest path from v0 to vk, which we denote by SP (v0, vk), as

the (simple) path P from v0 to vk such that w(P) is minimized.

Let wSP (x, y) = w(SP (x, y)) or +∞ if no path exists from x to y.

4

Given a graph G and vertex x define the functions δ←x , δ
→
x : V → R as

δ←x (y) = wSP (y, x) and δ→x (y) = wSP (x, y) .

Let G be a graph without negative weight cycles. Then π is a valid potential function

for G if π(u) + d − π(v) ≥ 0 for every edge (u, v, d) in G. A edge (u, v, d) is called tight if

π(u) + d− π(v) = 0.

There are many algorithms (see e.g. Cherkassky and Goldberg (2006)) for detecting

negative weight cycles in a weighted directed graph, which either detect a cycle or determine

a valid potential function for the graph.

Given a valid potential function π for graph G = (V,E) we can define the reduced-cost

graph rc(G) as (V, {(x, y, π(x) + d− π(y)) | (x, y, d) ∈ E}). All weights in the reduced cost

graph are non-negative and we can recover the original path length w(P) for path P from

x to y from paths in the reduced cost graph since w(P) = w + π(y) − π(x) where w is the

weight of the corresponding path in the reduced-cost graph.

Since edges in the reduced-cost graph are non-negative we can use Dijkstra’s algorithm

to calculate the shortest paths in the reduced-cost graph in time O(n log n + m) instead of

O(nm).

2.1 Difference constraints

Difference constraints have the form x−y ≤ d where x and y are integer variables and d ∈ Z.

We can map difference constraints to a weighted directed graph.

Definition 1. Let C be a set of difference constraints and let G = (V,E) be the graph

comprised of one weighted edge x
d→ y for every constraint x − y ≤ d in C. We call G the

constraint graph of C.

The following well-known result characterizes how the constraint graph can be used for

satisfiability and implication checking of difference constraints.

Theorem 1. Let C be a set of difference constraints and G its corresponding graph. C is

satisfiable iff G has no negative weight cycles, and if C is satisfiable then C |= x− y ≤ d iff

wSP (x, y) ≤ d.

5

2.2 UTVPI constraints

A UTVPI constraint is of the form ax + by ≤ d, where x and y are integer variables,

a, b ∈ {−1, 0, 1} and d ∈ Z.

Definition 2. The transitive closure TC(φ) of a set of UTVPI constraints φ is defined as

the smallest set S containing φ such that

ax− y ≤ d1 ∈ S ∧ y + bz ≤ d2 ∈ S ⇒ ax+ bz ≤ d1 + d2 ∈ S

The tightened closure TI(φ) of a set of UTVPI constraints φ is defined as the smallest set S

containing φ such that

ax+ ax ≤ d ∈ S ⇒ ax ≤
⌊
d

2

⌋
∈ S, a ∈ {−1, 1}

The tightened transitive closure TTC(φ) of φ is the smallest set containing φ that satisfies

both conditions.

The fundamental results for UTVPI constraints solving are (see Jaffar et al. (1994)):

Theorem 2 (Unsatisfiability, Jaffar et al. (1994)). Let φ be a set of UTVPI constraints.

Then φ is unsatisfiable iff exists 0 ≤ d ∈ TTC(φ) where d < 0.

Theorem 3 (Implication, Jaffar et al. (1994)). Let c ≡ ax+ by ≤ d be a UTVPI constraint

and let φ be a satisfiable set of UTVPI constraints. Then φ |= c iff either c ≡ 0 ≤ d

is a tautology, there exists {ax ≤ d1, by ≤ d2} ⊆ TTC(φ) with d1 + d2 ≤ d, there exists

ax+ by ≤ d′ ∈ TTC(φ) with d′ ≤ d.

Example 1. Consider the UTVPI constraints φ ≡ {x− y ≤ 2, x+ y ≤ −1, −x− z ≤ −4},
Then TC(φ) includes in addition {x+x ≤ 1, −y−z ≤ −2, y−z ≤ −5,−z−z ≤ −7, x−z ≤
−3}. And TI(TC(φ)) includes in addition {x ≤ 0,−z ≤ −4} and TTC(φ) = TI(TC(φ)) in

this case. The constraint −z ≤ −3 is implied by φ as is y − z ≤ 0.

3. Lahiri and Musuvathi’s approach

Lahiri and Musuvathi map UTVPI constraints φ to difference constraints or equivalently a

weighted directed graph Gφ, and they use graph algorithms to detect satisfiability.

6

Table 1: Transformation from UTVPI constraint c to associated difference constraints D(c)
to edges in the constraint graph E(c).

UTVPI c Diff. Constr. D(c) Edges E(c)

x− y ≤ d
x+ − y+ ≤ d x+ d→ y+

y− − x− ≤ d y−
d→ x−

x+ y ≤ d
x+ − y− ≤ d x+ d→ y−

y+ − x− ≤ d y+ d→ x−

−x− y ≤ d
x− − y+ ≤ d x−

d→ y+

y− − x+ ≤ d y−
d→ x+

x ≤ d x+ − x− ≤ 2d x+ 2d→ x−

−x ≤ d x− − x+ ≤ 2d x−
2d→ x+

We denote the constraint graph arising from φ as Gφ = (V,E). The graph G contains

two vertices x+ and x− for every variable x. These variables are used to convert UTVPI

constraints into difference constraints. The vertex x+ represents +x and x− represents −x.

Let φ be a set of UTVPI constraints. Each UTVPI constraint c ∈ φ is mapped to a set

of difference constraints D(c), or equivalently a set of weighted edges E(c). The mapping

is shown in the Table 1. Each UTVPI constraint on two variables generates two difference

constraints and accordingly two edges in the constraint graph. Each UTVPI constraint on

a single variable generates a single constraint, and hence a single edge.

Let −u denote the counterpart of a vertex u ∈ V , i.e. −x+ := x− and −x− := x+.

Clearly, for each edge (u, v, d) ∈ E the graph Gφ also includes the edge (−v,−u, d) (called

its counteredge) which has equal weight. This correspondence extends to paths.

Lemma 1 (Lahiri and Musuvathi (2005)). If there is a path P from u to v in the constraint

graph Gφ, then there is a counterpath path P ′ from −v to −u such that w(P) = w(P ′).

If we relax the restriction on variables to take values in Z and allow them to take values

in Q we can check satisfiability in Q using Gφ.

Lemma 2 (Lahiri and Musuvathi (2005)). A set of UTVPI constraints φ is unsatisfiable in

Q iff the constraint graph Gφ = (V,E) contains a negative weight cycle.

The reason why the satisfiability in Z cannot be tested with Gφ arises from the possible

implication of constraints of the form x + x ≤ d or −x − x ≤ d through the transitivity

of constraints in φ. If d is odd (equivalently d/2 ∈ Q \ Z) then φ may be satisfiable with

x = d/2 but not with x = bd/2c.

7

GFED@ABCy+

−1

 @
@@

@@
@@

@@
@@

@
GFED@ABCx+2oo

−1

~~~~
~~

~~
~~

~~
~~

GFED@ABCz+3oo

GFED@ABCy−
2 // GFED@ABCx−

3 //

−4

>>~~~~~~~~~~~~ GFED@ABCz−

−4

``@@@@@@@@@@@@

GFED@ABCy+

−1

  A
AA

AA
AA

AA
AA

A
GFED@ABCx+2oo

GFED@ABCx−
3 // GFED@ABCz−

−4

``AAAAAAAAAAAA

GFED@ABCy+

−1

  @
@@

@@
@@

@@
@@

@
GFED@ABCx+2oo

−1

~~~~
~~

~~
~~

~~
~~

GFED@ABCz+

GFED@ABCy−
2 // GFED@ABCx−

−4

>>~~~~~~~~~~~~ GFED@ABCz−

−4

``@@@@@@@@@@@@

(a) (b) (c)

Figure 1: (a) Gφ′ for φ′ of Example 2 which is Q-satisfiable but not Z satisfiable. (b) a zero
weight cycle in Gφ′ . (c) Gφ for φ of Example 1.

Example 2. Consider the UTVPI problem φ′ ≡ {x − y ≤ 2, x + y ≤ −1, −x − z ≤ −4,

−x+ z ≤ 3}, then a transitive consequence of the first two is x+x ≤ 1, while a consequence

of the second two is −x− x ≤ −1. Together these require x = 1
2
.

The graph Gφ′ is shown in Figure 1(a). A zero weight cycle is extracted in Figure 1(b).

This cycle has solutions in Q but not in Z.

The satisfaction algorithm of Lahiri and Musuvathi (2005) is based on Lemma 2 and the

following result.

Lemma 3 (Lahiri and Musuvathi (2005)). Suppose Gφ has no negative cycles and φ is

unsatisfiable in Z. Then Gφ contains a zero weight cycle containing vertices u and −u such

that wSP (u,−u) is odd.

The Lahiri and Musuvathi algorithm is shown in Algorithm 1: LaMu. The algorithm

first checks Q satisfiability using a negative cycle detection algorithm (line 3), and then

checks that no such zero weight cycles exists in Gφ (lines 5–13) while building up an auxiliary

graph Hφ containing all tight edges E ′ and determining all its strongly connected components

(SCC).

Example 3. A valid potential function for the graph shown in Figure 1(a) is π(y+) = 5,

π(x+) = 3, π(z+) = 0, π(y−) = 2, π(x−) = 4, π(z−) = 7. Each of the edges is tight, so E ′

contains all edges, and all nodes are in the same SCC. Both x+ and x− occur in the same

SCC and SP (x+, x−) = π(x−)− π(x+) = 1 is odd, hence the system is unsatisfiable.

The complexity of LaMu is O(nm) time and O(n+m) space assuming the application

of Bellman-Ford single source shortest path algorithm (Bellman, 1958; Ford and Fulkerson,

1962) for negative cycle detection.

8

Algorithm 1: LaMu (Lahiri and Musuvathi, 2005)
Input: φ a set of UTVPI constraints
Output: SAT if φ is satisfiable, UNSAT otherwise
Construct the constraint graph Gφ = (V,E) from φ;1

Run a negative cycle detection algorithm on Gφ;2

if Gφ contains a negative cycle then3

return UNSAT4

else5

let π be a valid potential function for Gφ6

E ′ := {(u, v) | (u, v, d) ∈ E, π(u) + d = π(v)};7

Hφ := (V,E ′);8

Group the vertices in Hφ into strongly connected components (SCCs). Vertices u and9

v are in the same SCC if and only if there is a path from u to v and a path from v to
u in Hφ. u and v are in the same SCC exactly when there is a zero weight cycle in Gφ

containing u and v;
for all u ∈ V do10

if −u is in the same SCC as u in Hφ and π(−u)− π(u) is odd then11

return UNSAT12

return SAT13

4. Incremental UTVPI Satisfaction

The incremental satisfaction problem is: Given a satisfiable set of UTVPI φ (with n variables

and m constraints) and UTVPI constraint c, determine if φ ∪ {c} is satisfiable. In this

section we define an incremental satisfaction checker for UTVPI constraints that requires

O(n log n+m) time andO(n+m) space. It relies on simply making incremental the algorithm

LaMu of Lahiri and Musuvathi. We examine the two major components of their algorithm:

negative cycle detection, and the calculation of strongly connected components (SCCs).

The key is to incrementalize the negative cycle detection and the SCC computation. We

make use of incremental negative cycle detection algorithms previously used for difference

constraints. We also carefully consider how the SCCs can change under the addition of

constraints, in order to minimize the work in recalculating SCCs.

For incremental negative cycle detection we use an algorithm due to Frigioni et al. (1998),

using the simplified form (Algorithm 2: IncConDiff) of Cotton and Maler (2006) (since we

are not interested in edge deletion). Given a graph G = (V,E) and valid potential function

π for G and edge e = u
d→ v, this algorithm returns G′ = (V,E ∪ {e}) and a valid potential

function π′ for G′ or determines a negative cycle and returns UNSAT. The complexity is

O(n log n+m) time and O(n+m) space using Fibonacci heaps to implement argmin.

9

Algorithm 2: IncConDiff (Cotton and Maler, 2006)

Input: Gφ = (V,E) a graph, π a valid potential function for Gφ, edge (u, v, d) a new
constraint to add to Gφ.

Output: UNSAT if φ ∪ {u− v ≤ d} is unsatisfiable, or Gφ∪{u−v≤d} and a valid
potential function π′ for Gφ∪{u−v≤d}.

π′ := π;1

γ(v) := π(u) + d− π(v);2

γ(w) := 0 for all w 6= v;3

while min(γ) < 0 ∧ γ(u) = 0 do4

s := argmin(γ) ;5

π′(s) := π(s) + γ(s) ;6

γ(s) := 0 ;7

for all s
d′→ t ∈ G do8

if π′(t) = π(t) then9

γ(t) := min{γ(t), π′(s) + d′ − π′(t)}10

if γ(u) < 0 then11

return UNSAT12

return ((V,E ∪ {(u, v, d)}), π′)13

IncConDiff works as follow: It takes a copy π′ of the valid potential function π and the

edge to be added (u, v, d) and repairs all π′ values of nodes t violating π′(s) + d′ − π′(t) ≤ 0

for a edge (s, t, d′) ∈ Gφ∪{u−v≤d}. If the potential function is valid after the addition of

(u, v, d), i.e. γ(v) ≥ 0 (line 2) then the conditions (line 4 and 11) are not satisfied and

algorithm terminates straightforwardly (line 13). Otherwise the π′ value of v is fixed at first

by adding γ(v) to its previous value π(v). This can lead to violation of the potential function

condition on its outgoing edges (v, t, .). For all these edges the node t is added to the priority

queue with priority γ(t) (line 10). The same procedure is applied for fixing the π′ values of

all nodes in the queue starting with the node with a lowest priority. The algorithm proves

either satisfiability if it can empty the queue or unsatisfiability if γ(u) becomes negative (line

10). Implementation details can be found in Cotton and Maler (2006).

To incrementalize the SCC computation of LaMu in the zero reduced-cost graph, we

use the same SCC algorithm as before, but restrict its application. The zero reduced-cost

graph is the subgraph of the reduced-cost graph with all zero weight edges. The key to

incrementalizing the SCC calculation is the following lemma which shows that the addition

of a new constraint will either make no change to the SCCs in a manner which is quick to

detect, or can only collapse SCCs for the graph of the previous problem.

10

Lemma 4. Let φ be a satisfiable set of UTVPI constraints and πφ a valid potential function

for Gφ. Let Hφ be the graph of zero weight reduced-cost edges in Gφ. Let Gφ′ be Gφ with the

addition of an edge (u, v, d) and define analogously πφ′ and Hφ′. If πφ(u) + d > πφ(v) the

SCCs of Hφ and Hφ′ are identical. If πφ(u) + d ≤ πφ(v) then the SCCs of Hφ′ are either

identical to those of Hφ or result from the union of SCCs in Hφ reachable from v in Gφ.

Proof. We carry out the proof with respect to IncConDiff. If πφ(u) + d > πφ(v) then

γ(v) > 0 and no potential function values change so Hφ′ = Hφ and the result holds.

If πφ(u) + d = πφ(v) then γ(v) = 0 and no potential function values change so Hφ′ = Hφ

with the addition of the edge (u, v) if not already present. Clearly this can only union SCCs

of Hφ reachable from v.

If πφ(u) + d < πφ(v) then γ(v) < 0 and IncConDiff does create a new potential

function πφ′ . We show that each node s reachable from v in Hφ has its potential function

value changed to πφ′(s) = πφ(s) + γ(v) by induction on path length from v.

The base case clearly holds.

Suppose the result holds for s reachable from v in k steps. Each node t where (s, t) ∈ Hφ

is such that there exists an edge (s, t, d′) in Gφ where πφ(s) + d′ − πφ(t). When s is selected

for updating in IncConDiff, then each t which has not been changed already, has γ(t) set

to γ(v). When t is selected IncConDiff will define πφ′(t) = πφ(t) + γ(v).

Clearly then each edge (s, t) ∈ Hφ also exists in Hφ′ .

Thus SCCs in Hφ′ must be unions of SCCs in Hφ, and since the only potential values

changing are those reachable from v in Gφ the result holds.

The incremental UTVPI satisfaction algorithm Satis (shown in Algorithm 3) simply

runs IncConDiff at line 3 of LaMu. If the newly added edge (u, v, d) has a reduced

cost of zero it has to rebuild the zero reduced-cost graph Hφ graph to determine possible Z
unsatisfiability, since the SCCs of the zero reduced-cost graph may have changed. It does

so only for nodes reachable from v in Gφ. Therefore Satis computes the SCCs of the

subgraph H (defined at line 8) just containing these nodes and their incident zero reduced-

cost edges. Then it uses the same check as LaMu for Z unsatisfiability (line 10). The

algorithm requires O(n + m) time and space for the SCC construction and checking, and

hence the overall complexity is dominated by IncConDiff requiring O(n log n + m) time

and O(n+m) space.

11

Algorithm 3: Satis
Input: φ a satisfiable set of UTVPI constraints, Gφ = (V,E) is the constraint graph

of φ, π is a valid potential function for Gφ, c a UTVPI constraint
Output: SAT if φ ∪ {c} is satisfiable, UNSAT otherwise
for all (u, v, d) ∈ E(c) do1

r := IncConDiff((V,E),π,(u, v, d));2

if r = UNSAT then3

return UNSAT4

else5

((V,E), π) := r6

if π(u) + d− π(v) = 0 then7

Determine the SCCs of the graph8

H = (V, {(s, t) | (s, t, d′) ∈ E, π(x) + d′ = π(y)}) reachable from the node v;
for all s ∈ V reachable from v in H do9

if −s is in the same SCC as s in H and π(−s)− π(s) is odd then10

return UNSAT11

return SAT12

Theorem 4. Algorithm 3 (Satis) is correct and runs in O(n log n+m) time and O(n+m)

space.

Proof. The complexity follows straightforwardly, recall that constructing SCCs requires

O(n+m) time and space. The correctness follows from the correctness of LaMu (Lemmas 2

and 3) as well as Lemma 4 which allows us to avoid generating the SCCs of the entire graph

Gφ∪{c}.

5. Incremental UTVPI Implication

The incremental implication problem is given by a set P of p = |P | UTVPI constraints and

a satisfiable set φ of m UTVPI constraints on n variables, where φ 6|= c′,∀c′ ∈ P , as well as

a single new UTVPI constraint c. For each c′ ∈ P it is to check if φ ∧ c |= c′.

Incremental implication is important if we wish to use UTVPI constraints in a Satis-

fiability Modulo Theories (SMT) solver (Niewenhuis et al., 2005), as well as for uses in

abstract interpretation and spatial databases. Our approach to incremental implication is

similar to the approach of Cotton and Maler (2006) for incremental implication for difference

constraints. The fundamental new insight that our implication algorithm exploits is that

building the tightened transitive closure TTC of a constraint set φ can be managed by first

building the transitive closure TC(φ) and then applying the tightening on it.

12

In this section we first prove that TTC(φ) = TI(TC(φ) using two lemmas. This means

that we can determine most of the information about the tightened transitive closure by

considering transitive closure from the constraint graph. We then show how using this

insight we can reason about UTVPI implication simply using shortest paths, as well as a

function to extract the upper and lower bounds of variables directly from the constraint

graph.

To prove some of the following results we introduce the notion of a proof of a constraint

being a member of TTC(φ) as follows:

Definition 3. A proof of a constraint c ∈ TTC(φ) (or analogously TI(φ) or TC(φ)) is a

tree of nodes labelled by constraints. The root of the tree is labelled c. If the constraint

c is generated by transitive closure of c1 and c2 then a node labelled c has two child nodes

labelled c1 and c2. If the constraint c is generated by tightening of c′ then the node labelled

c has a single child node labelled c′. If c ∈ φ then c is a leaf.

The next two lemmas show that TTC(φ) can be built up by the two closure steps

TI(TC(φ)). At first a constraint involving two variables in the tightened transitive closure

is resulted from the transitive closure operator, i.e. in other words a tightening introduces

constraints involving a single variable and any further transitive closure involving them can

only create new constraints involving a single variable.

Lemma 5. Let ax+ by ≤ d ∈ TTC(φ) where {a, b} ⊆ {−1, 1} then ax+ by ≤ d ∈ TC(φ).

Proof. Define a constraint ax+ by ≤ d as a binary constraint if {a, b} ⊆ {−1, 1}.
The proof is by induction on proof size. If c ∈ TTC(φ) then it has a finite proof. If the

proof size is 0, then c is a leaf and c ∈ TC(φ).

Suppose the result holds for all proofs of size less than k. Let c ∈ TTC(φ) be a binary

constraint with proof size k. Now c is generated using the transitive closure rule, since the

tightening rule cannot generate binary constraints. Examining the transitive closure rule, if

the result is binary then the generating constraints c1 ≡ ax−y ≤ d1 and c2 ≡ y+bz ≤ d2 are

also binary. Since the proof for the constraints c1 and c2 are less than k then by induction,

{c1, c2} ⊆ TC(φ), hence c ∈ TC(φ).

For TTC(φ) = TI(TC(φ)) we only have to show that any result of transitive closure

on a new UTVPI constraint by ≤ d′ introduced by tightening, can be mimicked using the

constraint by + by ≤ {2d′, 2d′ + 1} that introduced it, and tightening the end result.

13

Lemma 6. Let ax ≤ d ∈ TTC(φ) where a ∈ {−1, 1} then ax ≤ d ∈ TI(TC(φ)).

Proof. We show that for each ax ≤ d ∈ TTC(φ) either ax ≤ d ∈ TC(φ) or ax + ax ≤ d′ ∈
TC(φ) where d′ = 2d or d′ = 2d+ 1. Then clearly ax ≤ d ∈ TI(TC(φ)).

The proof is by induction on proof size. Let c ∈ TTC(φ). If the proof size is 0 then

c ∈ φ and c ∈ TI(TC(φ)). Suppose the result holds for all proofs of size less than k. Let

ax ≤ d ∈ TTC(φ) with proof size k.

If the root node is a transitive closure node with children labelled c1 and c2 then exactly

one of c1 and c2 is binary. Assume c1 is binary, the other case is similar. Now c1 ≡ ax−y ≤ d1

and c2 ≡ y ≤ d2 and d = d1 + d2. By Lemma 5 c1 ∈ TC(φ). Since the proof of c2 has size

less than k by induction we have that y ≤ d2 ∈ TC(φ) or y + y ≤ d2 + d2 + e ∈ TC(φ)—if

y ≤ d2 6∈ TC(φ)—where e ∈ {0, 1}. In the first case, clearly ax ≤ d ∈ TC(φ). In the second

case, we have ax+ ax ≤ d1 + d1 + d2 + d2 + e ∈ TC(φ) by two applications of the transitive

closure on c1 and c2, and then on c1 again. Hence, the induction hypothesis holds.

If the root node is a tightening node with child c′ then c′ is binary and hence by Lemma 5

c′ ∈ TC(φ), and the induction hypothesis holds, too.

The above two results show that TC(φ) is the crucial set of interest for UTVPI implication

checking. The following result shows how the constraint graph can be used to reason about

TC(φ). It also shows implicitly (in combination with Lemma 2) that the satisfaction in Q
is decided by TC(φ) if a constraint 0 ≤ d ∈ TC(φ) where d is negative.

Lemma 7. c ∈ TC(φ) iff there is a cycle of length d, in the case of c ≡ 0 ≤ d, or a path

u v of length d in Gφ where (u, v, d) ∈ E(c).

Proof. (⇒): The proof is by induction on proof size. Clearly if the proof size is 0, then

c ∈ TC(φ) and E(c) appear in the graph Gφ. Let c ≡ ax + bz ≤ d1 + d2 have proof size k.

Then c is built using c1 ≡ ax − y ≤ d1 and c2 ≡ y + bz ≤ d2. Assume for simplicity a = 1,

and b = −1 the remaining cases are similar.

By induction there exists a path from x+ y+ of length d1 in Gφ and exists a path

y+ z+ of length d2 in Gφ. Hence there is a path of length d1 + d2 from x+ to z+. Now if

x = z this is a cycle.

(⇐): The proof is by induction on the number of edges in path u v. If the number of

edges is 1 then (u, v, d) ∈ Gφ and hence c ∈ φ.

14

Let u v be a path of length d involve k edges, then it has the form u w of length d1

and (w, v, d2) ∈ Gφ where d = d1 + d2. Now by induction there is (u,w, d1) ∈ E(c1) for some

c1 ∈ TC(φ) and (w, v, d2) ∈ E(c2) for some c2 ∈ φ. Assume c1 is of the form x− y ≤ d1, and

c2 is of the form y− z ≤ d2, where w = y+, u = x+ and v = z+. The other cases are similar.

Then by transitive closure c ≡ x− z ≤ d1 + d2 ∈ TC(φ) and (u, v, d) ∈ E(c).

Example 4. Consider φ of Example 1. Then for example x + x ≤ 1 ∈ TC(φ) and there is

a path x+ x− of length 1 in Gφ shown in Figure 1(c). Similarly y− z ≤ −5 ∈ TC(φ) and

there are paths z− y− and y+ z+ of length −5 in Gφ.

The consequence of Lemma 7 is that we can use paths not only to reason about all

constraints in TC(φ) but also to infer about the tightened constraints in TTC(φ) by looking

for paths from a node u to its counternode −u in the constraint graph Gφ. That means no

tightened edges need to be added to Gφ just as in the satisfiability case. But still tightening

has to be handled. For that we introduce a bounds function ρ which records the upper and

lower bounds for each variable x, on the vertices x+ and x−. It is defined as:

ρ(u) =

⌊
wSP (u,−u)

2

⌋
.

We can show that ρ(x+) is the upper bound of x and −ρ(x−) is the lower bound of x.

Using Lemmas 6 and 7 we have.

Lemma 8. For UTVPI constraints φ,

ρ(x+) = min{d | x ≤ d ∈ TTC(φ)}

ρ(x−) = min{d | − x ≤ d ∈ TTC(φ)}

where we assume min ∅ = +∞.

Example 5. Consider the graph in Figure 1(c) for constraints φ of Example 1. Then

ρ(x+) = 0 since wSP (x+, x−) equals 1 and x ≤ 0 ∈ TTC(φ), while ρ(z−) = −4 since

wSP (z−, z+) = −7 and −z ≤ −4 ∈ TTC(φ). Note e.g. ρ(x−) = +∞ and there is no

constraint of the form −x ≤ d in TTC(φ).

The next two theorems state how the constraint graph Gφ and the bounds function ρ can

be used to reason about satisfaction and implication. The key to incremental satisfaction

is the following result.

15

Theorem 5. If the constraint graph Gφ contains no negative weight cycle (i.e. φ is satisfiable

in Q) then φ is unsatisfiable in Z iff a vertex v ∈ V exists with ρ(v) + ρ(−v) < 0.

Proof. Let φ be a satisfiable set of UTVPI constraints in Q. By Lemma 7 there is no

constraint 0 < d ∈ TC(φ) where d < 0. Therefore φ is unsatisfiable in Z iff such a con-

straint belongs to TTC(φ) \ TC(φ) (Theorem 2), i.e. a possible unsatisfiability is caused by

tightening.

Lemma 5 implies the equivalence for each constraint c ∈ TTC(φ) \ TC(φ) to ax ≤ d

where a ∈ {−1, 0, 1}. Hence, φ is unsatisfiable in Z iff two constraints x ≤ d1 and −x ≤ d2

with d1 + d2 < 0 exist in TTC(φ) iff (by Lemma 8) ρ(x+) + ρ(x−) < 0.

Effectively failure can only be caused by tightening if the bounds of a single variable

contradict.

Example 6. Consider the graph in Figure 1(a) for constraints φ′ of Example 2. There is

no negative weight cycle in Gφ′ but ρ(x+) = 0 and ρ(x−) = −1 because of x−
−4→ z+ 3→ x+.

Hence the system is unsatisfiable.

Similarly the key to incremental implication is the following rephrasing of Theorem 3.

Theorem 6. If φ is a satisfiable set of UTVPI constraints then φ |= c iff for at least one

(u, v, d) ∈ E(c) either wSP (u, v) ≤ d or ρ(u) + ρ(−v) ≤ d.

Proof. Let φ be a satisfiable set of UTVPI constraints. Because of Theorem 3 it holds φ |= c

and c ≡ ax+ by ≤ d iff ax+ by ≤ d′ ∈ TTC(φ) and d′ ≤ d or {ax ≤ d1, by ≤ d2} ⊆ TTC(φ)

and d1 + d2 ≤ d.

Now, the theorem holds straightforwardly due to Lemma 8 for the constraints with one

variable, and Lemma 5 and 7 for the other constraints.

Example 7. Consider the graph in Figure 1(c) for constraints φ of Example 1. φ |= −z ≤ −3

is shown since wSP (z−, z+) = −7 ≤ 2×−3.

Algorithm 4: Impl shows the new algorithm. As input it takes the constraint graph Gφ,

a valid potential function π, the bounds function ρ, a set P of UTVPI constraints to check

for implication, as well as the UTVPI constraint c which should be added to φ.

In the first step (line 1) the constraint c is transformed to its corresponding edges E(c) in

a constraint graph. Then each edge in E(c) is added consecutively to the constraint graph Gφ

16

Algorithm 4: Impl – Incremental satisfaction and implication for UTVPI constraints.
Input: Gφ = (V,E) a constraint graph representing set of UTVPI constraints φ, π a

valid potential function on Gφ, ρ the bounds function of φ, P a set of UTVPI
constraints not implied by φ, and a UTVPI constraint c to be added.

Output: Gφ∪{c}, a valid potential function π′ and the bounds function ρ′ of φ ∪ {c}
and the set P ′ ⊆ P of constraints not implied by φ ∪ {c}, or UNSAT if
φ ∪ {c} is not satisfiable.

G′ := Gφ, π′ := π, ρ′ = ρ, compute E(c);1

for all e ∈ E(c) do2

res := IncConDiff(G′, π′, e);3

if res = UNSAT then4

return UNSAT5

else6

(G′, π′) := res7

let (u, v, d) be any edge in E(c);8

compute δ←u and δ→v by using the reduced-cost graph for G′ via π′;9

for all x ∈ V do10

sp := δ←u (x) + d+ δ→v (−x);11

ρ′(x) := min{ρ(x), b sp
2
c};12

for all x ∈ V do13

if ρ′(x) + ρ′(−x) < 0 then return UNSAT ;14

P ′ := ∅;15

for all c′ ∈ P do16

(x, y, d′) := first element in E(c′);17

if δ←u (x) + d+ δ→v (y) > d′ and δ←u (−y) + d+ δ→v (−x) > d′ and ρ′(x) + ρ′(−y) > d′18

then P ′ := P ′ ∪ {c′};
return (G′, π′, ρ′, P ′)19

by using the IncConDiff algorithm of Cotton and Maler (2006). After inserting all edges

in G′, the constraint graph equals Gφ∪{c} and π′ is a valid potential function for G′. Hence

φ ∪ {c} is satisfiable in Q. The remainder of the algorithm maintains the bounds function

ρ′ (lines from 8 to 12) and it is used to test the satisfiability in Z (lines 13 and 14), and the

implication of constraints in P (lines 15 to 18). For building an efficient implementation of

shortest paths the reader is referred to Cotton and Maler (2006).

By Lemma 7 to maintain ρ we need to see if the shortest path from x to −x has changed.

We only need to scan for new shortest paths using the newly added edges. We can restrict

attention to a single added edge (u, v, d) since if there is a path from x over the edge (u, v, d)

to −x (x+ u
d→ v x−) then because of Lemma 1 there is equal-weight path from x via

the “counter-edge” (−v,−u, d) to −x (x+ ≡ −x− −v d→ −u −x+ ≡ x−).

17

We calculate the shortest paths in Gφ∪{c} from each vertex x to u (δ←u (x)) and from v to

each vertex x (δ→v (x)) (line 9). The shortest path for δ←u can be computed like δ→u by simply

reversing the edges in the graph.

We can then calculate the shortest path from x to −x via the edge u
d→ v using the path

x+ u
d→ v x− as δ←u (x) + d+ δ→v (−x). We update ρ′ if required (line 12).

We can now check satisfiability of φ∪{c} in Z using Theorem 5 (lines 13 and 14). Finally

we check implications using Theorem 6.

Using the above results, it is not difficult to show that the algorithm is correct with the

desired complexity bounds.

Theorem 7. Algorithm 4 (Impl) is correct and runs in O(n log n+m+p) time and O(n+

m+ p) space.

Proof. The algorithm is correct if it returns UNSAT in the case of unsatisfiability of φ∪{c}
or the constraint graph Gφ∪{c}, its valid potential function π′, its bounds function ρ′ and the

set of constraints P ′ ⊆ P not implied by φ ∪ {c}.
Lemma 2 and Algorithm IncConDiff (see Cotton and Maler (2006)) guarantee that

after termination of IncConDiff G′ = Gφ∪{c} and π′ is its valid potential function if φ∪{c}
is satisfiable in Q; otherwise φ ∪ {c} is unsatisfiable and the algorithm returns UNSAT.

After application of IncConDiff the algorithm maintains the bounds function (lines 8 to

12) by calculation of the shortest path x u→ v −x via one added edge (u, v, d) ∈ E(c)

for each node x in Gφ∪{c}. Remark: we only have to considered the shortest paths via the

added edges ρ give us the length of a shortest path without those added edges. Due to

Theorem 5 the algorithm checks φ ∪ {c} for unsatisfiability in Z in the next two lines. If it

is unsatisfiable Impl terminates and returns UNSAT.

The remainder of the algorithm computes the set of non-implied constraints P ′ ⊆ P by

testing for all constraints c′ ∈ P if the length of both paths x u → v y, −y u →
v −x are longer than d′ and the sum of the upper bounds ρ′(x) + ρ′(−y) is greater than

d′ where (x, y, d′) ∈ E(c′). If all three cases hold then c′ is not implied by φ ∪ {c} thanks to

Theorem 6.

The run-time is determined by the run-time of IncConDiff, the calculation of δ←u , δ→v

which are O(n log n + m), and the implication check O(p). All the other computations can

be done in constant or linear time with respect to n and m. So the overall run-time is

O(n log n+m+ p).

18

The space is determined by the space to store the graph and implication constraints so

it is O(n+m+ p). The algorithm only needs to attach a constant amount of information to

parts of the graph.

6. Experimental Results

We present empirical comparisons of the algorithms discussed herein, first on satisfaction

and then on implication questions.

For both experiments we generate 60 UTVPI instances φ in each problem class with the

following specifications: the values d range uniformly in from −15 to 100, approximately

10% are negative, each variable appears in at least one UTVPI constraint, each constraint

involves exactly two variables, and there is at most one constraint allowed between any two

variables.

The experiments were run on a Sun Fire T2000 running SunOS 5.10 and a 1 GHz pro-

cessor. The code was written in C and compiled with gcc 3.4.3 and option -O3. Each run

was given a 2 minute time limit.

We run incremental satisfaction on a system of m constraints in n variables, adding the

constraints one at a time. We compare: Satis the incrementalization of LaMu presented

in Section 4, Impl the incremental implication checking algorithm of Section 5 where p =

0, mLaMu running LaMu m times for m satisfaction checks, and HaSt the algorithm

of Harvey and Stuckey (1997). For the computation of the shortest paths we used a binary

priority queue for argmin, and the early termination and caliber heuristics (Cotton and

Maler, 2006).

The results are shown in left of Table 2, where d represents the density of a UTVPI

instance, which is defined as m/2n2 representing the percentage of the number of constraints

m in the instance to the maximal number of non-quasi-syntactic redundant constraints for n

variables. A constraint ax+ by ≤ d is quasi-redundant with respect to φ iff ax+ by ≤ d′ ∈ φ
with d′ < d applies. We split the examples into cases that are satisfiable, Z unsatisfiable,

and Q unsatisfiable. Moreover, the fourth row shows the number of examples for each

case written (satisfiable, Z unsatisfiable, Q unsatisfiable) and the overall average run-time.

For more dense satisfiable systems Impl is best, but overall Satis is the clear winner.

Interestingly for very dense satisfiable systems (not shown here) HaSt beats the others.

For the implication benchmarks we chose 5 satisfiable, Z unsatisfiable, and Q unsatisfiable

19

Table 2: Average run-time in seconds of the satisfiability algorithms
Examples Satis Impl mLaMu HaSt

n = 100 feasible 0.03 0.13 1.02 1.56
m = 1000 Z-inf. 0.01 0.09 0.57 1.42
d = 5% Q-inf. 0.01 0.04 0.26 0.81

all (32, 8, 20) 0.02 0.10 0.70 1.29

n = 100 feasible 0.18 0.34 3.81 1.98
m = 2000 Z-inf. <0.01 0.14 1.25 1.68
d = 10% Q-inf. 0.02 0.03 0.21 0.68

all (31, 9, 20) 0.10 0.20 2.23 1.50

n = 100 feasible 0.98 0.94 12.39 2.31
m = 4000 Z-inf. 0.02 0.15 1.17 1.82
d = 20% Q-inf. 0.01 0.04 0.25 0.80

all (28, 12, 20) 0.46 0.48 6.10 1.71

n = 200 feasible 0.73 1.28 16.84 16.72
m = 4000 Z-inf. 0.03 0.43 3.17 13.34
d = 5% Q-inf. 0.01 0.11 0.91 6.01

all (30, 11, 19) 0.37 0.76 9.29 12.71

n = 200 feasible 3.82 3.35 56.14 19.17
m = 8000 Z-inf. 0.03 0.52 4.03 14.86
d = 10% Q-inf. 0.01 0.09 0.79 4.84

all (29, 11, 20) 1.86 1.74 28.14 13.60

n = 200 feasible 17.76 11.01 >120.0 20.75
m = 16000 Z-inf. 0.04 0.65 5.59 18.13
d = 20% Q-inf. 0.01 0.10 0.84 5.19

all (28, 12, 20) 8.30 5.30 >57.4 15.04

n = 800 feasible 3.78 13.57 >120.0 >120.0
m = 12800 Z-inf. 0.12 6.80 63.98 >120.0
d = 1% Q-inf. 0.03 1.68 14.17 >120.0

all (27, 13, 20) 1.74 8.14 >72.59 >120.0

instances for each problem class. In addition, 5 implication sets P of size p were created for

each n using the same restrictions as defined above. On average over all benchmarks, 65%

of the constraints in P were implied by the corresponding φ.

The incremental implication experiments check satisfiability and the implications of con-

straints P incrementally as each of the m constraints were added one at a time. A run was

terminated if there were no more constraints to add, or unsatisfiability was detected. We

compare the two algorithms that can check implication: Impl versus HaSt. The right of

Table 3 shows the results. Overall the checks for implication are cheap compared to the

satisfaction check for HaSt, but not for Impl, since it must compute the shortest path after

20

Table 3: Average run-time in seconds of the implication algorithms
Examples Impl HaSt

n = 100 p = 50 0.31 1.28
m = 1000 p = 100 0.32 1.29
d = 5% p = 200 0.34 1.31
n = 100 p = 50 0.53 1.49
m = 2000 p = 100 0.54 1.50
d = 10% p = 200 0.56 1.52
n = 100 p = 50 1.10 1.66
m = 4000 p = 100 1.12 1.68
d = 20% p = 200 1.14 1.70
n = 200 p = 100 2.11 12.52
m = 4000 p = 200 2.16 12.56
d = 5% p = 400 2.26 12.66
n = 200 p = 100 3.84 12.19
m = 8000 p = 200 3.89 12.25
d = 10% p = 400 4.00 12.35
n = 200 p = 100 10.24 13.59
m = 16000 p = 200 10.31 13.66
d = 20% p = 400 10.46 13.82
n = 800 p = 400 34.74 >200.0
m = 12800 p = 800 35.50 >200.0
d = 1% p = 1600 37.08 >200.0

each constraint addition. Hence the times of HaSt are similar to the satisfaction case, and

Impl needs about three times longer. While HaSt improves the more dense the system,

Impl is the clear winner on sparse systems.

While UTVPI constraints are used in a number of practical applications, they are usually

deeply embedded inside other systems, such as theorem provers, or program analysers, so

there are no suites of stand-alone UTVPI problems we are aware of. Our experience of the

kinds of UTVPI problems that arise from these applications are that they are very sparse.

This indicates that our algorithms should be advantageous for real applications.

7. Non-Incremental Implication Checking and Gener-

ation

The incremental algorithm of the previous sections can be extended to create non-incremental

implication algorithms which either check all constraints in a set P for implication or com-

putes all (tightly) implied constraints. These algorithms are of particular importance for the

21

Algorithm 5: Non-incremental satisfaction and implication for UTVPI constraints.
Input: Gφ = (V,E) a constraint graph representing set of UTVPI constraints φ and

P a set of UTVPI constraints not implied by φ.
Output: Either P ′ ⊆ P a set of UTVPI constraint implied by φ, or UNSAT, if φ is

unsatisfiable.
if LaMu(φ) = UNSAT then return UNSAT ;1

P ′ := ∅; let π be the generated valid potential function of Gφ;2

for all u ∈ V do3

compute δ→u by using rc(Gφ) via π;4

for all c ≡ u+ by ≤ d ∈ P do5

if y 6= 0 ∧ δ→u (y−b) ≤ d or y = 0 ∧ bδ→u (−u)/2c ≤ d then P ′ := P ′ ∪ {c}6

return P ′7

use of UTVPI constraints in abstract interpretation (Miné, 2006) since they allow checking

of implication between two sets of UTVPI constraints, and building a canonical form of a

set of UTVPI constraints.

The non-incremental implication algorithm which checks constraints P for implication

by φ is shown in Algorithm 5. At first it checks the satisfiability of φ by using LaMu.

If φ is unsatisfiable then the algorithm terminates with UNSAT. Then the shortest path

of all pairs of nodes is computed using Johnson’s algorithm (see Johnson (1977)) which

runs Dijkstra’s algorithm from every node u in the reduced cost graph rc(Gφ) via the valid

potential function π.

If the shortest path between u and v is d′ then all constraints u− v ≤ d are implied with

d′ ≤ d. To ensure that we check each constraint ax + by ≤ d ∈ P at most one time, we

assume a map from u = ax to all constraints of the form ax+ by ≤ d ∈ P .

The overall complexity is O(n2 log n+ nm+ |P |) time and O(n+m+ |P |) space which

is determined by Johnson’s algorithm O(n2 log n+ nm) time and the size of the implication

set P .

To generate all tightly implied constraint of satisfiable system φ, that is for φ |= ax+by ≤
d but φ 6|= ax + by ≤ d′ for d′ < d, we use a variation of the same algorithm. Instead of

checking the constraints in P for implication we use δ→u to create new constraints. For each

u ∈ V and each v where δ→u (v) < +∞ we create the constraint u−v ≤ δ→u (v) if v 6∈ {u,−u},
and the constraint u ≤ bδ→u (v)/2c when v = −u.

Finally we generate u+ v ≤ du + dv for each u ≤ du and v ≤ dv previously created where

v 6∈ {u,−u}, and remove any quasi-syntactic redundant constraints, that is ax + by ≤ d

22

where ax+ by ≤ d′ and d′ < d, from the generated set.

This algorithm needs O(n2 log n+nm) time and O(n+m+ |P |) space, since the number

of implied constraints |P | is bounded in O(n2).

8. Generation of Minimal Unsatisfiable Subsets and

Minimal Implicants

Given φ an unsatisfiable set of UTVPI constraints, then a minimal unsatisfiable subset of φ

is a set M ⊆ φ such that M is unsatisfiable and each M ′ ⊂ M is satisfiable. Suppose that

φ |= c, a minimal implicant M of c is a set M ⊆ φ such that M |= c and for each M ′ ⊂ M

is M ′ 6|= c. These are highly related since M |= c iff M ∧ ¬c is unsatisfiable. Minimal

unsatisfiable subsets (minimal implicants) are useful if we are using a UTVPI solver as a

sub-solver in a SAT modulo theories (SMT) solver (Niewenhuis et al., 2005) which requires

an explanation of unsatisfiability (and implication) to encode in Booleans the knowledge of

the UTVPI solver.

In the remainder of this section we explain the generation of a minimal subset M ⊆ φ

in case of Q-unsatisfiability of φ. A minimal subset generator for Z-unsatisfiability and

implication φ |= c can be adapted easily from the Q-unsatisfiability case.

The underlying idea is to use the algorithm IncConDiff to recover a simple negative

cycle as in Cotton and Maler (2006) and construct a minimal unsatisfiable set with respect to

this cycle. The algorithm recovers a negative cycle by keeping track of the last edge (u, v, d)

for every node v which refines γ(v) in IncConDiff. Hence, each node in a negative cycle

has one associated edge which will form a simple negative cycle. This cycle is extracted by

backtracing from x to y where (x, y, .) is the last added edge to the constraint graph.

The corresponding constraint set of the cycle defines a minimal unsatisfiable set in the

difference constraint context, but not in all cases for UTVPI constraints, since a UTVPI

constraint with two variables is represented by two edges in the constraint graph.

Example 8. Consider the satisfiable constraint set φ = {x − u ≤ 0, u − y ≤ 0, x − v ≤
0,−v − y ≤ 0, y ≤ 0} and the constraint c ≡ −x ≤ −1. Here φ′ = φ ∪ {c} is unsatisfiable

in Q.

The left-hand side in Figure 2 shows the constraint graph Gφ′ and the right-hand side

a table with a possible sequence of IncConDiff steps under the assumption that the al-

gorithm was called with Gφ, π, and (x−, x+,−2) where π(v) = 0 for all nodes v. The

23

?>=<89:;x+

0

}}||
||

||
||

||

0

��

?>=<89:;x−
−2oo

?>=<89:;u+

0
 A

AA
AA

AA
AA

A
?>=<89:;v+

0

��

?>=<89:;u−

0

OO

?>=<89:;v−

0

`B̀BBBBBBBBB

?>=<89:;y+ 0 // ?>=<89:;y−

0

OO

0

>>}}}}}}}}}}

No. node tracked edge refines
1 x+ (x−, x+,−2) γ(u+) = −2

γ(v+) = −2
2 u+ (x+, u+, 0) γ(y+) = −2
3 v+ (x+, v+, 0)
4 y+ (u+, y+, 0) γ(y−) = −2
5 y− (y+, y−, 0) γ(u−) = −2,

γ(v−) = −2
6 v− (y−, v−, 0) γ(x−) = −2
- x− (v−, x−, 0)

Figure 2: The outer cycle is one possible tracked cycle whose corresponding constraint set
is not minimal. The steps of IncConDiff are shown on the right-hand side.

table shows: the number of the step, the dequeued node, its tracked edge, and the caused

refinements of γ.

The constraint set of the tracked negative cycle (the outer cycle in the graph Gφ′) is φ′

which is not minimal, since φ′ \ {x− u ≤ 0, u− y ≤ 0} and φ′ \ {x− v ≤ 0,−v − y ≤ 0} are

the only minimal unsatisfiable sets.

The reason for the tracked non-minimal set depends on the two equal-weight paths and

theirs counterpaths from x+ to y+ and y− to x− respectively. Each path can refine the

γ-value y+ and x− respectively, whose tracked edge decides which path we backtrace during

recovery of the cycle. In our example we backtrace the path via v− from x− to y−, but not

its counterpath from y+ to x+, since the backtracked edge (u+, y+, 0) of y+ is part of the

other path which leads to a non-minimal set.

To generate a minimal unsatisfiable subset M of non-minimal unsatisfiable sets N we

could apply a general algorithm for minimal unsatisfiability, for example that described in

Junker (2004) which needs O(|N |) steps. In each step the algorithm checks the satisfiability

of a subset of N , so the overall run-time is O(|N | · τ) where τ is the run-time complexity of

one satisfiability check. In our case τ is O(nm) where n is the number of variables in N and

m = |N |.
But we can do far better. Figure 3 shows the only two possible patterns of constraint

graphs GN which can occurs if the corresponding UTVPI constraint set N of a simple

negative cycle is not minimal. A wiggly line represent a path between two nodes and a path

labeled P̄ is the counterpath of P .

24

?>=<89:;−v
R̄

///o/o/o/o

Q

��

�D
�H
�K
�O
�S
�V

?>=<89:;u
P

xx h(l,o/s3v6

Q̄

��
�O
�O
�O
�O

?>=<89:;−u
S̄

OO
O�
O�
O�
O�
O�

R

88(h ,l /o 3s 6v
?>=<89:;v

S

YY

H�
K�
O�
S�
V�

P̄oo o/ o/ o/ o/

(Pattern A)

?>=<89:;−u
S̄

�� �O
�O
�O
�O
�O

Q

��

�D
�H
�K
�O
�S
�V

?>=<89:;u
P

xx h(l,o/s3v6

P̄
oo o/ o/ o/ o/

?>=<89:;−v R̄ ///o/o/o/o

R

88(h ,l /o 3s 6v
?>=<89:;v

S

YY

H�
K�
O�
S�
V�

Q̄

OO
O�
O�
O�
O�

(Pattern B)

Figure 3: Two possible patterns of constraint graph of a non-minimal unsatisfiable constraint
set arising from a simple negative-weight cycle. In Pattern A PQRS is a negative cycle but
PR̄ may represent a negative cycle derived from a strict subset of the constraints. In Pattern
B PQRS is a negative cycle but either PQRQ̄ or PS̄RS may be negative cycles derived
from a strict subset of the constraints.

Lemma 9. Let C be a simple negative cycle in Gφ and N be its corresponding constraint

set. If N is a non-minimal unsatisfiable constraint set then its constraint graph GN fits into

one of the patterns appearing in Figure 3.

Proof. LetN be the corresponding constraint set of a simple negative cycle C = (x1, x2, . . . , xn)

in Gφ, which is a non-minimal unsatisfiable constraint set. Since 0 ≤ d 6∈ N with d < 0 and

C is a simple cycle there exists a minimal unsatisfiable constraint set M ⊂ N with |M | > 1.

Due to Lemma 2 GM contains a simple negative cycle CM for which the following holds

CM ∩ C 6= ∅ and CM \ C 6= ∅ .

Let S̄ = (−u = −sk → −sk−1 → · · · → −s1 = −v) be a path in CM \ C such that nodes

{−sk,−s1} appear in C and nodes −si, 1 < i < k do not appear in C. Moreover, let CS̄ be

its corresponding constraint set. As CS̄ ⊂ CM ⊂ C the counterpath S = (v = s1 → s2 →
· · · → sk = u) must be a part of C.

W.l.o.g. let xi = si−n+k for all n− k < i ≤ n, xi = −sk, and xj = −s1. Hence, i 6= j and

i, j ≤ n− k.

Pattern A (i > j): Therefore, C equals to PQRS, where P = xn xj, Q = xj xi, and

R = xi xn−k+1.

Pattern B (i < j): For pattern B the paths on C = PQRS are P = xn xi, Q = xi xj,

and R = xj xn−k+1.

Thus, GC also includes theirs counterpath in both cases. Furthermore, because of the selec-

tion of S̄ the paths Q, Q̄, S, and S̄ do not share any interior nodes. Note that this is not

25

necessarily the case for the pairs or paths P , R̄, and P̄ , R. This means that all paths from

a node in Q, S to a node in P , or R must pass at least u, −u, v, or −v.

Our approach to determining minimal unsatisfiable subsets extends Cotton and Maler

(2006) by preventing the construction of negative cycles including pattern A or B. It does

do by slightly changing of the order for dequeuing the nodes and extending the backtracing

of a negative cycle, so that the generated unsatisfiable constraint set is minimal. First we

introduce a new order ≺ on the pair (γ,#s) over γ and the minimal number of edges of a

shortest path from s to the nodes:

(γ(u),#s(u)) ≺ (γ(v),#s(v)) ⇐⇒ γ(u) < γ(v) or γ(u) = γ(v) ∧#s(u) < #s(v) ,

where #s(x) = min{|P | | P = s x : w(P) = wSP (s, x)}.
Compared to the order used by IncConDiff this order changes the sequence of dequeu-

ing of nodes—therefore also for the tracked edges, as well—but only for two nodes with the

same γ-values. The behaviour of dequeuing on those nodes is like a breadth-first search.

Thus, IncConDiff with ≺ will find a simple negative cycle with the shortest length and

the minimal number of edges, so that the constraint graph of its corresponding constraints

cannot match with pattern A.

Example 9. Consider the pattern A of Figure 3 and suppose that all paths only include

edges with a weight of 0 except for P and P̄ which only contain the edge (u,−v,−2) and

(v,−u,−2) respectively. Moreover, let us assume that no path shares any of its interior

nodes with any other path.

The graph with the paths Q, R, S, and their counterpaths has no negative cycle, but

with the path P and P̄ it does. Then a minimal unsatisfiable set can only result from the

cycles PR̄ or P̄R. During a run of IncConDiff each γ-value can be refined exactly one

time to −2. The new order ≺ avoids a refinement of γ(u) through the last edge in the path

S, which would lead to a non-minimal set, if IncConDiff starts at −v. In this example

γ(u) will always be refined by the last edge in R̄, since the number of edges of the simple

shortest path from −v via R̄ to u is smaller by |QS| than the other simple path QRS.

To avoid a recovery of a cycle whose constraint graph fits in pattern B we change the

tracked edge of some nodes during backtracing of a cycle as follows: If we backtrace over

the edge (u, v, d) then we set the tracked edge of −u to the counteredge (−v,−u, d) iff

26

0 = π(−v) + d − π(−u) and #s(−u) = #s(−v) + 1. That is, if the path from s via −v to

−u is a simple shortest path from s to −u and the number of edges of both paths are the

same. (Only in this situation can IncConDiff make a “bad” decision concerning pattern

B during the Q-satisfiability check.)

Example 10. Let us consider the Example 8. The steps shown in the right of Figure 2 can

still be performed by using the new order ≺, because the competing paths have the same

number of edges.

During the recovery of the cycle—beginning at the node x−—we switch the tracked edge

(u+, y+, 0) of y+ to (v+, y+, 0), since we backtrace over the edge (y−, v−, 0) before reaching

y+. Thus, the recovered cycle contains the path via v− and its counterpath instead of

its competing path via u+, so that the corresponding constraint set {−x ≤ −1, x − v ≤
0,−v − y ≤ 0, y ≤ 0} is a minimal unsatisfiable set.

The modified version of IncConDiff with ≺ and backtracing is presented in ModInc-

ConDiff. In the Q-unsatisfiability case the algorithm returns a minimal unsatisfiable set.

Otherwise, it is the same as IncConDiff.

Theorem 8. Let φ be a satisfiable set of UTVPI constraints and c be a UTVPI constraint.

If φ ∪ {c} is Q-satisfiable then each run of ModIncConDiff which adds one edge of E(c)

more to Gφ is successful and the last run establishes a valid potential function on Gφ∪{c};

Otherwise one run of ModIncConDiff terminates with a minimal unsatisfiable set M of

φ ∪ {c}.

Proof (sketch): The correctness of the algorithm—whether it terminates with Gφ∪{c} and a

valid potential function π on that graph or it terminates with a minimal unsatisfiable set

M—follows straightforwardly from the correctness of IncConDiff, since ≺ only changes

the order of dequeuing the nodes where the “old” order chooses “randomly” the next to

dequeued node.

To show that the algorithm generates a minimal unsatisfiable set M if φ ∪ {c} is unsat-

isfiable leads to an extensive case study. For this reason we omit the details of this proof.

We need to show that because of the order ≺ the corresponding constraint graph of the

recovered negative cycle by ModIncConDiff cannot match with the pattern A. Then we

show that this corresponding graph also cannot fit in the pattern B due to the switching of

the tracked edge during the backtracing of the cycle.

Due to Lemma 9 the tracked cycle must lead to a minimal unsatisfiable set.

27

Algorithm 6: ModIncConDiff
Input: Gφ = (V,E) a graph, π a valid potential function for Gφ, (u, v, d) a new edge

to add to Gφ.
Output: Minimal unsatisfiable set M if φ ∪ {u− v ≤ d} is unsatisfiable, or

Gφ∪{u−v≤d} and a valid potential function π′ for Gφ∪{u−v≤d}.
γ(v) := π(u) + d− π(v); #v(v) := 0;1

γ(w) := 0 and #v(w) :=∞ for all w 6= v;2

while min(γ) < 0 ∧ γ(u) = 0 do3

s := argmin(γ, #v) wrt. the order ≺ ;4

π′(s) := π(s) + γ(s) ;5

γ(s) := 0 ;6

for all s
d′→ t ∈ G do7

if π′(t) = π(t) and γ(t) > π′(s) + d′ − π′(t) then8

∆ := π′(s) + d′ − π′(t);9

if γ(t) > ∆ or (γ(t) = ∆ and #v(t) > #v(s) + 1) then10

γ(t) = ∆;11

#v(t) = #v(s) + 1;12

tracked edge(t) := (s, t, d′);13

if γ(u) < 0 then14

s := u; M := {u− v ≤ d};15

while s 6= v do16

(w, t, d′) := tracked edge(s); /* t is the current s */17

if π(−t) + d′ − π(−w) = 0 and #v(−w) = #v(−t) + 1 6=∞ then18

tracked edge(−w) := (−t,−w, d′);19

M := M ∪ {w − t ≤ d′};20

s := w;21

return M22

return ((V,E ∪ {(u, v, d)}), π′)23

The modified algorithm ModIncConDiff can also be used to generate a minimal un-

satisfiable set in the Z-unsatisfiable case, and a minimal implicant. For both cases we run

the algorithm on φ with the edges in E(c′) of the constraint c′ ≡ ax + by ≤ d − 2, if

c ≡ ax+ by ≤ d causes the Z-unsatisfiability of φ ∪ {c} or c ≡ −ax− by ≤ −d is implied by

φ, since φ ∪ {c′} is Q-unsatisfiable. The complexity of answering all these questions using

ModIncConDiff is O(n log n+m) time and O(n+m) space where m = |N | and n is the

number of variables occuring in N .

28

9. Conclusion

We have presented new incremental algorithms for UTVPI constraint satisfaction and impli-

cation checking which improve upon the previous asymptotic complexity, and perform better

in practice for sparse constraint systems.

We have adapted the algorithms herein to provide non-incremental implication checking

in O(n2 log n+nm+p) time and O(n+m+p) space, and generate all implied constraints in

O(n2 log n+nm) time and O(n+m+p) space, where p is the number of implied constraints

generated.

We also extended the algorithms to return a minimal unsatisfiable subset when unsatis-

fiability is detected, and a minimal implicant of an implied constraint.

Acknowledgements

We would like to thank the anonymous reviewers for their comments which improved the

paper substantially. NICTA is funded by the Australian Government as represented by the

Department of Broadband, Communications and the Digital Economy and the Australian

Research Council.

References

Bellman, R. 1958. On a routing problem. Quarterly of Applied Mathematics 16 87–90.

Cherkassky, B. V., A. V. Goldberg. 2006. Negative-cycle detection algorithms. Proceedings

of the European Symposium on Algorithms . 349–363.

Cotton, S., O. Maler. 2006. Fast and Flexible Difference Constraint Propagation for

DPLL(T). Theory and Applications of Satisfiability Testing - SAT 2006 , LNCS , vol.

4121. Springer-Verlag, 170–183.

Ford, L. R., D. R. Fulkerson. 1962. Flows in Networks . Princeton University Press.

Frigioni, D., A. Marchetti-Spaccamela, U. Nanni. 1998. Fully dynamic shortest paths and

negative cycle detection on digraphs with arbitrary edge weights. European Symposium

on Algorithms . 320–331.

29

Harvey, W., P. J. Stuckey. 1997. A Unit Two Variable Per Inequality Integer Constraint

Solver for Constraint Logic Programming. The 20th Australasian Computer Science Con-

ference (Australian Computer Science Communications). Sydney, Australia, 102–111.

Jaffar, J., M. J. Maher, P. J. Stuckey, R. H. C. Yap. 1994. Beyond finite domains. Principles

and Practice of Constraint Programming , LNCS , vol. 874. Springer-Verlag, 86–94.

Johnson, D. B. 1977. Efficient algorithms for shortest paths in sparse networks. J. ACM 24

1–13.

Junker, Ulrich. 2004. Quickxplain: Preferred explanations and relaxations for over-

constrained problems. Proceedings of the Nineteenth National Conference on Artificial

Intelligence. AAAI Press, 167–172.

Lahiri, S. K., M. Musuvathi. 2005. An Efficient Decision Procedure for UTVPI Constraints.

Frontiers of Combining Systems , LNCS , vol. 3717. Springer-Verlag, 168–183.

Miné, A. 2006. The octagon abstract domain. Higher-Order and Symbolic Computation .

Niewenhuis, R., A. Oliveras, C. Tinelli. 2005. Abstract DPLL and Abstract DPLL Modulo

Theories. Logic for Programming, Artificial Intelligence, and Reasoning , LNAI , vol. 3452.

Springer-Verlag, 36–50.

Seshia, S., K. Subramani, R. Bryant. 2007. On solving Boolean combinations of UTVPI

constraints. Journal of Satisfiability, Boolean Modelling and Computation 3 67–90.

Sitzmann, I., P. J. Stuckey. 2000. O-trees: a constraint based index structure. M. Or-

lowska, ed., Proceedings of the Eleventh Australasian Database Conference (ADC2000).

IEEE Press, 127–135.

30

