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This paper presents a model and implementation techniques for speeding up constraint propaga-

tion. Three fundamental approaches to improving constraint propagation based on propagators as
implementations of constraints are explored: keeping track of which propagators are at fixpoint,

choosing which propagator to apply next, and how to combine several propagators for the same

constraint.
We show how idempotence reasoning and events help track fixpoints more accurately. We

improve these methods by using them dynamically (taking into account current variable domains
to improve accuracy). We define priority-based approaches to choosing a next propagator and

show that dynamic priorities can improve propagation. We illustrate that the use of multiple

propagators for the same constraint can be advantageous with priorities, and introduce staged
propagators that combine the effects of multiple propagators with priorities for greater efficiency.
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1. INTRODUCTION

We consider the problem of solving Constraint Satisfaction Problems (CSPs) de-
fined in the sense of Mackworth [1977], which can be stated briefly as follows:

We are given a set of variables, a domain of possible values for each vari-
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able, and a set (read as a conjunction) of constraints. Each constraint
is a relation defined over a subset of the variables, limiting the combi-
nation of values that the variables in this subset can take. The goal is
to find a consistent assignment of values to the variables so that all the
constraints are satisfied simultaneously.

One widely-adopted approach to solving CSPs combines backtracking tree search
with constraint propagation. This framework is realized in finite domain constraint
programming systems, such as SICStus Prolog [Intelligent Systems Laboratory
2004], ILOG Solver [ILOG S.A. 2000], and Gecode [Gecode Team 2006] that have
been successfully applied to many real-life industrial applications.

At the core of a finite domain constraint programming system is a constraint
propagation engine that repeatedly executes propagators for the constraints of a
problem. Propagators discover and remove values from the domains of variables
that can no longer take part in a solution of the constraints.

Example 1.1. Consider a simple CSP, with variables x1, x2, and x3 whose do-
main of possible values are respectively x1 ∈ {2, 3, 4}, x2 ∈ {0, 1, 2, 3}, x3 ∈
{−1, 0, 1, 2} and the constraints are x3 = x2, x1 ≤ x2 + 1, and x1 6= 3.

A propagator for x3 = x2 can determine that x2 6= 3 in any solution of this
constraint since x3 cannot take the value 3. Similarly, x3 6= −1. The propagator
then reduces the domains of the variables to x2 ∈ {0, 1, 2} and x3 ∈ {0, 1, 2}. A
propagator for x1 ≤ x2+1 can determine that x1 6= 4 since x2 ≤ 2, and x2 6= 0 since
x1 ≥ 2, so the domains are reduced to x1 ∈ {2, 3} and x2 ∈ {1, 2}. The propagator
for x1 6= 3 can remove the value 3 from the domain of x1, leaving x1 ∈ {2} (or
x1 = 2). If we now reconsider the propagator for x3 = x2, we can reduce domains
to x2 ∈ {1, 2} and x3 ∈ {1, 2}. No propagator can remove any further values.

We have not solved the problem, since we do not know a value for each variable.
So after propagation we apply search, usually by splitting the domain of a variable
into two disjoint subsets and considering the resulting two subproblems.

Suppose we split the domain of x2. One subproblem has x1 ∈ {2}, x2 ∈ {1},
and x3 ∈ {1, 2}. Applying the propagator for x2 = x3 results in x3 ∈ {1}. Since
each variable now takes a fixed value we can check that x1 = 2, x2 = 1, x3 = 1 is a
solution to the CSP. The other subproblem has x1 ∈ {2}, x2 ∈ {2} and x3 ∈ {1, 2},
and leads to another solution. 2

As can be seen from the example, finite domain constraint programming in-
terleaves propagation with search. In this paper we investigate how to make a
propagation engine as efficient as possible.

There are two important decisions the engine must make: which propagators
should execute, and in which order should they execute. To make constraint prop-
agation efficient, it is clear that the engine needs to take the following issues into
account: avoid unnecessary propagator execution, restrict propagation to relevant
variables, and choose the cheapest possible method for propagation. In this pa-
per we show how propagation can be sped up if the engine takes these issues into
account.

The contributions of the paper are as follows:

— We give a formal definition of propagation systems including fixpoint and
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.
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event-based optimizations used in current propagation systems.
— We extend event-based propagation systems to use dynamically changing

event sets.
— We introduce multiple propagators and staged propagators for a single con-

straint for use with propagation queues with priority.
— We give experimental results that clarify the impact of many choices in imple-

menting propagation engines: including idempotence reasoning, static and dynamic
events, basic queuing strategies, priority queues, and staged propagation.

Plan of the paper. The next section introduces propagation-based constraint solv-
ing, followed by a model for constraint propagation systems in Section 3. Section 4
presents how to optimize propagation by taking idempotence into account, while
Section 5 explores the use of event sets. Which propagator should be executed next
is discussed in Section 6, while combination strategies of multiple propagators for
the same constraint is discussed in Section 7. Experiments for each feature are
included in the relevant section, and a summary is given in Section 8. Section 9
concludes.

2. PROPAGATION-BASED CONSTRAINT SOLVING

This section defines our terminology for the basic components of a constraint propa-
gation engine. In this paper, we restrict ourselves to finite domain integer constraint
solving. Almost all the discussion applies to other forms of finite domain constraint
solving such as for sets and multisets.

Domains. A domain D is a complete mapping from a fixed (finite) set of variables
V to finite sets of integers. A false domain D is a domain with D(x) = ∅ for
some x ∈ V. A variable x ∈ V is fixed by a domain D, if |D(x)| = 1. The
intersection of domains D1 and D2, denoted D1 u D2, is defined by the domain
D(x) = D1(x) ∩D2(x) for all x ∈ V.

A domain D1 is stronger than a domain D2, written D1 v D2, if D1(x) ⊆ D2(x)
for all x ∈ V. A domain D1 is stronger than (equal to) a domain D2 w.r.t. variables
V , denoted D1 vV D2 (resp. D1 =V D2), if D1(x) ⊆ D2(x) (resp. D1(x) = D2(x))
for all x ∈ V .

A range is a contiguous set of integers, we use range notation [l .. u] to denote
the range {d ∈ Z | l ≤ d ≤ u} when l and u are integers. A domain is a range
domain if D(x) is a range for all x. Let D′ = range(D) be the smallest range
domain containing D, that is, the unique domain D′(x) = [inf D(x) .. supD(x)]
for all x ∈ V.

We shall be interested in the notion of an initial domain, which we denote Dinit.
The initial domain gives the initial values possible for each variable. It allows us to
restrict attention to domains D such that D v Dinit.

Valuations and constraints. An integer valuation θ is a mapping of variables to
integer values, written {x1 7→ d1, . . . , xn 7→ dn}. We extend the valuation θ to map
expressions and constraints involving the variables in the natural way.

Let vars be the function that returns the set of variables appearing in a valuation.
We define a valuation θ to be an element of a domain D, written θ ∈ D, if θ(xi) ∈
D(xi) for all xi ∈ vars(θ).

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.
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The infimum and supremum of an expression e with respect to a domain D are
defined as infD e = inf{θ(e) | θ ∈ D} and supD e = sup{θ(e) | θ ∈ D}.

We can map a valuation θ to a domain Dθ as follows

Dθ(x) =
{
{θ(x)} x ∈ vars(θ)
Dinit(x) otherwise

A constraint c over variables x1, . . . , xn is a set of valuations θ such that vars(θ) =
{x1, . . . , xn}. We also define vars(c) = {x1, . . . , xn}.

Propagators. We will implement a constraint c by a set of propagators prop(c)
that map domains to domains. A propagator f is a monotonically decreasing func-
tion from domains to domains: f(D) v D, and f(D1) v f(D2) whenever D1 v D2.
A propagator f is correct for a constraint c iff for all domains D

{θ | θ ∈ D} ∩ c = {θ | θ ∈ f(D)} ∩ c

This is a very weak restriction, for example the identity propagator is correct for
all constraints c.

A set of propagators F is checking for a constraint c, if for all valuations θ where
vars(θ) = vars(c) the following holds: f(Dθ) = Dθ for all f ∈ F , iff θ ∈ c. That is,
for any domain Dθ corresponding to a valuation on vars(c), f(Dθ) is a fixpoint iff
θ is a solution of c. We assume that prop(c) is a set of propagators that is correct
and checking for c.

The output variables output(f) ⊆ V of a propagator f are the variables changed
by the propagator: x ∈ output(f) if there exists a domain D such that f(D)(x) 6=
D(x). The input variables input(f) ⊆ V of a propagator f is the smallest subset
V ⊆ V such that for each domain D: D =V D′ implies that D′ u f(D) =output(f)

f(D′)uD. Only the input variables are useful in computing the application of the
propagator to the domain.

Example 2.1 Propagators, input, and output. For the constraint c ≡ x1 ≤ x2 +1
the function fa defined by fa(D)(x1) = {d ∈ D(x1) | d ≤ supD x2 + 1} and
fa(D)(x) = D(x), x 6= x1 is a correct propagator for c. Its output variables are
{x1} and its input variables are {x2}. Let D1(x1) = {1, 5, 8} and D1(x2) = {1, 5},
then f(D1) = D2 where D2(x1) = D2(x2) = {1, 5}.

The propagator fb defined as fb(D)(x2) = {d ∈ D(x2) | d ≥ infD x1 − 1} and
fb(D)(x) = D(x), x 6= x2 is another correct propagator for c. Its output variables
are {x2} and input variables {x1}.

The set {fa, fb} is checking for c. The domain Dθ1(x1) = Dθ1(x2) = {2} corre-
sponding to the solution θ1 = {x1 7→ 2, x2 7→ 2} of c is a fixpoint of both propa-
gators. The non-solution domain Dθ2(x1) = {2}, Dθ2(x2) = {0} corresponding to
the valuation θ2 = {x1 7→ 2, x2 7→ 0} is not a fixpoint (of either propagator). 2

A propagation solver solv(F,D) for a set of propagators F and an initial domain
D finds the greatest mutual fixpoint of all the propagators f ∈ F . In other words,
solv(F,D) returns a new domain defined by

solv(F,D) = gfp(λd. iter(F, d))(D) iter(F,D) = u
f∈F

f(D)

where gfp denotes the greatest fixpoint w.r.t. v lifted to functions.
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.
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Note that by inverting the direction of v we could equally well phrase this as
a least fix point (as in [Apt 2003]). But the current presentation emphasizes the
reduction of domains as computation progresses.

Domain and bounds propagators. A consistency notion C gives a condition on do-
mains with respect to constraints. A set of propagators F maintains C-consistency
for a constraint c, if solv(F,D) is always C consistent for c. Many propagators
in practice are designed to maintain some form of consistency: usually domain or
bounds. But note that many more do not.

The most successful consistency technique is arc consistency [Mackworth 1977],
which ensures that for each binary constraint, every value in the domain of the
first variable, has a supporting value in the domain of the second variable that
satisfied the constraint. Arc consistency can be naturally extended to constraints
of more than two variables. This extension has been called generalized arc consis-
tency [Mohr and Masini 1988], as well as domain consistency [Van Hentenryck et al.
1991; 1998] (which is the terminology we will use), and hyper-arc consistency [Mar-
riott and Stuckey 1998]. A domain D is domain consistent for a constraint c if D
is the least domain containing all solutions θ ∈ D of c, that is, there does not exist
D′ @ D such that θ ∈ D ∧ θ ∈ c→ θ ∈ D′.

Define the domain propagator dom(c), for a constraint c as

dom(c)(D)(x) = {θ(x) | θ ∈ D ∧ θ ∈ c} where x ∈ vars(c)
dom(c)(D)(x) = D(x) otherwise

The basis of bounds consistency is to relax the consistency requirement to apply
only to the lower and upper bounds of the domain of each variable x. There are
a number of different notions of bounds consistency [Choi et al. 2004], we give the
two most common here.

A domain D is bounds(Z) consistent for a constraint c, vars(c) = {x1, . . . , xn},
if for each variable xi, 1 ≤ i ≤ n and for each di ∈ {infD xi, supD xi} there exist
integers dj with infD xj ≤ dj ≤ supD xj , 1 ≤ j ≤ n, j 6= i such that θ = {x1 7→
d1, . . . , xn 7→ dn} is an integer solution of c.

A domain D is bounds(R) consistent for a constraint c , vars(c) = {x1, . . . , xn},
if for each variable xi, 1 ≤ i ≤ n and for each di ∈ {infD xi, supD xi} there exist
real numbers dj with infD xj ≤ dj ≤ supD xj , 1 ≤ j ≤ n, j 6= i such that θ = {x1 7→
d1, . . . , xn 7→ dn} is a real solution of c.

A set of propagators F maintains bounds(α) consistency for a constraint c, if for
all domains D, solv(F,D) is bounds(α) consistent for c.

We can define a bounds(Z) propagator, zbnd(c) for a constraint c as follows:

zbnd(c)(D) = D u range(dom(c)(range(D)))

It is not straightforward to give a generic description of bounds(R) propagators,
rbnd(c), for a constraint c, that just maintains bounds(R) consistency. Examples 3.2
and 4.3 define three such propagators.

3. CONSTRAINT PROPAGATION SYSTEMS

A constraint propagation system evaluates the function solv(F,D) during back-
tracking search. We assume an execution model for solving a constraint problem
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search(Fo, Fn, D)

D := isolv(Fo, Fn, D) % propagation
if (D is a false domain)

return false

if (∃x ∈ V.|D(x)| > 1)
choose {c1, . . . , cm} where C ∧D |= c1 ∨ · · · ∨ cm % search strategy

for i ∈ [1 .. m]

if (search(Fo ∪ Fn, prop(ci), D))
return true

return false

return true

Fig. 1. Search procedure

isolv(Fo, Fn, D)

F := Fo ∪ Fn; Q := Fn

while (Q 6= ∅)
f := choose(Q) % select next propagator to apply

Q := Q− {f}; D′ := f(D)

Q := Q ∪ new(f, F, D, D′) % add propagators f ′ ∈ F . . .
D := D′ % . . . not necessarily at fixpoint at D′

return D

Fig. 2. Incremental propagation solver.

with a set of constraints C and an initial domain D0 as follows. We execute the
procedure search(∅, F,D0) implementing depth-first search given in Figure 1 for an
initial set of propagators F = ∪c∈C prop(c). This procedure is used to make precise
the optimizations presented in the remainder of the paper.

Note that the propagators are partitioned into two sets, the old propagators Fo
and the new propagators Fn. The incremental propagation solver isolv(Fo, Fn, D)
(to be presented later) takes advantage of the fact that D is guaranteed to be a
fixpoint of the old propagators Fo.

The somewhat unusual definition of search is quite general. The default search
strategy for many problems is to choose a variable x such that |D(x)| > 1 and
explore x = infD x or x ≥ infD x + 1. This is commonly thought of as changing
the domain D for x to either {infD x} or {d ∈ D(x) | d > infD x}. This framework
allows more general strategies, for example x1 ≤ x2 or x1 > x2.

The basic incremental propagation solver algorithm is given in Figure 2. The
algorithm uses a queue Q of propagators to apply. Initially, Q contains the new
propagators. Each time the while loop is executed, a propagator f is deleted from
the queue, f is applied, and then all propagators that may no longer be at a fixpoint
at the new domain D′ are added to the queue. An invariant of the algorithm is
that at the while statement f(D) = D for all f ∈ F −Q.

The propagation solver isolv leaves two components undefined: choose(Q) chooses
the propagator f ∈ Q to be applied next; new(f, F,D,D′) determines the set of
propagators f ′ ∈ F that are not guaranteed to be at their fixpoint at the domain
D′. The remainder of the paper investigates how to best implement these two
components.
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.
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Table I. Incremental propagation trace.

Q f D′(x1) D′(x2) D′(x3) newinput

{fc, fd} fc [0 .. 17] [0 .. 8] [0 .. 6] {fc}
{fc, fd} fd [0 .. 17] [0 .. 8] [0 .. 5] {fd}
{fc, fd} fc [0 .. 16] [0 .. 8] [0 .. 5] {fc, fd}
{fc, fd} fd [0 .. 15] [0 .. 8] [0 .. 5] {fc, fd}
{fc, fd} fc [0 .. 15] [0 .. 7] [0 .. 5] {fc}
{fc, fd} fd [0 .. 15] [0 .. 7] [0 .. 5] {}
{fc} fc [0 .. 14] [0 .. 7] [0 .. 5] {fc, fd}
{fc, fd} fd [0 .. 14] [0 .. 7] [0 .. 4] {fd}
{fc, fd} fc [0 .. 14] [0 .. 7] [0 .. 4] {}
{fd} fd [0 .. 12] [0 .. 7] [0 .. 4] {fc, fd}
{fc, fd} fc [0 .. 12] [0 .. 6] [0 .. 4] {fc}
{fc, fd} fd [0 .. 12] [0 .. 6] [0 .. 4] {}
{fc} fc [0 .. 12] [0 .. 6] [0 .. 4] {}

3.1 Basic Variable Directed Propagation

The core aim of the constraint propagation solver solv(F,D) is to find a domain
that is a mutual fixpoint of all f ∈ F . The incremental solver isolv(Fo, Fn, D)
already takes into account that initially D is a fixpoint of propagators f ∈ Fo. The
role of new is (generally) to return as few propagators f ∈ F as possible.

A basic definition of new is as follows

newinput(f, F,D,D′) = {f ′ ∈ F | input(f ′) ∩ {x ∈ V | D(x) 6= D′(x)} 6= ∅}

Here all propagators f ′ are added whose input variable domains have changed.
By the definition of input variables, if none of them have changed for f ′, then
f ′(D′) = D′ since f ′(D) = D if f ′ ∈ F −Q.

Proposition 3.1. newinput maintains the invariant f ′(D) = D for all f ′ ∈
F −Q at the start of the while loop.

Proof. Consider f ′ ∈ F −Q. Then f ′(D) = D and if D =input(f ′) D
′ we have

that D′ u f ′(D) =output(f ′) f
′(D′) uD. Then

D′ = D′ uD since D′ v D
= D′ u f ′(D) since D = f ′(D)
=output(f ′) f

′(D′) uD by definition of input(f ′)
= f ′(D′) since f ′(D′) v D′ v D

Now D′ =output(f ′) f
′(D′) implies D′ = f ′(D′) by the definition of output(f ′).

Hence each f ′ in F −Q is at fixpoint at the start of the loop.

The incremental propagation solver isolv with this definition of new (assuming
Fo = ∅) is more or less equivalent to the propagation algorithms in [Benhamou
1996] and [Apt 2003, page 267].

Example 3.2 Incremental propagation. Consider the problem with constraints
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.
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cc ≡ x1 = 2x2 and cd ≡ x1 = 3x3 represented by the bounds(R) propagators

fc(D)(x1) = D(x1) ∩ [2 infD x2 .. 2 supD x2] ,
fc(D)(x2) = D(x2) ∩

[
d 1

2 infD x1e .. b 1
2 supD x1c

]
,

fc(D)(x) = D(x) x 6∈ {x1, x2}

fd(D)(x1) = D(x1) ∩ [3 infD x3 .. 3 supD x3] ,
fd(D)(x3) = D(x3) ∩

[
d 1

3 infD x1e .. b 1
3 supD x1c

]
,

fd(D)(x) = D(x) x 6∈ {x1, x3},

with initial domain D(x1) = [0 .. 17], D(x2) = [0 .. 9], and D(x3) = [0 .. 6].
Initially, no propagator is known to be at fixpoint, so Q = {fc, fd}. Table I shows

how incremental propagation proceeds. Column Q shows the value of Q just before
the operation choose(Q) and f , D′, and newinput (for newinput(f, F,D,D′)) show
the values at each iteration of the while loop. 2

4. FIXPOINT REASONING

The propagation engine computes a mutual fixpoint of all the propagators. Clearly,
if we can determine that some propagators are at fixpoint without executing them
we can limit the amount of work required by the engine.

4.1 Static Fixpoint Reasoning

A propagator f is idempotent if f(D) = f(f(D)) for all domains D. That is,
applying f to any domain D yields a fixpoint of f .

Example 4.1 Idempotent propagator. The propagator fe defined by

fe(D)(x1) = {d ∈ D(x1) | 3
2d ∈ D(x2)}

fe(D)(x2) = {d ∈ D(x2) | 2
3d ∈ D(x1)}

fe(D)(x) = D(x) x 6∈ {x1, x2}

is the domain propagator for the constraint 3x1 = 2x2. The propagator fe is
idempotent. 2

It is not difficult to see that each domain propagator dom(c) is idempotent.

Proposition 4.2. For all constraints c and domains D

dom(c)(D) = dom(c)(dom(c)(D))

Proof. Consider θ ∈ c where θ ∈ D. Then by definition θ(x) ∈ dom(c)(D) for
all x ∈ vars(c). Hence θ ∈ dom(c)(D). Since dom(c)(D) v D we have θ ∈ c∧θ ∈ D
iff θ ∈ c ∧ θ ∈ dom(c)(D). Hence dom(c)(D) = dom(c)(dom(c)(D)).

Example 4.3 Non-idempotent propagators. While many propagators are idem-
potent, some widely used ones are not idempotent. Consider the constraint 3x1 =
2x2 and the propagator ff:

ff(D)(x1) = D(x1) ∩
[
d 2

3 infD x2e .. b 2
3 supD x2c

]
ff(D)(x2) = D(x2) ∩

[
d 3

2 infD x1e .. b 3
2 supD x1c

]
ff(D)(x) = D(x) x 6∈ {x1, x2}

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.
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Table II. Incremental propagation trace with idempotent propagators.

Q f D′(x1) D′(x2) D′(x3) newsfix

{f∗c , f∗d} f∗c [0 .. 16] [0 .. 8] [0 .. 6] {}
{f∗d} f∗d [0 .. 15] [0 .. 8] [0 .. 5] {f∗c }
{f∗c } f∗c [0 .. 14] [0 .. 7] [0 .. 5] {f∗d}
{f∗d} f∗d [0 .. 12] [0 .. 7] [0 .. 4] {f∗c }
{f∗c } f∗c [0 .. 12] [0 .. 6] [0 .. 4] {}

In almost all constraint programming systems prop(3x1 = 2x2) is {ff} where ff

is the bounds(R) propagator for 3x1 = 2x2. Now ff is not idempotent. Consider
D(x1) = [0 .. 3] and D(x2) = [0 .. 5]. Then D′ = ff(D) is defined by D′(x1) =
[0 .. 3] ∩ [0 .. b10/3c] = [0 .. 3] and D′(x2) = [0 .. 5] ∩ [0 .. b9/2c] = [0 .. 4]. Now
D′′ = ff(D′) is defined by D′′(x1) = [0 .. 3] ∩ [0 .. b8/3c] = [0 .. 2] and D′′(x2) =
[0 .. 4] ∩ [0 .. b9/2c] = [0 .. 4]. Hence ff(ff(D)) = D′′ 6= D′ = ff(D). 2

We can always create an idempotent propagator f ′ from a propagator f by defin-
ing f ′(D) = solv({f}, D). Indeed, in some implementations (for example [Harvey
and Stuckey 2003]) prop(3x1 = 2x2) is defined as the fixpoint of applying ff.

Assume that idem(f) = {f} if f is an idempotent propagator and idem(f) = ∅
otherwise. The definition of new is improved by taking idempotence into account

newsfix(f, F,D,D′) = newinput(f, F,D,D′)− idem(f)

An idempotent propagator is never put into the queue after application.
Note that without the idempotence optimization each propagator f that changes

the domain is likely to be executed again to check it is at fixpoint. Almost all con-
straint propagation solvers take into account static fixpoint reasoning (for example
ILOG Solver [ILOG S.A. 2000], Choco [Laburthe 2000], SICStus [Intelligent Sys-
tems Laboratory 2004], and Gecode [Gecode Team 2006]). Some systems even only
allow idempotent propagators (for example Mozart [Mozart Consortium 1999]).

Example 4.4 Idempotent incremental propagation. Consider the problem from
Example 3.2 where idempotent propagators f∗c (D) = solv({fc}, D) and f∗d (D) =
solv({fd}, D) are used.

Starting from the same domain D(x1) = [0 .. 17], D(x2) = [0 .. 9], and D(x3) =
[0 .. 6] incremental propagation using newsfix is shown in Table II. 2

4.2 Dynamic Fixpoint Reasoning

Even if a propagator is not idempotent we can often determine that f(D) is a
fixpoint of f for a specific domain D. For simplicity, we assume a function fix(f,D)
that returns {f} if it can show that f(D) is a fixpoint for f and ∅ otherwise
(of course without calculating f(f(D)), otherwise we gain nothing). In practice,
fix(f,D) will be included in the implementation of f .

newdfix(f, F,D,D′) = newinput(f, F,D,D′)− fix(f,D)

Example 4.5 Dynamic idempotence. Bounds propagation for linear equations on
range domains guarantees that the propagator is at a fixpoint if there is no rounding
required in determining new endpoints [Harvey and Stuckey 2003, Theorem 8].
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We can define fix(ff, D) for the bounds propagator ff from Example 4.3 for the
constraint 3x1 = 2x2, as returning {ff} if any new bound does not require rounding,
e.g. 2 infD x2/3 = d2 infD x2/3e or 2 infD x2/3 ≤ infD x1 and similarly for the other
three bounds.

Consider applying ff to the domain D′′ from the same example. Now D′′′ =
ff(D′′) is defined by D′′′(x1) = [0 .. 2]∩ [0 .. b8/3c] = [0 .. 2] and D′′′(x2) = [0 .. 4]∩
[0 .. b6/2c] = [0 .. 3]. Notice that the new bound x2 ≤ 3 is obtained without
rounding b6/2c = b3c = 3. In this case we are guaranteed that the propagator is
at a fixpoint. 2

Note that the dynamic case extends the static case since for idempotent f it holds
that fix(f,D) = {f} for all domains D. The dynamic fixpoint reasoning extensions
are obviously correct, given Proposition 3.1.

Proposition 4.6. newdfix maintains the invariant f(D) = D for all f ∈ F −Q
at the start of the while loop.

A complexity of either form of fixpoint reasoning is that a great deal of care has
to be taken when we claim a propagator is at fixpoint. This is particularly true
for bounds propagators and for propagators computing with multiple occurrences
of the same variable.

Example 4.7 Falling into domain holes. Consider a bounds propagator for x1 =
x2 + 1 defined as

fg(D)(x1) = D(x1) ∩ [infD x2 + 1 .. supD x2 + 1]
fg(D)(x2) = D(x2) ∩ [infD x1 − 1 .. supD x1 − 1]
fg(D)(x) = D(x) x 6∈ {x1, x2}

We would expect this propagator to be idempotent since there is no rounding
required. Consider the application of fg to the domain D(x1) = {0, 4, 5, 6} and
D(x2) = {2, 3, 4, 5}. Then fg(D) = D′ where D′(x1) = {4, 5, 6} and D′(x2) =
{2, 3, 4, 5}. This is not a fixpoint for fg because of the hole (that is 1, 2, 4 6∈ D(x1))
in the original domain of x1. 2

Example 4.8 Multiple variable occurrences. The regular constraint introduced
in [Pesant 2004] constrains a sequence of variables to take values described by a
regular expression (or a corresponding finite automaton). A common case for the
regular constraint is to express cyclic patterns by performing propagation on a
sequence of variables where some variables appear multiply.

Assume a propagator fh propagating that the sequence of variables 〈x1, x2, x3〉
conforms to the regular expression (11|00)0 (that is, the values of three variables
form either the string 110 or 000).

For a domain D with D(x1) = D(x2) = D(x3) = {0, 1} propagation for the
sequence 〈x1, x2, x3〉 is obtained by checking which values are still possible for each
variable by traversing the sequence. In this particular case, for D′ = fh(D) we have
that D′(x3) = {0} and D′(x1) = D′(x2) = {0, 1} and D′ is a fixpoint for fh.

Now assume a sequence 〈x1, x2, x1〉 where x1 appears twice. Using the same
strategy as above, a single forward traversal of the sequence yields: D′ = fh(D)
where D′(x1) = {0} and D′(x2) = {0, 1}. However, D′ is not a fixpoint for fh. 2
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Table III. Fixpoint reasoning experiments.
Example none static dynamic

time (ms) steps time steps time steps

all-interval-500 118.31 503 036 −3.1% −24.8% −38.9% −24.9%

alpha 106.56 272 398 −2.0% −5.7% −1.5% −5.7%

bibd-7-3-60 2 279.36 1 335 657 −0.2% −6.5% −0.2% −6.5%

cars 4.64 15 641 −0.4% ±0.0% +0.1% ±0.0%

crowded-chess-7 624.25 806 664 −0.1% ±0.0% −0.2% ±0.0%

donald-b 0.70 546 −2.5% −8.4% −10.4% −16.5%

donald-d 30.37 46 −6.3% −6.5% −6.4% −13.0%

donald-v 0.38 546 −5.9% −16.5% −5.1% −16.5%

golomb-10-b 1 347.48 2 642 464 +4.7% −17.9% +0.1% −17.5%

golomb-10-d 2 430.00 2 642 962 +4.5% −18.0% +4.3% −18.0%

graph-color 35.87 9 344 −0.1% ±0.0% −7.2% −6.2%

grocery 55.41 2 299 +2.6% −3.8% +2.6% −3.8%

knights-10 7.46 48 038 +0.9% +2.2% +0.9% +2.2%

minsort-200 342.48 240 991 −11.3% −8.3% −5.1% −16.9%

o-latin-7-d 574.36 387 060 ±0.0% −0.5% −8.7% −18.2%

partition-32 8 571.24 16 785 128 −3.7% −18.8% −9.2% −19.7%

photo 108.87 422 206 −0.3% −0.8% −14.6% −3.6%

picture 1 553.42 150 165 −4.1% −13.1% −3.4% −20.5%

queens-400 4 433.12 31 424 152 +0.2% ±0.0% ±0.0% ±0.0%

queens-400-a 16.15 2 469 −1.2% −16.2% −1.2% −16.2%

sequence-500 517.96 151 609 −0.1% −0.1% −0.1% −0.1%

square-5-d 33 391.24 1 762 492 −6.2% −16.0% −6.1% −16.1%

square-7-b 10 166.24 7 731 557 +2.4% −14.5% −6.8% −14.7%

square-7-v 5 690.00 13 956 982 −4.1% −16.9% −4.3% −16.9%

warehouse 0.74 2 486 −2.5% −1.8% −7.9% −9.1%

average (all) — — −1.6% −8.9% −5.6% −11.5%

The two examples above describe common cases where a propagator is not idem-
potent but nevertheless computes a fixpoint in many cases. In these cases, dynamic
fixpoint reasoning is beneficial. Static fixpoint reasoning would force these propa-
gators to be never considered to be at fixpoint. With dynamic fixpoint reasoning
the propagator can decide whether it is at fixpoint for a given domain or not.

In practice, dynamic fixpoint reasoning completely subsumes static fixpoint rea-
soning and is easy to implement: a propagator is extended to not only return the
new domain but also a flag indicating whether the propagator has computed a
fixpoint.

4.3 Fixpoint Reasoning Experiments

Table III shows runtime (walltime) and the number of propagation steps for the
three different variants of fixpoint reasoning considered. The first column presents
absolute runtime values in milliseconds and the number of propagation steps when
no fixpoint reasoning is considered. The two remaining columns “static” and “dy-
namic” show the relative change to runtime and propagation steps when using
static and dynamic fixpoint reasoning. For example, a relative change of +50%
means that the system takes 50% more time or propagation steps, whereas a value
of −50% means that the system takes only half the time or propagation steps. The
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row “average (all)” gives the average (geometric mean) of the relative values for all
examples. More information on the examples can be found in Appendix A and on
the used platform in Appendix B.

Note that both static and dynamic fixpoint reasoning do not change the memory
requirements for any of the examples.

Static fixpoint reasoning. While static fixpoint reasoning reduces the number of
propagator executions by 8.9% in average, the reduction in runtime is modest by
1.6% in average. The reason that the reduction in propagation steps does not di-
rectly translate to a similar reduction in runtime is that the avoided steps tend to be
cheap: after all, these are steps not performing any propagation as the propagator
is already at fixpoint.

Note that the ratio between reduction in steps and reduction in runtime ulti-
mately depends on the underlying system. In Gecode, the system used, the actual
overhead for executing a propagator is rather low. In systems with higher overhead
one can expect that the gain in runtime will be more pronounced.

Examples with significant reduction in runtime (such as donald-d, minsort-200,
picture, and square-5-d) profit because the execution of costly propagators is
avoided (domain consistent linear equations for donald-d and square-5-d; regular
propagators for picture; minimum propagators involving up to 200 variables for
minsort). The behavior of golomb-10-b and golomb-10-d is explained further
below.

Dynamic fixpoint reasoning. As expected, both runtime as well as propagation
steps are considerably smaller for dynamic fixpoint reasoning compared to static
reasoning. This is in particular true for examples donald-b and square-7-b
where a bounds-consistent alldifferent constraint can take advantage of report-
ing whether propagation has computed a fixpoint due to no domain holes as dis-
cussed in Example 4.7 (all-interval-500 shows the same behavior due to the
absolute value propagator used).

Influence of propagation order. Some examples show a considerable increase in
runtime (in particular, golomb-10-b and golomb-10-d). This is due to the fact
that the order in which propagators are executed changes: costly propagators are
executed often while cheap propagators are executed less often (witnessed by the
decrease in propagation steps).

Section 6 presents priorities that order execution according to propagator prior-
ities. For now it is sufficient to note that when these priority inversion problems
are avoided through the use of priorities, there is no increase in runtime. Table IV
provides evidence for this. The table shows relative runtime and propagation steps
(relative to no fixpoint reasoning as in Table III). When avoiding priority inversion
it becomes clear that both static as well as dynamic fixpoint reasoning consistently
improve the number of propagation steps and also runtime. The only exception is
picture where even with priorities the considerable reduction in execution steps
does not translate into a reduction in runtime. This is possibly due to a change in
propagation order that affects runtime (that this can have a remarkable effect even
with priorities is demonstrated in Section 6).
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Table IV. Fixpoint reasoning experiments with propagator priorities.
Example static dynamic

time steps time steps

all-interval-500 −2.9% −24.9% −37.7% −25.0%

alpha −5.4% −15.6% −4.6% −15.6%

bibd-7-3-60 −0.7% −6.5% −0.7% −6.5%

cars −0.2% ±0.0% +0.1% ±0.0%

crowded-chess-7 −0.7% ±0.0% −0.5% ±0.0%

donald-b −4.8% −22.9% −11.8% −29.4%

donald-d −6.7% −5.1% −6.7% −28.8%

donald-v −5.6% −16.5% −5.3% −16.5%

golomb-10-b −4.9% −23.5% −6.5% −23.5%

golomb-10-d −3.3% −23.4% −3.0% −23.4%

graph-color +0.4% ±0.0% −7.3% −4.9%

grocery −4.9% −29.5% −4.9% −29.5%

knights-10 ±0.0% +1.3% +0.2% +1.3%

minsort-200 −10.9% −9.1% −0.9% −9.2%

o-latin-7-d +0.3% −1.4% −6.1% −22.9%

partition-32 −8.5% −30.4% −11.8% −30.9%

photo −0.7% −1.2% −7.5% −2.6%

picture +6.5% −13.1% +4.0% −20.5%

queens-400 +0.2% ±0.0% +0.2% ±0.0%

queens-400-a −1.3% −16.2% −1.3% −16.2%

sequence-500 +0.1% ±0.0% +0.1% ±0.0%

square-5-d −6.4% −11.1% −7.3% −15.8%

square-7-b −2.5% −25.2% −10.0% −26.0%

square-7-v −6.6% −24.9% −5.8% −24.9%

warehouse −2.2% −1.4% −7.9% −9.8%

average (all) −2.9% −12.7% −6.1% −15.9%

5. EVENT REASONING

The next improvement is to consider what changes in domains of input variables
can cause the propagator to no longer be at a fixpoint. To this end we use events:
an event is a change in the domain of a variable.

Assume that the domain D changes to the domain D′ v D. A typical set of
events defined in a constraint propagation system are:

— fix(x): the variable x becomes fixed (or the domain D′ becomes failed), that
is |D′(x)| ≤ 1 and |D(x)| > 1.

— lbc(x): the lower bound of variable x changes, that is infD′ x > infD x.

— ubc(x): the upper bound of variable x changes, that is supD′ x < supD x.

— dmc(x): the domain of variable x changes, that is D′(x) ⊂ D(x).

Clearly the events overlap. Whenever a fix(x) event occurs then a lbc(x) event, a
ubc(x) event, or both events must also occur. If any of the first three events occur
then a dmc(x) event occurs. These events satisfy the following property.

Definition 5.1 Event. An event φ is a change in domain defined by an event
condition φ(D,D′) which states that event φ occurs when the domain changes
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from D to D′ v D. The event condition must satisfy the following property

φ(D,D′′) = φ(D,D′) ∨ φ(D′, D′′)

where D′′ v D′ v D. So an event occurs on a change from D to D′′ iff it occurs in
the change from D to D′ or from D′ to D′′.

Given a domain D and a stronger domain D′ v D, then events(D,D′) is the set
of events φ where φ(D,D′). Suppose D′′ v D′ v D, then clearly

events(D,D′′) = events(D,D′) ∪ events(D′, D′′). (1)

Most integer propagation solvers use the events defined above, although many
systems collapse ubc(x) and lbc(x) into a single event bc(x) (for example, SIC-
Stus [Intelligent Systems Laboratory 2004], ILOG Solver [ILOG S.A. 2000], and
Gecode [Gecode Team 2006]). Choco [Laburthe 2000] maintains an event queue
and interleaves propagator execution with events causing more propagators to be
added to the queue.

Other kinds of events or variants of the above events are also possible. For
example, (for domains D and D′ with D′ v D):

— bc(x): as discussed above (lbc(x) ∨ ubc(x)).
— two(x): the variable x reduces to a domain of at most two values: |D′(x)| ≤ 2

and |D(x)| > 2.
— ran(x): the variable x reduces to a domain that will always be a range (two

consecutive values or a single value): supD′ x− infD′ x ≤ 1 and supD x− infD > 1.
— pos(x): the variable x reduces to a domain that is strictly positive, that is

inf ′D x > 0 and infD x ≤ 0 (likewise, an event neg(x) for reduction to a strictly
negative domain).

— nneg(x): the variable x reduces to a domain that is non-negative: inf ′D x ≥ 0
and infD x < 0 (likewise, an event npos(x) for reduction to a non-positive domain).

— neq(x, d): the variable x can no longer take the value d, that is d ∈ D(x) and
d 6∈ D′(x)

The events two and ran are useful for tracking endpoint-relevance and range-
equivalence [Schulte and Stuckey 2005]. The neq event has been used in e.g.
Choco [Laburthe 2000] and B-Prolog [Zhou 2006] for building AC4 [Mohr and
Henderson 1986] style propagators.

Example 5.2 Events. Let D(x1) = {1, 2, 3}, D(x2) = {3, 4, 5, 6}, D(x3) = {0, 1},
and D(x4) = {7, 8, 10} while D′(x1) = {1, 2}, D′(x2) = {3, 5, 6}, D′(x3) = {1} and
D′(x4) = {7, 8, 10}. Then events(D,D′) is

{ubc(x1),dmc(x1),dmc(x2),fix(x3), lbc(x3),dmc(x3)}

Considering the additional events we obtain in addition

{bc(x1), two(x1), ran(x1),bc(x3),neq(x1, 3),neq(x2, 4),neq(x3, 0)}

2

Example 5.3 Events are monotonic. Events are monotonic: further changes to
a domain do not discard events from previous changes. Consider the property
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range(x) capturing that D(x) is a range for a domain D (this property is related
to the event ran(x), lacking the restriction that the domain can have at most two
elements).

The property range(x) is not an event: consider domains D′′ v D′ v D with
D(x) = {1, 2, 3, 5}, D′(x) = {1, 2, 3}, and D′′(x) = {1, 3}. If range were an event,
then events(D,D′′) = events(D,D′) ∪ events(D′, D′′). However,

events(D,D′′) = {dmc(x),ubc(x)}

whereas

events(D,D′) ∪ events(D′, D′′) = {dmc(x),ubc(x), range(x)} ∪ {dmc(x)}

This does not preclude a propagator to take advantage of the fact that D(x) for
a variable x is a range. The point is that the propagator cannot synchronize its
execution on D(x) becoming a range. 2

5.1 Static Event Sets

Re-execution of certain propagators can be avoided since they require certain events
to generate new information.

Definition 5.4 Propagator dependence. A propagator f is dependent on a set of
events es(f) iff

(a) for all domains D: if f(D) 6= f(f(D)) then events(D, f(D)) ∩ es(f) 6= ∅,
(b) for all domains D and D′ where f(D) = D and D′ v D: if f(D′) 6= D′ then

events(D,D′) ∩ es(f) 6= ∅.

The definition captures the following. If f is not at a fixpoint then one of the
events in its event set occurs. If f is at a fixpoint D then any change to a domain
that is not a fixpoint D′ involves an occurrence of one of the events in its set. Note
that for idempotent propagators the case (a) never occurs.

For convenience later we will store the event set chosen for a propagator f in an
array evset[f ].

Clearly, if we keep track of the events since the last invocation of a propagator,
we do not need to apply a propagator if it is not dependent on any of these events.

Example 5.5 Event sets. Event sets for previously discussed propagators are as
follows:

fa {ubc(x2)}
fb {lbc(x1)}
fe {dmc(x1),dmc(x2)}
ff {lbc(x1),ubc(x1), lbc(x2),ubc(x2)}

This is easy to see from the definitions of these propagators. If they use infD x then
lbc(x) is in the event set, similarly if they use supD x then ubc(x) is in the event
set. If they use the entire domain D(x) then dmc(x) is in the event set. 2

Indexical propagation solvers [Van Hentenryck et al. 1998; Codognet and Diaz
1996; Carlsson et al. 1997] are based on such reasoning. They define propagators
in the form f(D)(x) = D(x) ∩ e(D) where e is an indexical expression. The event
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set for such propagators is automatically defined by the domain access terms that
occur in the expression e.

Example 5.6 Indexical. An example of an indexical to propagate x1 ≥ x2 + 1 is

x1 ∈ [inf(x2) + 1 .. +∞]
x2 ∈ [−∞ .. sup(x1)− 1]

These range expressions for indexicals define two propagators:

fi(D)(x1) = D(x1) ∩ [inf(x2) + 1 .. +∞]
fi(D)(x) = D(x) x 6= x1

fj(D)(x2) = D(x2) ∩ [−∞ .. sup(x1)− 1]
fj(D)(x) = D(x) x 6= x2

The event set for the propagator fi from the definition is {lbc(x2)} while the
event set for fj is {ubc(x1)}. 2

Using events we can define a much more accurate version of new that only adds
propagators for which one of the events in its event set has occurred.

newevents(f, F,D,D′) = {f ′ ∈ F | evset[f ′] ∩ events(D,D′) 6= ∅} − fix(f,D)

This version of new (without dynamic fixpoint reasoning) roughly corresponds with
what most constraint propagation systems currently implement.

Proposition 5.7. newevents maintains the invariant f(D) = D for all f ∈ F−Q
at the start of the while loop.

Proof. Consider f ′ ∈ F − Q − {f} different from the selected propagator f .
Then f ′(D) = D and if f ′(D′) 6= D′ then events(D,D′) ∩ es(f ′) 6= ∅ by case (b) of
the definition of es(f ′), so f ′ ∈ Q at the start of the loop.

Consider the selected propagator f . It is removed from Q, but if f(D′) 6= D′

then events(D,D′) ∩ es(f) 6= ∅ by case (a) of the definition of es(f). Clearly, also
fix(f,D) 6= ∅. So f ∈ Q at the start of the loop.

5.2 Event Set Experiments

Table V shows runtime and number of propagation steps for different event sets
relative to a propagation engine not using events (the engine uses dynamic fixpoint
reasoning but no priorities).

General observations. A first, quite surprising, observation is that using no events
at all is not so bad. It is the best approach for 10 out of the 25 benchmarks and for
crowded-chess-7 by a considerable margin (between 8.3% and 38.7%). Another
general observation is that a reduction in the number of propagation steps does not
directly translate into a reduction in runtime. This is due to the fact that all saved
propagator executions are cheap: the propagator is already at fixpoint and does
not have to perform propagation.

Event set observations. Adding the fix event is particularly beneficial for bench-
marks with many disequalities, particularly queens-400 which only uses disequal-
ities.
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Table V. Event set experiments (runtime and propagation steps).

Example only fix, dmc with bc with lbc, ubc
time steps time steps time steps

all-interval-500 +0.6% ±0.0% +1.0% ±0.0% +2.0% ±0.0%

alpha −2.0% −4.4% −7.3% −19.2% −6.3% −19.3%

bibd-7-3-60 −2.6% −16.6% −1.4% −16.6% +7.4% −15.8%

cars +1.1% −0.2% +1.7% −0.2% +2.6% −0.2%

crowded-chess-7 +8.3% ±0.0% +20.2% −8.4% +38.7% −8.4%

donald-b +0.3% ±0.0% −2.1% −9.2% −1.3% −9.2%

donald-d ±0.0% ±0.0% +0.9% ±0.0% −0.1% ±0.0%

donald-v +0.6% −10.5% −1.4% −19.7% +0.1% −19.7%

golomb-10-b −0.6% ±0.0% ±0.0% −3.9% −0.5% −3.9%

golomb-10-d +0.2% ±0.0% +26.4% −3.5% +26.5% −3.5%

graph-color −0.7% −47.7% +0.1% −49.5% +0.6% −49.5%

grocery −0.1% ±0.0% ±0.0% ±0.0% ±0.0% ±0.0%

knights-10 −12.7% −47.5% −10.8% −48.6% −7.7% −48.6%

minsort-200 +0.4% ±0.0% +1.1% ±0.0% +1.5% ±0.0%

o-latin-7-d −1.2% ±0.0% +0.2% −1.7% +1.5% −1.7%

partition-32 +0.7% ±0.0% +15.1% +3.4% +18.8% +17.7%

photo +1.6% ±0.0% −3.3% −27.1% −2.0% −26.9%

picture +2.0% ±0.0% +3.5% ±0.0% +11.5% ±0.0%

queens-400 −87.5% −99.1% −87.5% −99.1% −87.5% −99.1%

queens-400-a −10.4% −38.8% −9.6% −38.8% −8.2% −38.8%

sequence-500 +2.2% ±0.0% +3.5% +36.3% +8.8% +36.3%

square-5-d +0.8% ±0.0% +2.7% ±0.0% +2.6% +0.5%

square-7-b −0.2% +0.5% +0.6% −8.2% +0.7% −7.8%

square-7-v −1.0% −8.9% −1.7% −16.9% +1.2% −16.9%

warehouse +2.2% +0.2% +3.3% −7.6% +4.2% −6.6%

average (all) −8.5% −24.3% −6.7% −26.9% −4.6% −26.4%

Adding the bc event has significant benefit (up to 5%) when there are linear
equalities as in alpha or bounds(Z) consistent alldifferent as in photo. But
for other examples, where one would expect some reduction in runtime, the over-
head (to be discussed in more detail below) for maintaining a richer event set
exceeds the gains from reducing the number of propagation steps. This is true
for examples such as minsort-200 (minimum propagators), partition-32 (mul-
tiplication), and golomb-10-b and square-7-b (linear equations and bounds(Z)
consistent alldifferent).

Splitting the bc event into lbc and ubc events exposes the overhead once more.
There is almost never an improvement in number of propagations, since only in-
equalities can actually benefit, and there is substantial overhead.

Influence of propagation order. Similar to using fixpoint reasoning, the use of
events also changes the order in which propagators are executed. Table VI re-
considers all examples that could possibly benefit from bc or lbc,ubc events and
all examples that show a remarkable increase in number of propagation steps in
Table V. The row “average (above)” gives the geometric mean of the relative num-
bers given in the table whereas “average (all)” shows the relative numbers for all
examples.
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Table VI. Event set experiments with priorities (runtime and propagation steps).

Example only fix, dmc with bc with lbc, ubc
time steps time steps time steps

bibd-7-3-60 +6.1% −3.3% +0.6% −3.3% +13.1% −2.5%

crowded-chess-7 +8.0% ±0.0% +20.4% −0.7% +38.0% −0.7%

donald-b +0.9% ±0.0% −1.1% −9.2% −0.7% −9.2%

donald-d −0.3% ±0.0% +0.1% ±0.0% −0.2% ±0.0%

golomb-10-b +0.1% ±0.0% −0.9% −5.5% −0.9% −5.5%

golomb-10-d +0.1% ±0.0% −0.5% −7.8% ±0.0% −7.8%

minsort-200 +0.9% ±0.0% +1.5% ±0.0% +1.8% ±0.0%

partition-32 +1.9% −1.2% +1.8% −1.8% +1.0% −0.4%

picture +2.6% ±0.0% +3.7% ±0.0% +1.6% ±0.0%

square-5-d +0.9% ±0.0% +3.2% ±0.0% +3.2% +0.2%

square-7-b +0.4% −0.1% +0.2% −10.6% +1.2% −10.6%

average (above) +1.9% −0.4% +2.5% −3.6% +4.8% −3.4%

average (all) −7.8% −24.1% −7.8% −27.8% −6.3% −27.7%

Table VII. Event set experiments with priorities (allocated memory).

Example no events only fix, dmc with bc with lbc, ubc
mem (KB) mem mem mem

bibd-7-3-60 6 690.1 +2.9% +5.7% +14.4%

crowded-chess-7 198.2 +4.0% +13.1% +21.2%

donald-b 7.8 ±0.0% +12.8% +12.8%

donald-d 3.4 ±0.0% +58.2% +58.2%

donald-v 5.8 +34.3% +34.3% +51.5%

golomb-10-b 39.7 +2.6% +10.1% +12.7%

golomb-10-d 37.7 ±0.0% +2.8% +16.0%

minsort-200 32 419.1 +1.1% +2.3% +17.4%

partition-32 160.3 +3.7% +9.4% +17.5%

picture 451.6 +17.7% +17.7% +30.1%

queens-400 30 286.6 +0.2% +0.2% +0.2%

queens-400-a 567.0 +2.8% +4.2% +4.2%

average (above) — +5.4% +13.3% +20.3%

average (all) — +3.9% +9.9% +15.5%

The numbers confirm that with priorities no considerable increase in runtime can
be observed for all but crowded-chess-7, where the increase in runtime here is due
to a change in propagation order to the introduction of event sets that does not
depend on the relative priorities of the propagators used.

Once priorities are used, lbc and ubc are basically never beneficial.

Memory requirements. Table VII shows the total memory allocated for different
event sets relative to a propagation engine not using events (the engine uses dynamic
fixpoint reasoning and priorities). It is important to note that the memory figures
reflect the amount of memory allocated which is bigger than the amount of memory
actually used. In particular, for small examples such as donald-* the increase
in allocated memory just reflects the fact that an additional memory block gets
allocated.
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.



Efficient Constraint Propagation Engines · 19

Using just a fix event increases the required memory by less than 4% in average,
while using full event sets increases the required memory by 15.5% in average.

It must be noted that Gecode (the system used) has a particularly efficient im-
plementation of event sets: the implementation uses a single pointer for an entry
in an event set; entries for the same variable and the same propagator but with
different events still use a single pointer. The memory overhead is due to the
fact that per variable and supported event, one single pointer for bookkeeping is
needed. Hence, the highest overhead can be expected for examples with many vari-
ables but relatively few propagators and small event sets (such as bibd-7-3-60,
crowded-chess-7, and picture). The overhead becomes less noticeable for ex-
amples with many propagators or large event sets and few variables (such as
queens-400 and queens-400-a).

Summary. In summary, while there is a compelling argument for fix events, there
is only a weak case for bc being supported, and lbc and ubc should not be used.

5.3 Dynamic Event Sets

Events help to improve the efficiency of a propagation-based solver. Just as we can
improve the use of fixpoint reasoning by examining the dynamic case, we can also
consider dynamically updating event sets as more information is known about the
variables in the propagator.

Monotonic event sets

Definition 5.8 Monotonic propagator dependence. A propagator f is monotoni-
cally dependent on a set of events es(f,D) in the context of domain D iff

(a) for domains D0 v D: if f(D0) 6= f(f(D0)) then events(D0, f(D0))∩es(f,D) 6=
∅,

(b) for domains D0 and D1 where D0 v D, f(D0) = D0, and D1 v D0: if
f(D1) 6= D1 then events(D0, D1) ∩ es(f,D) 6= ∅.

Clearly given this definition es(f,D) is monotonically decreasing with D. The
simplest kind of event reduction occurs by subsumption.

Definition 5.9 Subsumption. A propagator f is subsumed for domain D, if for
each domain D′ v D we have f(D′) = D′.

A subsumed propagator makes no future contribution. If f is subsumed by D
then es(f,D) = ∅ and f is never re-applied. Most current constraint propagation
systems take into account propagator subsumption.

Example 5.10 Subsumption. Consider the propagator fa and the domain D with
D(x1) = [1 .. 3] and D(x2) = [3 .. 7]. Then the constraint holds for all D′ v D and
es(f,D) = ∅. 2

Changing event sets can occur in cases other than subsumption.

Example 5.11 Minimum propagator. A propagator fk for x0 = min(x1, x2) can
be defined as

fk(D)(x0) = D(x0) ∩ [min(infD x1, infD x2) .. min(supD x1, supD x2)]
fk(D)(xi) = D(xi) ∩ [infD x0 .. +∞] i ∈ {1, 2}
fk(D)(x) = D(x) x 6∈ {x0, x1, x2}
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The static event set es(fk) is {lbc(x0), lbc(x1),ubc(x1), lbc(x2),ubc(x2)}.
But given domain D where D(x0) = [1 .. 3] and D(x2) = [5 .. 7] we know that

modifying the value of x2 will never cause propagation. A minimal definition of
es(fk, D) is {lbc(x0), lbc(x1),ubc(x1)}. 2

Example 5.12 exactly propagator. The constraint exactly([x1, . . . , xn],m, k)
holds if exactly m out of the variables x1, . . . , xn are equal to k [Van Henten-
ryck et al. 1992]. As soon as one of the xi becomes different from k, all events for
xi can be ignored. Originally the events are dmc(xi), 1 ≤ i ≤ m, lbc(m), ubc(m)
and dmc(k).

Suppose a domain D where D(k) = {1, 3, 8} and D(x3) = {2, 5, 6, 10, 11, 12},
then x3 6= k and we know its contribution to the exactly constraint. We can
remove the event dmc(x3) from the event set safely. 2

Other examples for monotonic event sets are propagators for the lex constraint
and the generalized element constraint. When using a variant of the lex propagator
proposed in [Carlsson and Beldiceanu 2002], events can be removed as soon as the
order among pairs of variables being compared can be decided. For the generalized
element constraint [Chamard et al. 1995] where the array elements are variables,
events for a variable from the array can be safely removed as soon as the variable
becomes known to be different from the result of the element constraint.

Using monotonic dynamic event sets we can refine our definition of new as follows.

newmevents(f, F,D,D′)
F ′ := {f ′ ∈ F | evset[f ′] ∩ events(D,D′)} − fix(f,D)
evset[f ] := es(f,D′)
return F ′

Every time a propagator f is applied its event set is updated to take into account
newly available information.

A related idea is the “type reduction” of [Savéant 2000] where propagators are
improved as more knowledge on domains (here called types) becomes available.
For example, the implementation of x0 = x1 × x2 will be replaced by a more
efficient one, when all elements in D(x1) and D(x2) are non-negative. Here we
concentrate on how the event sets change. The two ideas could be merged as they
are complementary.

Proposition 5.13. newmevents maintains the invariant f(D) = D for all f ∈
F −Q at the start of the while loop.

Proof. The proof is almost identical to that for Proposition 5.7 since we are
working in a context if evset[f ] = es(f,D∗) then D v D∗.

For propagators using the monotonic event sets, we have the invariant that f ∈
F −Q iff evset[f ] = es(f,D∗) where D∗ is the result of the last time we executed
propagator f .

Suppose we have f ′ ∈ F − Q − {f} where f ′(D′) 6= D′ and f(D) = D. Then
events(D∗, D′) ∩ es(f,D∗) 6= ∅ and since f ′ 6∈ Q we have that events(D∗, D) ∩
es(f,D∗) = ∅. Otherwise, we would have placed f in the queue already, hence by
the Equation (1) events(D,D′) ∩ es(f,D∗) 6= ∅ so f ′ ∈ Q at the start of the loop.
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Consider the selected propagator f . It is removed from Q but if f(D′) 6= D′ then
clearly fix(f,D) = ∅ and using case (a) of Definition 5.8 we have that events(D,D′)∩
es(f,D) 6= ∅. Hence f ∈ Q at the start of the loop.

Fully dynamic event sets. Note that for many propagators we can be more ag-
gressive in our definition of event sets if we allow the event sets to change in a
manner that is not necessarily monotonically decreasing.

Definition 5.14 General propagator dependence. A propagator f is dependent on
a set of events es(f,D) in the context of domain D if for all domains D1 where
D1 @ D and f(D1) 6= D1 then events(D,D1) ∩ es(f,D) 6= ∅.

Using fully dynamic event sets we can refine our definition of new as follows.

newdevents(f, F,D,D′)
F ′ := {f ′ ∈ F | evset[f ′] ∩ events(D,D′)} − fix(f,D)
if (fix(f,D) = ∅)

F ′ := F ′ ∪ {f}
evset[f ] := es(f,D′)
return F ′

Every time a propagator f is applied its event set is updated to take into account
newly available information. The only difficult case is that if the definition of
dynamic dependency does not capture the events that occur when moving from D
to D′ = f(D). If fixpoint reasoning cannot guarantee a fixpoint we need to add f
to the queue.

Fully dynamic event sets are more powerful than monotonically decreasing event
sets, but in general they require reasoning about the new event sets each time the
propagator is run.

Example 5.15 Fully dynamic events for minimum. Given the domain D where
D(x0) = [0 .. 10], D(x1) = [0 .. 15], and D(x2) = [5 .. 10] and the propagator fk

from Example 5.11. D is a fixpoint of fk and a minimal set es(fk, D) is

{lbc(x0), lbc(x1),ubc(x1),ubc(x2)}

While at D′ v D where D′(x0) = [5 .. 9], D′(x1) = [6 .. 9], and D′(x2) = [5 .. 10],
which is also a fixpoint, the minimal set es(fk, D

′) is

{lbc(x0),ubc(x1), lbc(x2),ubc(x2)}

For the constraint ck we simply need to maintain a lbc event for some variable
xi in the right hand side with the minimal lbc value. 2

Example 5.16 Fully dynamic events for Boolean inequality constraints. Assume
a propagator fl for the constraint

∑n
i=1 xi ≥ k over Boolean variables xi,

1 ≤ i ≤ n, and the domain D where D(xi) = {0, 1}, 1 ≤ i ≤ n. This propagator
only propagates when n− k variables are set to 0 in which case the remainder are
set to 1. A minimal dynamic event set es(fl, D) is

{fix(xj) | j ∈ S}
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for any S ⊆ [1 .. n] where |S| > k. That is, only k+1 variables must be watched: if
none of the k + 1 variables is fixed then it cannot be that n− k variables are fixed
to 0.

Suppose a variable xj with j ∈ S is fixed to 1. Then the propagator still cannot
fire even if all the variables xj′ with j 6∈ S are fixed to 0, so the dynamic event set
need not change.

Suppose a variable xj with j ∈ S is fixed to 0. Then the propagator needs to
find another variable xj′ with j′ 6∈ S where D(xj′) = [0 .. 1] and replaces fix(xj) in
the dynamic event set by fix(xj′). 2

Proposition 5.17. newdevents maintains the invariant f(D) = D for all f ∈
F −Q at the start of the while loop.

Proof. We have the invariant that f ∈ F −Q iff evset[f ] = es(f,D∗) where D∗

is the result of the last time we executed propagator f .
Suppose we have f ′ ∈ F − Q − {f} where f ′(D′) 6= D′ and f(D) = D then

events(D∗, D′) ∩ es(f,D∗) 6= ∅ and since f ′ 6∈ Q we have that events(D∗, D) ∩
es(f,D∗) = ∅ otherwise we would have placed f ′ in the queue already, hence by the
equation (1) events(D,D′) ∩ es(f,D∗) 6= ∅ so f ′ ∈ Q at the start of the loop.

Consider the selected propagator f . The same reasoning cannot apply since
even though we know that events(D∗, D′) ∩ es(f,D∗) 6= ∅, we have no guarantee
that events(D,D′) ∩ es(f,D∗) is not empty. Now if fix(f,D) = ∅ then possibly
f(D′) 6= D′, but this will force f ∈ Q by the start of the loop.

Effectively, the fully dynamic event sets approach relies only on the dynamic
fixpoint reasoning of the propagator f to handle what happens when moving from
D to D′.

Fully dynamic event sets are closely related to the watched literals approach to
improving unit propagation in SAT solving [Moskewicz et al. 2001]. A clause in
CNF corresponds to the constraint

∑n
i=1 xi ≥ 1 explored in Example 5.16. Using

watched literals, unit propagation only considers a clause for propagation if one
of two watched literals in the clause becomes false. Recently, the idea of watched
literals has been used in constraint programming for the Minion solver [Gent et al.
2006]. Watched literals differ from the events we concentrate on here since they
take into account values (similar to the neq(x, a) event) and require the knowledge
of which variable is changed by propagation. Note that dynamic event sets do not
usually have the property of watched literals, in that they do not need to be updated
on backtracking. The setup chosen for propagation in this paper is propagator-
centered: the incremental propagation solver in Figure 2 organizes propagation by
maintaining the set of propagators Q. Information about which variables change
and how their domain changes during propagation as needed for watched literals
requires additional effort, see [Lagerkvist and Schulte 2007].

5.4 Dynamic Event Sets Experiments

Table VIII shows the comparison of monotonic and fully dynamic event sets to a
propagation solver using static event sets with {fix,bc,dmc} events and priorities
to avoid priority inversion as discussed before. The table lists only examples where
dynamic event sets are used.
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Table VIII. Dynamic event sets experiments (with priorities).

Example monotonic fully dynamic
time steps mem time steps mem

bibd-7-3-60 +0.4% ±0.0% ±0.0% −5.0% −5.2% ±0.0%

crowded-chess-7 −24.0% ±0.0% −15.2% −28.2% −34.2% −17.8%

sequence-500 −82.3% −78.3% −49.5% −82.1% −78.3% −49.5%

o-latin-7-d −0.7% ±0.0% ±0.0% −1.7% ±0.0% ±0.0%

average (above) −39.5% −31.8% −19.1% −41.1% −39.3% −19.7%

average (all) −10.8% −8.2% −4.1% −11.2% −9.9% −4.2%

The propagators using monotonic event sets are as follows: for bibd-7-3-60:
lex; for crowded-chess-7: exactly and element; for sequence-500: exactly;
for o-latin-7-d: lex. Clearly, monotonic event sets lead to a drastic reduction in
both runtime and memory usage, where it is worth noting that the reduction in time
is even more marked than the reduction in propagation steps (each propagation step
becomes cheaper as smaller event sets must be maintained).

Fully dynamic event sets are considered in Boolean-sum propagators used in
bibd-7-3-60 and crowded-chess-7. The difference in improvement between the
two examples can be explained by the fact that crowded-chess-7 uses Boolean-
sums as inequalities while bibd-7-3-60 uses Boolean-sums as equalities where in-
equalities offer the potential for considerably smaller event sets [Gent et al. 2006].

Example bibd-7-3-60 provides another insight: the drastic reduction in runtime
observed in [Gent et al. 2006] by using watched literals for Boolean-sum propagators
in the Minion solver is most likely not due to small event sets but to other aspects.
A possible aspect is the knowledge about which variables have been modified when
a propagator is executed.

6. WHICH PROPAGATOR TO EXECUTE NEXT

We now address how to define which propagator f in the queue Q should execute
first, that is, how to define the choose function.

The simplest policy to implement is a FIFO (First In First Out) queue of prop-
agators. Propagators are added to the queue, if they are not already present, and
choose selects the oldest propagator in the queue. The FIFO policy ensures fair-
ness so that computation is not dominated by a single group of propagators, while
possibly not discovering failure (a false domain) from other propagators quickly.

The equally simple LIFO (Last In First Out) policy is a stack where propagators
not already in the stack are pushed, and choose selects the top of the stack.

6.1 Basic Queuing Strategy Experiments

Table IX compares using a FIFO queue versus a LIFO stack. The result, according
with folklore knowledge, clearly illustrates that a queue must be used. The few
cases where a stack is better are outweighed by the worst cases for a stack.

Later experiments in Section 6.3 using priorities with combinations of FIFO
queues and LIFO stacks reveal that the pathological behavior of all-interval-500
is due to priority inversion. However, the pathological behavior of minsort-200 is
due to the use of a LIFO stack.
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Table IX. Queue versus stack experiments.
Example queue stack

time (ms) steps time steps

all-interval-500 73.00 377 777 +13626.0% +32.2%

alpha 97.31 207 470 +47.5% +99.0%

bibd-7-3-60 2 020.30 1 020 162 +7.7% +102.7%

cars 4.65 14 860 +1.3% +2.6%

crowded-chess-7 553.25 660 525 +4.7% +68.1%

donald-b 0.62 414 +36.3% +31.9%

donald-d 28.53 40 −5.4% +7.5%

donald-v 0.36 366 +7.6% +23.2%

golomb-10-b 1 342.48 2 095 161 +870.6% +171.5%

golomb-10-d 3 201.84 2 091 691 −11.9% +98.9%

graph-color 33.54 4 422 +299.7% +118.4%

grocery 56.87 2 211 +44.2% −6.3%

knights-10 6.66 25 225 +7.7% +53.3%

minsort-200 141.84 113 437 +1580.1% +1123.3%

o-latin-7-d 532.48 311 135 +4.9% +24.9%

partition-32 9 001.24 13 939 101 −18.5% +34.8%

photo 90.37 296 661 +11.1% +8.7%

picture 1 583.12 119 406 +27.1% +79.9%

queens-400 549.36 268 771 ±0.0% −0.1%

queens-400-a 14.40 1 265 −0.9% −0.3%

sequence-500 98.12 56 048 +53.8% +240.9%

square-5-d 32 263.12 1 478 403 +71.5% +57.7%

square-7-b 9 491.84 6 054 656 +75.3% +44.9%

square-7-v 5 345.00 9 636 675 +8.3% +35.2%

warehouse 0.70 2 075 +11.7% +29.3%

average (all) — — +78.4% +61.0%

6.2 Static Priorities

A statically prioritized queue associates with each propagator a fixed priority, we
will assume an integer in the range [0 .. k − 1]. In effect, the queue Q is split into k
queues, Q[0], . . .Q[k−1] where each Q[i] is a FIFO queue for the propagators with
priority i. Selection always chooses the oldest propagator in the lowest numbered
queue Q[i] that is non-empty. Static prioritization allows one to ensure that quick
propagators are executed before slow propagators.

We give an example of seven static priorities, with names of the integer priorities
as follows: unary=0, binary=1, ternary=2, linear=3, quadratic=4, cubic=5,
and veryslow=6. The names are meant to represent the arity of the constraint
(that is, the number of its variables), and then the asymptotic runtime of the
propagator, once the constraint can handle n variables. So binary is for binary
constraints, quadratic is for constraints that are approximately O(n2) for instances
with n variables.

Example 6.1 Propagator priorities. The propagator fm for even(x1) defined by

fm(D)(x1) = D(x1) ∩
[
2d 1

2 infD x1e .. 2b 1
2 supD(x1)c

]
fm(D)(x) = D(x) x 6= x1
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might be given priority unary, while fe and ff might be given priority binary.
The domain propagator defined in [Régin 1994] for the alldifferent constraint

∧ni=1 ∧nj=i+1 xi 6= xj (with complexity O(n2.5)) might be given priority quadratic.
The alldifferent bounds(Z) propagator defined in [Puget 1998] (with complex-

ity O(n log n)) might be given priority linear. 2

Priorities in effect force many more fixpoints to be calculated. A fixpoint of all
propagators at priority level i and lower must be reached before a propagator at
priority level i + 1 is run. With other words, whenever an expensive propagator
at priority level i+ 1 is executed and changes the domain, cheaper propagators at
priority levels i and lower must be re-executed to compute a fixpoint. This means
we will often cause more propagators to run when using priorities, but more cheap
propagators!

Example 6.2 Repeated fixpoints. Consider the execution of a system of idempo-
tent propagators for constraints cc ≡ x1 = 2x2, cd ≡ x1 = 3x2, cn ≡ x2 ≤ 6 →
x1 ≤ x3+7 and co ≡ alldifferent([x1, x2, x3, x4, x5]). We will use the idempotent
bounds(R) propagators f∗c , f∗d , and f∗n for the first three constraints, and the do-
main propagator, fo, for alldifferent from [Régin 1994], for the last constraint.
Let the initial domain be D(x1) = [0 .. 18], D(x2) = [0 .. 9], D(x3) = [0 .. 6],
and D(x4) = D(x5) = [0 .. 3]. The priorities are binary, binary, ternary, and
quadratic respectively. All propagators are at fixpoint.

Suppose the domain of x1 changes to [0 .. 17]. All propagators are enqued. The
priority level binary propagators are run to fixpoint (as in Example 4.4) giving
D(x1) = [0 .. 12], D(x2) = [0 .. 6], D(x3) = [0 .. 4] Then f∗n is scheduled and causes
D(x1) = [0 .. 11]. Both f∗c and f∗d are enqued, and after executing f∗c , f∗d , f∗c and
f∗d the next fixpoint of the binary priority propagators is reached: D(x1) = [0 .. 6],
D(x2) = [0 .. 3], D(x3) = [0 .. 2]. Then f∗n is scheduled again and causes no change.
After that, fo is executed, it reduces the domains of D(x1) = [4 .. 6] since all
the values [0 .. 3] are required for the variables x2, x3, x4, x5. Both f∗c and f∗d are
enqued, and after executing we reach their fixpoint D(x1) = {6}, D(x2) = {3},
D(x3) = {2}. Once again f∗n is executed for no change. Then fo is executed once
more obtaining D(x4) = D(x5) = {0, 1}. This is the overall fixpoint. 2

We can adjust the granularity of the priorities: we can have a finer version of the
above priorities with 14 priorities, each priority above with a low and high version.
This allows us to separate, for example, a domain consistent propagator for the
binary absolute value constraint abs(x) = y (binary-low) from a bounds consistent
propagator for the same constraint (binary-high). This increased granularity will
be important in Section 7.

Conversely, we may collapse the priorities into fewer levels, for example into three
levels unary↔ternary, linear↔quadratic, cubic↔veryslow.

Another model for priorities in constraint propagation based on composition
operators is [Granvilliers and Monfroy 2003]. The model, however, runs all propa-
gators of lower priority before switching propagation back to propagators of higher
priority. This model does not preempt computing a fixpoint for a low priority. The
model always completes a fixpoint for a given priority level and only then possibly
continues at a higher priority level.
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Most systems have some form of static priorities, typically using two priority lev-
els (for example, SICStus [Intelligent Systems Laboratory 2004], Mozart [Mozart
Consortium 1999]). The two levels are often not entirely based on cost: in SICStus
all indexicals have high priority and all other lower priority. While ECLiPSe [Wal-
lace et al. 1997; Harvey 2004] supports twelve priority levels, its finite domain solver
also uses only two priority levels where another level is used to support constraint
debugging.

A similar, but more powerful approach is used by Choco [Laburthe 2000] using
seven priority levels allowing both LIFO and FIFO traversal.

Prioritizing particular operations during constraint propagation is important in
general. For interval narrowing, prioritizing constraints can avoid slow conver-
gence, see for example [Lhomme et al. 1998].

The prioritizing of propagators by cost is important, inverting the priorities can
lead to significant disadvantages.

Example 6.3 Inverted priorities. Consider executing Example 6.2 with inverted
priorities. We first execute fo then f∗n for no effect. Then executing f∗c modifies
D(x1), so each of fo and f∗n are enqued and re-executed for no effect. Then executing
f∗d has the same behavior. Overall we execute the propagators f∗n and fo each at
least 10 times, as opposed to 3 and 2 times respectively in Example 6.2. Since
they are the most expensive to execute we would expect this to be slower (this is
confirmed immediately below). 2

6.3 Static Priority Experiments

Priority granularity. Table X gives runtime and propagation steps of various pri-
ority granularities compared to a propagation engine using a FIFO queue (and using
dynamic fixpoint reasoning, events of types {fix,bc,dmc}, and fully dynamic event
sets). The different experiments capture different priority granularities: “small”
uses three priorities (unary↔ternary, linear↔quadratic, cubic↔veryslow);
“medium” uses seven priority levels (from unary to veryslow); “full” uses 14 pri-
ority levels (from unary-high to veryslow-low).

The results illustrate that even when there are substantially more propagations
(for example, golomb-10-{b,d}) there can be significant savings. Priorities can
have a very substantial saving (almost 50% for golomb-10-d) and the worst case
cost on the benchmarks is only 10.3%. Overall while the “medium” range of pri-
orities is preferable on many benchmarks, the “full” range of priorities gives real
speedups on two more benchmarks (photo and square-7-b) and tends to reduce
the worst case behavior of “medium”.

Examples such as queens-400, queens-400-a, and sequence-500 for “small”
only feature propagators with the same priority (the number of propagation steps
remains the same). Hence the increase in runtime by less than 1% describes the
overhead of using priorities at all.

Depending on the underlying system, increasing the granularity also requires
more memory. Gecode, as a system based on recomputation and copying, consti-
tutes the worst case in that each copied node in the search tree maintains queues
for all priority levels. However, the average increase in used (not allocated as be-
fore) memory is +0.2% for “small”, +0.7% for “medium”, and +1.5% for “full”
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Table X. Priority experiments with varying granularities.
Example small medium full

time steps time steps time steps

all-interval-500 +1.8% +0.3% +2.3% +0.3% +2.3% +0.3%

alpha +1.2% ±0.0% +1.2% ±0.0% +1.2% ±0.0%

bibd-7-3-60 +0.1% +16.9% +0.1% +16.9% +0.2% +16.9%

cars −1.4% −10.4% −1.5% −10.5% −1.8% −10.5%

crowded-chess-7 +8.1% +91.2% +9.0% +91.2% +8.8% +91.1%

donald-b +1.1% ±0.0% +0.4% ±0.0% +0.9% ±0.0%

donald-d −0.1% ±0.0% −5.6% +5.0% −5.5% +5.0%

donald-v +1.6% ±0.0% +2.6% ±0.0% +2.2% ±0.0%

golomb-10-b −33.1% +33.5% −31.3% +51.0% −31.6% +51.0%

golomb-10-d −49.5% +29.2% −49.0% +46.7% −48.9% +46.7%

graph-color −1.3% ±0.0% −1.3% −0.1% −0.9% −0.1%

grocery +10.3% −9.2% −5.6% +1.9% −5.6% +1.9%

knights-10 −3.4% −19.5% −4.7% −19.9% −3.7% −19.9%

minsort-200 +0.5% ±0.0% +0.5% ±0.0% −0.2% ±0.0%

o-latin-7-d −10.6% +4.6% −11.0% +4.6% −10.6% +4.6%

partition-32 −38.6% −18.2% −38.7% −17.8% −38.4% −17.8%

photo +0.1% +3.4% +0.2% +3.4% −7.3% −1.8%

picture −1.0% ±0.0% −1.5% ±0.0% +0.2% ±0.0%

queens-400 +0.7% ±0.0% +0.5% ±0.0% +0.5% ±0.0%

queens-400-a +0.2% ±0.0% +0.2% ±0.0% +0.3% ±0.0%

sequence-500 +0.5% ±0.0% +0.3% ±0.0% +0.6% ±0.0%

square-5-d −0.5% ±0.0% +0.9% +23.8% +1.1% +23.8%

square-7-b +1.3% ±0.0% +0.4% ±0.0% −23.4% +22.0%

square-7-v +0.9% ±0.0% +0.7% ±0.0% +0.9% ±0.0%

warehouse +5.3% +13.0% +5.7% +12.0% +5.3% +12.0%

average (all) −5.6% +3.8% −6.3% +6.4% −7.4% +7.0%

and hence can be neglected.
A broad spectrum of priorities will be useful for the optimizations presented in

Section 7. Therefore it is important that while “full” does not offer huge advantages
over “medium”, it neither degrades overall performance nor requires much memory.

Priorities and stacks. Table XI gives the runtime and propagation steps of using
priorities together with stacks or combinations of stacks and queues for the different
priority levels. All numbers are given relative to a propagation engine using the
“full” priority spectrum with only queues for each priority level. All propagation
engines considered also use the full priority spectrum. The propagation engine for
“for all” uses only stacks for all priority levels, whereas “for 1, 2, 3-ary” (“for 1, 2-
ary”) uses stacks for priority levels unary-high to ternary-low (unary-high to
binary-low) and queues for the other levels.

The numbers for “for all” clarify that the misbehavior of LIFO stacks is not
due to priority inversion. The folklore belief that LIFO stacks are good for small
propagators is refuted by the numbers for “for 1, 2, 3-ary” and “for 1, 2-ary”. Only
three examples show improvement in both cases while grocery “for 1, 2, 3-ary”
already exhibits pathological behavior. The measurements show that queue versus
stack does not matter for unary or binary constraints whereas stacks are wrong for
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Table XI. Priority experiments with stacks and priorities.
Example for all for 1, 2, 3-ary for 1, 2-ary

time steps time steps time steps

all-interval-500 −0.6% ±0.0% +1.3% ±0.0% +0.2% ±0.0%

alpha +47.2% +99.0% +2.3% ±0.0% +1.0% ±0.0%

bibd-7-3-60 +5.5% +49.7% −4.0% +1.4% −5.9% +1.4%

cars −4.2% −7.3% +1.2% −2.0% +1.8% −2.0%

crowded-chess-7 +0.6% +10.4% +2.0% ±0.0% +1.7% ±0.0%

donald-b +0.3% ±0.0% +1.6% ±0.0% +0.9% ±0.0%

donald-d −0.6% +2.4% +1.0% ±0.0% +0.3% ±0.0%

donald-v +7.7% +23.2% +2.5% ±0.0% +1.7% ±0.0%

golomb-10-b +7.1% +27.0% +9.7% +27.0% +1.2% ±0.0%

golomb-10-d +5.7% +39.2% +7.7% +39.2% +1.0% ±0.0%

graph-color +62.7% +77.1% +2.3% ±0.0% +1.5% ±0.0%

grocery +42.8% +7.1% +45.8% +7.1% +1.6% −0.3%

knights-10 +0.1% +5.0% +2.1% +5.0% +1.4% +5.0%

minsort-200 +1545.4% +1106.4% +2.2% ±0.0% +2.4% ±0.0%

o-latin-7-d −3.3% +5.2% +1.0% +0.3% −0.4% +0.3%

partition-32 −2.2% −2.9% +2.2% +2.3% +2.2% +0.4%

photo −1.3% −0.8% −1.0% −0.9% +0.1% −0.9%

picture +21.1% +79.9% −1.3% ±0.0% −1.2% ±0.0%

queens-400 −0.1% −0.1% +1.0% −0.1% +0.8% −0.1%

queens-400-a −1.0% −0.3% +1.2% ±0.0% +1.2% ±0.0%

sequence-500 +54.1% +240.9% +1.4% ±0.0% +0.8% ±0.0%

square-5-d +65.2% +31.6% +1.2% ±0.0% +0.8% ±0.0%

square-7-b +1.7% +18.6% +1.4% ±0.0% +0.8% ±0.0%

square-7-v +8.9% +35.2% +2.9% ±0.0% +2.6% ±0.0%

warehouse −2.5% +1.7% +3.0% +0.2% +3.0% +0.2%

average (all) +23.9% +36.0% +3.3% +2.8% +0.8% +0.2%

anything else.

Issues to avoid. Table XII shows runtime and propagation steps of using pri-
orities in flawed ways. The experiment “complete fixpoints” refers to the model
proposed in [Granvilliers and Monfroy 2003] where fixpoints are always completed
before possibly switching to a higher priority level. As to be expected, the num-
ber of propagation steps is reduced, however at the expense of increased runtime.
More importantly, two examples exhibiting substantial slowdown (golomb-10-d
and square-5-d) are particularly relevant as they feature propagators of vastly
different priority levels.

The surprising behavior of bibd-7-3-60 appears to be due to a problem with how
the priorities for the two different kinds of propagators used in this example (lex
and Boolean-sum) are classified. This clarifies that even with a rich spectrum of
priority levels at disposal it remains difficult to assign priority levels to propagators.

The experiment “inverse priorities” shows numbers for a propagation engine
where a propagator with lowest priority is executed first. The experiment shows
that there is a point to the priority levels, high priority = fast propagator. While
the number of propagations is often reduced the approach is rarely better than no
priorities and sometimes catastrophically worse.
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Table XII. Priority experiments: issues to avoid.
Example complete fixpoints inverse priorities

time steps time steps

all-interval-500 −0.8% ±0.0% +13296.5% +32.1%

alpha +0.5% ±0.0% +0.3% ±0.0%

bibd-7-3-60 −11.7% −45.8% −7.7% −42.8%

cars −1.2% −0.9% +14.4% +40.1%

crowded-chess-7 −4.2% −41.1% −7.4% −52.0%

donald-b +0.9% ±0.0% +36.8% +31.9%

donald-d +0.9% ±0.0% +6.2% −7.1%

donald-v +1.6% ±0.0% +0.2% ±0.0%

golomb-10-b −2.5% −14.5% +892.0% −5.7%

golomb-10-d +14.6% −14.2% +945.4% −2.2%

graph-color +1.9% +0.1% +336.8% +51.1%

grocery +29.3% −23.4% +35.3% +9.1%

knights-10 −0.9% ±0.0% +8.7% +43.5%

minsort-200 +5.5% +8.6% +2732.2% +2246.7%

o-latin-7-d +7.3% −3.8% +105.1% +18.7%

partition-32 +0.4% −1.2% +108.3% +66.8%

photo +1.2% ±0.0% +18.6% −1.9%

picture −3.6% ±0.0% −3.7% ±0.0%

queens-400 −0.7% ±0.0% +0.2% ±0.0%

queens-400-a +0.3% ±0.0% −0.3% ±0.0%

sequence-500 +0.2% ±0.0% −0.2% ±0.0%

square-5-d +32.5% +7.9% +50.1% +7.5%

square-7-b +0.5% ±0.0% +177.4% −7.6%

square-7-v +2.6% ±0.0% ±0.0% ±0.0%

warehouse −3.7% −9.0% +14.7% +11.3%

average (all) +2.5% −6.6% +107.5% +18.4%

The experiment “inverse priorities” clarifies a very important aspect of priori-
ties: they not only serve as a means to improve performance, they also serve as a
safeguard against pathological propagation order.

6.4 Dynamic Priorities

As evaluation proceeds, variables become fixed and propagators can be replaced by
more specialized versions. If a propagator is replaced by a more specialized version,
also its priority should change.

Example 6.4 Updating a propagator. Consider the propagator fp for updating
x1 in the constraint x1 = x2 + x3 defined by

fp(D)(x1) = D(x1) ∩ [infD(x2) + infD(x3) .. supD(x2) + supD(x3)]
fp(D)(x) = D(x) x 6= x1

might have initial priority ternary. When the variable x2 becomes fixed to d2 say,
then the implementation for x1 can change to

fp(D)(x1) = D(x1) ∩ [d2 + infD(x3) .. d2 + supD(x3)]

and the priority can change to binary. 2
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Table XIII. Dynamic priority experiments.
Example dynamic

time steps

alpha −25.5% −41.7%

cars −5.9% −13.4%

crowded-chess-7 −5.0% −26.5%

o-latin-7-d −7.3% −7.4%

picture −1.9% ±0.0%

sequence-500 +6.0% +34.8%

average (above) −7.1% −12.1%

average (all) −1.7% −3.0%

Changing priorities is also relevant when a propagator with n > 3 variables with
priority linear (or worse) reduces to a binary or ternary propagator.

6.5 Dynamic Priority Experiments

Table XIII shows runtime and propagation steps for an engine using dynamic pri-
orities compared to an engine using all optimizations introduced earlier and the
full priority spectrum. Dynamically changing the priority of propagators as they
become smaller due to fixed variables can lead to significant improvements. In ef-
fect, constraints that become smaller (and thus run at higher priority) are run first
causing the still large constraints to be run less often.

This is in particular true for alpha with initially only propagators for linear equal-
ities with priority linear. When fixing variables during search many of these prop-
agators are then run at priority levels binary and ternary. It is worth noting that
using dynamic priorities can disturb the FIFO queue behavior: for sequence-500 it
appears to be more important to run all exactly propagators at the same priority
level. Running some of the exactly propagators at priorities binary and ternary
is not beneficial and disturbs the queue behavior.

Dynamic priorities incur the overhead to compute the priority based on the num-
ber of not yet fixed variables. However, the overhead is still small enough to make
dynamic priorities worthwhile overall.

7. COMBINING PROPAGATION

There are many ways to define a correct propagator f for a single constraint c: the
art of building propagators is to find good tradeoffs in terms of speed of execution
versus strength of propagation. Typically a single constraint may have a number
of different propagator implementations: the cheapest simple propagator, a more
complex bounds propagator, and a more complex domain propagator, for example.

Example 7.1 alldifferent propagators. Consider the propagator fq(D) for the
alldifferent constraint.

E := ∅
for i ∈ [1 .. n]

if (∃d.D(xi) = {d})
if (d ∈ E) return D⊥ else E := E ∪ {d}
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for i ∈ [1 .. n]
if (|D(xi)| > 1) D(xi) := D(xi)− E

return D

The propagator does a linear number of set operations in each invocation and is
checking. It can be made idempotent by testing that no variable becomes fixed.

Another propagator for the same constraint is the domain propagator fo intro-
duced in [Régin 1994] with complexity O(n2.5). 2

Given two propagators, say f1 and f2 in prop(c), where f1 is stronger than f2

(f1(D) v f2(D) for all domains D), we could choose to implement c by just f1 or
just f2 trading off pruning versus execution time. Without priorities there is no
point in using both propagators, since f1 will always be run and always compute
stronger domains than f2.

We could possibly merge the implementation of the propagators to create a new
propagator f12(D) = f1(f2(D)). By running the cheaper propagator immediately
first we hope that we can (a) quickly determine failure in some cases and (b)
simplify the domains before applying the more complicated propagator f1. While
this immediate combination of two propagators in essence is simply building a new
propagator, once we have priorities in our propagation engine we can use two or
more propagators for the same constraint in different ways.

7.1 Multiple Propagators

Once we have priorities it makes sense to use multiple propagators to implement
the same constraint. We can run the weaker (and presumably faster) propagator
f2 with a higher priority than f1. This makes information available earlier to other
propagators. When the stronger propagator f1 is eventually run, it is able to take
advantage from propagation provided by other cheaper propagators.

Note that this is essentially different from having a single propagator f12 that
always first runs the algorithm of f2 and then the algorithm of f1.

Example 7.2 Multiple alldifferent. Consider the two propagators fq and fo

defined in Example 7.1 above. We can use both propagators: fq with priority
linear, and fo with priority quadratic. This means that we will not invoke fo until
we have reached a fixpoint of fq and all linear and higher priority propagators.

Consider the additional propagator fe for the constraint 3x1 = 2x2, which has
priority binary. Consider the domain D where D(x1) = {4, 6}, D(x2) = {6, 9},
D(x3) = {6, 7} and D(x4) = · · · = D(xn) = [1 .. n], which is a fixpoint for fe, fq

and fo. Now assume the domain of x3 is reduced to 6. Propagator fq is placed in
queue linear and fo is placed in queue quadratic. Applying fq removes 6 from
the domain of all the domains of x1, x2, x4, . . . , xn, and this causes fe to be placed
in queue binary. This is the next propagator considered and it causes failure.
Propagator fo is never executed.

If we just use fo then we need to invoke the more expensive fo to obtain the
same domain changes as fq, and then fail. 2

Multiple propagators for the same constraint have been explored previously in
the context of interval narrowing. Monfroy [1990] describes the use of several propa-
gators (narrowing operators) with different propagation strength. In this approach,
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after a fixpoint has been computed with cheap propagators, only more expensive
propagators are considered (resembling the model based on composition operators
discussed in Section 6.2).

7.2 Staged Propagators

Once we are willing to use multiple propagators for a single constraint it becomes
worth considering how to more efficiently manage them. Instead of using two (or
more) distinct propagators we can combine the several propagators into a single
propagator with more effective behavior.

We assume that a propagator has an internal state variable, called its stage.
When it is invoked, the stage determines what form of propagation applies.

Example 7.3 Staged alldifferent. Consider the alldifferent constraint with
implementations fq and fo discussed in Example 7.1. We combine them into a
staged propagator as follows:

— On a fix(x) event, the propagator is moved to stage A, and placed in the
queue with priority linear.

— On a dmc(x) event, unless the propagator is in stage A already, the propagator
is put in stage B, and placed in the queue with priority quadratic.

— Execution in stage A uses fq, the propagator is put in stage B, and placed in
the queue with priority quadratic, unless it is subsumed.

— Execution in stage B uses fo, afterwards the propagator is removed from all
queues (stage NONE).

The behavior of the staged propagator is identical to the multiple propagators
for the sample execution of Example 7.1. In addition to the obvious advantage
of having a single staged propagator, another advantage comes from avoiding the
execution of fo when the constraint is subsumed. 2

In addition to giving other propagators with higher priority the opportunity to
run before the expensive part of a staged propagator, the first stage of a propa-
gator can already determine that the next stage does not need to be run. This is
illustrated by the following example.

Example 7.4 Staged linear equations. Consider the unit coefficient linear equa-
tion Σni=1aixi = d constraint where |ai| = 1, 1 ≤ i ≤ n. We have two implementa-
tions, fr, which implements bounds(R) consistency (considering real solutions, with
linear complexity) for the constraint, and fs, which implements domain consistency
(with exponential complexity).

We combine them into a staged propagator as follows:

— On a bc(x) (or depending on the event types available: lbc(x) or ubc(x))
event, the propagator is moved to stage A, and placed in the queue with priority
linear.

— On a dmc(x) event, unless the propagator is in stage A already, the propagator
is put in stage B, and is placed in the queue with priority veryslow.

— Execution in stage A uses fr, afterwards the propagator is put in stage B,
and placed in the queue with priority veryslow, unless each xi has a range domain
in which case it is removed from all queues (stage NONE).
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Table XIV. Combination experiments.
Example immediate multiple staged

time steps time steps time steps

donald-b +0.7% ±0.0% −15.4% +10.4% −16.9% +10.1%

donald-d −1.6% −2.4% ±0.0% +111.9% −1.6% +88.1%

golomb-10-b +0.3% ±0.0% −10.1% +9.2% −9.8% +9.2%

golomb-10-d −2.7% +0.2% −14.5% +8.6% −16.1% +8.6%

graph-color −0.6% −0.6% +2.0% +23.0% −14.4% +12.3%

o-latin-7-d −1.2% +1.0% −9.6% +14.3% −14.0% +10.9%

partition-32 −0.6% ±0.0% −4.3% +7.4% −6.2% +4.2%

photo ±0.0% ±0.0% −0.9% +7.8% −1.5% +7.8%

picture +0.3% ±0.0% −0.1% ±0.0% −3.4% ±0.0%

square-5-d −29.6% −7.4% −38.3% +28.8% −42.8% +56.0%

square-7-b −0.1% ±0.0% −17.5% −11.0% −18.6% −10.9%

average (above) −3.6% −0.9% −10.7% +16.1% −14.0% +15.3%

average (all) −1.6% −0.4% −4.8% +6.8% −6.5% +6.5%

— Execution in stage B uses fs, afterwards the propagator is removed from all
queues (stage NONE).

The staged propagator is advantageous since the “fast” propagator fr can more
often determine that its result D′ = fr(D) is also a fixpoint for fs. 2

Staged propagators are widely applicable. They can be used similarly for the
bounds(Z) version of the alldifferent constraint. Another area where staged
propagators can be used is constraint-based scheduling, where typically different
propagation methods with different strength and efficiency are available [Baptiste
et al. 2001].

Staging is not limited to expensive propagators, it is already useful for binary
(for example, combining bounds and domain propagation for the absolute value
constraint abs(x) = y) and ternary constraints (for example, combining bounds
and domain propagation for the multiplication constraint x× y = z).

It is important to note that staging requires a sufficiently rich spectrum of prior-
ities. For example, to use staging for binary or ternary propagators as mentioned
above, at least two different priority levels must be available for staging. This ex-
plains why the full priority spectrum is useful: here, for binary propagators two
priorities binary-high and binary-low are available. Likewise, ternary-high and
ternary-low are available for ternary propagators.

7.3 Combining Propagation Experiments

Table XIV presents runtime and propagation steps of different propagator combina-
tion schemes compared to a propagation engine using the full priority spectrum and
all optimizations presented so far. The experiment “immediate” uses a single prop-
agator that always runs the first stage immediately followed by the second stage.
For experiment “multiple”, multiple propagators for different stages (as discussed
in Section 7.1) are used, whereas for experiment “staged” full staging is used (as
described in Section 7.2).

A quite surprising result is that “immediate” offers only modest or even no
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speedup. The only exception is square-5-d using bounds(R) propagation immedi-
ately before domain propagation for several linear equation propagators.

Using multiple propagators leads to an average reduction in runtime by 10% with
a slowdown for just a single example (graph-color). As to be expected, the number
of propagation steps rises sharply. This is due to the fact that more propagators
need to be run and that, similar to the introduction of priorities, propagators
with high priority are run more often. The exceptional case of square-7-b where
the number of propagation steps decreases appears to be a fortunate change in
propagation order.

Staged propagation offers another level of improvement over using multiple prop-
agators: all examples now achieve speedup. As fewer propagators must be executed
compared to “multiple”, also the number of propagation steps decreases (apart from
square-5-d being another case of changing propagation order). Due to the reduced
overhead compared to “multiple”, even small examples such as graph-color are
able to benefit from staged execution.

The exact improvement in runtime of donald-d for “immediate” and “staged”
is due to early fixpoint detection for a big linear equation propagator as discussed
in Example 7.4.

The memory requirements for “immediate” and “staged” are unchanged. The
use of multiple propagators for “multiple” leads to an average increase of 6.4% in
allocated memory for the examples shown in Table XIV.

In summary, staged propagation is very effective for all examples, so it should
clearly be used.

8. EXPERIMENT SUMMARY

In Table XV we summarize the effect of all improvements suggested in this paper.
The naive propagation engine is compared to an engine featuring all techniques
introduced in this paper: dynamic fixpoint reasoning, {dmc,fix,bc} fully dynamic
events, dynamic priority based LIFO queuing with the full priority spectrum, and
staged propagators.

It is interesting to note that all examples but warehouse show an improvement
in runtime and that almost 75% of the examples show an improvement of at least
10%. The improvement in runtime does not incur a large increase in memory: the
largest increases are for the three donald-* problems, where the increase is actually
negligible in absolute terms and due to the underlying memory allocation strategy
(as discussed in Section 5.2).

The effects of the individual optimizations discussed in this paper could be sum-
marized as follows. Dynamic fixpoint reasoning subsumes static reasoning and is
easy to implement, it provides a modest improvement in execution times. Events,
while used in all finite domain propagation engines, have less benefit than perhaps
was assumed by developers. Using dynamic events again leads to a modest im-
provement in execution times. The fairness of a FIFO queue strategy is essential
for scheduling propagators. While priorities by themselves are not that important
they provide a protection against worst case behavior and enable the use of multiple
propagators. Staging is an important optimization that can significantly improve
performance. All optimizations are available by default in Gecode, the system used
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Table XV. Experiment summary.
Example no optimizations all optimizations

time (ms) mem (KB) time memory

all-interval-500 118.31 385.4 −36.1% +25.0%

alpha 106.56 22.2 −31.2% +9.8%

bibd-7-3-60 2 279.36 6 688.6 −11.0% +5.8%

cars 4.64 41.7 −7.7% +1.2%

crowded-chess-7 624.25 196.9 −8.1% −6.4%

donald-b 0.70 7.4 −25.7% +19.0%

donald-d 30.37 3.2 −13.0% +68.2%

donald-v 0.38 5.4 −3.3% +44.4%

golomb-10-b 1 347.48 40.0 −38.5% +9.3%

golomb-10-d 2 430.00 37.0 −43.7% +4.8%

graph-color 35.87 832.4 −19.9% +9.0%

grocery 55.41 7.7 −5.9% +7.9%

knights-10 7.46 770.3 −14.7% +4.2%

minsort-200 342.48 32 454.5 −58.8% −5.1%

o-latin-7-d 574.36 242.9 −32.5% +5.5%

partition-32 8 571.24 160.4 −40.4% +9.2%

photo 108.87 37.0 −23.8% +10.1%

picture 1 553.42 450.5 −3.0% +18.0%

queens-400 4 433.12 30 286.1 −87.6% +0.2%

queens-400-a 16.15 566.3 −10.3% +4.4%

sequence-500 517.96 6 081.5 −79.8% −49.4%

square-5-d 33 391.24 43.5 −44.2% +11.9%

square-7-b 10 166.24 160.3 −41.2% +8.7%

square-7-v 5 690.00 144.2 −3.9% +11.7%

warehouse 0.74 29.4 +1.2% +1.0%

average (all) — — −33.3% +7.2%

for the examples (see Appendix B).

Scalability. Finally, we examine the issue of how the optimizations scale with
problem size. Table XVI shows the results of the benchmarks with scale factors,
tried at different sizes. For each problem, the table shows how the number of
variables and propagators grows with the increase in problem size n. First one
should note that scaling the size of the problem does not necessarily mean that
the larger versions of the problem are harder when we are searching for the first
solution, although this is usually the case. For example queens-200 is substantially
harder than queens-400, square-5-v is substantially harder than square-6-v.

For benchmarks where size does not correspond to difficulty queens and square
it is hard to see any pattern. In general in the other results we can see two main
behaviors for scaling. The improvements/space penalty from optimization may
be more or less constant across size, e.g. time and steps for all-interval and
partition, memory for partition and queens. The improvements may increase
with size: time for golomb, time and steps for knights, sequence, memory for
all-interval, golomb. The only example where we have a trend in the wrong
direction is size for knights, and steps for golomb, both of which are do not have
a negative effect on time. Overall in almost all examples increasing the size of the
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Table XVI. Experiments to demonstrate scalability.
Size no optimizations all optimizations

time (ms) steps mem (KB) time steps memory

all-interval-n: O(n) variables, O(n) propagators

500 119.12 503 036 385.4 −36.0% −24.6% +25.0%

1000 484.56 2 006 041 769.4 −36.9% −24.8% +25.0%

1500 1 155.00 4 509 046 1 537.5 −39.1% −24.9% +16.7%

2000 2 093.94 8 012 046 2 049.5 −39.8% −24.9% +12.5%

golomb-n-b: O(n2) variables, O(n2) propagators

8 23.50 49 602 17.5 −38.1% +7.9% +20.6%

9 165.18 330 795 26.8 −37.5% +21.9% +13.6%

10 1 346.24 2 642 464 40.0 −38.5% +30.8% +9.3%

11 29 241.24 56 282 529 54.2 −39.6% +39.3% +8.6%

knights-n: O(n2) variables, O(n2) propagators

10 7.44 48 038 770.3 −14.5% −57.9% +4.2%

20 59.87 606 139 3 085.1 −37.9% −74.3% +8.3%

30 721.71 7 620 518 18 718.6 −50.5% −82.7% +6.8%

40 1 773.12 17 674 449 31 665.9 −63.0% −89.3% +7.9%

partition-n: O(n) variables, O(n) propagators

24 851.84 1 712 925 106.9 −40.6% −31.0% +8.9%

28 2 723.12 5 402 047 135.2 −40.6% −30.8% +10.9%

32 8 605.60 16 785 121 160.4 −40.3% −31.5% +9.2%

36 69 418.12 131 344 889 217.4 −41.1% −30.0% +9.8%

queens-n: O(n) variables, O(n2) propagators

100 47.51 543 699 1 668.0 −42.9% −91.7% ±0.0%

200 24 646.84 253 087 619 5 958.2 −26.4% −56.2% ±0.0%

300 1 583.74 13 345 211 15 049.9 −83.4% −98.8% ±0.0%

400 4 407.87 31 424 152 30 286.1 −87.8% −99.1% +0.2%

queens-n-a: O(n) variables, O(1) propagators

100 1.37 828 54.0 −3.5% −41.1% +12.4%

200 4 324.36 1 769 276 149.0 −0.5% −21.7% +20.6%

300 8.64 1 849 306.2 −11.7% −49.0% +4.2%

400 16.22 2 469 566.3 −10.2% −48.8% +4.4%

sequence-n: O(n) variables, O(n) propagators

250 74.18 41 786 1 665.5 −71.0% −43.6% −49.9%

500 517.50 151 610 6 081.5 −79.7% −50.1% −49.4%

750 1 777.65 316 548 13 377.5 −78.6% −55.1% −37.3%

1000 4 764.06 564 891 23 297.6 −81.6% −51.9% −48.1%

square-n-v: O(n2) variables, O(n) propagators

4 10.08 35 150 20.9 −6.9% −22.8% +18.2%

5 876.84 2 905 924 43.5 −5.1% −21.3% +7.7%

6 0.57 1 655 56.9 −1.8% −20.1% +13.0%

7 5 746.24 13 956 982 144.2 −5.6% −32.3% +11.7%

problem either keeps the same level of optimizations, or improves it. Hence the
optimizations are scalable.

9. CONCLUSION AND FUTURE WORK

We have given a formal definition of propagation systems including idempotence,
events, and priorities used in current propagation systems and have evaluated their
impact. We have introduced dynamically changing event sets which are shown
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to improve efficiency considerably. The paper has introduced multiple and staged
propagators which are shown to be an important optimization in particular for
improving the efficiency of costly global constraints.

While the improvements to an engine of a propagation based constraint solver
have been discussed for integer constraints, the techniques readily carry over to
arbitrary constraint domains such as finite sets and multisets.

A rather obvious way to further speed up constraint propagation is to consider not
only cost but also estimated impact for a propagator. However, while computing
cost is straightforward it is currently not clear to us how to accurately predict
propagation impact.

A. EXAMPLES USED IN EXPERIMENTS

All variants of constraint propagation discussed in the paper are experimentally
evaluated. The characteristics of the examples used in evaluation are summarized
in Table XVII. The column “variables” gives the number of variables in the ex-
ample, whereas the column “propagators” shows the number of propagators as
implementations of constraints in the example. The column “search” shows which
search strategy is used to search for a solution (“first” is simple backtracking search
for the first solution, “all” is search for all solutions, “best” is branch-and-bound
search for a best solution). The two last columns describe how many failed nodes
are explored during search (column “failures”) and how many solutions are found
(column “solutions”).

A -d at the end of the example name means that domain propagation is used for
all occurring alldifferent and linear equation constraints. Likewise, -b means
that bounds(Z) propagation is used for all alldifferent and bounds(R) for all
linear equation constraints. In contrast, for -v bounds(R) propagation is used for
all linear constraints, whereas naive propagation (eliminating assigned values as in
Example 7.1) is used for alldifferent.

If not otherwise mentioned, bounds(R) consistency is used for arithmetic con-
straints (including linear constraints) and naive propagation for alldifferent.

— all-interval-500 computes a series of numbers where the distances between
adjacent numbers are pairwise distinct (prob007 in [CSPLib 2006]). The model uses
a single bounds(Z) consistent alldifferent propagator and many binary absolute
value (abs(x) = y) and ternary minus propagators.

— alpha and donald are crypto-arithmetic puzzles involving linear equation
propagators and a single alldifferent propagator.

— bibd-7-3-60 is an instance of a balanced incomplete block design problem
with parameters (v, k, l) = (7, 3, 60) (prob028 in [CSPLib 2006]). The model in-
volves Boolean-sum propagators and lex propagators for symmetry breaking.

— cars models the well known car sequencing problem from [Van Hentenryck
et al. 1992] using element, exactly, and linear equation propagators (prob001
in [CSPLib 2006]).

— crowded-chess-7 places different chess pieces on a 7×7 chessboard [Dudeney
1958]. It uses exactly, element, domain consistent alldifferent, and bounds(R)
consistent linear equation propagators.
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Table XVII. Example characteristics.
Example variables propagators search failures solutions

all-interval-500 1 498 1 002 first 0 1

alpha 26 21 all 7 435 1

bibd-7-3-60 11 760 9 693 first 1 306 1

cars 60 93 all 107 6

crowded-chess-7 163 275 first 30 396 1

donald-b 10 2 first 79 1

donald-d 10 2 first 5 1

donald-v 10 2 first 79 1

golomb-10-b 46 46 best 19 929 10

golomb-10-d 46 46 best 19 929 10

graph-color 201 566 first 37 1

grocery 7 7 first 37 1

knights-10 2 028 2 981 first 2 1

minsort-200 399 398 first 0 1

o-latin-7-d 147 133 first 2 188 1

partition-32 128 134 first 160 258 1

photo 61 54 best 6 995 7

picture 625 50 first 3 242 1

queens-400 400 239 400 first 10 1

queens-400-a 400 3 first 10 1

sequence-500 500 502 all 250 1

square-5-d 25 15 first 41 272 1

square-7-b 49 19 first 245 208 1

square-7-v 49 19 first 481 301 1

warehouse 81 76 best 20 4

— golomb-10 finds an optimal Golomb ruler of size 10 (prob006 in [CSPLib
2006]) with the usual model.

— graph-color performs clique-based graph coloring for a graph with 200 nodes.
Coloring each clique uses a domain consistent alldifferent propagator.

— grocery is a small crypto-arithmetic puzzle using in particular bounds(R)
consistent multiplication propagators.

— knights-10 finds a sequence of knight moves on a 10× 10 chess board such
that each field is visited exactly once and that the moves return the knight to
the starting field. The model uses a naive alldifferent propagator and a large
number of reified binary propagators.

— minsort-200 sorts 200 variables using 200 minimum propagators.

— o-latin-7 finds an orthogonal latin square of size 7 and mostly uses domain
consistent alldifferent propagators.

— partition-32 partitions two 32 number blocks such that their products
match. It uses several bounds(R) multiplication propagators, a single domain con-
sistent alldifferent propagator, and few linear equation propagators.

— photo places 9 persons on a picture such that as many preferences as possible
are satisfied. Uses a large bounds(Z) consistent alldifferent propagator, a large
bounds(R) consistent linear propagator, and many reified binary propagators.
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.



Efficient Constraint Propagation Engines · 39

— picture models a 25 × 25 picture-puzzle (prob012 in [CSPLib 2006]) using
50 regular propagators.

— queens-400 and queens-400-a place 400 queens on a chess board of size
400×400 such that the queens do not attack each other. queens-400 uses quadrat-
ically many binary disequality propagators, while queens-400-a uses three naive
alldifferent-propagators.

— sequence-500 finds a magic sequence with 500 elements using 500 exactly
propagators (prob019 in [CSPLib 2006]).

— square-5 (square-7) computes a magic square of size 5×5 (7×7) using linear
equation propagators and a single alldifferent propagator (prob019 in [CSPLib
2006]).

— warehouse solves a warehouse location problem following [Van Hentenryck
1999].

B. EVALUATION PLATFORM

All experiments use Gecode, a C++-based constraint programming library [Gecode
Team 2006]. Gecode is one of the fastest constraint programming systems cur-
rently available, benchmarks comparing Gecode to other systems are available from
Gecode’s webpage. The version used in this paper corresponds to Gecode 1.3.0 (al-
beit slightly modified to ease the numerous experiments in this paper). Gecode has
been compiled with Microsoft Visual Studio Express Edition 2005.

All examples have been run on a Laptop with a 2 GHz Pentium M CPU and
1024 MB main memory running Windows XP. Runtimes are the average of 25 runs
with a coefficient of deviation less than 4% for all benchmarks.
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