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‘We present a novel approach to allow for overloading of identifiers in the spirit of type classes. Our
approach relies on a combination of the HM(X) type system framework with Constraint Handling
Rules (CHRs). CHRs are a declarative language for writing incremental constraint solvers, that
provide our scheme with a form of programmable type language. CHRs allow us to precisely
describe the relationships among overloaded identifiers. Under some sufficient conditions on the
CHRs we achieve decidable type inference and the semantic meaning of programs is unambiguous.
Our approach provides a common formal basis for many type class extensions such as multi-
parameter type classes and functional dependencies.
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1. INTRODUCTION

The study of overloading, a.k.a. ad-hoc polymorphism, in the context of the Hind-
ley/Milner system [Milner 1978] dates back to Kaes [1988] and Wadler and Blott
[1989]. Since then, it became a powerful programming feature in languages such as
Haskell [Peyton Jones et al. 1999], Mercury [Henderson et al. 2001; Jeffery et al.
2000] , HAL [Demoen et al. 1999] and Clean [Plasmeijer and van Eekelen 1998].
In particular, Haskell provides through its type-class system [Jones 1992] one of
the most powerful overloading mechanisms. There have been a number of signifi-
cant extensions of Haskell’s type class mechanism such as constructor classes [Jones
1993b], multi-parameter classes [Jones et al. 1997] and most recently functional de-
pendencies [Jones 2000]. Each of these extensions required a careful reinvestigation
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of essential properties such as decidable type inference and coherent semantics.
There is also a significant body of further closely related work, for example [Gas-
bichler et al. 2002; Duggan and Ophel 2002b; Shields and Jones 2001; Camarao
and Figueiredo 1999; Odersky et al. 1995; Nipkow and Prehofer 1995; Chen et al.
1992].

Here, we present an extension of the Hindley/Milner system in the style of type
classes to allow for overloading of identifiers. The aim of the system is to provide
a programmable type language that has decidable type inference and a coherent
evidence translation. We use Constraint Handling Rules (CHRs) [Frithwirth 1995]
as the type programming language. CHRs are a rule based language for specifying
constraints solvers. The benefit of using CHRs is that they are a form of logical
statement which is also an executable specification. Hence we have a firm semantic
basis to the type language as well as a clear operational semantics.

This framework is implemented and available as part of the Chameleon sys-
tem [Sulzmann and Wazny 2003]. We assume the reader is familiar with Haskell [Pey-
ton Jones et al. 1999] style type classes. In order to introduce our approach we first
give examples in Haskell notation, before rewriting them to an equivalent form in
Chameleon.

ExaMPLE 1. Consider the following simple Haskell type class program.

class Leq a where
leq :: a->a->Bool
class Insert ce e | ce -> e where
ins :: ce->e->ce
instance Leq Int where leq = primLeqInt
instance Leq Float where leq = primLeqgFloat
instance Leq a => Insert [a] a where
ins [1 y = [yl
ins (x:xs) y = if leq x y then x:(ins xs y) else y:x:xs

Our intention is that the Leq type class denotes the family of less-than-equal func-
tions whereas Insert denotes the family of functions which allow us to insert an
element of type e into a collection of type ce. We provide two instances of Leq
where we assume that primLeqInt and primLeqFloat are primitive functions, test-
ing for less-than-equal on integers and floats. The third instance states that we can
provide an instance Insert [a] a if we provide an instance Leq a. Indeed, in the
instance body we implement a simple insertion algorithm by inserting an element
in a list such that elements preceding the inserted element are less-than-equal.

The Insert class also imposes a functional dependency ce -> e, that is the
collection type ce uniquely determines the element type e. Hence, there cannot be
another instance Insert [Int] Bool defined since then the element type e for a
collection [Int] could be either Int or Bool.

EXAMPLE 2. In our framework, the above example is written as follows

overload leq :: Int->Int->Bool where
leq = primLeqlInt
overload leq :: Float->Float->Bool where

leq = primLegFloat
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overload ins :: (Leq (a->a->Bool)) => [a]->a->[a] where
ins [1 y = [y]
ins (x:xs) y = if leq x y then x:(ins xs y)
else y:x:xs

rule Leq t ==> t = a—>a-> Bool

rule Ins t ==> t = ce->e->ce

rule Ins (ce->el->ce), Ins (ce->e2->ce) ==> el = e2
rule Ins ([a]->b->[a]) ==> Db = a

The above program introduces (overloaded) definitions for identifiers leq and ins.
Note that our form of overloading is simplified compared to Haskell style type
classes. We only overload single identifiers whereas in Haskell related “methods”
can be grouped together in a type class. Furthermore, there are no explicit class
declarations necessary. The dependencies among overloaded definitions manifests
in the type annotation associated to each definition. For example, the definition
of ins depends on leq. This is reflected in the constrained type Va.Leq (a —
a — Bool) = [a] — [a] = [a] of ins. The constraint Leq (a — a — Bool) re-
stricts the set of types variable a is allowed to range over. Note that the predicate
symbol Leq refers to overloaded identifier leq. In our framework we introduce
for each overloaded identifier method a predicate symbol Method.! Note that
in Haskell we find instance Leq a => Insert [a] a instead of overload ins
(Leq (a->a->Bool)) => [a]l->a->[al.

The novelty of our approach is that relationships among overloaded identifiers
are defined in terms of the meta-language of Constraint Handling Rules. Each
overload definition gives rise to a CHR simplification rule. The above definitions
gives rise to the following set:

(Leql) Leq (Int — Int — Bool) <= True
(Leq2) Leq (Float — Float — Bool) <= True
(Insl) Ins ([a] = a = [a]) < Leq (a — a — Bool)

Rule (Leql) is derived from the first definition. This rules states that leq is defined
on type Int — Int — Bool. A similar property is stated by rule (Leq2). Rule (Ins1)
states that ins on type [a] — a — [a] is defined iff leq is defined on type a — a —
Bool. Logically, the <= symbol states an if-and-only-if relation. Operationally, a
simplification rule can be read as follows. Whenever there is a term which matches
the left-hand side, then this term can be simplified (replaced) by the right-hand
side.

In addition to CHR simplification rules, we also allow for user-specifiable CHR
propagation rules. Propagation rules are introduced with the rule keyword. The
four rules in Example 2 correspond to the CHR propagation rules

(ShLeq) Leqt =t =a — a — Bool
(ShIns) Inst=t=ce > e —ce
(FD) Ins (ce = el — ce),Ins (ce = €2 — ce) = el = €2
(FDInsl) Ins ([a] > b—[a]) = b=a

IWe could equally well write (leq :: a — a — Bool) instead of Leq (a — a — Bool). However, we
prefer our current notation.
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The rule (ShLeq) enforces that type of leq is always of the form a - a — Bool,
corresponding to declaration in the Haskell class. The rule (Shins) enforces that
the type of ins is always of the form ce — e — ce. Rule (FD) states that the
ce uniquely determines e, that is two Ins constraints with the same argument ce
must have the the same e argument. This mimics the functional dependency of
Insert in the Haskell program. The second rule (FDInsl) enforces the functional
dependency on the instance Ins ([a] = a — [a]). As soon as we see the collection
type [a] we enforce that the element type must be a.

Operationally, a propagation rule can be read as follows. Whenever we see a set of
constraints matching the left hand side of the rule we propagate (add) the right-hand
side constraints. CHR propagation rules allow us to impose stronger conditions on
the set of overloaded definitions. In this way we support a programmable type
language.

Type inference in our approach simply consists of collecting the constraints arising
from the program, and executing them with respect to the CHR, program.

ExamMmpLE 3. Consider the definition
fyx=ins [y] x

The inferred type (using Haskell) is f :: Leq a => a->a->[a]. Using our ap-
proach type inference proceeds as follows. We collect the constraints from the def-
inition, repeatedly apply CHR rules until no more are applicable. The constraints
collected are given in the first line of the derivation below, where y ::a, x = b, f :: ¢
and ins [y] x :: d. The derivation is

Ins (Ja] = b—=d),c=a—-b—d
—rsnins Ins ([a] 2 b—d),c=a—b—da] 2b—>d=ce>e—ce
© Ins ([a] = b—[a]),c=a— b— [q]
—>FpInst Ins ([a] = a — [a]),c = a — a — [a]
—ms1  Leq (a = a— Bool),c=a— a — [q]

In the first step the rule (ShIns) is applied, to the Ins constraint and the equation
[a] = b— d=ce— e— ce is added. In the next step, we simplify the constraints
by applying the most general unifier of the new equation to the remainder of the
constraints, and eliminating any variables no longer of interest. For the following
steps we automatically apply this step. In the next step we apply the the (FDIns1)
rule to the Ins constraint, effectively adding that b = a. Finally we apply the (Ins)
rule to replace the Ins constraint with an Leq constraint. The resulting inferred
type f :: Leq (a->a->Bool) => a->a->[a] corresponds to the type inferred by
Haskell.

The example above illustrates how we can encode functional dependency exten-
sions using our approach to overloading. We now illustrate an extension that goes
beyond functional dependencies.

The availability of a meta-language to reason about overloaded identifiers allow
us to provide type inference for some interesting programs. For example we can
model the following family of zip-functions

zip :: [al->[b]->[(a,b)]
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zip3 :: [al->[b]->[c]->[((a,b),c)]

zip4 ::
Recently, Firdlender and Indrika [Fridlender and Indrika 2000] showed how to define
such a generic family of zip functions in Haskell. Here, we present an alternative
definition which nicely takes advantage of our general overloading framework.

ExXAMPLE 4. Consider the following generic definition of the zip function.

zip2 :: [al->[b]->[(a,b)]

zip2 [1 [1 = [1

zip2 (a:as) (b:bs) = (a,b):(zip2 as bs)
zip2 [] (b:bs) = []

zip2 (a:as) []1 = []

overload zip :: Zip ([(a,b)]->cs->e) => [al->[b]->cs->e where
zip as bs cs = zip (zip2 as bs) cs

overload zip :: [a]l->[b]->[(a,b)]
zip = zip2

rule Zip ([al->[b]->[c]) ==> ¢ = (a,b)
rule Zip t ==> t = [a]l->[b]->c

The corresponding CHRs for the above program are as follows:

(Zip1) Zip ([a] = [b] = ¢s =€) <= Zip ([(a,b)] = cs =€)
(Zip2) Zip ([a] = [b] = [(a,D)]) < True

(Ziv3)  Zip ([ > [+ [) = c=(a,b)

(Zip4) Zip t = t=[a] > [b] > ¢

The role of the rule (Zip3) is to improve the type to allow the rule (Zip2) to be
applied as soon as we know the last argument is a list. The role of rule (Zip4) is
to immediately add the information that the first two arguments are list types (the
common information of the overloaded definitions).

Consider the following expression.

= head (zip [1::Int,2,3] [True,False] [’a’,’b’,’c’] [False,Truel

We assume head :: [a]->a returns the head of a list. From the program text we
generate the following constraint, where e :: a

Zip ([Int] — [Bool] — [Char] — [Bool] — [a])
where equalities have been resolved by unification. The type inference derivation is
Zip ([Int] — [Bool] — [Char] — [Bool] — [a])

—zip1 Zip ([(Int, Bool)] = [Char] — [Bool] — [a])
—zipt Zip ([((Int, Bool), Char)] — [Bool] — [a])
— Zip3 Zzp ([((Int, Bool),Char)] — [Bool] — [(((Int, Bool), Char), Bool)]),

= (((Int, Bool), Char), Bool)
—zip2 @ = (((Int, Bool), Char), Bool)

So the type of e is inferred as (((Int, Bool), Char), Bool). Without rule (Zip3) type
inference gives is e :: Zip ([((Int, Bool), Char)] — [Bool] — [a]) = a.
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It is not possible to mimic the above example using functional dependencies since
the rule (Zip3) does not correspond to a functional dependency.

We observe that CHR simplification rules allow us to describe dependencies
among overloaded definitions whereas CHR propagation rules allow us to impose
additional conditions on those overloaded identifiers. In our framework, we require
that CHRs must be confluent. Confluence demands that no matter in what order
we apply the CHR rules the result is the same. Each of the sets of CHRs in the
previous examples is confluent. A non-confluent set of CHRs indicates a possible
problem among the set of overloaded identifiers.

EXAMPLE 5. Consider the following set of Haskell class and instance declara-
tions. For simplicity, we leave out the instance bodies.

instance Eq Int
instance Eq t => Eq [t]
instance Ord [t]

class Eq t => 0rd t

According to the conditions [Peyton Jones et al. 1999] imposed on Haskell class
and instance declarations the above program is not valid since the Ord [t] instance
does not have a corresponding Eq [t] instance. The corresponding Chameleon
program is as follows.

overload eq :: Int->Int->Bool
overload eq :: Eq (a->a->Bool) => [a]->[a]l->Bool
overload ord :: [al->[a]l->Bool

rule Ord t ==> Eq t

Each superclass relation such as class Eq t => 0rd t imposes an additional con-
dition which is translated as a CHR propagation rule. The translation to CHRs
is

(Eql) Eq (Int = Int — Bool) <= True

(Eq2) Eq ([a] = [a] = Bool) <= Eq (a — a — Bool)

(Ordl) Ord ([a] = [a] = Bool) <= True

(Super) Ordt = Eq t

This set of CHRs is non-confluent. There are two derivations for constraint Ord ([a] —
[a] = Bool) which do not arrive at the same answer

Ord ([a] = [a] = Bool) —ora1 True

and
Ord ([a] = [a] — Bool)
—>guper Ord ([a] = [a] = Bool), Eq ([a] — [a] = Bool)
—orar Eq ([a] = [a] = Bool)
—eg2 Eq (a = a — Bool)

This indicates that the overloaded program is problematic.

Confluence implies that the logical theory described by CHR is consistent. Hence,
we have a general criteria to describe the validity of the set of overloaded identifiers.
Not surprisingly, confluence is an essential assumption for most of our technical
results.
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Our approach to overloading models an open world understanding of user-defined
constraints. This is usual for type class systems since it supports separate compi-
lation.

ExXAMPLE 6. Consider the following Chameleon program defining a common ad-
hoc overloading of addition (the actual function definitions are left out for simplic-

ity).

overload plus :: Int->Int->Int
overload plus :: Float->Int->Float
overload plus :: Int->Float->Float

rule Plus (a->b->Int) ==> a = Int, b = Int
rule Plus (a->Int->Float) ==> a = Float
rule Plus (a->Float->Float) ==> a = Int

e = plus (1::Int) True

The role of the propagation rules is to propagate type information from the result of
plus to its arguments. We find that expression e has type Plus (Int->Bool->b)
=> b rather than reporting a type error. Indeed, there is nothing that prevents us
from adding in

overload plus :: Int->Bool->Int

at some later stage. Interestingly, we could however use additional CHRs to enforce
that no such instance can be added (see e.g. Example 27)

The original ideas of employing CHRs to deal with overloading were first de-
scribed in [Glynn et al. 2000]. The current paper is an extended version of [Stuckey
and Sulzmann 2002]. In particular, we provide concise proofs under which con-
ditions in terms of CHRs type inference is decidable and the semantics given to
programs in our framework is coherent. We also give a reformulation of type classes
in terms of CHRs. The contributions of this work are:

—We introduce an extension of the Hindley/Milner system in style of type classes
with user-definable CHR-based overloading.

—We identify a large class of CHRs (CHRs must be confluent, range-restricted and
simplification rules must be single-headed) which enjoy a complete satisfiability
check and a complete check for testing equivalence among constraints.

—We define complete procedures for checking satisfiability and subsumption among
constrained types.

—We provide a general definition of ambiguity for constrained types, and a complete
procedure for checking ambiguity.

—We provide a complete type inference algorithm based on the above three proce-
dures.

—We give a semantic meaning to programs by employing the evidence translation
scheme. Under the assumption that CHRs are confluent and simplification rules
are single-headed and non-overlapping we can state a general coherence result.

—We give a reformulation of type classes in terms of CHRs.
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The rest of this paper is structured as follows. Section 2 introduces some basic
notation used throughout the paper. Section 3 gives on overview of CHRs. Sec-
tion 4 introduces our CHR-based overloading system. Type inference issues are
discussed in Section 5. Section 6 shows how to resolve overloading on the value-
level. Section 7 shows how our ideas apply to Haskell style type classes. Section 8
discusses extensions of our framework such as overlapping and closed definitions of
overloaded identifiers. Section 9 discusses related work. We conclude in Section 10.
Proofs of key lemmas and theorems can be found in the Appendix.

2. PRELIMINARIES

In this section, we introduce the following syntactic domains:

Types Tu=al|lTo7|TT
Constraints Cu=7=7|UT|CAC
Type Schemes ou=71|Va.C=>r1
Substitutions 0 == [7/a]

First Order Formulas F :=C | FAF |FVF|FDF |-F|Va F|3a F

We shall be interested in manipulating constraints on types. A type is a variable
a or of the form T 7, ... 7, where T is an n-ary type constructor and 71,...,7, are
types. We write the function type constructor - — - infix as usual.

A primitive constraint is an equation 71 = 72 denoting (syntactic) equality among
types, or a user-defined constraint U 71 .. .7, where U is a user-defined n-ary pred-
icate symbol. (In fact we restrict ourselves to unary user-defined constraints). A
constraint C is a conjunction of primitive constraints. We shall often treat is as a
set. Note that we use ’,’ for conjunction among constraints in CHR rules and ex-
ample CHR derivations. We use True as an abbreviation for the empty constraint
which denotes the true formula. We use False as an abbreviation for T7 = T5,
where T and T4 are two distinct constructor symbols, which denotes the unsatisfi-
able equation. Given a constraint C, we use the notation h¢ to refer to the set (or
conjunction) of equations in C.

We write Z to denote a sequence of objects . Sometimes we treat these sequences
as sets. A substitution § = [T/a] simultaneously replaces each a by its corresponding
7. A unifier of a constraint C' of the form 711 = T2 A+ - -ATp1 = Ty2 is a substitution
0 such that 6(r;1) is syntactically identical to 8(r;2) for 1 < i < n. A most general
unifier (mgu) for C'is a unifier 6 such that for each other unifier §' of C there exists
substitution p such that ' = p(0).

We assume the reader is familiar with the basics of first-order logic. See for
example [Shoenfield 1967]. The syntax for formulae F' is given above. Note, we use
the D symbol to denote logical implication to distinguish it from the function type
constructor —. Formulae F' are assumed to be implicitly universally quantified.
The statement |= F' denotes that F is universally true, while F; |= F, denotes that
F; holds in any model of Fj.

Let fu(t) take a syntactic term ¢ and return the set of free variables in t. We
introduce additional notation for quantification as follows. We let VIW F', where
W is a set of variables aq,...,ay, denote Vay - - - Va, F', similarly for 3W F We let
3F denote the existential closure of F, that is 3fv(F) F. We let 3 F denote the
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formula Ja; - - - Ja, F where {a1,...,a,} = fo(F) - W.

A type scheme is of the form Va.C' = 7 where a are the bound variables, C is a
constraint and 7 a type. Note that we can always view 7 as Va.a = 7 = a where a
is fresh. We commonly use ¢ to refer to type schemes.

We introduce an ordering < among type schemes with respect to some first order
formula F'. Intuitively F' F o1 < 02 means that o; is a more general type than o5
where the meaning of the user-defined constraints in ¢; and o4 is given by F. We
define F' + (le.Cl = 7'1) < (V(_IQ.Cz = 7'2) iff ': Cy D 3(_11.(01 N1 = 7'2) where
we assume there are no name clashes between a; and az (i.e. @ Nay = @) and F is
a first-order formula. We say o1 subsumes oo w.r.t. F if F F 01 < 5. We define
Fto~0yif FF oy <09and F F oy <0;. The interested reader is referred
to [Sulzmann 2000] where we prove soundness of subsumption among type schemes
w.r.t. a standard denotational semantics.

3. CONSTRAINT HANDLING RULES

Constraint handling rules [Frithwirth 1995] (CHRs) are a multi-headed concurrent

constraint language for writing incremental constraint solvers. In effect, they define

derivation steps from one constraint to an equivalent constraint. Derivation steps

serve to simplify constraints and detect satisfiability and unsatisfiability.
Constraint handling rules (CHR rules) are of two forms

Simplification (Rulel) ¢i,...,¢, <= di,...,dn
Propagation (Rule2) ¢i,...,¢, = di,...,dn

In these rules Rulel and Rule2 are unique identifiers for a rule, ¢y, ..., ¢, are user-
defined constraints and d;,...,d,, are user-defined constraints or equations. The
simplification rule states that given constraint ¢, ...,c, we can replace it by con-
straint dy, ..., d,. The propagation rule states that given constraint cy,...,c,, we
can add dy,...,d,. We say a CHR is single-headed if the left hand side has exactly
one user-defined constraint. A CHR program is a set of CHR rules.

CHR rules can also be interpreted as first-order formulae. The translation func-
tion [-] from CHR rules to first-order formulae is:

[cl,...,cn — dl,...,dm]]

Ya(ci A---Acp < (Fbdi A+ Ndy))

[[cl,...,cn — dl,...,dm]]

Va(ci A== Aen D (Fbdi A+ Ady))

where @ = fu(ci A---Acp) and b= fu(dy A--- Ad,,) — G We define the translation
of a set of CHRs as the conjunction of the translation of each individual CHR rule.

The operational semantics of CHRs are straightforward. We can apply a rule r
in program P to a constraint C' if C' contains a subset? the left hand side of the rule

2The original CHR operational semantics is based on multi-set rewriting, while the logical se-
mantics must treat constraints as sets. We use a set based operational semantics to more closely
match the logical semantics.
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(we assume that substitutions represented by equations have already been applied,
see examples below). The resulting constraint C’ replaces this subset by the right
hand side of the rule (if it is a simplification rule), or adds the right hand side of the
rule to C (if it is a propagation rule). This derivation step is denoted C —», C’
or C —p C', see Appendix A for details.

A derivation, denoted C —} C' is a sequence of derivation steps using rules in
P where no derivation step is applicable to C'. A derivation C —} C' is successful
iff her is satisfiable. A set P of CHRs is terminating iff for any constraint C' there
exists a constraint C' such that C' —} C".

ExAMPLE 7. Consider the set of CHRs defined in Example 2 in the introduction.
Then the following CHR derivation is possible (we underline the constraint matching
the left hand side of the rule):

Ins ([Bool] - a — b), Leq (Int — Int — a)
—>ShLeq Ins ([Bool] = Bool — b), Leq (Int — Int — Bool),a = Bool
(
(

—>Leqt Ins ([Bool] — Bool — b),a = Bool
—Shins Ins ([Bool] = Bool — [Bool]),b = [Bool],a = Bool
—ms1 Leq (Bool — Bool — Bool),b = [Bool],a = Bool

Confluence of CHR programs is a vital property. Confluence implies that the or-
der of the derivation steps does not affect the final result. Confluent CHR programs
are guaranteed to be consistent (in the usual sense of a theory).

A CHR program P is confluent iff for each constraint Cy for any two possible
derivation steps applicable to Cy, say Cy —p Cy and Cy —p Cs, then there
exist derivations C; —% C3 and Cy —% Cy such that Cj is equivalent (modulo
new variables introduced) to Cy, i.e. = (3p(c0)C3) ¢ Gpo(co)Ca)-

EXAMPLE 8. For example, another derivation for the goal in Example 7 is
Ins ([Bool] - a — b), Leq (Int — Int — a)
—ms2 Ins ([Bool] = Bool — [Bool]),b = [Bool],a = Bool, Leq (Int — Int — Bool)

—>ns1 Leq (Bool — Bool — Bool),b = [Bool],a = Bool, Leq (Int — Int — Bool)
—req1 Leq (Bool — Bool — Bool),b = [Bool],a = Bool

CHRs transform one constraint into a constraint which is equivalent w.r.t. the
CHR program. While confluence guarantees that the order of application of CHRs
does not matter, in some cases we can obtain stronger results. We now define a
class of CHRs which have a (weak) satisfiability test and generate a canonical form.
We use this class to ensure decidable type inference.

We will restrict ourselves to CHRs made up of propagation rules and single-
headed simplification rules. Since simplification rules are only used to translate
instance definitions, they never need to match multiple constraints, and hence can
be single-headed.

We also require that the CHRs are range-restricted. A CHR is range-restricted if
any substitution 8 grounding ¢y, ..., ¢, also is such that 8 - 8’ grounds all variables
in dy,...,d, for any mgu @' of the equations in dy,...,d,,. Range-restrictedness
prevents us from introducing a new unconstrained type variable during a derivation.
This is not an onerous condition, for our purposes, but certainly does restrict the
class of CHRs we allow.
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We say a constraint C' is weakly satisfiable w.r.t. a set P of CHRs iff = 3([P]AC).

LEMMA 1 WEAK SATISFIABILITY. Let P be a confluent set of range-restricted

CHRs where each simplification rule is single-headed. Let C' be a constraint and
suppose C —5 C'. Then = 3([P] A C) iff = Jher.

A proof can be found in the Appendix.

We can test the (weak) satisfiability of a constraint C' by executing the CHR
program and testing if the resulting equational constraints are satisfiable. Note
that this weak satisfiability implicitly codes an open world understanding of the
user-defined constraints. The constraint is satisfiable in some model of P, not all
models. From an overloading perspective this means that we could add some further
instances in order to make the constraint universally true in all models.

The following canonical form result will allow us to test equivalence of constraints
using CHRs. It is the first canonical form result we know of for CHRs.

LEMMA 2 CANONICAL FORM. Let P be a confluent and terminating set of range-
restricted CHRs where each simplification rule is single-headed. Then [P] = D <+
D' iff D —% C and D' —% C' such that |= (3p,p)C) « (F(0)C").

A proof can be found in the Appendix.

Note that for this result we require the CHRs P to be terminating, that is
YC3C'" C —3 C'. There are some simple syntactic criteria, e.g. no cyclic de-
pendencies among CHRs, which ensure that P is terminating. There are also a
number of other approaches to proving termination of CHR, programs [Frithwirth
1998a]. For a terminating set of CHRs we have a decidable confluence test [Abden-
nadher 1997]. In essence, we need to build “critical pairs” and test whether they
are joinable.

4. HM(CHR) AND OVERLOADING

We employ the HM(X) type system framework [Sulzmann 2000; Odersky et al. 1999]
as the type-theoretic basis of our CHR-based overloading system. We assume that
the constraint domain X is described by a set P of CHRs. To support overloading
we extend the language of expressions by allowing for overloaded definitions.

Programs p ::=overload f=einp]|e
Expressions e :=z | Az.e|ee|letz=eine|(e::0)

We assume that f ranges over overloaded identifiers, For syntactic convenience, we
write example programs using

overload f :: o where instead of overload f = (e = 0)in ...

f=e

We will also make use of pattern matching syntax and recursive functions. The
straightforward description of these extensions is omitted.

We will always assume that the relationship among constraints is specified by a
set P of CHRs. We refer to P as the program theory. Note that in Section 5 we will
impose some conditions on P to allow for decidable and complete type inference.
Typing judgments are of the form P,C,T' F e : 7 where P is the program theory,
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PCTFe:o
(Annot) fo(o) =10
P,C. T+ (eo0):0

(z:0)€el

(Var) ————
PCTFz:0

PCT.x:7Fe:1 Pacarl_el:Tl_)T2
s Uyl g o .

(Abs) —  (App) P,CT - ex:m
PCT, F AXpe:7—>r7 POTF 1 er: 2
PCiANCy,TFe:T PC,,TFe:Va.Cy=>T

(VD) a ¢ fo(Cy) U fo(T) (VE) [P]FCi D [7/a]C,

P,Cy,TFe:VaCo=T P,Cy,T F e:[T/a]r
PCT,+Fe:0c PCT,x:0Feé€:7
(Let) -
PCT, Fletz=ceine :7
(f:Ya.Fa=a)el fu(Va.Cy=1s)=0
(Over) PCTFE e:VCL.Cf = Tf

¢ mgu of hg, F ¢15 < ¢Cy € P
PCTFDp:T
P,C,T + overload f :: (Va.Cy = 74) =einp: 71

Fig. 1. Typing Rules

C a constraint, I' a type environment, e an expression and 7 a type. We will
always require that constraints C' appearing in typing judgments P,C,T F e : o
and type schemes Va.C' = 7 are weakly satisfiable. Recall that weak satisfiability
implies the constraint is satisfiable in some model. Therefore, this models an open
world understanding of user-defined constraints. We will restrict our attention to
valid judgments, i.e. those judgments which can be derived by the typing rules in
Figure 1.

The first six rules are the standard Hindley/Milner rules but extended with a
program theory P and constraint component C. We note that I', denotes the
typing environment obtained from I' by excluding the variable z.

In rule (VE) the statement [P] = C1 D [7/@]C> requires that the constraint Cy
implies constraint [7/a]Cy (with a replaced by 7) in any model of [P].

Our formulation of rule (VI) follows [Jones 1992]. We push the “free” constraint
Cs into the type scheme. The now quantified constraint Cs is simply erased from
the left-hand side of the turnstile. The standard HM(X) quantifier introduction
rule keeps the constraint 3a.C5 on the left-hand side. This has some advantages as
discussed in [Sulzmann 2000]. For the purpose of this paper, the present formulation
of rule (VI) is sufficient.
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Rule (Annot) is a straightforward extension of the standard Hindley/Milner rules
to deal with type annotations.

The novelty of the typing rules lies in rule (Over) which introduces overloaded
identifiers (note that overload definitions can only appear at the top-level). For
each overloaded function f we introduce a new predicate symbol F'. The identifier
f is available in e, p or any surrounding part of the program. Therefore, we assume
that f :: Va.F a = a is part of some initial type environment.

Note that we require that overloaded definitions are closed and are annotated with
their type. Each overload definition gives rise to a simplification rule F' ¢75 <=
¢C'y, where the role of ¢ the mgu of hc, is to remove any equality constraints
appearing in Cy. These are the only simplification rules appearing in the program
theory P.

ExaMpPLE 9. Consider parts of the program in Example 2 from the Introduction,
but with a different typing.

overload leq :: (a=Bool) => Int->Int->a where
leq = primLeqlnt

overload ins :: [Int]->Int->[Int] where
ins = ...

Note that we do not impose any conditions on constraints appearing in type schemes
besides being weakly satisfiable. Therefore, Ya.a = Bool = Int — Int — a is
perfectly valid.

The above definitions give rise to the following set P, of CHRs:

(Leql) Leq (Int — Int — Bool) <= True
(Insl’) Ins ([Int] = Int — [Int]) <= True

Note that the first definition does not generate the following rule:
(Leql’) Legq (Int — Int — a) <= a = Bool

The side conditions in rule (Over) (we build an mgu of all constraints and apply the
mgu to the right hand side of the CHR we generate) prevent equality constraints
appearing on the right hand side of simplification CHRs.

Recall the set P; of CHRs arising from Example 2:

(Leql) Leq (Int — Int — Bool) <= True
(Insl) Ins (Ja] = a = [a]) <= Leq (a = a — Bool)

We find that the set P; subsumes P.. The more general typing in Example 2 allows
for a larger set of overloaded definitions. That is, the set of available definitions
depends on a programs typing.

In addition to CHRs arising from overload definitions, the user can provide CHR
propagation rules to impose stronger conditions on the set of constraints allowed
to appear.

EXAMPLE 10. Recall the definitions of Example 6 from the introduction.

overload plus :: Int->Int->Int
overload plus :: Float->Int->Float
overload plus :: Int->Float->Float
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rule Plus (a->b->Int) ==> a = Int, b = Int
rule Plus (a->Int->Float) ==> a = Float
rule Plus (a->Float->Float) ==> a = Int

The propagation rules strengthen the constraints. The initial type generated out of
the expression

fxyz= (x::Int) == (plus y 2)
is given below, where y :: a, z :: b,
Plus(a = b — Int) = Int - a — b — Bool

The propagation rule Plus(a — b — Int) => a = Int,b = Int in combination with
overload plus :: Int->Int->Int allows us to strengthen this to Int — Int —
Int — Bool.

For the remainder of the paper, we adopt the convention that P; denotes the set
of CHR simplification rules arising from overloaded definitions for a given program
p. We denote by P, the set of programmer-specifiable CHR propagation rules. The
set P = P; U P, forms the program theory.

4.1 Unambiguity

An important restriction usually made on constrained types is that they be un-
ambiguous. This is an essential requirement to ensure a well-defined semantics for
programs. Programs with ambiguous types can lead to operationally nondetermin-
istic behavior (see Example 19 later).

The original definition of unambiguity was as follows. Let Va.C' = 7 be a type
scheme, it is unambiguous if fu(C) Na C fv(7) N a. This means that all variables
are fixed if we fix the type 7. This definition had to be extended when functional
dependencies were introduced. Our introduction captures the intuitive definition of
unambiguity, that is, all variables appearing in C' are fixed if all variables in 7 are
fixed, taking into account the program theory. It naturally extends both previous
definitions.

Let P be the program theory and p be a variable renaming on a. Then Va.C' = 7
is unambiguous iff [P] = (C A p(C) A (1 = p(1))) D (a = p(a)) for each a € a.
This simply says that all variables appearing in the constraint component can be
uniquely determined from the type component w.r.t. program theory P. We also
say that e is unambiguous if e :: ¢ is a well-typed expression and ¢ is unambiguous.
Henceforth, all valid type schemes must be unambiguous in addition to weakly
satisfiable.

ExXAMPLE 11. Consider the type scheme Va,b.H (a — b) = b. Under the empty
program theory this type scheme is ambiguous. The variable a cannot be determined
from the constraint component alone. We find that = H (a = b)AH (a' - b')Ab=
b 2 a=a'. Assume that our program theory consists of the following CHR (note
that this CHR mimics a functional dependency):

(FH) H (a > b),H (@' 5 b) = a=d

In the above type scheme, variable a is now determined by b.
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Our definition of unambiguity subsumes previous definitions. More discussion on
this topic can be found in Section 6.

4.2 Confluence

We require that program theories must be confluent. A non-confluent program the-
ory indicates a possible problem among the set of overloaded definitions. Example 5
in the introduction illustrates this behavior.

We generally require that the programmer provides a confluent set of CHR, rules.
This can be checked automatically (assuming the CHR rules are terminating). How-
ever, this can be burdensome. There are cases where it is safe to add some propa-
gation rules to “complete” a non-confluent program theory to become confluent.

ExAMPLE 12. Consider the following program

overload ins :: [Int]->Int->[Int] where
ins Xxs X = X : Xs
rule Ins (ce->el->ce), Ins (ce->e2->ce) ==> el=e2

The program theory consists of the following set of CHRs where rule (FD) states a
“functional dependency” among the input values.

(Ins1’) Ins ([Int] = Int — [Int]) <= True
(FD) Ins (ce — e; — ce),Ins (ce = ex = ce) = e; =e2

The above program theory is non-confluent.

Ins ([Int] = Int — [Int]), Ins ([Int] = a = [Int])
—ns1 Ins ([Int] = a — [Int])

and

Ins ([Int] — Int — [Int)]), Ins ([Int] = a — [Int])
—pp Ins ([Int] = Int — [Int]), Ins ([Int] = Int — [Int]),a = Int
—> st Ins ([Int] = Int — [Int]),a = Int
— sty a = Int

are two distinct, non-joinable derivations. Adding the following propagation rule
yields a confluent program theory.

(FDInsl’) Ins ([Int] = a — [Int]) = a = Int

Note that rule (FD) states a general property which must hold for all ins definitions.
Therefore, we had to add in an additional propagation rule per overloaded definition
to complete the program theory.

Confluence guarantees that the types of all expressions are well defined. It does
not necessarily guarantee that correctness on the value level.

ExamMprLE 13. Consider the definition of eq of Example 5 extended with the fol-
lowing definition.

overload eq :: [Int]->[Int]->Bool where
eq = ... special treatment on integers ...



16 . P.J. Stuckey and M. Sulzmann

Among others, the program theory contains the following CHRs:

(Eql) Egq (Int — Int — Bool) <= True
(Eq2) Eq ([a] — [a] = Bool) <= Eq (a — a — Bool)
(Eq3) Eq ([Int] — [Int] —» Bool) <= True

The above three rules are confluent. However, note that the second and third
definition of eq are overlapping. We say two definitions are overlapping if there
exists a substitution ¢ which unifies the head atoms in the respective simplification
rules. In case we require a definition of eq at type [Int] — [Int] — Bool, we must
take an indeterministic choice between two possibilities.

As we will see in Section 5, confluence is a sufficient condition to ensure correct-
ness on the level of types. Correctness on the value level, i.e. a coherent semantics,
additionally requires that all simplification rules must be non-overlapping (see Sec-
tion 6). In certain cases, it is possible to handle overlapping definitions via a simple
extension of the CHRs (see Section 8.1). Confluence also provides us with a general
notion to speak about the validity of Haskell class and instance declarations (see
Section 7.2).

5. TYPE INFERENCE

We assume that we are given a program p and an initial environment I' where all
overloaded identifiers f are recorded, i.e. (f :: Va.F a = a) € I.

Stage (1) of type inference, extracts the set P, of simplification out of the anno-
tated program text via a simple translation. We introduce judgments of the form

p I_’L'I'I,f PSZ
(Exp) e me 0
p I_inf P, ¢ mgu of h¢e

(Over) Py =P, U{F ¢7 <= ¢C}
overload f :: (Va.C = 7) =einp "mf P,

In addition, we are given a set P, of programmer-specifiable propagation rules.
Together, P = P, U P,, where p I_inf P;, forms the program theory. The curious
reader might ask what happens if we do not provide type annotations for overloaded
definitions. The situation seems similar to the problem of providing annotations in
case of polymorphic recursion [Henglein 1993]. Hence, we believe it is undecidable
to infer type annotations of overloaded definitions such that the resulting CHRs
are terminating.

To obtain complete type inference we require that P is terminating, confluent
and range-restricted. The upcoming soundness and completeness results rely on
Lemmas 1 and 2 which assume that CHRs are terminating, confluent and range-
restricted. We generally assume that CHRs satisfy these three properties. Range-
restrictedness can easily verified. Grounding all variables on the left-hand side must
ground all variables on the right-hand side. Note that any termination check for
CHRs must be necessarily incomplete. Given a terminating set of CHRs we can
decide the confluence of this set [Abdennadher 1997]. We simply build “critical
pairs” and test whether they are joinable.
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(z:Va.C = 71) €T bnew
P, x l_inf ([b/a)C 1 [b/a]T)

(Var)

P,F,e I_mf (Cz | TQ) gen(F,Cg,Tg) = 02
unambig(P,o2) unambig(P,Va.C1 = 1) subsumes(P,o02,Ya.C1 = 7)

(Annot) fo(Va.Cy = 1) =0 bnew C=CyA [B/d]cl sat(P,C)

P, T e::Va.Ci =71 me (C1[b/a)ry)

Ply.z:a,e by (Cl7") anew

Ab
(Abs) P, T, \z.e l—mf (Cla— 1)

P T, e I_inf (Cil7m) P,T e l_inf (Cy 1 72)
Cl=01/\02/\(7'1=7'2—>a)
a new sat(P,C")
P, eres I_z'nf (C'"la)

(App)

PT,,e l_mf (Cil7) gen(T';,C1,7) =0
(Let) unambig(P,o) P,I'y.x:o0,¢€ Finf (Cs 17"
P T, letz=c¢in ¢ l—mf (Cs 17

PT,e l_z'nf (CelT) sat(P,C.) P,T,p I_inf (Cpltp) fo(o)=0
(Over) gen(L,Ce,7e) = 0’ unambig(P,0') subsumes(P,o’,0)

P,T,overload f :: 0 =einp l—mf (Cplmy)

Fig. 2. Inference Rules

Stage (2) of type inference proceeds by inferring the type of expressions and
checking that the annotated types match the actual implementation, see Figure 2.
The inference algorithm is formulated as a deduction system with inference clauses
of the form

PT,p I—mf (Cl7)

where program theory P, type environment I' and program p are input values,
a constraint C' and a type 7 are output values. Some readers might prefer to
write P,T I—mf p : (C | 7) instead. However, this notation hides which values
are input and which are output values. The set P consists of the CHRs collected
in the previous stage and a user-defined set of propagation rules. Inference of
expressions consists of (a) generating constraints from the program text and solving
them w.r.t. the given program theory, (b) checking for unambiguity of type schemes,
and (c) checking for validity of user-provided type annotations. Note that in our
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formulation substitutions are expressed by equality constraints, e.g. see rule (App).

Rules (Annot), (Let), and (Over) use a generalization procedure. Let I be a type
environment, C a constraint and 7 a type. Then, we define gen(T',C, 1) =Va.C = 7
where @ = fu(C,7)\fv(T'). Note that we push the whole constraint C' into the type
scheme. We could be more efficient by pushing in only the affected constraints.
That is, we split C into two parts. C; consists of all constraints in C' which have
a type variable in common with a. Cy consists of the remaining constraints. We
define gen' (T, C,7) = (C2,Va.Cy = 7). For simplicity, we only show the necessary
adjustments for the (Let) rule.

P T, e I—mf (Ci17) gen'(Ty,C1,7) = (Ca,0)
unambig(P,o0) P,['y.x:0,¢€ Finf (Cs 17"
C=C2ANC3 sat(P,C)

P,T,,let z =ein e’ '_inf i)

(Let?)

Rules (Annot), (App), (Let), and (Over) make use of a procedure sat for checking
satisfiability of constraints which is defined as follows:

sat(P,C)
= True if C —% C’ such that |= Jhe
= False otherwise

Note that the condition = Jher can be checked by a unification procedure.
Immediately, it follows from Lemma 1 that the satisfiability test is decidable for
terminating CHRs.

Rules (Annot) and (Let) enforce unambiguity of type schemes. The procedure
for checking of unambiguity of type schemes is defined as follows:

unambig(P,Va.C = 1)

= True if CAp(C)ANT =p(1) —5 C'
such that = C' D (a = p(a)) for each a € @
where p is a variable renaming on a

= False otherwise

Note that w.l.0.g. we assume that @ C fu(C, 7). The condition = C' D (a = p(a))
is decidable (it holds iff the mgu of h¢e unifies a and p(a)) which ensures that the
above procedure is decidable for terminating CHRs.

ExAMPLE 14. Consider the type scheme Va,a'.H (a — a') = a'. The program
theory consists of rule (FH) (from Exzample 11)

(FH) H (a - b),H (' =5 b) = a=d

We assume that p(a) = a" and p(a') = o'"". We check unambiguity via the deriva-
tion

Hence the type is unambiguous.

Note that we do not need to check for satisfiability and unambiguity of type
schemes in rule (Var). Given that this holds for the initial type environment,
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our inference rules preserve these conditions. We also do not explicitly enforce
unambiguity of o in rule (Over). In case o is ambiguous the resulting CHR will
not be range-restricted. This is a sufficient condition for completeness but not a
necessary condition for soundness.

In rule (Annot) procedure subsumes performs a subsumption check to check the
validity of the annotated type. Note that we also ensure that the inferred type
is unambiguous. This is a necessary condition for completeness of subsumption.
Unambiguity of the annotated type is necessary to ensure a well-defined semantics.

The definition of subsumes is as follows:

subsumes(P,Va.C = 7,Va'.C' = 7')
= True fC'AT'=d' ANa=d —% Cy, and
C'A'=dNa=d AT=aNC —% Cs
such that |= (?IVCl) — (gvcz)
where a, a’ are new variables and
V=pC' AT =dNa=d)UfpMa.C=r1)
= False otherwise

The idea is to rewrite Va.C' = 7 into the equivalent type scheme Va,a.C AT = a =
a where a is a new variable, and then use equivalence testing (possible through
Lemma 2) to test implication. We will see that it is important to rewrite the type
scheme (see upcoming Example 16). Note that the condition = (FyC) < (FyCo)
is decidable. We check that = (3yhc,) < (3vhe,) holds. Furthermore, user-
defined constraints in ¢, C; and ¢2Cs> must be renamings of each other (modulo
variables V'), where ¢, is a unifier of he, and ¢ is a unifier of h¢,.

EXAMPLE 15. Consider the inference for the second definition of ins in Exam-
ple 9. The inferred type for the expression is Vb.Leq (b — b — Bool) = [b] —
[b] — Bool, while the declared type is [Int] — [Int] — Bool. The subsumption test
determines

[Int] = [Int] — Bool =a',a =a'
—p [Int] = [Int] - Bool =a' = a
and
[Int] = [Int] - Bool = a',a =a',[b] = [b] = Bool = a,Leq (b — b — Bool)

“ [Int] = [Int] —» Bool = a' = a,b = Int,Leq (Int — Int — Bool)
—Leq1 [Int] = [Int] — Bool = a' =a,b= Int

Hence the subsumption condition holds.

5.1 Soundness Results

We can state that procedures unambig and subsumes are sound. Proofs can be
found in the Appendix. Soundness of sat follows from Lemma 1.

LEMMA 3 SOUNDNESS OF UNAMBIGUITY. Let P be a set of CHRs, Ya.C = T
be a type scheme and p be a variable renaming on @ such that C A p(C) AT =
p(t) —p C'" where = C' D (a = p(a)) for each a € a. Then for each a € @
[P] = (CAp(C)A (T =p(1)) D (a = pla)).
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LEMMA 4 SOUNDNESS OF SUBSUMPTION. Let P be a set of CHRs, a and a
two fresh wvariables and o = Va.C = 1 and o' = Va'.C' = 7 where C' AT =
dNa=ad —5Ciand C'" AT =d' Na=d NC AT =a=—% Cy such that
E (3vC1) & (v Cs), where V = fu(o) U fo(a) U fo(C' AT =a' Aa =a'). Then
[Pl F o=

Note that the introduction of variables a and a’ is necessary. Testing for equiva-
lence among normal forms of C' A =7 and C' A7 = 7 A C would be unsound.

EXAMPLE 16. Consider o = Ve.(¢,Int) and o' = Vb.(Int,b). The program the-
ory is assumed to be empty. We have that }f o =< o', however, the subsumption
check without the extra variables succeeds. In such a case, we find final stores
¢ = Int,Int = b and ¢ = Int, Int = b which are both logically equivalent.

With the correct test we have

(Int,b) =a,a=a — (Int,b)=a,a=ad

(Int,b) =a,a=d',(c,Int) =a' — c=1Int,b=1Int,a= (Int,Int),a=ad

where
¥ ((Int,b) =a,a=a') « (Jec.c=Int,b=Int,a= (Int,Int),a=a')
That is, the subsumption check (correctly) reports failure.

The above example shows that it is necessary to effectively rewrite Va.C' = 7 into
Va.C' AT = a = a for the purposes of the subsumption test.

We conclude that the inference system described in Figure 2 is sound w.r.t. the
typing rules in Figure 1.

THEOREM 5 SOUNDNESS OF TYPE INFERENCE. Let p be a program, T' a type
environment, P, be a set of propagation rules, Ps be a set of CHRs, C' a constraint
and T a type such that p }_z'nf P, and P;UP,,T,e I_mf (Cl1). Then P;UP,,C,T I

e: T s valid.

5.2 Completeness Results

Lemma 1 implies that our weak satisfiability test is complete. Proofs of the following
two lemmas can be found in the Appendix.

LEMMA 6 COMPLETENESS OF UNAMBIGUITY. Let P be a confluent set of range-
restricted CHRs where each simplification rule is single-headed, ¥a.C' = T be a type
scheme and p be a variable renaming on a such that [P] = (C A p(C) A (T =
p(7))) D (a = p(a)) for each a € a. Then C A p(C) AT = p(1) —%5 C' where
= C' D (a = p(a)) for each a € a.

From Lemma 2 we can derive completeness of subsumption checking. Note that
completeness only holds under the additional assumption that type schemes are
unambiguous, a natural condition imposed on type schemes in our system.

LEMMA 7 COMPLETENESS OF SUBSUMPTION. Let P be a terminating, conflu-
ent set of range-restricted CHRs whose simplification rules are single-headed, a,
a' two fresh variables and 0 = Va.C = 7 and o' = Va'.C' = 7' such that
[P] v o % ¢ and o is unambiguous. Then C' AT = d ANa = o —} C;
and C' AT =a'ANa=a NC AT =a—% Cy such that = (FyC1) < BvCa),
where V = fo(o) U fu(c") U fo(C' Aa = a').
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Range-restrictedness and unambiguity of type scheme o are necessary conditions.
ExaMPLE 17. Consider the following program theory P:

@ < Ra
R Int <= True

Note that the first rule is not range-restricted. Variable a appears on the right hand
side but not on the left hand side. We have that [P] F (Ve.Q = ¢) < Int. Note
that [P] = Q. However, the subsumption check fails. We find that

Q,c=d,a=d —*Rd,c=da,a=d
and
Q,c=d,a=d,Int=a—* Rd',c=Int,a’ = Int,a= Int

Note that the two final stores (constraints on right hand side of —*) are not
logically equivalent. We have that

Ve, a,a’' 3d,d . (R d,c=a',a=ad") < (Rd,c=Int,a' = Int,a = Int))
ExamprLE 18. Consider

Q (Int,Bool) <= True
Q (Int,Float) <= True

We have that [P] E (Va,b.QQ (b,c) = b) =< Int. Note that ¥b,c.QQ (b,c) = b is
ambiguous. In this case, we find that

Q (b,e),b=d,a=d
and
Q (b,e),b=a';a=d,Int=a
are not logically equivalent. Therefore, the subsumption check fails.

It is common knowledge that inference is incomplete in the presence of ambiguous
types. Therefore, we require that all type schemes in the principal judgment must
be unambiguous. Therefore, we only state weak completeness of inference.

Let P be a set of CHRs, C a constraint, I' an environment, e an expression and
o a type scheme. We say (C, o) is the principal constrained type (w.r.t. P, T and
e) iff (1) P,C,T' + e : o, and (2) for each P,C',' F e : o' we have that (a)
[P] E C'" > 3pmC), and (b) [P]AC' + o < ¢'. We say (C,0) is unambiguous
iff o is unambiguous. A judgment P,C,T" + p: o is principally unambiguous iff for
each subexpression in p the principal constrained type is unambiguous.

THEOREM 8 WEAK COMPLETENESS OF TYPE INFERENCE. Let P,C,I' F p: 7
be a principally unambiguous judgment such that P is terminating, confluent, range-
restricted and all simplification rules are single-headed. Then P,T,p I_inf )
for some constraint C' and type 7' such that [P] = C D Iv(C' AT = 7') where
V = fo(T).
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6. EVIDENCE TRANSLATION

We follow the common approach (e.g. [Wadler and Blott 1989]) for giving a semantic
meaning for programs containing overloaded identifiers by passing around evidence
values as additional function parameters. This translation process is driven by a
programs typing. The novelty of our approach is that evidence can be constructed
out of a CHR derivation. This section may be opaque for readers not familiar with
the dictionary-passing implementation of evidence [Wadler and Blott 1989], but
can be skipped.

We motivate our approach with an example. Consider the definitions of eq below.

overload eq :: Int->Int->Bool where
eq = primEqInt
overload eq :: (Eq (a->a->Bool)) => [a]l->[al->Bool where
eq [1 [1 = True
eq (x:xs) [] = False
eq [1 (y:ys) = False
eq (x:xs) (y:ys) = (eq x y) && (eq xs ys)

rule Eq x ==> x=a->a->Bool
The program theory consists of the following CHRs:

(Eql) Eq (Int — Int — Bool) <= True
(Eq2) Eq ([a] — [a] = Bool) <= Eq (a — a — Bool)
(Eq3) Eqa = a=0b— b— Bool

Rules (Eql) and (Eq2) arise from the two overloaded definitions above. Rule (Eq3)
enforces that the two arguments of eq must be of equal type and the result is of
type Bool.

We consider the evidence translation of the following expression.

exp xs ys = (eq (tail xs) ys, eq (1::Int) (3::Int))

We assume tail :: [al->[a] takes the tail of a list. The evidence translation
is driven by a programs typing. Among others, expression exp gives rise to the
following constraints arising from the two application sites of overloaded identifier
eq.

Eq ([a] = b— ¢),Eq (Int = Int — d)

We assume xs :: [a], ys = b, 1 :: Int and 3 :: Int. We perform type inference by
CHR solving.

Eq ([a] = b— ¢),Eq (Int — Int — d)
— g3 Eq ([a] = b — ¢), Eq (Int — Int — Bool),d = Bool
—Eq Eq ([a] = b= ¢),d = Bool
—grg3 Eq ([a] = [a] = Bool),b = [a],c = Bool,d = Bool
—rq2 Eq (a = a — Bool),b = [a],c = Bool,d = Bool

Resolution of remaining equalities via unification yields the following type inference
result.



A Theory of Overloading . 23

exp :: Eq (a->a->Bool) => [a]l->[a]l->(Bool,Bool)
exp xs ys = (eq (tail xs) ys, eq (1::Int) (3::Int))

What remains is to replace the two occurrences of eq in the body of exp by
some appropriate evidence value. Fortunately, evidence can be constructed out
of the above CHR derivation. The left most occurrence gave rise to the constraint
Eq ([a] = b — ¢) and the following CHR derivation.

Eq ([a]=b—c¢)
—rg3 Eq ([a] = [a] = Bool),b = [a],c = Bool
—rq2 Eq (a = a — Bool),b = [a],c = Bool

In fact, we are only interested in CHR simplification steps. We apply the mgu of
all equality constraints found in the final store to the initial store and re-run the
CHR solver.
Eq ([a] = [a] — Bool)
—rq2 Eq (a = a — Bool)

The final store tells us which evidence values are necessary to construct evidence
values in the initial store. Construction of evidence is performed by reading the
CHR. derivation backwards. Assume that e¢ refers to the evidence representation
of constraint C'. Then, we can construct evidence egq ([a]—[a]—Boot) by applying the
“evidence constructor” associated to (Eq2) to epq (4—sa—Boor)- In detail, assume
that evidence constructor associated to rule (Eq2) is as follows.

ecEqlist e [] [1 = True

ecEqlist e (x:xs) [] = False

ecEqlist e [] (y:ys) = False

ecEqlist e (x:xs) (y:ys) = (e x y) && (ecEqlist e xs ys)

Note that parameter e represents evidence for the equality function on type a —
a — Bool. Then, we can replace the left most occurrence of eq in exp by ecEqList
e’ where e’ represents the evidence parameter of exp. Similarly, we find the
following CHR derivation for the right most occurrence of eq.

Eq (Int — Int — Bool) — gq True
Therefore, we replace the right most occurrence of eq by ecEqInt where
ecEqInt = primEqlInt
In summary, the evidence translation of exp yields the following result.

expT :: (a->a->Bool)->[al->[a]->(Bool,Bool)
expT e’ xs ys = (ecEqList e’ (tail xs) ys, ecEqInt (1::Int) (3::Int))

Evidence construction becomes a subtle issue in the presence of type annotations.
Consider the following expression.

exp2 :: Eq ([al->[a]l->Bool) => a->a->Bool
exXp2 X y = eq Xy
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According to our type inference rules the above expression is type correct. Inference
yields type Va.Eq (a = a — Bool) = a — a — Bool. Indeed, we have that

[P]+ (Ya.Eq (a — a — Bool) = a — a — Bool)
=
(Va.Eq ([a] = [a] = Bool) = a — a — Bool)

where P consists of rules (Eql-3). The question is how can we construct evidence
for Eq (a — a — Bool) (as requested in the body of exp2) given that we provide
only evidence for Eq ([a] — [a] — Bool) (as stated by the annotation)? It seems
that it should be rather the other way around! The important insight is that in
such a case we simply cannot provide a “compilation” scheme. However, we can
construct evidence once we apply exp2 to some monomorphic arguments. That
is, evidence construction is postponed until run-time. Hence, in our approach
evidence construction is similar to method look-up in object-oriented languages.
Our translation scheme yields

exp2T e x y = (ec e) x §y

where ec :: Eq (ja] — [a] = Bool) 5 Eq (a —» a — Bool) is a “function”
constructing evidence for Eq (a — a — Bool) provided we have evidence for
Eq ([a] = [a] = Bool). The program theory P consists of rules (Eql-3). Note
that [P] E Eq ([a] = [a] — Bool) D Eq ([a] — [a] — Bool). Assume we apply
expT to some monomorphic arguments of type ¢, i.e. fu(t) = 0. We find that
Eq ([t] = [t] = Bool) —% True. Hence, Eq (t = t — Bool) —% True. In fact,
we even know that Eq (t = t — Bool) —} True. That is, Eq (t = t — Bool)
can be reduced to True by applying simplifications rules only. Now we are in the
position to construct evidence for Eq (t — t — Bool) by reading the CHR derivation
Eq (t =t — Bool) —}, True backwards. We maintain that function ec is only
defined for monomorphic arguments. This is sufficient for our purposes. Details
can be found in Section 6.1.

The ultimate goal of this section is to establish a general coherence result [Breazu-
Tannen et al. 1990]. That is, the semantic meaning of a translated expression should
be independent of its typing. For example, assume we provide another definition
of eq.

overload eq :: [Int]->[Int]->Bool where
eq - - = True

Two definitions are now applicable on values of type list of integers. Note that
the program theory becomes overlapping. There are two rules applicable to resolve
the constraint Eq ([Int] — [Int] — Bool). We can circumvent such problems
by requiring program theories must be confluent and all simplification rules are
single-headed and non-overlapping.. Details of the coherence result can be found
in Section 6.2.

6.1 Translation and Evidence Construction

The input of the translation process is a well-typed program which is translated
into an untyped target language.

Target Expressions E = z | \x.E|letz = Ein E
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V=W, +V-=>V+ Eke’c(kvl...varity(k))J_

[=]n = n(z)

[Mu.€]n = v.[e]n[u := v]

[ee'In = if[elneV -V
then ([e]n) ([e']n)
else W

[letz =eine]n = [e']nlz = [e]n]
e T i

1} U T,
[Thr---pm] = Trulé,l“imt/f- k:pl—...op, 9T .. i}
[va.7] = Nalle/al7]

where for monotypes u we require that fo(u) = 0 and T, contains the set of value
constructors used in this context.

Fig. 3. Expression Semantics

In particular, we assume we are given a denumerable set of evidence variables ec
indexed by a constraint C. Evidence variables will carry the appropriate definitions
of overloaded identifiers.

We follow [Odersky et al. 1995] by interpreting target expressions in an untyped
denotational semantics. See Figure 3 for details. Note that + and ) denote co-
alesced sums and V — V is the continuous function space. In general, we leave
injection and projection operators for sums implicit. The value W is the error
element and K is the set of value constructors. In particular, we assume the avail-
ability of the family of tuple constructors (...), : Va.a; = ... = ap = (a1,...,ay)
which can easily be provided by choice of K. The corresponding projection opera-
tors ith :: Va.(ai1,...,a,) = a; are recorded in some initial type environment. We
assume that variable environments 77 map variables to elements in V We will always
assume that n(errve) = () and n(e;—,) = () where () € K with arity 0.

Variable environments 1 must satisfy program theories P. We define 7 satisfies
P iff for each user-defined atom U 7 where U 7 —% True we have that n(ey ;) €
[Vfu(r).7]. That means, evidence values of user-defined constraints must satisfy
the given type specification. For example, Eq (Int — Int — Bool) —% True,
therefore, 1(egq (1nt—Int—Boot)) € [Int = Int — Bool] where P consists of the
above rules (Eql-3).

Let C = Uy 71,...,Up T, be a constraint such that C —% True. Then, we
require that n(ec) = (n(ev, r,),---,neu, =,)) as a further condition for variable
environments. Note that we assume an ordering on Uy 71,...,U, 7.

Let C7 and C3 be two constraints, n a variable environment and P be a set
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of CHRs such that 7 satisfies P and [P] = Ci1 D C>. We say ec is an evidence
constructor iff for each substitution ¢ such that ¢Ciy —p True we have that

n(ec) (nlegc,)) = nlegc,)- In such a situation we write ec :: Cy 5 C,. Note that
we only provide an interpretation of ec on ground instances.

As already mentioned, a closed definition for an evidence constructor might not
necessarily exist. Recall

ec:: Eq ([a] = [a] = Bool) 5 Eq (@ = a = Bool)

We cannot give a closed definition for ec. Evidence can only be constructed once
we know the grounding substitution. However, we can classify a class of evidence
constructing function for which we can provide a compilation scheme, i.e. closed
definition.

LEMMA 9 COMPILATION OF EVIDENCE. Let P be a confluent set of CHRs where
each simplification rule is single-headed and non-overlapping and n a variable en-
vironment which satisfies P. Let Cy and Cy be two sets of user-defined constraints

such that C1,Cy —5 Ci. Then, there exists a closed definition for ec :: C £ Cy.

A proof can be found in the Appendix. Note that in case of ec :: True L5 C we can
always provide a closed definition of ec

For simplicity, we assume that overloaded definitions are prerecorded in the vari-
able environment 7. Consider a overloaded definition

overload f :: (Va.Uy mA--- AU, T = T) =€
We assume that we find
ecp UL 11y, Up Ty —P)FT

In Figure 4, we introduce judgments of the form P,T',C + e: o~ E where E is
the result of translating a well-typed expression e with type ¢ under program the-
ory P, environment I" and constraint C. The most interesting rules are (VI) where
we abstract over evidence variables and (VE) where we provide the proper evidence
values. Rule (Over) is a special instance of rule (VE) to deal with overloaded identi-

fiers. We assume that ec : C; 5 [7/a]Cs is an evidence constructing function. Note
that the context only provides evidence for ec,. However, the instantiation site re-
quires evidence e[z/5)c,- The premise states that [P] = C1 D [7/a]Cs. In fact, this
is sufficient to ensure that function ec must exist. Assume we have a substitution ¢
such that ¢C1 —p True. Then, we also have that ¢[7/a]Co —p True. In such
a situation, we find that ¢[7/a]Ca —%, True, i.e. ¢[7/a]C> can be solely reduced
by simplification rules. Therefore, evidence ey[z/5c, can be constructed by reading
the CHR derivation backwards.

Note that our translation scheme requires run-time type information (the type
of monomorphic arguments). This is implicitly recorded in the typing derivation
which drives the translation process.

For simplicity, we leave out the translation of type-annotated expressions. Their
treatment is similar to rules (VI) and (VE).
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PCTF f:VaFa=a
: r PlECDOF
(z:0) € (Over) [Pl = DFT
PCTHFzx:0~2 ec:C=>Fr
PCTF f:T~ecec

(Var)

P,C,F Fel:mm—=>mn~E
(App) PC,T'F ey:71 ~ Ey
PCTFeie:m~E Ey

PCT,z:7Tke:T~E
PCT, F Aze:7—= 7 ~ \o.E

(Abs)

PC,,T+e:Va.Cy=>17~FE
[P] = €1 D [7/a]Ce
ec: Cy 5 [7/aCy

PCiANCy,TFe:T~E
(VD) a ¢ fu(C1,1) (VE)

P,C1,T' F e:Va.Cy = 7~ e, .E
! 2 @ P,C1,T F e: [7/alr ~ E (ec ec,)

PCT,Fe:o~E
(Let) PCTI,z:0F¢€:7~ FE
PCT,tletz=eine :7"~letz=FEin E'

Fig. 4. Evidence Translation Rules

6.2 Coherence

We establish a coherence result under the assumption that CHRs are confluent
and simplification rules are single-headed and non-overlapping, and the principal
typing derivation is unambiguous. In previous work [Jones 1993a], coherence has
been established under the assumption that for each type scheme Va.C' = 7 we
have that fu(C)Na C fu(r) Na. This means that we can determine from the type
component alone, each of the types occurring in the constraint part. The recent
addition of functional dependencies [Jones 2000] to Haskell made it necessary to
adjust the unambiguity condition. Our notion of unambiguity (see Section 4.1)
subsumes previous definitions.

The following lemma is crucial in establishing coherence. We need to ensure that
evidence values can unambiguously be constructed. We define ¢ < ¢’ iff there exists
1) such that ¢.¢ = ¢'. We denote by U the least upper bound among substitutions.

LEMMA 10 UNIQUENESS. Let P be a confluent set of CHRs whose simplification
rules are single-headed, Ya.C = 7 an unambiguous type scheme, ¢ a mapping from
type variables fu(C,T) to ground types and ¢' a mapping from type variables fv(7)
to ground types such that ¢' < ¢ and ¢C —} True. Then C,¢' —% @' for some
@" such that ¢' U ¢" = ¢.

A proof can be found in the Appendix.
Note that an ambiguous type scheme indicates that we have to take an indeter-
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ministic choice in deciding which evidence value we pass in as an argument.

ExAMPLE 19. Consider the following program (where the actual function defini-
tions are omitted).

overload c :: Int->Bool where -- ci
cC= ...
overload c Int->Int where -- c2
cC= ...
overload d Bool->Char where -- dil
d= ...
overload d Int->Char where -- d2
d =
exp3 :: (C (Int->a), D (a->Char)) => Int->Char

exp3 = c . d

The type of exp3 is ambiguous. This implies that we cannot decide which actual
definitions of c and d (either (c1,d1) or (c2,d2)) to use.

A further technical challenge is to introduce coercion (ordering) relations between
different typing derivations. Consider the following two expressions.

exp :: Eq (a->a->Bool) => [a]->[a]l->(Bool,Bool)
exp xs ys = (eq (tail xs) ys, eq (1::Int) (3::Int))

exp’ :: [Int]->[Int]->(Bool,Bool)
exp’ xs ys = (eq (tail xs) ys, eq (1::Int) (3::Int))

Both expressions are identical modulo their type annotation. We find the following
target expressions.

expT :: (a->a->Bool)->[a]l->[a]l->(Bool,Bool)
expT e xs ys = (ecEqlist e (tail xs) ys, ecEqInt (1::Int) (3::Int))

expT’ :: [Int]->[Int]->(Bool,Bool)
expT’ xs ys = (ecEqList ecEqInt (tail xs) ys, ecEqInt (1::Int) (3::Int))

Note that in this case we can provide closed definitions for evidence constructors.
Both target expressions yield the same result for any ground instance, however,
expressions exp’s type and translation is “more general” than exp’’s type and trans-
lation.

We define an ordering relation among types, target expressions and variable
environments. Variable environments need to be included because in case of let
expressions the environment will be changed (see the upcoming Lemma 14).

DEFINITION 1. Let P be a confluent set of CHRs whose simplification rules are
single-headed and non-overlapping, C' a constraint, o1 = Va,.C1 = 1 and o5 =
Yay.Co = 12 two unambiguous type schemes, Ei and Ey two target expressions,
and 1 and ns two variable environments. We define P,C F (o1,E1,m) =<

(027E27n2) 7’.[7[
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—m1 and 12 satisfy P,
fl[P]]/\C F oy <oy
—for any ¢ such that [P] |= ¢(C A Ca A1 = T2), we have that

[¢(E)]m m(esc,) = [9(E2)Inz n2(esc,)

where ¢ is the unique extension of ¢ such that [P] | ¢'Ci. We define ¢ on
target expression as follows: ¢(ec) = egc and ¢(e) = e otherwise.

We define P,C F'** (T'y,m) < (Tg,m2) iff P,C F'* (01, 21,m) = (01, 21,72),...,P,C ¥
(OnsTn,m) X (o), Tn,n2) where T'y = {21 : 01,...,2, : op} and Ty = {21 :
OlyenesTn i Oh}

Note that uniqueness of extension ¢' is ensured by the Lemma 10.

For future calculations, we consider (7,E,n) as a short-hand for (Va.a = 7 =
a, z.E,n) where a and x are fresh variables. Note that the lambda bound variable
x refers to the evidence parameter for ¢ = 7. In this particular case, we find that
it P,C % (1, E1,m) =X (71, Ea,m2) where fo(r1,72) = 0 and C —} T'rue, then
[Er]m = [E2]7.

In case of the above expressions, we find that

P, True F* (Va.Eq (a — a — Bool) = [a] = [a] = (Bool, Bool), expT,n)
=
([Int] = [Int] — [Int] — (Bool, Bool), expT',n)

where P consists of rules (Eql-3) and 7 is any variable environment that satisfies P.
The following three lemmas fall out by some straightforward calculations.

LEMMA 11 TRANSITIVITY. The above relation is transitive.

In the following two lemmas we will assume that type schemes are unambigu-
ous and CHRs are confluent and simplification rules are single-headed and non-
overlapping.

LEMMA 12 INSTANTIATION. Let P be a set of CHRs, Cy and C) two constraints,
o1 a type scheme, Eq and Es two target expressions, 1 and 12 two variable envi-
ronments, To o sequence of types, @ a sequence of type variables, ec, a evidence

variable and ec :: Cy LY [T2/a2]CY a evidence constructor such that P,Cy
(01, E1,m) X (VYag.Cy = T2, Ea,12). Then,

P,Cy F'* (01, E1,m) 2 ([R2/G2]72, Bs (ec ecy),n2).

LEMMA 13 GENERALIZATION. Let P be a set of CHRs, C> and C} two con-
straints, Gz a sequence of type variables, o1 a type scheme, T a type, Ei and
E, two target expressions and 11 and 12 two wvariable environments such that
P,CQ /\Cé pttv (Ul,El,’I]l) < (TQ,EQ,’I]Q) and G- gﬁ)(CQ,O'l). Then,

P,Cy F" (01, Er,m) = (Vag.Cy = 72, Aegy-Ea, 12).

In order to define an ordering on typing derivations, we assign weights to deriva-
tions trees.

Let P,C,T - e: 0~ E be a judgment. The derivation tree of P,C,T - e: 0~
E is a reversed tree where all leaf nodes are associated with (Var) rule application,
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intermediate nodes are associated with other valid rule applications and the root
node (i.e. the bottom most node) is P,C,T  e: o ~ E. We refer to the weight of
P,C,T F e: 0~ E as the number of nodes in the derivation tree, i.e. the number
of typing rules necessary to derive the final judgment.

DEFINITION 2. Let P be a program theory, Ci and Cy two constraints, I'y and
Ty two type environments, o1 and oy two type schemes, E; and Es two target
expressions and e a source expression. Then, we define

(P,Cl,I‘l |‘ 6:0’1'\/)E1)
=

(P,CQ,FQ |_ 6:0’2’\/>E2)
iff

—[P] E C2 D (3p(r2)Ch),

*l[P]] ACy F o < o2, [P]]/\Cz F Ty <XTy, and

—let Dy be the derivation tree of P,C1,I'1 F e : 01 ~ Ey, and let Dy be the
derivation tree of P,C2,T's F e : 09 ~ Es. Then relation < holds for all sub-
derivations P,C{, T} + €' : 0} ~ E{ in Dy and P,C},Ty + €' : ol ~ El in D,
where we assume that P,C],T} + €' : 0] ~ E| has a lower weight in D, than
P,C}, T, + €' :oh~ Eb in Dy.

Note that we can always normalize typing derivations by combining (Var) and (VE)
rule applications and (VI) and (Let) rule applications. In particular, given a fixed
environment I' and expression e we find that for any (P,C2, s F e : 09 ~ E»)
there is always a (P,C1,T F e: 01 ~ E) for some C; and oy such that (P,Cy,T" +
e:01~ Ey) X (P,Cy,Ty b e: 09~ E). That is, we have principal derivations
for a fixed T and e (follows from completeness of inference).

LeEMMA 14 CONFLUENT TRANSLATIONS. Let P,C1,T'1 F e: 01~ Ey, P,Cs,T4
e : 09 ~ Fy be two valid judgments, 11 and 12 two variable environments such that
(P,C1,T1 F e:01~ E) X (P,Cy,Ty F e:09~ Ey) and P,Cy F* (Ty,n) <
(T2,m2). Then P,Cy F'*¥ (01, E1,m) =X (02, E2,7)-

A proof can be found in the Appendix.

In the final step toward establishing coherence, we will need to prove that if the
principal derivation is unambiguous then any other derivation will be unambiguous
as well. Maybe surprisingly, this is not always true as the following example will
show.

Consider the expression (f, 1) where we assume that we have an overloaded iden-
tifier f in scope. The principal judgment is P, F a,T + (f,1) : (a, Int) ~ (f,1) for
some appropriate P and I'. The following is another valid judgment:

P,F a,T F (f,1): (a,Int) ~ (f, AeF p.1)

Note that we assume a sub-derivation of the form P, F aAF b,T" F 1: Int ~» 1 from
which we derive (by applying rule (VI)) P,F a,I' b 1:Va.F a = Int ~ lep .1
Clearly, this example shows that although the principal derivation is unambiguous,
other derivations might be ambiguous. However, as we also can see the evidence
parameter e p is not used inside the function body. Therefore, we rule out such
non-sensical derivations. Under these additional assumptions it is straightforward

I_
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CT—= Cly---,Cm eP
a = p(F\P(T)
PCT,x:Va,b. TCTANC"=>71F p:o’
P,C,T, | class ¢i,...,cm = TC Twhere z :Vb.C' = rinp: o’

(Class)

TC7¥ < ¢1,...,¢y € P
P,CT + p:do"
(Inst) PC,TFe:Va'C'=7 (2:Va.TCTAC" =>71)€el
[PlE V@' (TCT AC") = 1) Va.(TCTAC" AT =T) = 1)
P,C,T | instance ¢1,...,¢ym = TC 7' where z =einp: o’

Fig. 5. Type Class Typing Rules

to verify that if the principal derivation is unambiguous then any (besides non-
sensical ones) other derivation must be unambiguous as well.

It remains to give a meaning to primitive functions. Let 7 be a variable environ-
ment and T' a closed type environment (fu(T') = (). We define n = T iff for each
non-overloaded identifier z : ¢ € I' we have that n(z) € [o].

THEOREM 15 COHERENCE. Let P,C;,I' + e: 7~ FEy and P,C2,T' - e: 7~
Es5 be two valid judgments and n be a variable environment such that the principal
derivation is unambiguous, C1 —% True, Cy —% True, n |= T, n satisfies P,
P is a confluent set of CHRs where each simplification rule is single-headed and
non-overlapping. Then [E1]n = [Ez2]n.

A proof can be found in the Appendix.
7. TYPE CLASSES AND CONSTRAINT HANDLING RULES

We consider a particular instance of Haskell style type classes where type class rela-
tions are described by CHRs. The development is similar to Section 4. Expressions
are extended to programs which also contain class and instance declarations.

Expressions e := z|Az.e|ee|let z =eine
Programs p == e|classc¢;...cp, = TC Twhere z: oin p|
instance ¢y ...c;, = TC Twhere z =einp

We assume that TC T is a type class constraint expressing membership of type
tuple T to the type class TC. Constraints ¢y, ..., ¢, refer to type class constraints.
For simplicity, we assume that class and instance declarations consist of only one
member function.

Typing judgments are as before. However, in this particular context we refer
to P as the type class theory. In Figure 5, we provide typing rules for class and
instance declarations. We adopt rules (Var-Let) from Figure 1.

Rule (Class) introduces a new type class TC. The class declaration class ¢y, . .., ¢,
TC 7 where ... constrains any instance of the class TC'to also satisfy the constraints
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€1,...,¢n. This is expressed by the CHR propagation rule
TCT = c1,.--,¢m
which must be in P.

ExXaAMPLE 20. Consider the Haskell standard prelude definitions of Ord and its
translation:

class Eq t => Ord t where ... (S1) Ord t = Eq t
This ensures that whenever we assert Ord t we must also have Eq t.

Rule (Inst) defines an instance of class TC. The instance declaration instance ¢y, ..., ¢y =
TC 7" where ... maintains that 7 is an instance of TC'if and only if the constraints
c1,--.,Cn are satisfied. This is expressed by the CHR simplification rule

TC7 < ci,...,Cm
which must be in P.

ExamMprLE 21. The instances of Ord and Eq for Lists and their translations are:

instance Eq t => Eq [t] where ... (S2) Eq [t| <= Eq t
instance Ord t => Ord [t] where ... (§8) Ord [t] <= Ord t
instance Eq Int where ... (S4) Eq Int <= True

This means that we can prove that a type [t] is an instance of the class Eq or Ord
if we can prove that t is an instance, and that Int is an instance of Eq.

As a further condition, we require that the type of the member function for a
particular instance is subsumed by the type specified by the class declaration.

EXAMPLE 22. Consider the program

class C a where £ :: a->a
instance C Int where f x = x
instance C Bool where f x = 1

The class declaration states that x has type Va.C'a = a — a. The first instance
declaration implements an instance of C at type Int where the member function
z has type Ya.a — a. This is more general than actually required, but still safe
because Ya.a — a subsumes Int — Int. The situation is different in case of the
second instance declaration. At instance type Bool the member function has type
Va.a = Int. This will certainly cause problems at run-time. If function x is applied
in context C Bool, we expect x to be applicable to values of type Bool and resulting
in a value of type Bool. However, the actual implementation has type Va.a — Int
which does not subsume the expected instance type. Therefore, we need to reject the
above program. Indeed, the second instance is not type correct w.r.t. rule (Inst).

7.1 Examples of type class systems

It follows immediately that single and multi-parameter type classes as described
in [Jones 1992] can be expressed in our formulation of type classes. The program
theory P simply consists of the simplification and propagation rules P, which arise
from class and instance declarations.
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We continue with examples of type class systems where additional type class
features can be expressed by the programmer specifiable set P, of CHR propagation
rules.

Functional Dependencies. Jones [Jones 2000] extends multi-parameter type classes
to include functional dependencies (FDs) among class arguments. From our per-
spective, functional dependencies just extend the proof requirements for an in-
stance. The extra constraints are represented straightforwardly using CHRs.

ExAMPLE 23. Consider the following class declaration.

class Collects e ce | ce -> e where
empty :: ce
insert :: e->ce->ce

The functional dependency ce -> e enforces that ce uniquely determines e. From
this class declaration we generate the following additional CHR:

(FD) Collects e ce,Collects ¢’ ce = e=¢'

The above rule states that whenever we encounter the two constraints Collects e
ce and Collects e’ ce we enforce that e and e’ must be equal.

In fact, this is not sufficient to enforce the functional dependency as found in Haskell
in all possible situations.

ExaAMPLE 24. Consider the following instance declarations.

instance Collects Int [Int] where ...
instance Collects Float [Float] where ...

Assume out of an expression we generate the constraint Collects a [Int]. Accord-
ing to the functional dependency imposed on Collects type variable a is uniquely
determined by [Int]. Therefore, Haskell “improves” this constraint by substituting
variable a by Int. In our framework, we have to enforce the functional dependency
specifically for each instance. The following CHRs will do the job.

(FD1) Collects a [Int] = a = Int
(FD2) Collects a [Float] = a = Float

We observe that CHRs are sufficient to model functional dependencies. Recall the
above class and instance declarations. In our framework, the above can be repre-
sented as follows.

class Collects e ce
instance Collects Int [Int]
instance Collects Float [Float]

-- general FD

rule Collects e ce, Collects e’ ce ==> e=e’
-- instance specific FDs

rule Collects a [Int] ==> a=Int

rule Collects a [Float] ==> a=Float
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In general, a class declaration with functional dependencies has the form
class C => TC a; ... a, | fdy, ..., fdn

where fd; is a functional dependency of the form aj,,...,a;, — a;. Note that
variables a;; are distinct. The functional dependency asserts that given fixed values
of a;,,...,ai, then there is only one value of a;, for which the class constraint TC
a; ... ap can hold. In [Jones 2000] the right hand side of the — can have a
list of variables. We use this simpler form, the expressiveness is equivalent. The
CHR translation creates, for each functional dependency in a class declaration, an
additional propagation rule of the form:

(FD-TC) TC ay...an,TC 0(by)...0(b,) => a;, = by,

where variables by, ..., b, are distinct and § maps each b;; to a;; and each other b,
to itself.
For each instance declaration of the form

instance C => TC t; ... t,

and functional dependency a;, ,...,a;,, — ai, we generate the following CHR:
(FD—Inst) TC gl(bl) .. gl(bn) = tij, = bio

where 6’ maps each b;; to t;; and each other b; to itself.

As already observed by Jones, functional dependencies subsume parametric type
classes [Chen et al. 1992]. For example, the (parametric) declaration class a ::
Foo b can be expressed by the functional dependency class Foo a b | a->b. The
parameter a uniquely determines b. Note that with parametric type classes we can
only describe uni-directional dependencies. E.g. with functional dependencies we
can state class Foo a b | a->b, b->a. That is, there is a mutual dependency
between both parameters Duggan and Ophel [Duggan and Ophel 2002b] describe
yet another type checking strategy for multi-parameter type classes. In essence,
they infer functional dependencies from the set of available instances. Surpris-
ingly, there are some inconsistencies when it comes to termination of the respective
inference algorithms.

EXAMPLE 25. Here is a reformulation of the example on page 17 from [Duggan
and Ophel 2002b] in terms of functional dependencies. For simplicity, we leave out
the actual instance bodies.

class Foo a b | a->b, b->a where foo :: a->b->Int
instance Foo Int Float

instance Foo a b => Foo [a] [b]

gxy= (foo [x] y) + (foo [y] x)

During type inference for function g we encounter, among others, constraints Foo [a] b, Foo [b] a.
Duggan and Ophel’s inference algorithm will not terminate in this case. In fact,

instance Foo a b => Foo [a] [b] is not legal according to the restrictions im-

posed on functional dependencies. For any instance instance ... => Foo t1

t2, free variables in t2 must also be found in t1. This is clearly violated. For

details, we refer to page 12, Section 6.1 in [Jones 2000].
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But GHC allows for a more relaxed form of functional dependencies. Surprisingly,
GHC [GHC 2003] reports the following type for g.

Va,b. (Foo [[a]] [b], Foo [[b]] [a]) = [b] = [a] = Int

That is, type inference in GHC terminates! The key to understand the difference
in behavior between [GHC 2003] and [Duggan and Ophel 2002b] is to translate the
above class and instance declarations into CHRs.

(Inst1) Foo [a] [b] <= Fooab
(Inst2)  Foo Int Float <= True
(FD1) Fooab,Fooac = b=c
(FD2) Fooab,Foocb = a=c
(FD111) Foo[a] b = b=
(FD211) Fooalb] = a=]c]
(FD112) Foo Int a = a = Float
(FD212) Foo a Float = a=Int

Rules (Instl) and (Inst2) result from the instance declarations. Rules (FD1) and
(FD2) formulated the functional dependencies class Foo a b | a -> band class
Foo a b | b => a. The other rules are instance specific FDs. The above CHRs are
non-terminating. For example, consider the following (non-terminating) derivation.

Foo [a] b,Foo [b] a
—rpin Foo [a] [c], Foo [[c]] a,b = [(]
—nst1 Foo a ¢,Foo [[c]] a,b =[]
—rpan Foo [d] ¢, Foo [[c]] [d],b = [c],a = [d]
—nst1 Foo [d] ¢, Foo [C] d,b= [c],a = [d]

GHC terminates because of “lazy” context reduction [Jones et al. 1997]. That is,
not necessary all simplification rules are applied during type inference of function
g. This prevents the GHC type checker from non-termination. Note that the CHR
solver will terminate for any ground constraint. Indeed, GHC will only detect that
function g is unsatisfiable once we apply g to some monomorphic arguments.

Disjoint and Negative Class Constraints. Once we apply our approach to the
Haskell type classes formulation we can easily express extensions.

The following example illustrates that it might be useful to to express disjointness
of type classes.

EXAMPLE 26. The following program is accepted by Haskell.
fxy=x/y+x ‘div y
Function £ has an inferred type of
f :: (Integral a, Fractional a) => a->a->a

rather than immediately causing a type error. A CHR expressing that the Integral
and Fractional type classes are disjoint is simply.

(Disjoint) Integral a,Fractional a = False



36 . P.J. Stuckey and M. Sulzmann

Another useful feature would allow type classes to represent negative information:

EXAMPLE 27. The intention of the Num class is to describe numeric types. We
might insist that functional types are never numbers by adding the rule

(Negative) Num (a — b) = Flalse

Then, the declaration instance Num (a->b) will cause an immediate error to be
detected.

7.2 Properties of type class systems

Class and instance declarations must satisfy certain conditions. For example, ac-
cording to the Haskell 98 [Peyton Jones et al. 1999] language report Section 4.3.2.
(Instance Declarations):

Assume that the type variables in the instance type (T ul ... uk) satisfy the
constraints i n the instance context cx’. Under this assumption, the following two
conditions must also be satisfied:

(1) The constraints expressed by the superclass context cx[(T ul ... uk)/u] of C
must be satisfied. In other words, T must be an instance of each of C’s super-
classes and the contexts of all superclass instances must be implied by cz’.

(2) Any constraints on the type variables in the instance type that are required for
the class method declarations in d to be well-typed must also be satisfied.

In our framework, this can be expressed by requiring that the type class theory
must be confluent.

EXAMPLE 28. Reconsidering Example 5 from the introduction, but directly trans-
lating the Haskell class and instance declarations to CHRs we obtain

class Eq t => 0rd t where ... (S1) Ordt = Eq t
instance Eq t => Eq [t] where ... (S2) Eq [t] <= Eq t
instance Eq Int where ... (S4) Eq Int <= True
instance Ord [t] where ... (S5) Ord [t] <= True

We would have a non-confluent type class theory, since 0rd [ul has two derivations
whose result is not joinable:

Ord [u] —s1 Ord[u],Equ] —ss Eqlul —s2 Equ

and simply Ord [u] —s5 True using rule (S5).
The non-confluence arises exactly because the requirement that each Ord instance
is also o Eq instance is not satisfied.

Confluence provides us with a general notion to ensure validity of class and
instance declarations. Note that confluence is essential to ensure type correctness
(see Section 5) and a coherent semantics (see Section 6). The techniques and
methods developed in these sections also apply to Haskell style type classes.

8. EXTENSIONS

We discuss how to handle overlapping and closing definitions. Both extensions
fit into our framework by employing more expressive CHRs. We also introduce
multi-headed simplifications.
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8.1 Overlapping Definitions
EXAMPLE 29. Consider the following adaptation of Example 13 from Section 4.2.

overload eq :: Int->Int->Bool

overload eq :: Char->Char->Bool

overload eq :: Eq (a->a->Bool) => [a]->[a]l->Bool
overload eq :: [Int]->[Int]->Bool

rule Eq x ==> x = t->t->Bool

The following CHRs arise.

(Eql) Eq (Int — Int — Bool) <= True
(Eq2) Eq (Char — Char — Bool) <= True
(Eq3) Eq ([a] = [a] = Bool) <= Eq (a — a — Bool)
(Eq4) Eq ([Int] = [Int] — Bool) <= True

(Eg5) Eqx = x=t—t— Bool

Although, the program theory is confluent, it seems difficult to provide a coherent
translation because we must take an indeterministic choice in case we require eq on
type [Int] — [Int] — Bool.

We can rely on yet another extension of the CHR framework to resolve the above
ambiguity. Assume that by default we always want to choose the more specific def-
inition. This can be modeled by incorporating guard constraint into simplification
rules when constructing evidence. The guard constraint, a # Int, added to rule
(Eq3), states that this rule only fires if the instance type is different from Int.

(Eql) Eq (Int — Int — Bool) <= True
(Eq2) Eq (Char — Char — Bool) <= True
(Eq3”) Eq ([a] = [a] = Bool) <= a # Int | Eq (a = a = Bool)
(Eq4) Eq ([Int] — [Int] = Bool) <= T'rue

Note that our approach to providing a meaning for programs containing overloaded
identifiers relies on run-time evidence construction. Hence, for type inference pur-
poses we employ rules (Eql-5) whereas for the actual evidence construction we
employ rules (Eql-2), (Eq3’) and (Eq4). Consider

eq [x] [yl

gxXy~=
e = (g (1::Int) (2::Int), g ’b’ ’a’)

Type inference yields that g has type Eq (a->a->Bool) => a->a->Bool and e has
type (Bool, Bool). Hence, evidence translation yields

gexy= (e e) [x] [yl
e = (g (eca erpye) (1::Int) (2::Int), g (ecs erpye) ’b’ ’a’)
where
eci :: Eq (a = a — Bool) 5 Eq ([a] = [a] — Bool)
ecs = True 5 Eq ([Bool] 5 [Bool] — Bool)
ecs = True 5 Eq ([Char] 5 [Char] — Bool)
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and P consists of rules (Eql-5). At run-time, that is when we actually construct
evidence values, we exchange P by P’ where P’ consists of rules (Eql-2), (Eq3’)
and (Eq4). This ensures that evidence will be constructed unambiguously. For
example, when evaluating g (1::Int) (2::Int) we pass in the information to g
that we demand evidence for Eq ([Int] — [Int] — Bool). By employing P' we pick
the more specific instance.

We observe that our dealing with overlapping definitions crucially relies on the
fact that we postpone evidence construction until run-time. Obviously, such a
method prohibits separate compilaton. In summary, assume the set Py U P, is
confluent but P; (all simplification rules) is overlapping. That is, we find M t; <=
Ci and M ty <= C, such that t; and ¢, are unifiable. We perform type inference
and evidence translation w.r.t. P; U P,. At run-time, i.e. evidence construction
time, we employ P, which is derived from P, by choosing an appropriate set of
guard constraints to ensure that P, w.r.t. guard constraints is non-overlapping. For
example, M t; <= g, | C1 and M t; <= go | C are non-overlapping w.r.t. guard
constraints if for any unifier ¢ of ¢; and 2 either guard constraint ¢g: or ¢g. is
satisfied. Note that we can always make P! non-overlapping by e.g. setting g1 to
False.

8.2 Closing Definitions

Consider the following definitions. For simplicity, we omit the obvious function
bodies.

overload eq :: Int->Int->Bool where
eq = ...

overload eq :: Eq (a->a->Bool) => [a]->[a]->Bool where
eq = ...

We find the following set of CHRs:

(Eql) Eq (Int — Int — Bool) <= True
(Eq2) Eq ([a] = [a] = Bool) <= Eq (a = a = Bool)

In our current scheme the following expression would be still well-typed.

f :: Eq (Tree a->Tree a->Bool) => Tree a->Tree a->Bool
fxy=eqxy

Although there is no equality definition on trees in scope at the moment, this does
not mean there might not be one available in the future. Compare this to a closed
world approach which would rule out the above program.

Fortunately, there exists an extension of the CHR framework [Abdennadher and
Schiitz 1998] presented so far that allows us to mix open and closed world style
overloading. We introduce propagation rules where disjunction is allowed to appear
on the right-hand side. By adding in the following propagation rule

(CloseEq) Eq a = (a = Int — Int — Bool) V (a = [b] — [b] = Bool)

we enforce that the definitions corresponding to rules (Eql) and (Eq2) are the only
ones available.
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Note that allowing for disjunction among equality constraints on the right-hand
side of the = symbol influences the constraint solving process. In addition to sim-
plification and propagation of constraints, we also now perform constraint solving
by search.

While all of our soundness results carry over to the extended set of CHRs, it
is now much more difficult to ensure termination. The addition of rule (CloseEq)
makes the above set of CHRs non-terminating. We follow [Shields and Jones 2001]
by disallowing recursive dependencies for “closed” definitions. This requirement is
sufficient to ensure termination of CHRs involving closed definitions. Completeness
results should also carry over except that we need a much more complex definition
of subsumes to handle the disjunctive results.

8.3 Simplifying Constraints

In Haskell it is common to “simplify” constraints before presenting them to the user.
One simple form of simplification is unification. That is, no explicit equality con-
straints are allowed to appear in constraints. Another form is to omit “redundant”
constraints. Recall the super class relation from Example 5.

(Super) Ord a = Eqa

Consider the expression

h :: (Eq (a->a->Bool), Ord (a->a->Bool) => a->a->(Bool,Bool)
hxy=(eqxy, ord x y)
Note that

[P] E (Eq (a = a = Bool) A Ord (a = a — Bool)) + Ord (a - a — Bool)

where P consists of (Super) among others. Therefore, we could assign to expression
h the equivalent but simpler type scheme Va.Ord (a = a — Bool) = a — a —
(Bool, Bool).

Such form of “simplification” can always be achieved by turning a rule such as
(Super) into a multi-headed simplification rule of the form

Ord (a - a = Bool), Eq (a - a = Bool) <= Ord (a — a — Bool)

9. RELATED WORK

Our approach is clearly inspired by Haskell style type classes and its various ex-
tensions. The theory of qualified types [Jones 1992] provides a general framework
for type classes. However, essential questions such as decidability of type inference
need to be reconsidered for each new extension [Jones 2000; Jones et al. 1997; Jones
1993b]. In our overloading framework, we have established some precise conditions
in terms of CHRs under which we achieve decidable type inference and the meaning
of programs is unambiguous.

Moreover, we gave a reformulation of type classes in terms of CHRs. In particular,
we considered functional dependencies [Jones 2000] and some of its variations [Dug-
gan and Ophel 2002b; Chen et al. 1992]. CHRs do not solve the termination problem
in case of Example 25. However, CHRs provide some insights between the differ-
ences of [Jones 2000] and [Duggan and Ophel 2002b]. In turn, we take a look at
some other closely related work.
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Constructor classes [Jones 1993b] are another popular extension to type classes
where we can parameterize a type class in terms of a type constructor. This requires
extending the inference algorithm to “kinded” unification. That is, in addition to
the kind of all types, usually referred to as x, we also allow for the kind x — % and
so on. For example, the list constructor would be of kind x — x. Kinded unification
ensures that equations are kind correct. We believe that constructor classes can be
incorporated into our framework by providing some appropriate CHRs. Details are
left for future work.

Shields and Jones [2001] gave an extensive discussion of various possible exten-
sions to Haskell style overloading. Their main motivation is to investigate which
extensions are necessary to incorporate object-oriented classes into Haskell. In par-
ticular, they also discuss issues involving closed and overlapping definitions. As we
have seen in Section 8 CHRs are able to cope with such additional features.

The work presented here shares ideas with the recent work by Neubauer, Thie-
mann, Gasbichler and Sperber [2002]. Both works can be seen as a consequent
refinement of the HM(X) framework by incorporating an actual programming lan-
guage on the type-level. Whereas we employ CHRs, Neubauer et al. employ a
functional-logic language [Hanus 1994]. The expressiveness of both system seems
to be equivalent in power. One of the main differences is that we require conflu-
ence of CHRs whereas Neubauer et al. allow for a customizability of evaluation
strategies.

Similarly to our proposal, Odersky et al. [1995] proposed a variation of over-
loading, named System O, where no class hierarchies are imposed on overloaded
identifiers. Their motivation was mainly to provide an untyped semantics for over-
loading. This clearly results in a less expressive system.

Camarao and Figueiredo [1999] considered an extension of System O which is
close to our proposal. Their system seems to be even more liberal by allowing
for “local” overloading. Overloaded identifiers can be defined via ordinary let-
definitions at any arbitrary level. By default their system codes a closed world
assumption. We suspect that this must put decidable type inference in danger in
the presence of closed recursive definitions (see Section 8.2).

Implicit parameters [Lewis et al. 2000] introduced by Lewis, Shields, Meijer and
Launchbury are a complement to Haskell style overloading. A implicit parameter
can be seen as a special form of overloaded identifier which is allowed to be defined
locally. To ensure decidable type inference and coherence some sufficient conditions
are imposed such as each implicit parameter must always be of the same monomor-
phic type. Note that we could enforce such conditions via CHRs. However, our
semantics as described in Section 6 would need to be extended to deal with locally
overloaded identifiers. Currently, we assume that all overloaded definitions appear
on the top-most level.

Duggan and Ophel [Duggan and Ophel 2002a] studied an extension of Haskell
style type classes with open and closed scope. Type classes with open scope follow
the common open world assumption and are only allowed to be defined on the
top-most level. Type classes with closed scope follow the closed world assumption
and may be defined locally. Their system seems to provide a unifying framework
for implicit parameters and Haskell style overloading. In future work, we intend to
investigate how the CHR approach fits into their system.
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Augustsson [1998] introduced a dependently-typed language of great expressive-
ness. In his system decidable type inference is left to the user whereas we could
establish some precise conditions under which type inference is sound and complete.
Additionally, CHRs allow us to give a precise characterization under which a pro-
gram is unambiguous. An interesting topic is to lift the phase distinction between
type inference and the operational semantics of programs in our framework while
yet retaining decidable type inference and unambiguity of programs.

It is also worth mentioning the work by Yang [1998]. He shows how to express
type-indexed values in languages based on the Hindley/Milner system. This is
clearly related to overloading, though we yet have to work out the exact connections
between his work and ours.

10. CONCLUSION

It is folklore knowledge that via Haskell’s type class system it is possible to encode
logic programs on the level of types. However, there has not been any proposal so
far to make this connection concrete.

In this paper, we have proposed a general overloading framework based on CHRs.
CHRs serve as a meta-language to describe relations among overloaded identifiers.
We can describe precisely in terms of CHRs under which conditions type inference
is decidable (Section 5) and the semantics of programs is well-defined (Section 6).
We believe that the range-restrictedness condition can be lifted as long as variables
in the body of CHRs functionally depend on variables in the head. The framework
can gracefully handle many extensions to Hindley/Milner types but certainly not
all of them.

The ideas of this paper have been implemented as part of the Chameleon sys-
tem [Sulzmann and Wazny 2003]. Chameleon can be seen as an experimental
version of Haskell where the programmer can design her own type extensions via
CHRs.

The current requirement that the CHRs supplied are confluent, can be burden-
some. There are methods to automatically complete a set of CHRs [Abdennadher
and Frihwirth 1998], but they add multi-headed simplification rules and require an
explicit termination order. In future work, we plan to consider automatic methods
to complete a set of CHRs (see Example 12) that fit into our scheme. In particular,
this seems to be an issue in the context of functional dependencies (see Example 25).

APPENDIX
A. CONSTRAINT HANDLING RULES

Individual rule application steps are formalized below. Each constraint C is split
into a set of user-defined constraints C,, and a set of equations C., i.e. C = C,, UC,.
Variables in CHR rules r are renamed before rule application. Note that we allow
for guarded simplification rules ¢ <= g | d where the guard constraints g is a
conjunction of disequality constraints.



42 . P.J. Stuckey and M. Sulzmann

(Solve) C, UC, —p ¢Cy U con()
¢ mgu of C,
(Simp) C,UC, —p (C,, — &)U C, UH(d)
if (R) €<= g|d € P and there exists a subset ¢ C C,
and a substitution § on variables in (R)
such that 6(¢') = ¢ and |= C, D 6(g)
(Prop) C,UC, —p C, UC, UB(d)
if (R) ¢ => d € P and there exists a subset ¢ C C,,
and a substitution 6 on variables in (R)
such that 0(¢') =¢

In rule (Solve), we assume that we normalize stores by building most general uni-

fiers. The observant reader will notice that we have to prevent the infinite applica-

tion of CHR propagation rules. We refer to [Abdennadher 1997] for more details.
We find the following result, see [Frithwirth 1998b] for details.

THEOREM 16 SOUNDNESS. Let P be a CHR program and C,C" constraints such
that C —% C'. Then, [P] E C < g ) C".

B. TYPE INFERENCE
B.1 Essential lemmas

An important property of range-restricted CHRs is that confluence for this class of
CHRs, enforces a stronger property than the general case. Given Cy —p C; and
Co —p Cs, then there exist derivations C; —} C3 and Cy —} C4 such that
Cs is equivalent (modulo new variables introduced) to Cy, i.e. = (Jp(cy)Cs) ¢
(350(co)C4). But any substitution ¢ that grounds all variable in fv(Co) also grounds
any variables in 6(C3) where 65 is an mgu of h¢,, and similarly for Cy. This
means that ¢(03(C3)) and ¢(04(C4)) must be the same set of ground user-defined
constraints.

LEMMA 17 MODEL EXTENSION. Let P be a confluent set of range-restricted
CHRs where each simplification rule is single-headed. Suppose D —p C where
= Jhe. Let 6 = 6y - 0y be a substitution where 0y is an mgu of hc, and 01 is a
substitution mapping every variable to a distinct new type constant. Then, we can
construct a model M of 6(C) and [P] such that for each subset S C M we have
that S —% S’ where S' C6(C).

Proor. Note that by the definition of #, no further derivation steps are applica-
ble to (C) since none were applicable to C' and the effect of 8 does not cause any
variables that were not equal to be equal, nor any constraint #(C) to now match
the head of a rule it did not previously match.

We iteratively construct a model M of the program P and 6(C), defined as a set
of ground user-defined constraints, as follows:

Initially M = 6(ac). We use ac to refer to all user-defined constraints in C'.

We augment M using the following rules.



A Theory of Overloading . 43

—If there exists a rule h <= di,...,d,;, and ground substitution ¢ such that
¢(d;) € M if d; is a user-defined constraint and ¢(d;) is true if d; is an equation
then add ¢(h) to M.

—1If there exists arule h <= dy, . . . , d;;, and ground substitution ¢ such that ¢(h) €
M and ¢(d;) is true if d; is an equation then add the user-defined constraints
¢(dz) to M.

—If there exists a rule hi,...,h, = di,...,d,, and ground substitution ¢ such
that {¢(h1),...,¢(hn)} C M and ¢(d;) is true for equations d; then add the
user-defined constraints ¢(d;) to M.

We prove by induction (on k such that S C M} where My, is the kth iteration in
the construction of M) that for any subset S C M there is a derivation S —%}, S’
where S’ C (ac). Clearly the base case holds for S C §(ac).

Suppose ¢(h) was introduced using the first rule above. Then ¢(h) —p ¢(d1) A
---A¢(dy,) and by induction we have a derivation from ¢(di)A---A¢(dy) —5 S’
where S’ C 6(ac).

Suppose ¢(d;) was introduced by the second rule above. Then there exists ¢(h) €
M such that by induction ¢(h) —% S’ where S’ C 6(ac). Hence, by the confluence
of P it must be that ¢(d;)A---Ad(d,,) —% S'. (since the rules are range-restricted
the derivations must end identically). Clearly then if d; is an equation we have
that = ¢(d;) since otherwise this derivation is impossible. Now consider the user-
defined constraints ¢(d;). Since the simplification rules are all single headed, for
each ¢(d;) & 6(ac) it must be the case that it is rewritten using a simplification
rule, eventually to a set of facts in §(ac). Using this sub-derivation we have that
for each ¢(d;) —% S} where S; C 6(ac).

Suppose ¢(d;) was introduced by the third rule above, then there exist {¢(h1), ..., ¢(hs)} C
M such that by induction ¢(h1) A---Ad(h,) —5 S’ where S’ C 6(ac). Hence, by
confluence of P it must be that ¢(h1) A--- A d(hp) A ¢(di) A ... A p(dm) —5 S".
Again using the same argument as the previous case we have that each ¢(d;) — 3
Si where S; C f(ac). O

LEMMA 2 CANONICAL FORM. Let P be a confluent and terminating set of range-
restricted CHRs where each simplification rule is single-headed. Then [P] = D +
D' iff D —% C and D' —% C' such that | (3yC) < 3vC'), where V =
fo(D) U fo(D").

ProOOF. We assume that variables in C' and C' not in V' are renamed apart.

” = 7: We proceed in two steps. First, we show that 3y he and Iy her are either
equivalent or both unsatisfiable. Assuming that 3y hc and 3y her are equivalent, we
show that 6(ac) and 6(acr) are syntactically equivalent for any mgu 6 of ho A her.

(1) Since D —% C implies that [P] | D « (3yC) we have [P] = (3vC) <
v ).

We show that if the Herbrand constraints h¢ of C are satisfiable, then |= (3yho) D
(Fvher).

Let 69 be an mgu of the Herbrand constraints h¢ in C. Let 61 be a valuation that
maps each type variable in 69(V') to a distinct new type constant not appearing
in the program. Let § = 6y - 5. Note that since 8 grounds V is also grounds all
variables in C and 6'(C") where ' is an mgu of h¢r.
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By Lemma 17 we can construct a model M of 6(C) and [P]. But, now M |
(3vC) D (v ") since M models [P] and [P] E (3vC) < (3vC").

But by construction M | 6(C) and hence M = 3y0(C') Now M is irrelevant
to the equational constraints of C' in other words we have = (Fyhcr). The new
constants of #; take the role of Skolem constants, hence we have shown that any
solution of h¢ implies Iy her. That is = (Jyhe) D By her).

Similarly for C'. Hence either the Herbrand constraints of C' and C' are both
unsatisfiable in which case we are done, or they are equivalent, i.e. & (3yvhc) ¢
(Fvher). . .

(2) We assume |= (3yhe) < (vhe). We show that 6(ac) and 6(acr) are
syntactically equivalent where § = 6; - 8y, 6y is an mgu of hg A hgr and 6; a
substitution mapping each type variable in 8y (V) to a distinct new type constant.

Note that 6(C) and 6(C") are ground by construction.

Note that since 3y he and Iy her are equivalent then no further derivation steps
are applicable to 6(C) since none were applicable to C and the new values for
variables given by 6 do not cause any variables that were not equal to be equal, not
any constraint §(C) to now match the head of a rule it did not previously match.
Similarly for C'.

Using Lemma 17 we construct a model M of [P] and 6(C) such that for each
subset S C M we have that S —} S’ where S’ C 6(C). By definition M =
(3yC) + (yC"), and hence M |= (C) « 6(C'), and hence M = 6(C") and thus
t(ac) C M.

But then §(acr) —% S’ where S’ C 0(ac). But 6(acr) has no further derivation
steps possible hence 6(ac') C 6(ac). The same argument applies starting from
6(C") hence (ac) = 0(ac).-

We conclude that = (I C) « FyC").

” < ”: The CHR soundness result yields [P] = D « (3yC) and [P] & D' «
(3yC"). We immediately find that [P] = D «+ D'. O

B.2 Satisfiability

LEMMA 1 WEAK SATISFIABILITY. Let P be a confluent set of range-restricted
CHRs where each simplification rule is single-headed. Let C' be a constraint and
suppose C —% C'. Then = I([P] A C) iff & Fher.

PROOF. ” = 7: Now [P] £ C ¢ Jp)C’, hence if | —3hcr we have that
[P] & -3C.

? < 7: We apply Lemma 17 to build a model M of [P] and §(C") where 8 is as
defined in Lemma 17. Since [P] £ C ¢ 3p,(¢)C", clearly M =3C. O

B.3 Ambiguity

LEMMA 3 SOUNDNESS OF UNAMBIGUITY. Let P be a set of CHRs, Va.C = T
be a type scheme and p be a variable renaming on a such that C A p(C) AT =
p(t) —% C'" where = C' D (a = p(a)) for each a € a. Then for each a € a
[P] = (C A p(C) A (7 = p(7))) D (a = p(a)).

PRrROOF. Follows immediately from soundness of CHR derivations. [

LEMMA 6 COMPLETENESS OF UNAMBIGUITY. Let P be a confluent set of range-
restricted CHRs where each simplification rule is single-headed, Ya.C' = T be a type
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scheme and p be a variable renaming on @ such that [P] = (C A p(C) A (T =
p(1)) D (a = p(a)) for each a € a. Then C A p(C) AT = p(T) —% C' where
= C' D (a = p(a)) for each a € a.

PROOF. Suppose to the contrary [P] E C A p(C) AT = p(T) D a = p(a) but
= C' D a = p(a) or equivalently C' £ a = p(a). Let V be the free variables in
CAp(CYNT = p(7).

Let 6y be the mgu of the Herbrand constraints heo: in C'. Let 6; be a valuation
that maps each type variable in 8o(C") to a distinct new type symbol not appearing
in the program. Let § = 6, - 6. By definition 6(a) # 6(p(a)).

By Lemma 17 we can construct a model M of §(C") and [P]. Now, since [P] |=
(CAp(CYANT = p(1)) & TyC' we have that M | 8(C A p(C) AT = p(7)) but
0(a) # 6(p(a)) and we have a contradiction. [

B.4 Entailment

We assume without loss of generality that the all type schemes have a type variable
on the r.h.s. of =. We can convert any type scheme to this form since Va.C' = 7
is equivalent to Va.C' A 7 = a = a where a is new.

LEMMA 4 SOUNDNESS OF ENTAILMENT. Let P be a set of CHRs and o = Va.C =
7 and o' =Va'.C' = 7' (by assumption T and 7' are type variables) where C' AT =
7 —% CLand C'" AT =7 ANC —% Cy such that |= (3yCh) < (v Ca), where
V=fu(o)Ufo(a")Ufu(C'AT=7"). Then [P] F o <o'.

ProoF. W.lo.g. we assume that ana’ = (.

We continue by applying the CHR soundness result to our assumptions. We find
that

[Pl E (C'AT=1")¢ (évcl)
[P] E (C'AT =7 AC) + FvuiayC2)

By assumption |= (3yC1) + (yCa). We conclude that

[Pl E (C'AT=7) Gv(C' AT=1 AQC)) (B.1)
We apply the following reasoning
[Pl E Gv(C'AT=7"AQC)
(by weakening)

5 @Gv(CAT=11) (B-2)
D da.(CAT=17")
From B.1 and B.2 we conclude that
[Pl E (C'"AT=1"))D
da.(CAT=1")

Let p be the renaming [7'/7] (note that w.l.o.g. 7 and 7 are variables). Then
applying p to both sides, clearly

[P] = C' > Ja.p(C)
and finally
[PlEC > 3a.(CAT=1")
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Thus we conclude that [P] F o <¢'. O

Note that we interpret substitutions as equality constraints, so ¢ is equivalent to
con(¢) defined as Agepga = ¢(a). Note that = @(con(¢)). Then, the < relation
among substitutions can be expressed as constraint entailment, and LI corresponds
to conjunction. We say a substation ¢’ is an extension of ¢, written ¢ < ¢ if
= con(¢') D con(¢). We denote by ¢|5 the substitution resulting from ¢ where

= con(¢jz) > (Jacon(e)). Similarly, we denote by ¢\; the substitution such that
= con(p\a) < Ja.con(g).

LeEMMA 18 CANONICAL EXTENSION. Let Va.C = 7 be an unambiguous type
scheme, where T is a type variable, P be a confluent and range-restricted set of
CHRs whose simplification rules are single-headed, C' be a constraint and 7" be a
type variable such that [P] | (C' AT = 7') < (3b.C' AT = 7' AC) where b = a\{7}.
Then, for any substitution ¢ grounding C' AT = 1" and any model M of [P] there
exists a unique extension ¢ < @' such that M = (¢C'AT = 7') & ¢'(C'AT = 7'AC).

Proor. W.lo.g. we assume that a = fu(C, 7).

From [P] & (C' AT =17') + (3b.C' AT = 7' A C) we conclude that for any
model M of [P] there exists an extension ¢ < ¢' such that M = ¢(C' AT =7")
d'C'ANT =1 NC).

Assume M is a model of [P] and we have two different extensions ¢ < ¢' and
¢ < ¢". Hence,

M (9(C) AP (C)Np(r =11)) ¢ ((C") A¢"(C) AN (T =1')) (B-3)
The type scheme Va.C' = 7 is unambiguous by assumption. Therefore,
[P] = (C A p(C) AT = p(r)) D a = pla) (B4)

where a € fu(C,7) and p is a renaming on a.
From B.4, we conclude

[P] = (CA¢'(C) Acon(d)) » (C A G'(C) A con(9))
The “+” direction follows immediately. The other direction holds because B.4
implies that [P] | (C A ¢'(C) A con($)) < con(¢'). Note that the same holds for
¢". We apply substitution ¢ to this formula (note E ¢(con(¢')) < con( Tl-))) and
find
[P] = (4(C) A ¢'(C) Acon(8fp)) & (H(C) A ¢(C)) (8.5)
From B.3 and B.5 we conclude

M = ($(C") Ap(C) A" (C) A o(r = T') A con(¢fy))

©
(6(C") A p(C) A ¢'(C) A @( = T') A con(¢};))
Immediately, we conclude that |= con(¢/’) < con(¢;). Therefore, the extension

6 b

must be unique. [

LEMMA 7 COMPLETENESS OF ENTAILMENT. Let P be a terminating confluent
set of range-restricted CHRs whose simplification rules are single-headed, o =
Va.C = 7 and o' = Va'.C' = 7 where w.l.o.g. 7 and 7' are type variables
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such that [P] = o < o' and o is unambiguous. Then C' AT = 7' —} C1
and C' A7 = 7 ANC —% Cy such that = (v Ci) < (FvCs), where V =
fo(e) U fo(a") U fo(C' AT =71").
ProoF. Note that [P] F o < ¢’ implies
[PIEC'D (Fa.CAT=1") (B.6)
We obtain that
[PlIE(C'AT=17")« F.C'ACAT=T") (B.7)

where b = fu(C)\fv(). The direction from right to left follows immediately. Other-
wise, assume M |= [P] and M | ¢(C' AT = 7') for some model M and ground (on
fo(C' AT = 7' AC)\b) substitution ¢. From B.6 we follow that M |= ¢(3a.CAT = 7).
That is, there exists ¢\ () < ¢' such that M = ¢'(C) and ¢'T = ¢'7' = ¢1'. Note
that ¢ = ¢7', therefore ¢'t = ¢7. Hence, ¢f fo(r) = Plso(r)- We conclude that
¢ < ¢ such that M |= ¢'(C' A C A7 = 7') which shows the direction from left to
right.

Note that |= (E'Vc]_) — (chz) iff (1) |= (thol) A nd (th02), and (2) ¢1(aol) =
p- $2(ac,) where ¢; mgu of he,, ¢ mgu of heo, and p is a variable renaming such
that pjy = id. B -

(1) We show that = (3vhe,) D (Avhe,) (the other direction follows easily):

Assume the contrary, i.e. there exists ¢ such that |= ¢(he,) and ¢(he,) is unsat-
isfiable. W.l.o.g. ¢ grounds C', 7, 7'.

From B.7 we get

[PIE ((C)Ag(r=1))  (#(C) AP (C) A (r=1)) (B.8)

where ¢’ is an appropriate extension of ¢ grounding variables b.
From our assumptions and soundness of CHR solving we get

[P1 = (¢(C) A o(r =71)) & 6(C1)
[P] = (#'(C) A (C) A ¢l (T =11)) & ¢'(C2)

Note that range-restrictedness is a necessary condition for the above statement.
From the above and B.8 we get

[P] E #(C1) & ¢'(C2)

which contradicts our assumptions.

Therefore, |= (gthH) D) (gthZ).

(2) We show that ¢1 (aC1) =p- ¢2 (0,02)1

Let § = 0; - 89 where 8y is an mgu of hg A her and 67 a substitution mapping
each type variable in 6y(V') to a distinct new type constant. Note that no further
derivation steps are applicable to §(C1) and 6(C5).

Using the Model Extension Lemma we can construct a model M of [P] and
6(C1). The proof proceeds in the following two steps.

(2a) We will show that M |= 8(ac,):

Soundness of CHR solving and range-restrictedness yields

[PlEO(C' ACAT=1") ¢ 6(Cy) (B.9)
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From B.7 we can conclude that
MEONC AT=T)0C'ANCAT="T") (B.10)

for some extension @' of §. Note that 6 and 6’ might only differ on b. Assume
0#6".

We build a model M’ as an extension of M such that M’ |= 6(C2) (construction
as in Model Extension Lemma). Together with B.9 and B.10 we conclude that

M'EO(C ACAT=T)

M'EO(C' ACAT=1)

Note that M' = 6(C' AT =1").
In particular, we find that

MENCAT=T)a60C'"ACAT="T)

M EOC' AT=1)0(C'ACAT="T")

However, this is a contradiction to the Canonical Extension Lemma. Therefore,
6 = 0" and we find that M = 0(C>).

(2b) We assume that M = 6(ac,):

Note that for each subset S C M we have that S —% S’ where S’ C (Ch).

We have that 6(ac,) € M. But then 6(ac,) —?% S’ where S' C 6(ac,). But
f(ac,) has no further derivation steps possible hence 6(ac,) C 6(ac,)-

Similarly, we can build a model M of [P] and 6(C3). Applying the same argu-
ments we find that 6(ac,) C 0(ac,). Hence, 8(ac,) = 6(ac,)-

This shows that ¢1(ac,) = p- ¢2(ac,) for some appropriate renaming p. 0O

LEMMA 9 COMPILATION OF EVIDENCE. Let P be a confluent set of CHRs where
each simplification rule is single-headed and non-overlapping and n a variable en-
vironment which satisfies P. Let C1 and Cy be two sets of user-defined constraints

such that C1,Cy —p Ci. Then, there exists a closed definition for ec :: Cy f) Csy.

PRrROOF. For simplicity, we only consider the caseif Co = U rand Cy = Uy 11, ..., Up Tin-
Note that Cy,Cy —} Cy implies C, Cs —)}Simp .
The proof proceeds by induction on the derivation Cy,Cy —5 C;. We distin-
guish among the following cases:
(1) U = Uj for some j = 1...m: We immediately find that ec(e1,...,ej,...,em) =
e]-.
(2) We have that (R) U 7' <= C3 € P and there exists ¢ such that ¢7' = 7.
We find that Cy,Cy — g C1, ¢Cs. For each U] 7} € ¢C3 we have that Cq, U] 7] —*
C1 (as usual we assume an ordering on U] 7] in ¢C3). By induction, there exist

closed definitions ec; :: Cy U! 7}. We define
ec(er,-..,em) = (ecy » (ecr(er,---,€m)),---,(eck(e1,---,em)))
where ecy - is as defined above. [

LEMMA 10 UNIQUENESS. Let P be a confluent set of CHRs whose simplification
rules are single-headed, Va.C' = T an unambiguous type scheme, ¢ a mapping from
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type variables fu(C,T) to ground types and ¢' a mapping from type variables fv(T)
to ground types such that ¢' < ¢ and §C —% True. Then C,¢' —% @' for some
@" such that ¢' U ¢" = ¢.

Proor. Note that we interpret substitutions as equality constraints. Then, the
< relation among substitutions can be expressed as constraint entailment, and LI
corresponds to conjunction.

By assumption Va.C' = 7 is unambiguous. Let p be a variable renaming. We
have that

[Pl = (CAp(C) AT =p(7)) D (a = pa))
for variables a € fu(C, 7). Then, we find that

[Pl E(CAGC)AT=¢(7)) D (a=¢a))
for variables a € fu(C, 7). From that, we conclude

[PIE (CAC)AG) & (CAHC)AS)

By assumption we know that ¢(C) —% True. The Canonical Form Lemma
enforces that C,¢' —% ¢". O

LEMMA 14 CONFLUENT TRANSLATIONS. Let P,Cy,T'y F e: 01~ Ey, P,C3,T5 +
e : o9 ~ Fy be two valid judgments, m1 and 12 two variable environments such that
(P,Cl,l“l Fe: g1 ~» El) j (P,CQ,FQ Foe: g9 ™~ Eg) and P,02 |_ttv (Flanl) j
(F2;772)- Then PJ 02 pétv (01;E1;771) = (02:E2;772)-

PROOF. We proceed by induction over the derivation P,Cy,Ts F e : g3 ~ Es.
We only show some of the interesting cases.

Case (Var) We find the following situation:

(z:03) €Ty
P CyTs Fx:i0y~c

where (P,C2, Ty F z: 01~ ) <X (P,C2,T2 b x: 09 ~ x). By assumption, we
have that P,Cy F* (0q,2,m) =< (02,2,m2) and we are done.

Case (VE) We find the following situation:

P,Cy, Ty F e:Va.Ch = 1~ Es
[P] & C2 D [R/a2]Cy
ec:: Cy 5 [7/a2]CY
P,C,Ty + e: [Tafas]m2 ~ Es (ec ec,)

We can apply the induction hypothesis to the premise. Application of Lemma 12
yields the desired result.
Case (VI) We find the following situation:

P,Cg/\Cé,FQ - e:TQ’\’)EQ

az ¢ fo(C2,I2)
P, CQ,FQ Fe: VC_IQ.Cé = Ty~ )\ecé.Ez
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Application of the induction hypothesis and Lemma 13 yields the desired result.

Case (Let) We find the following situation:

P,Cz,(rz)w = 6:02ME2
P,Cy,(Ty)p.x 02 F € : 15~ Ej
P,Cy,(T3); Fletz=eine : 7~ let x = Ezin E}

where

(Pacla(rl)z F 610'1’\’)E1)
(P, Cl,(Fl)w.w 101 = 6’ H 7'1, ~> Ei)

(P, 02, (FZ)z |_ €09~ E2)

=<
< (P,Cy,(T2)g-x: 09 F €' : 15~ Ej)

for some o; and Ej.
Application of the induction hypothesis to the top premise yields

P,Cy F'" (01, E1,m) = (02, E2,m2)

We set 1 = mi[z := dec, . [rE1]m] and 0} = na[z := Aec,.[wEz]n2]- The induction
hypothesis applied to the bottom premise yields

P,Cy F* (ri, Ey,my) 2 (73, By, ).
We can conclude that
P,Cy F* (7],let x = Eyin E|,m) = (13,let x = Eyin E} 1)
and we are done. [

THEOREM 15 COHERENCE. Let P,C;,I' + e: 7~ FEy and P,C2,T' - e: 7~
Es5 be two valid judgments and n be a variable environment such that the principal
deriation is unambiguous, C; —p True, Cy —p True, n = T, n satisfies P,
P is a confluent set of CHRs where each simplification rule is single-headed and
non-overlapping. Then [E1]n = [Ez2]n.

PRrOOF. The principal derivation must exist. That means, we find that
(P,C5,T Fe:7'~ E3) < (P,C1,T F e:7~ Ey)
and
(P,C5,T F e:7' ~ E3) X (P,C2,T F e: 7~ Es)
for some C3 and 7' where all derivations are unambiguous.
Application of Lemma 14 yields
P,Cy F'* (7', E3,n) < (1, E1,n)
and

P; 02 |_ttv (TI,EB;n) =< (TJ E2;77)-

In particular, we find that [Es]n = [E1]n and [Es]n = [E2]n. Therefore, [E1]n =
[E2]n and we are done. [
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