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Abstract

Zinc is a high-level logical modelling language with support for decision variables of com-
plex types. Current constraint solvers only support decision variables of a subset of the
types Zinc offers. Therefore, these variables and the constraints that involve them need
to be reduced to a form that is supported by the target solvers. In this paper, we show
how to reduce the type of decision variables in a systematic way, independent of a model’s
instance data. We use the Cadmium model transformation language for a concise and
modular implementation of these transformations.

1 Introduction

Zinc (Marriott et al. 2008) is a modern high-level logical modelling language. It

offers decision variables of a wide variety of types as well as constraints that operate

on them. As a consequence, models in Zinc can be compact and close to their natural

language description, and designing and maintaining models is considerably simpler.

A Zinc model typically needs to be converted to a simpler, equivalent model

before it can be solved by current solvers because they only support a subset of

the variable types that Zinc offers. This means decision variables of types that are

not supported need to be represented by variables of supported types, and con-

straints over variables of unsupported types need to be represented by supported

constraints. We call this type reduction. Which variable types need to be eliminated

depends on the solver designated to handle the corresponding constraints. For in-

stance, a Finite Domain (FD) solver may support set variables, whereas Mixed

Integer Programming (MIP) solvers do not. Therefore, we want to be able to run

different type reduction transformations, independently of each other.

In the G12 implementation of Zinc (G12 Team 2010), we do type reduction by

means of Zinc-to-Zinc transformations written in Cadmium, a purpose-designed,

rule-based model transformation language (Duck et al. 2008). We support the fol-

lowing reductions:

• from an enumeration type to an integer range

• from a record or tuple to its components

• from a set of finite element type to a set of integers
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• from a set of finite element type T to a Boolean array, indexed by T .

The latter two reduce the same type, but to a different target type. The first of

them can be used for solvers that support integer set variables only, the second

for solvers that do not support set variables regardless of the element type. After

type-reducing these variable types away, the only remaining Zinc variable types are

Boolean, integer, float, and potentially integer set variables.1

Our type reduction transformations have the following significant features:

Zinc-to-Zinc: the result of the transformations is again Zinc. This allows type

reduction to be followed by or combined with other Zinc transformations.

Data-independence: the transformations are independent of parameter values.

Instance data need not be available at transformation time but can later be

supplied in data files.

Transparency: the original types remain available for input and output. Input

values of types not supported by the solver in use are reduced to values of sup-

ported types. After solving, solution values of a reduced type are converted back,

so the solution is returned using the original types.

Locality: type reduction only changes those parts of the model that contain vari-

ables of an unsupported type. It does not require flattening of the entire model

and deals with user-defined functions without requiring inlining.

High-level: the type reduction transformations are implemented using the model

transformation language Cadmium. This makes their development, maintenance

and extension comparatively easy in our experience.

The next section introduces Zinc, Cadmium, and the process of type reduction;

Section 3 shows how we can type-reduce set variables; Section 4 presents the step-

wise process we use to type-reduce a model; in Section 5 we give some empirical

evaluation; Section 6 discusses related work and Section 7 concludes.

2 Preliminaries

2.1 Zinc

A Zinc model consists of a set of items for variable/parameter declaration, con-

straints, solving objective and output. A variable or parameter declaration has the

form T : x or T : x = A, where x is the name of the variable, T is its type-inst

and expression A is its optional assignment.2 A type-inst is the combination of a

type (a set of values) and an instantiation pattern, which determines which com-

ponents of a variable are fixed when solving starts. Examples of type-insts are int,

var 0..1, tuple(bool, var float) and array[int] of var set of 1..9, representing

respectively an integer parameter, a binary (decision) variable, a tuple whose first

and second field are a Boolean parameter and a float variable respectively, and an

1 Our current implementation does not yet handle non-flat enumerations, this is ongoing work.
2 A parameter must be assigned but the assignment can be in a separate data file.
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integer indexed array whose elements are set variables taking elements from 1..9.

The distinction between variables and parameters via the instantiation pattern in

the type is crucial for data-independent transformation and compilation of Zinc

models.

A constraint item holds a constraint. A solve item states whether the aim of

solving is satisfaction, or optimisation in which case it also holds the objective

function. An output item states how a solution to the problem should be presented.

There are other types of items; see (Marriott et al. 2008) for more details.

Example 1

Here is a simple Zinc model:

int: c; % declare an integer parameter c

var set of 1..3: s; % declare a set variable subset of {1,2,3}

constraint card(s) = c; % enforce that the cardinality of s is c

solve satisfy; % search for any solution

output ["s = ", show(s)]; % output the resulting set

c = 2;

The last line defines the parameter c. It could be in a separate data file. 2

2.2 Cadmium

Our Zinc transformations are implemented in Cadmium (Duck et al. 2008), a term

rewriting language supporting context sensitive rewriting and associative / commu-

tative operators. Cadmium rules have the form CC \ H <=> G | B. Such a rule

states that a term matching H rewrites into B given that its conjunctive context

contains terms matching CC and the guard term G rewrites into true. The con-

junctive context of a term T consists of the terms that are conjunctively conjoined

with T or a superterm of T . If no reference to the conjunctive context is needed

then CC and the backslash (\) are omitted. If no guard is needed then G and the

| symbol are omitted.

Cadmium rewrites terms; therefore Zinc models need to be represented as a term.

A carefully designed term representation of Zinc exists that aims to be unambigu-

ous, compact, and easy to use at the same time. For instance, it ensures that all

variable declarations that hold at a given expression are in the conjunctive context

of that expression. For example, the following rule evaluates the Zinc index_set

function on an array whose declaration can be found in the conjunctive context:

decl(array(IT, _), X, _, _, _) \ app("index_set", _, [id(X)]) <=>

is_finite_type_inst(IT) | type_to_set(IT).

The decl/5 term represents a variable/parameter declaration with fields for type-

inst, name, assignment, identifier kind, and annotations. The app/3 term represents

a predicate/function call. The is_finite_type_inst/1 guard rewrites to true if

its argument is a finite type-inst, and type_to_set/1 rewrites a finite type to the

set of its values.

To improve the presentation of rules in this paper, we will use a variation of
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standard Zinc syntax, using slanted type to distinguish it from Cadmium terms.

Here is the above rule in simplified syntax:

array [IT] of _: X = _ \ index_set(X) ⇔
is_finite_type_inst(IT) | type_to_set(IT).

2.3 Evaluation Stages

In our implementation of Zinc, models are compiled into executables. An executable

when run first reads any instance data files, then processes the input data, solves

the problem and finally generates output.

Input processing consists of computing derived parameter values, creating vari-

ables and setting up constraints. Since data files can contain parameters of arbitrary

Zinc type, the complete Zinc language needs to be supported for parameter com-

putations. This also holds for output generation, where computations on the then

fixed values of variables can take place.

Constraints can be formulated using variables of any type-inst supported by

Zinc. Type reduction limits the variable types that solvers need to support by

reducing variables of complex types into ones of simpler types, and converting

between original and reduced variables in the input and output processing stages.

Example 2

For use with a solver that does not support set variables, we can reduce the model

of Example 1 to the following:

int: c;

array[1..3] of var bool: s; % changed

constraint sum(e in 1..3)(bool2int(s[e])) = c; % changed

solve satisfy;

output ["s = ", show({e | e in 1..3 where fix(s)[e]})]; % changed

The set variable s is reduced to a Boolean array. The expression card(s) is con-

verted into an equivalent expression using the reduced representation of s. In this

case, the expression is the sum of bool2int (which maps true to 1 and false to

0) applied to each array element. The occurrence of s in the output statement is

replaced by an expression that converts the reduced value of s to the corresponding

value of its original type. In particular, it converts the Boolean array representation

to a set by means of a set comprehension, taking those values from the array’s index

set for which array lookup evaluates to true. Note that array s is fixed at this point

so we can apply the fix function to use s where a fixed value is expected by Zinc

(where clauses in comprehensions need to be fixed). 2

In the preceding example, we did not need to change the types of input parameters.

The following is an example where we do.

Example 3

Consider the following model:
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enum e; % declare an enumeration type (defined in data file)

e: p; % declare a constant p of type e (defined in data file)

var e: v; % declare a variable v of type e

constraint p = v; % enforce p = v

solve satisfy; % search for any solution

output [show(v)]; % output the result

Assume a solver that does not support enumeration variables. The enumeration

type e and parameter p are declared in the model but defined in a data file.

enum e; % declare an enumeration type (defined in data file)

e: p; % declare a constant p of type e (defined in data file)

1..card(e): p_reduced = inverse_lookup(p, e); % type-reduced p

var 1..card(e): v; % type-reduced v as integer

constraint p_reduced = v; % enforce p = v

solve satisfy; % search for any solution

output [show(e[fix(v)])]; % output result by looking up entry in enum

Because the data file still refers to parameter p, we need to use a new name for

the reduced version: p_reduced. In Zinc, the name of an enum (e.g. e) can be used

as an expression that stands for the set of its cases. A set can in turn be coerced

into an array. The function inverse_lookup(v, a) returns the (first) position of

v in array a. Input processing converts parameter p into p_reduced which has

reduced type 1..card(e). The reduced type is given in a data-independent way,

i.e. independent of the definition of e. The value of p_reduced is the position of

p in the ordered set of cases of e; e.g. if e = {red, green, blue} and p = green,

then p_reduced = 2. In the output statement, the value of the reduced variable v

is converted into the corresponding enum value. The equality constraint between

enums becomes an equality constraint between integers. 2

3 Encoding Type-Reduced Set Variables in Zinc

This section presents some alternative encodings for set variables in Zinc. Simi-

lar encodings have been proposed before, see e.g. (Walsh 2003), but their data-

independent representation in Zinc is novel. We note that because of the data

independence, using these reduced representations does not fundamentally increase

the model size.

3.1 Reducing the Element Type of Set Variables

Zinc supports set variables of any finite type, i.e. involving nested tuples, records,

sets and arrays. Solvers for set variables typically only support them for restricted

element types, most notably integer ranges. Therefore, one aspect of type reduction

for set variables concerns the set element type: if it is not supported as element

type, we can reduce it to an integer range. Every finite type can be represented as

the set of values of its base type. E.g. bool = {false, true} and set of 1..2 =

{{}, {1}, {2}, {1, 2}}. A simple conversion from any finite type to an integer range

is made by mapping each value to its position in the ordered list of all values.
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However, in general, we may need to perform the conversion on variables of the set

element type, and in such cases it may be beneficial to use a specialised conversion

function that leads to more propagation. With this encoding, it is up to the solver

to choose a suitable low-level representation for the resulting set variable.

3.2 Eliminating Set Variables

If set variables are not supported by the target solver, they need to be reduced

to a type that is supported. The two main alternative encodings for a variable of

type-inst var set of T (shown below), are as an array of Boolean variables, and

as an array of set elements. The latter is useful if we have a (non-trivial) bound on

the cardinality of the set.

array[T ] of var bool (1)

(tuple(var l..u, array[1..u] of var T ) : t where forall(i in 1..u)

((i < t.1→ t.2[i] < t.2[i + 1]) ∧ (i > t.1→ t.2[i] = d)))
(2)

For the second representation, we assume l and u are respectively a lower and an

upper bound on the cardinality of the set. We define an array of size u whose first

c elements are the elements in the set variable, where c is the actual cardinality of

the set variable. We use a constrained type to furthermore enforce that the elements

in the array are ordered so as to remove symmetries (first implication) and to set

the unused elements of the array to a dummy value d to avoid searching on these

variables (second implication).

Let x be a variable of type-inst var set of T , and let x1 and x2 be variables of

the type-insts of respectively the first and second representation. We link x to x1

and x2 using the following constraints:

forall(i in type to set(T ))(i in x↔ x1[i])

card(x) = x2.1 ∧ forall(i in 1..u)(i ≤ card(x)→ x2.2[i] in x)

Note that the second representation requires that decision variables of the set ele-

ment type are supported; we cannot use it for sets of strings, for instance. In our

current implementation, we only use the first representation, but we plan to support

the second one in future work.

4 Data-Independent Type Reduction

In this section, we present the process of type reduction. We start this process by

type-reducing variables and function definitions. Then, we type-reduce expressions.

The whole process is deterministic as we currently only use one encoding scheme.

In the future, we may add alternative encodings, which will be selected by means

of annotations.



Data-Independent Type Reduction for Zinc 7

4.1 Parameters and Variables

Parameters or decision variables may need to be type-reduced to eliminate unsup-

ported types from the constraints. A compound type-inst, such as a tuple or array,

may be unsupported because of its components. For instance, a solver may support

arrays of integers but not of enums.

Assigned values are reduced by applying a conversion function. Values of a com-

pound type-inst that is not fully supported are deconstructed, have their unsup-

ported components reduced, and are then reconstructed again. In Zinc, this can be

done in a functional way without using constraints.

Example 4

Let e be an enumeration type in the following declarations:

e: p1 = x1;

tuple(e, int): p2 = x2;

set of e: p3 = x3;

array[e] of e: p4 = x4;

Eliminating e, they are reduced to

1..card(e): p1 = inverse_lookup(x1, e);

tuple(1..card(e), int): p2 = (inverse_lookup(x2.1, e), x2.2);

set of 1..card(e): p3 = { inverse_lookup(x, e) | x in x3 };
array[1..card(e)] of 1..card(e): p4 = [ inverse_lookup(x4[x], e) | x in e ]; 2

When reducing a variable x of type-inst T , we reduce its assignment if present and

replace its occurrences in constraints by unreduceT (V ) : : type_reduced_as(V )

where unreduceT converts a value of the reduced type-inst to its corresponding

value of original type-inst T . The : : operator separates a term and its annotation.

The type_reduced_as/1 annotation contains the reduced expression (i.e. V ). In

practice, we also keep track of how an expression is reduced in the annotation, i.e.

which components of the expression are reduced (if it has a compound type-inst

such as tuple or array), and which representation is used for the reduced value.

We have omitted these details from the annotation to simplify the presentation.

Note that after type-reducing variables, we have a valid Zinc model with the same

semantics as the original.

Example 5

Given the model fragment

var set of 1..3: s;

constraint card(s) > 1;

type reduction of set variables results in

array[1..3] of var bool: s;

constraint card(new2old(s) : : type_reduced_as(s)) > 1;

We define the following conversion functions:
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function var set of $T: new2old_var(array[$T] of var bool: a);

function array[$T] of var bool: old2new_var(var set of $T: s);

function set of $T: new2old_par(array[$T] of bool: a) =

{ e | e in index_set(a) where a[e] };
function array[$T] of bool: old2new_par(set of $T: s) = [ e: true | e in s ];

The function new2old_var/1 is declared but not defined. It only serves to keep the

model valid during type reduction and all calls to it are removed when type reduc-

tion finishes. Function old2new_var/1 is its inverse and is used similarly; both sim-

plify away using old2new_var(new2old_var(X)) = X. Function new2old_par/1 is

used to convert the values of reduced set variables back to set values for output

after solving. Finally, old2new_par/1 is used to convert fixed sets to their reduced

representation in contexts where a set decision variable is expected. 2

A type may be reduced in different ways depending on the context; cf. Section 3.2.

The best representation may depend on the specific solvers used and on the con-

straints in which the variable appears. Furthermore, we could also support multiple

representations and link them via channelling constraints (Cheng et al. 1999), al-

though currently we only support a single representation for each variable type.

The above transformation is applied to global and local variables and parameters,

comprehension generators and variables used in defining constrained type-insts as

part of a variable declaration being reduced. It is not applied to function arguments

(see further) and to variables that are introduced during the transformation.

4.2 Predicate and Function Definitions

Zinc supports user-defined functions and predicates (functions with a return type-

inst of var bool). They may apply to expressions of an unsupported type-inst. We

create reduced versions of such functions and replace calls accordingly.

Example 6

Consider the following function, which is polymorphic in the element type of the

set arguments:

function var set of $T: set_op(var set of $T: s1, var set of $T: s2) =

if card(ub(s1)) > card(ub(s2)) then s1 diff s2 else s2 diff s1 endif;

Here, ub/1 returns the upper bound of the variable that is its argument. One could

inline the above function definition in a call such as set_op(s1, s2). However, inlin-

ing cannot always be used, in particular when dealing with higher-order functions

(foldl and foldr), e.g. in the call foldl(set_op,{}, a) where the array a is only

known once the instance data is available. 2

Type-reducing a function consists of reducing the formal arguments and result

type-inst, followed by reducing the body expression. The reduction of formal argu-

ments is essentially the same as the reduction of variables and parameters described

earlier. We only reduce the formal arguments of the reduced versions of functions,

and we keep the original function definitions to ensure the model is valid Zinc at
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every stage of the type reduction process. We annotate the reduced version of a

function to link it with its original. The type reduction of expressions is described

in Section 4.3 below.

Example 7

The result of the first step of type-reducing set_op/2 is shown below. For brevity, we

have merged the conversions from reduced arguments s1 and s2 to their respective

original values using local variables.

function array[$T] of var bool: set_op′(array[$T] of var bool: s1,
array[$T] of var bool: s2) : : type_reduction_of(set_op) =

let {var set of $T: s′1 = new2old_var(s1), var set of $T: s′2 = new2old_var(s2)}
in old2new_var(if card(ub(s′1 : : Ann1)) > card(ub(s′2 : : Ann2))

then s′1 : : Ann1 diff s′2 : : Ann2

else s′2 : : Ann2 diff s′1 : : Ann1 endif);

Here, Anni stands for type_reduced_as(si) for i ∈ {1, 2}. 2

4.2.1 Function Specialisation

One difficulty with type-reducing functions is that we sometimes treat fixed and

unfixed values differently, e.g. set variables are reduced but set parameters are not.

This means that expressions whose type-insts match the same type-inst variable

may no longer do so after type reduction.

Example 8

Consider the following function and declarations

function var bool: my_eq(any $T: a1, any $T: a2) = (a1 = a2);

var set of 1..3: s1;

set of 1..3: s2;

then my_eq(s1, s2) is a valid expression, but after type-reducing s1 into a Boolean

array, the same expression is no longer valid: while the original type-insts of s1 and

s2, namely var set of 1..3 and set of 1..3, resp., both match type-inst variable

any $T, the same does not hold for their new type-insts, array[1..3] of var bool

and set of 1..3. 2

To deal with this problem, we specialise such functions for each combination of

(base) type-insts for which they are called. So for instance, if there is a call my_eq(s1,

s2), then we create the following specialised version of my_eq/2:

function var bool: my_eq(var set of $T: a1, set of $T: a2) = (a1 = a2);

which is subsequently reduced.

4.2.2 Empty Sets

A related problem is that in Zinc there is a distinction between explicitly and

implicitly indexed arrays, based on the finiteness of the array index type. If an
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array is indexed by a finite type, then its index set must exactly be this type. This

becomes an issue when coercing the empty set into a set variable of some element

type. In case we coerce the empty set into a set variable of finite element type,

then the type-reduced value must be an array indexed by all values of this finite

type where each element equals false. However, if we coerce the empty set to a set

variable of infinite element type then we can return an empty array. E.g. a coercion

of {} into type-inst var set of bool becomes [false:false, true:false] whereas

a coercion of {} into type-inst var set of int becomes [ ].

In function definitions, we may see a coercion from the empty set into a var set

of $T with $T a type-inst variable. Since we do not know the value of $T , we do

not know how to convert the empty set to an array. Therefore, we also need to

specialise functions here, for each call pattern of functions in which an empty set

is coerced into a set variable whose element type is given by a type-inst variable.

4.3 Expressions

We apply a bottom-up approach to type-reduce constraint expressions. We first

annotate expressions of an unsupported type-inst that do not contain a proper

such subexpression. This is similar to how we annotate (and revert the reduction

of) variables of unsupported type-insts. The annotation again contains a reduced

version of the expression. It principally concerns the following kinds of expressions:

• the (implicit) coercion of an expression of supported type-inst, to an unsup-

ported one, e.g. a set parameter used in a position where a set variable is

expected, such as in a function application, or a coercion of a tuple to a

record if we do not support records;

• the application of a user-defined function whose return type-inst is unsup-

ported, but whose arguments all have supported type-insts;

• the application of a built-in that returns a varified3 version of one of its

arguments: an array lookup where the index is not fixed, or the minimum or

maximum of two or more expressions, where at least one of them is not fixed;

note that such built-ins cannot be defined in a polymorphic and type-correct

way in Zinc as the result type-inst is varified and not all type-insts can be.

Example 9 (Minimum)

Consider the expression min(t1, t2) in a context with the following variable decla-

rations:

var int: i;

tuple(var int, set of int): t1 = (i, {1, 3});
tuple(var int, set of int): t2 = (0, {2, 4});

3 A type-inst is varified by making all its fixed components unfixed. E.g. varifying type-inst
tuple(var int, set of int) results in tuple(var int, var set of int).
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Assume that t1 and t2 both have supported type-insts, but min(t1, t2) does not (it

has type-inst tuple(int, var set of int). First, we varify and reduce t1 and t2,

which means that the second field of each tuple is converted into a Boolean array. We

ensure that both are reduced in exactly the same way, that is, the resulting arrays

have the same index sets, so that we can use the standard comparison operations to

determine which of t1 and t2 is the smallest. Unfortunately, we cannot just apply

min/2 to the reduced versions of t1 and t2, as unlike sets, arrays are not varifiable,

so instead, we produce the following:

let {tuple(int, array[1..4] of var bool): t′1 = (t1.1, [ e in t1.2 | e in 1..4 ]),

tuple(int, array[1..4] of var bool): t′2 = (t2.1, [ e in t2.2 | e in 1..4 ]),

(tuple(var int, array[1..4] of var bool): x where

(x = t′1 ∨ x = t′2) ∧ x ≤ t′1 ∧ x ≤ t′2): m} in m

i.e. the result is a variable of constrained type-inst that is constrained to be smaller

than or equal to the reduced versions of t1 and t2, and equal to either of them. 2

Example 10 (Element Constraint)

An array lookup with variable index (element constraint) varifies the array element

type-inst. As such it is similar to the minimum example given above. Consider the

expression [{1, 2}, {2, 3}][i] where i is a variable of type-inst var 1..2. There are

various ways to reduce this expression; we give one possibility here:

let {array[1..3, 1..2] of var bool: a =

[ | true, false | true, true | false, true | ]} in [ a[j, i] | j in 1..3 ] 2

After reducing the base cases, we deal with those expressions that have a proper

subexpression that is reduced. Most notably, we need to deal with applications of

built-in operators and functions, applications of user-defined functions, and struc-

tured term construction and access. For each built-in operator and function, we

define what the result should be if it is applied to a reduced expression.

Example 11

The set membership constraint (in/2) is converted into an array access. The Cad-

mium rule for this is:

E in (_ : : type_reduced_as(New)) ⇔ New[E].

The encoding of the element constraint in Example 10 is especially advantageous

if we test for set membership on the resulting expression, e.g. j in [{1, 2}, {2, 3}][i]
for some integer variable j, because we can further reduce it into

[ | true, false | true, true | false, true | ][j, i]

requiring just a single (two-dimensional) element constraint.

The length of an array whose elements are reduced is just the length of the

reduced array:

length(_ : : type_reduced_as(New)) ⇔ length(New).
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The union of two reduced set variables is translated into a call to a type-reduced

version of the union operator, called reduced_union/2, by the following rule:

function _: F′(_, _) : : type_reduction_of(F) = _ \
F(O1 : : type_reduced_as(N1), O2 : : type_reduced_as(N2)) ⇔

F(O1, O2) : : type_reduced_as(F′(N1, N2)).

The rule applies to a call to binary function F for which a type-reduced version F ′

is defined, and for which the actual arguments are both type-reduced. The above

rule is only a simplified version: the actual rule deals with any arity of function,

any combination of arguments being type-reduced, and ensures that the reduced

function is the one to be used here (with respect to overloading). The function

reduced_union/2 is defined as follows:

function array[$T] of var bool:

reduced_union(array[$T] of var bool: a1, array[$T] of var bool: a2) : :

type_reduction_of(union) =

[ if x in index_set(a1) intersect index_set(a2) then a1[x] ∨ a2[x]

else if x in index_set(a1) then a1[x] else a2[x] endif endif

| x in index_set(a1) union index_set(a2) ];

and so (s1 : : type_reduced_as(a1)) union (s2 : : type_reduced_as(a2)) becomes

(s1 union s2) : : type_reduced_as(reduced_union(a1, a2)). 2

4.4 Contexts Expecting a Type-Reduced Value

Expressions occur in a context that expects them to have a certain type-inst. For

example, an expression that is the argument of a constraint item should have a type-

inst of (var) bool and an expression that forms the assignment of a variable of type-

inst T should be of that type-inst. Type reduction can change the expected type-

inst of an expression to a reduced type-inst, and so we add an explicit conversion

from the original type-inst to the reduced one. We have seen examples of this in

Section 4.1 (assignment to variables) and Section 4.2 (body of a function definition).

After type-reduction, we have no more calls to functions that require solver support

for the type-insts we are reducing away (e.g. the functions old2new_var/1 and

new2old_var/1 used for converting between set variables and Boolean arrays in

Example 7).

Example 12

Consider again the function set_op/2 and its (partial) reduction into function

set_op′/2 from Example 7. After type-reducing expressions, we get

function array[$T] of var bool: set_op′(array[$T] of var bool: s1,

array[$T] of var bool: s2) : : type_reduction_of(set_op) =

let {array[$T] of var bool: result =

if reduced_card(ub(s1)) > reduced_card(ub(s2))

then reduced_diff(s1, s2) else reduced_diff(s2, s1) endif}
in old2new_var(new2old_var(result) : : Ann);
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which further simplifies to

function array[$T] of var bool: set_op′(array[$T] of var bool: s1,

array[$T] of var bool: s2) : : type_reduction_of(set_op) =

if reduced_card(ub(s1)) > reduced_card(ub(s2))

then reduced_diff(s1, s2) else reduced_diff(s2, s1) endif;

with reduced_card/1 and reduced_diff/2 reduced versions of respectively card/1

and diff/2. The upper bound (ub) of a reduced set is equal to the reduction of the

upper bound of the original set. 2

5 Practical Evaluation

Type reduction is now an integral part of the Zinc compiler, and it is run on every

input model. On a suite of 49 Zinc examples, the system identified 15 for which

type reduction was required (given a solver that supports Boolean, integer, float

and integer set variables). Eight of them contained enum variables, six contained

set variables with non-integer element types (enum, record and tuple), and two

contained tuple variables. Type reduction applied to the Zinc regression suite of

380 tests, detects 48 that require type reduction. We expect as modellers become

more aware of the high level modelling facilities of Zinc, the proportion of models

requiring type reduction will grow.

While in most cases type reduction is necessary to make a model acceptable

to solvers in the first place, we can also apply type reduction to types that are

supported by the target solver, such as integer set variables in the G12 FD solver.

In this solver, a set variable is represented by its lower bound (i.e. all elements that

must be in it), upper bound (all elements that can be in it) and cardinality. Our

reduced representation of sets as Boolean arrays does not represent the cardinality

explicitly, which may cause it to perform worse on models involving cardinality

constraints. We compared the run times of models with integer set variables with

and without type reduction of these set variables, using the G12 FD solver. For a

meaningful comparison, we ensured that the search strategy remains unchanged.

The default search strategy in the FD solver prefers searching Booleans over integers

and integers over sets. We postpone the search of Booleans representing set variables

in the original model, and ensure that the variable and value selection of unreduced

and reduced set variables is the same. Table 1 shows the run times of the original

and reduced models (split into posting and search). The results show that the

type reduction of set variables to Boolean arrays has little effect for the FD solver.

Results for different solvers may vary of course.

6 Related Work

The F language (Hnich 2003) is a constraint modelling language supporting func-

tion variables, i.e. variables that take a function as their value. An F model is

translated to a set of alternative models in the lower level language L (that does

not support function variables) using the Fiona modelling tool. The generation of
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Model Instance Original Type-Reduced
Cd Post Search Cd Post Search

steiner triples n = 7 5.38s 0.01s 1.23s 7.37s 0.01s 1.33s
n = 8 0.01s 141.89s 0.01s 145.78s

social golfers players: 15, size: 3, weeks: 5 6.32s 0.12s 8.51s 9.69s 1.76s 5.43s
players: 24, size: 4, weeks: 5 0.24s 58.53s 7.06s 58.34s

trucking periods: 8, trucks: 4 4.19s 0.00s 3.93s 5.75s 0.01s 2.51s
periods: 7, trucks: 5 0.00s 196.35s 0.01s 139.85s

round robin 10 teams 5.52s 0.29s 14.38s 10.08s 3.82s 19.53s

Table 1. Run times of models with/without type reduction of set variables: Cd times

the Zinc-to-Zinc Cadmium transformation (data-independent); Post is the time to

post the constraints and do the initial propagation; Search is the time spent on

searching.

L models is done using F-to-L rewrite rules. One important limitation is that ar-

bitrarily nested expressions are not supported in F , whereas they are in Zinc. Zinc

does not support function variables, and so the actual rewrite rules for F are not

relevant to it. F was followed up by esra (Flener et al. 2004) which extends it with

more variable types.

The s-COMMA platform (Soto 2009) consists of an object-oriented solver-

independent constraint modelling language whose models can be translated to

different solvers. During the transformation process, the model is combined with

instance data and flattened. Enum variables are reduced to integers as in our work.

Essence (Frisch et al. 2008) is a specification language for CSPs and shares many

features with Zinc. It offers the following structured types: sets, multisets, matrices

(arrays), relations, functions, and partitions. Similarly to Zinc, Essence models

are transformed into a lower-level language (Essence′). This transformation is

done by means of rules written in Conjure (Frisch et al. 2005), part of which are

for eliminating variables of complex types that are not supported by the solvers.

We note that Essence has no publicly available implementation, whereas Zinc is

available through the G12 academic release (G12 Team 2010). Some important

technical differences with our work follow.

In Essence, the connection between original problem variables and reduced ones

is not maintained. Features needed for this are an output statement and comprehen-

sions (or some other way to traverse and construct sets, arrays and such). Essence

only supports a limited form of structure iteration in the form of the ∀, ∃ and
∑

constructs. This means that e.g. we can only convert a set to a Boolean array by

means of equality constraints in a ∀ quantification.

In Conjure, the result of refining an expression, is a new expression, potentially

tagged with a set of constraints. These constraints need to be lifted to the top, and

so each rule that refines subexpressions during its execution, needs to state explicitly

what to do with the constraints that might result from these refinements. Further-

more, the control flow in Conjure is top-down, whereas refinement is to take place

from the bottom up (i.e. we first need to know how an expression’s components are
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refined, before we can refine the expression itself), so each rule in Conjure refining

an expression E, calls explicitly for the refinement of all subexpressions of E.

Our approach does not exhibit the same drawbacks because of two reasons.

Firstly, the Zinc language offers two features that enable us to encapsulate con-

straints, namely local variables and constrained type-insts. By encapsulating con-

straints, we can deal with them separately from the problem of type reduction. In

particular, we have transformations for local variable lifting and for constrained

type elimination. Secondly, Cadmium, being a term-rewriting system, works from

the bottom up, and so we do not need to attempt refining expressions that do not

contain subexpressions of an unsupported type-inst. Furthermore, we do not need

to explicitly program the desired control flow: it is already implicitly there.

Finally, our rules do not require flattening of the model. Flattening is needed in

Essence because it does not have the features to model value conversion as an

expression. In Zinc, value conversions can be implemented using comprehensions,

local variables and constrained type-insts.

7 Conclusions

High-level modelling allows constraint programmers to build models closer to the

problem specification by using complex types for variables and parameters. Unfor-

tunately, current solvers do not implement complex variable types. Therefore, we

need type reduction as an important part of transforming Zinc models to what

solvers understand. Without type reduction, we would not have support for tuple

and record variables, enum variables, or variable sets of arbitrary element type.

Type reduction also forms the starting point for transformations such as linearisa-

tion (Brand et al. 2008), which creates models that can be solved by MIP solvers,

or Booleanisation, which creates models for SAT solvers.

Type reduction has proven to be more difficult than we originally anticipated. One

reason is the expressiveness of the Zinc language, which has many features that make

modelling easier, but increase the burden on model transformation tools. Another

is the data independence, which means that model transformations cannot rely on

flattening, function inlining, etc. During the development of our transformations,

we encountered some difficulties that stem from limitations of Zinc as a target

language. One of them is that Zinc does not allow arbitrary set expressions to be

used as a type, even though it is only a syntactic restriction as sets can always be

given a name. Another difficulty is in the difference between implicitly and explicitly

indexed arrays. In particular, if an array is declared with a finite index type, then

its index set must be exactly that type and cannot be a subset of it.

Our type reduction transformations are part of the G12 academic release (G12

Team 2010). In future work, we plan to add support for annotations on how to

reduce variables and constraints involving them. In related work, such as on esra

(Flener et al. 2004) and Essence (Frisch et al. 2008), it has been proposed to

generate all possible models and then select a good one using some criteria. In the

context of Zinc, we plan first to allow the modeller to steer the reduction process

using annotations.
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