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A widely adopted approach to solving constraint satisfaction problems combines systematic tree

search with various degrees of constraint propagation for pruning the search space. One common

technique to improve the execution efficiency is to add redundant constraints, which are con-
straints logically implied by others in the problem model. However, some redundant constraints

are propagation redundant and hence do not contribute additional propagation information to

the constraint solver. Redundant constraints arise naturally in the process of redundant mod-
eling where two models of the same problem are connected and combined through channeling

constraints. In this paper, we give general theorems for proving propagation redundancy of one

constraint with respect to channeling constraints and constraints in the other model. We illustrate,
on problems from CSPlib (http://www.csplib.org/), how detecting and removing propagation

redundant constraints in redundant modeling can speed up search by several order of magnitudes.
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1. INTRODUCTION

Finite domain constraint programming combines backtracking tree search with con-
straint propagation to solve constraint satisfaction problems (CSPs) [Mackworth
1977]. Constraint propagation removes infeasible values from the domains of vari-
ables to reduce the search space. This propagation-based constraint solving frame-
work is realized in modern constraint programming systems such as ECLiPSe [Chea-
dle et al. 2003], ILOG Solver [1999], and SICStus Prolog [2003], which have been
successfully applied to many real-life industrial applications.
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There is usually more than one way of modeling a problem as a CSP. By mod-
eling a problem as a CSP, we mean the process of determining the variables, the
associated domains of the variables, and the expressions of the constraints. Find-
ing a good model of a CSP is a challenging task. A modeler must specify a set of
constraints that capture the definitions of the problem, but this is not enough. The
model should also have strong propagation: that is, it should be able to quickly
reduce the domains of the variables of the problem. Moreover, the implementation
of propagators to perform constraint propagation should be efficient. Last but not
least, the choice of variables and the associated domains should lead to a smaller
search space than others.1

A common technique to increase propagation strength is to add redundant con-
straints,2 which are logically implied by the constraints of the model. An early
and significant use of redundant constraints appears in the work of Carlier and
Pinson [1989] for solving job-shop scheduling problems. Adding redundant con-
straints can be beneficial since the constraint solver may extract more information
from these redundant constraints. However, some logically redundant constraints
are propagation redundant, and hence do not contribute additional propagation
information to the constraint solver. Generally, we only want to add redundant
constraints that are not propagation redundant in order to reduce the search space.

Example 1. Consider the following constraints,

x1 ≥ x2, x2 ≥ x3, x1 ≥ x3.

Suppose the domain for x1 is {−2,−1, 0, 1}, and the domains for x2 and x3 are both
{−2,−1, 0, 1, 2}. During constraint propagation, the constraint solver checks each
constraint in turn and removes infeasible values from the domains. This process is
repeatedly applied until there are no further changes in the resulting domains.

(1) We check x1 ≥ x2 and remove 2 from the domain of x2 since it is infeasible to
form a solution of x1 ≥ x2 with x2 = 2. Now, the domain of x2 is {−2,−1, 0, 1}.

(2) We check x2 ≥ x3 and remove 2 from the domain of x3 since it is infeasible to
form a solution of x2 ≥ x3 with x3 = 2. Now, the domain of x3 is {−2,−1, 0, 1}.

(3) We check x1 ≥ x3 and do nothing. This checking is redundant since anything
that can be removed by this constraint will be removed by the other two. The
constraint is propagation redundant.

Clearly, the constraint x1 ≥ x3 is logically implied by the constraints x1 ≥ x2

and x2 ≥ x3. Note that if x1 ≥ x3 were the first constraint checked, it would
indeed remove the value 2 from the domain of x3. However, it is easy to verify that
by removing x1 ≥ x3 from the model, we still obtain exactly the same resulting
domains. Hence, x1 ≥ x3 does not (really) contribute additional domain reduction
to the model. �

Note that logical redundancy does not imply propagation redundancy.

1For example, the search space of a problem model using integer variables is usually smaller than

that using Boolean variables.
2Redundant constraints are also known as implied constraints in some CSP literature [Smith et al.

2000; Frisch et al. 2004].
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Example 2. Consider the following constraints,

x1 − x2 ≥ 0, x1 + x2 ≥ 0, x1 ≥ 0

Suppose the domain of x1 and x2 is {−2,−1, 0, 1, 2}. During constraint propagation,
the constraint solver checks each constraint in turn as follows:

(1) Checking x1 − x2 ≥ 0 removes no values from any domain.
(2) Checking x1 + x2 ≥ 0 again removes no values from any domain.
(3) Checking x1 ≥ 0 removes the values −2 and −1 from the domain of x1.

Note that x1 ≥ 0 is logically redundant with respect to x1 − x2 ≥ 0 ∧ x1 + x2 ≥ 0.
Clearly it is not propagation redundant. �

Depending on the order in which constraints are checked, propagation redundant
constraints may or may not remove values from the domain (as illustrated above).
Hence there certainly is a runtime cost associated with propagation redundant
constraints. Removing propagation redundant constraints leads us to exactly the
same domains after constraint propagation, but with significantly less cost for the
propagation, as we shall see later in the experiments.

An important source of logically redundant constraints is in redundant model-
ing [Cheng et al. 1999]. A problem can be modeled differently from two viewpoints
using two different sets of variables. By connecting the two different models with
channeling constraints, which relate valuations in the two different models, stronger
propagation behavior can be achieved in the combined model. However, the addi-
tional variables and constraints impose extra computation overhead. Given each
model is complete and only admits the solutions of the problem then each model is
logically redundant with respect to the other model plus the channeling constraints.
In many cases, some of the constraints are also propagation redundant with respect
to the other constraints in the combined model. By reasoning about propagation
redundancy, we can improve redundant modeling by just keeping the constraints
which give beneficial new propagation.

In this paper, we introduce the notion of restrictive and unrestrictive channel
functions to characterize channeling constraints. We study the propagation be-
havior of constraints based on the notion of propagation rules, which capture each
possible propagation by a constraint. This allows us to systematically determine if
a propagator is redundant with respect to the propagators of a set of constraints
through simple implication tests. We give general theorems for proving propagation
redundancy of constraints involved in redundant models.

We focus on propagators that perform (the combination of) two popular prop-
agation techniques, namely domain propagation [Van Hentenryck et al. 1998] and
set bounds propagation [Gervet 1997], including global constraints that implement
these approaches (see Example 26). The underlying machinery we use can express
any propagators that only deal with integer domains and set bounds, and some of
our results are directly applicable to such propagators. Although we do not con-
sider stronger set based propagators that reason more about cardinalities [Azevedo
and Barahona 2000; Müller 2001]), we can understand stronger cardinality reason-
ing as additional constraints using implicit cardinality variables. Hence, we can
model common cardinality reasoning using additional propagators.
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We illustrate, on problems from CSPLib (http://www.csplib.org/), how de-
tecting and removing propagation redundant constraints can significantly speed
up solving behavior. This paper is a revised and extended version of our earlier
work [Choi et al. 2003a; 2003b].

The remainder of the paper is organized as follows. In Section 2, we introduce
propagation-based constraint solving and propagation rules, a way of enumerating
the different propagation behaviors of a propagator. In Section 3, we give theorems
that are useful in determining propagation redundant constraints. In Section 4, we
define a broad form of channeling constraints that are covered by our approach. In
Section 5, we give theorems that allow us to show which constraints in a redundant
model are not causing extra propagation and can be removed. In Section 6, we give
experimental results showing the benefits of detecting and removing propagation
redundant constraints. In Section 7, we discuss related work. In Section 8, we
summarize our contributions and shed light on future directions of research.

2. BACKGROUND

In this paper, we consider integer and set constraint solving with constraint propa-
gation and tree search. In an abuse of notation, we refer to arithmetic constraints
over Boolean variables as Boolean constraints, they are often called pseudo-Boolean
constraints. Hence, Boolean constraint solving is considered as a special case of in-
teger constraint solving. Our notations, although different from the conventional
CSP literatures, allow us to express the theoretical framework in a simpler manner.

2.1 Variables and Domains

We consider a typed set of variables V = VI ∪ VS made up of integer variables VI ,
for which we use lower case letters such as x and y, and sets of integers variables
VS , for which we use upper case letters such as S and T . We use v to denote
variables of either kind.

Each variable is associated with a finite set of possible values, defined by the
domain of the CSP. A domain D is a complete mapping from a fixed (countable)
set of variables V to finite sets of integers (for the integer variables in VI) and to
finite sets of finite sets of integers (for the set variables in VS). A false domain D is
a domain with D(v) = ∅ for some v. A singleton domain D is such that |D(v)| = 1
for all v ∈ V. The intersection of two domains D1 and D2, denoted D1 u D2, is
defined by the domain D3(v) = D1(v) ∩D2(v) for all v. A domain D1 is stronger
than a domain D2, written D1 v D2, if D1(v) ⊆ D2(v) for all v. A domain D1 is
equal to a domain D2, denoted D1 = D2, if D1(v) = D2(v) for all v. We shall be
interested in the notion of an initial domain, which we denote Dinit . The initial
domain gives the initial values possible for each variable. In effect an initial domain
allows us to restrict attention to domains D such that D v Dinit . We also use range
notation whenever possible: [ l .. u ] denotes the set {d | l ≤ d ≤ u} when l and u are
integers, while [L .. U ] denotes the set of sets of integers {A | L ⊆ A ⊆ U} when L
and U are sets of integers.
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2.2 Valuations, Infima and Suprema

A valuation θ is a mapping of integer variables (xi ∈ VI) to integer values and set
variables (Si ∈ VS) to sets of integer values, written

{x1 7→ d1, . . . , xn 7→ dn, S1 7→ A1, . . . , Sm 7→ Am}

where di ∈ D(xi) and Aj ∈ D(Sj). Let vars be the function that returns the set of
variables appearing in an expression, constraint or valuation. Given an expression
e, θ(e) is obtained by replacing each v ∈ vars(e) by θ(v) and calculating the value
of the resulting variable free expression. In an abuse of notation, we define a
valuation θ to be an element of a domain D, written θ ∈ D, if θ(vi) ∈ D(vi) for all
vi ∈ vars(θ). The projection of a valuation θ onto variables V , denoted θ|V is the
valuation {v 7→ θ(x) | v ∈ (V ∩ vars(θ))}.

Define the infimum and supremum of an expression e with respect to a domain
D as infD e = inf{θ(e) | θ ∈ D} and supD e = sup{θ(e) | θ ∈ D}. The ordering �
used by inf and sup depends on the type of the expression. If e has integer type
then d1 � d2 iff d1 ≤ d2, while if e has set of integer type then d1 � d2 iff d1 ⊆ d2.
Note that these values may not exist for arbitrary domains and set of integer type
expressions. Later we shall restrict ourselves to domains and expression where
infimum and supremum always do exist.

2.3 Constraints and CSPs

A constraint places restriction on the allowable values for a set of variables and
is usually written in well understood mathematical syntax. More formally, a con-
straint c is a relation expressed using the available function and relation symbols in
a specific constraint language. For the purpose of this paper, we assume the usual
(integer) interpretation of arithmetic constraints, set operators such as ∈ and ⊆,
and logical operators such as ¬, ∧, ∨, ⇒, and ⇔. We define

solns(c) = {θ | vars(θ) = vars(c) ∧ |=θ c},

that is the set of θ that make the constraint c hold true. We call solns(c) the
solutions of c. In some cases, constraints can also be defined directly by giving the
set (or table) solns(c). We sometimes treat an integer constraint c as an expression
with value 1 if true and 0 if false. We can understand a domain D as a constraint
in the obvious way,

D ↔
∧
v∈V

∨
d∈D(v)

v = d.

A CSP consists of a set of constraints read as conjunction. A solution to a CSP is
a valuation θ that makes each constraint of a CSP holds true, i.e. θ|vars(c) ∈ solns(c)
for all constraint c of a CSP. A constraint c is logically redundant with respect to
a constraint c′ if |= c′ → c, that is c holds whenever c′ holds. Adding logically
redundant constraints to a CSP does not change the solutions of a CSP.

2.4 Propagators and Propagation Solvers

In the context of propagation-based constraint solving, a constraint specifies a prop-
agator, which gives the basic units of propagation. A propagator f is a monoton-
ically decreasing function from domains to domains, i.e. D1 v D2 implies that
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f(D1) v f(D2), and f(D) v D. A propagator f is correct for constraint c iff for
all domains D

{θ | θ ∈ D} ∩ solns(c) = {θ | θ ∈ f(D)} ∩ solns(c).

This is a weak restriction since for example, the identity propagator is correct for
all constraints c. We assume that a propagator f for a constraint c is checking,
that is, if D is a singleton domain, then f(D) = D iff there exists θ ∈ D and
θ ∈ solns(c). A checking propagator correctly determines the satisfiability of the
constraint c for singleton domains.

A propagation solver for a set of propagators F and current domain D, solv(F,D),
repeatedly applies all the propagators in F starting from domain D until there is no
further change in resulting domain. solv(F,D) is the largest domain D′ v D which
is a fixpoint (i.e. f(D′) = D′) for all f ∈ F . In other words, solv(F,D) returns a
new domain defined by

iter(F,D) = u
f∈F

f(D),

solv(F,D) = gfp(λd.iter(F, d))(D).

where gfp denotes the greatest fixpoint w.r.t v lifted to functions.

2.5 Domain and Set Bounds Propagators

Propagators are often (but not always) linked to implementing some notion of local
consistency. The most well studied consistency notion is arc consistency [Mack-
worth 1977] which ensures that for each binary constraint, every value in the domain
of the first variable, has a supporting value in the domain of the second variable
which satisfied the constraint. Arc consistency can be naturally extended to con-
straints of more than two variables. This extension has been called generalized arc
consistency [Mohr and Masini 1988], as well as domain consistency [Van Hentenryck
et al. 1998] (which is the terminology we will use), and hyper-arc consistency [Mar-
riott and Stuckey 1998].

A domain D is domain consistent for a constraint c if D is the least domain
containing all solutions θ ∈ D of c, i.e, there does not exist D′ @ D such that
θ ∈ D ∧ θ ∈ solns(c) → θ ∈ D′.

Definition 1. Define the domain propagator for a constraint c as

dom(c)(D)(v) =
{
{θ(v) | θ ∈ D ∧ θ ∈ solns(c)} where v ∈ vars(c)
D(v) otherwise.

Note that dom(c)(D) makes D domain consistent for c.

Example 3. Consider the constraint c ≡ x1 = 3x2 + 5x3. Suppose domain
D(x1) = {2, 3, 4, 5, 6, 7}, D(x2) = {0, 1, 2}, and D(x3) = {−1, 0, 1, 2}. The solu-
tions of c are:

{x1 7→ 3, x2 7→ 1, x3 7→ 0}, {x1 7→ 5, x2 7→ 0, x3 7→ 1}, {x1 7→ 6, x2 7→ 2, x3 7→ 0}.

Hence, dom(c)(D) = D′ where D′(x1) = {3, 5, 6}, D′(x2) = {0, 1, 2}, and D′(x3) =
{0, 1}. Clearly, D′ is domain consistent with respect to c. �
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Set bounds propagation [Gervet 1997] is typically used where a domain maps a
set variable to a lower bound set of integers and an upper bound set of integers. We
shall enforce this by restricting our attention to domains where the D(S) is a range,
that is D(S) = {A | infD(S) ⊆ A ⊆ supD(S)}. This is managed by only using
set bounds propagators, which maintain this property. The set bounds propagator
returns the smallest set range which includes the result returned by the domain
propagator.

Definition 2. Define the set bounds propagator for a constraint c where vars(c) ⊆
VS as

sb(c)(D)(v) =
{

[∩(dom(c)(D)(v)) .. ∪ (dom(c)(D)(v)) ] where v ∈ vars(c)
D(v) otherwise.

Example 4. Consider the constraint c ≡ S1 ⊆ S2. Suppose the domain D where
D(S1) = [ {1} .. {1, 2, 3, 4} ], D(S2) = [ ∅ .. {1, 2, 3} ]. Then, D′ = sb(c)(D) where
D′(S1) = D′(S2) = [ {1} .. {1, 2, 3} ]. �

A constraint can involve both integer and set variables. In such case, we use
domain propagation for the integer variables and set bounds propagation for the
set variables.

Definition 3. Define the domain and set bounds propagator dsb(c) for a con-
straint c as:

dsb(c)(D)(v) =
{

sb(c)(D)(v) where v ∈ vars(c) ∩ VS

dom(c)(D)(v) otherwise.

Note that as defined dsb(c) = dom(c) when vars(c) ⊆ VI . From now on we shall
restrict attention to dsb propagators.

Example 5. Consider the constraint c ≡ |S| = x. Suppose D(x) = {2} and
D(S) = [ ∅ .. {1, 5, 8} ]. The solutions of c are:

{x 7→ 2, S 7→ {1, 5}}, {x 7→ 2, S 7→ {1, 8}}, {x 7→ 2, S 7→ {5, 8}}.

Hence, applying the domain propagator, D′ = dom(|S| = x)(D), gives D′(S) =
{{1, 5}, {1, 8}, {5, 8}}. The domain and set bounds propagator instead determines
dsb(c)(D) = D since ∩{{1, 5}, {1, 8}, {5, 8}} = ∅ and ∪{{1, 5}, {1, 8}, {5, 8}} =
{1, 5, 8}. �

2.6 Atomic Constraints and Propagation Rules

An atomic constraint represents the basic changes in domain that occur during
propagation. For integer variables, the atomic constraints represent the elimination
of values from an integer domain, i.e. xi 6= d or xi = d where xi ∈ VI and d is an
integer.3 For set variables, the atomic constraints represent the addition of a value
to a lower bound set of integer or the removal of a value from an upper bound set
of integer, i.e. d ∈ Si or d 6∈ Si where d is an integer and Si ∈ VS .

3Atomic constraints of the form xi = d are not strictly necessary for propagation rules. They are
equivalent to removing all other values from the domain. However, they would become useful in

the later parts of the paper.
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Definition 4. Define a propagation rule as C � c where C is a conjunction of
atomic constraints, and c is a single atomic constraint such that 6|= C → c.

For notational convenience we shall write extended rules C � C ′ where C ′ is a
conjunction of atomic constraints as a shorthand for a set of rules {C � c | c ∈ C ′}.
A propagation rule C � c defines a propagator (for which we use the same notation)
in the obvious way.

(C � c)(D)(v) =
{
{θ(v) | θ ∈ D ∧ θ ∈ solns(c)} if vars(c) = {v} and |= D → C
D(v) otherwise.

In another word, C � c defines a propagator that removes values from D based
on c only when D implies C. We can characterize an arbitrary propagator f in
terms of the propagation rules that it implements.

Definition 5. A propagator f implements a propagation rule C � c iff

|= D → C implies |= f(D) → c

for all D v Dinit .

Example 6. The propagator f ≡ dsb(x1 6= x2) for Dinit(x1) = Dinit(x2) =
{1, 2, 3} implements the rules

x1 = 1 � x2 6= 1 x1 = 2 � x2 6= 2 x1 = 3 � x2 6= 3
x2 = 1 � x1 6= 1 x2 = 2 � x1 6= 2 x2 = 3 � x1 6= 3

�

Example 7. The propagator f ≡ dsb(S ⊆ T ) for Dinit(S) = Dinit(T ) = {∅ . . . {1, 2}}.
implements rules

1 ∈ S � 1 ∈ T 2 ∈ S � 2 ∈ T
1 6∈ T � 1 6∈ S 2 6∈ T � 2 6∈ S

�

Let Φf be the set of all possible rules implemented by f . This definition of f
is often unreasonably large. In order to reason more effectively about propagation
rules for a given propagator, we need to have a minimal representation.4

Definition 6. A set of propagation rules implemented by f , Πf ⊆ Φf , is minimal
iff

— solv(Πf , D) = solv(Φf , D), and

— there does not exist a Π′
f ⊂ Πf such that solv(Π′

f , D) = solv(Φf , D) for all
D v Dinit .

That is, all propagation caused by f is also caused by the Πf . Notice that Πf is
not unique.

4Both Brand [2003] and Abdennadher and Rigotti [2002] give effective methods for creating min-

imal representations of any constraints in terms of propagation rules.
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Example 8. Consider the Boolean constraint c ≡ z1 = z2 = z3 where Dinit(z1) =
Dinit(z2) = Dinit(z3) = [ 0 .. 1 ]. A minimal set of propagation rules implemented
by dsb(c) consists of the rules:

(r1) z1 = 1 � z2 = 1 (r2) z1 = 0 � z2 = 0
(r3) z2 = 1 � z3 = 1 (r4) z2 = 0 � z3 = 0
(r5) z3 = 1 � z1 = 1 (r6) z3 = 0 � z1 = 0

Another minimal set of propagation rules implemented by dsb(c) consists of the
rules:

(r7) z1 = 1 � z3 = 1 (r8) z1 = 0 � z3 = 0
(r9) z2 = 1 � z1 = 1 (r10) z2 = 0 � z1 = 0

(r11) z3 = 1 � z2 = 1 (r12) z3 = 0 � z2 = 0

Note that propagation rules for constraints with Boolean domain {0, 1} can be
represented using only atomic constraints involving equations since |= Dinit →
((z = b) ↔ (z 6= (1− b))) for b ∈ {0, 1}. �

3. PROPAGATION REDUNDANT CONSTRAINTS

We shall be interested in reasoning about redundancy with respect to sets of prop-
agators. We say a set of propagators F1 is stronger than a set of propagators F2,
written F1 � F2, if solv(F1, D) v solv(F2, D) for all domains D v Dinit . We say
a set of propagators F1 is equivalent to a set of propagators F2, written F1 ≈ F2,
if solv(F1, D) = solv(F2, D) for all domains D v Dinit . A propagator f is made
propagation redundant by a set of propagators F if F � {f}. Our main aim is
to discover and eliminate propagation redundant constraints and/or propagators.
Before we can determine propagation redundant constraints, we need to establish
some theorems.

The interest in characterizing a propagator in terms of the propagation rules is
revealed by the following lemma. The propagation rules implemented by dsb(c) of
constraint c are exactly those C � c′ where c implies C → c′.

Lemma 1. Given a constraint c, dsb(c) implements C � c′ iff

|= (Dinit ∧ c) → (C → c′).

Proof. See the appendix.

Lemma 1 enables us to relate logical redundancy of constraints with propagation
redundancy of the propagators. A constraint c2 that is logically redundant with
respect to constraint c1, is also propagation redundant with respect to c1.

Theorem 2. Given constraints c1 and c2,

if |= (Dinit ∧ c1) → c2 then {dsb(c1)} � {dsb(c2)}

Proof. Follows immediately from Lemma 1.

Example 9. Consider the constraints c1 ≡ x2 = x1 + 2 and c2 ≡ x1 6= x2 for
Dinit(x1) = Dinit(x2) = {0, . . . , 5}. Clearly, |= Dinit ∧ c1 → c2, the condition of
Theorem 2 holds and we know that dsb(c2) is propagation redundant w.r.t. dsb(c1).
For example, for D ⊆ Dinit where D(x1) = {2} and D(x2) = {2, . . . , 5}, we
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have dsb(c1)(D) v dsb(c2)(D) where dsb(c1)(D)(x2) = {4} and dsb(c2)(D)(x2) =
{3, . . . , 5}. �

Typically though a logically redundant constraint is made logically redundant
by a conjunction of other constraints. However, it is well known that in general
the domain (and set bounds) propagation of a conjunction of constraints is not
equivalent to applying the domain (and set bounds) propagators individually.

Lemma 3. Given constraints c1 and c2, {dsb(c1 ∧ c2)} � {dsb(c1), dsb(c2)}.

Proof. Suppose to the contrary that there exists a variable y ∈ vars(c1 ∧ c2)
such that

solv({dsb(c1 ∧ c2)}, D)(y) 6⊆ solv({dsb(c1), dsb(c2)}, D)(y)

for certain D v Dinit . Assume y ∈ VI . then there exists an integer d ∈ D(y)
such that d ∈ dsb(c1 ∧ c2)(D)(y) and {dsb(c1), dsb(c2)} eliminates d from y. By
definition of propagation solver, there can be no solutions θ which satisfies c1 ∧ c2

in D where θ(y) = d. By the definition, {dsb(c1 ∧ c2)} must also eliminate d from
y. Hence, d 6∈ dsb(c1 ∧ c2)(D)(y), contrary to the hypothesis. Similar arguments
apply for the case y ∈ VS .

If a constraint c is logically redundant w.r.t. a conjunction of constraints c1 and
c2, then {dsb(c)} is propagation redundant w.r.t. {dsb(c1 ∧ c2)} using Theorem 2.
However, constraint programming system normally implements a separate propaga-
tor for each individual constraint. Because of Lemma 3, {dsb(c)} is not necessarily
propagation redundant w.r.t. the propagators of the individual constraints collec-
tively, i.e.{dsb(c1), dsb(c2)}. Hence, it is difficult (in general) to determine whether
a constraint that is logically redundant with respect to a conjunction of constraints,
is propagation redundant or not. Interestingly, there is a case where propagation
of a conjunction of constraints is equivalent to propagation on the individual con-
juncts.

Theorem 4. If c1 and c2 are two constraints sharing at most one integer vari-
able, x ∈ VI , then {dsb(c1), dsb(c2)} ≈ {dsb(c1 ∧ c2)}.

Proof. See the appendix.

Example 10. Consider again the integer constraints of Example 1, c1 ≡ x1 ≥ x2,
c2 ≡ x2 ≥ x3, and c3 ≡ x1 ≥ x3, where Dinit(x1) = [−2 .. 1 ] and Dinit(x2) =
Dinit(x3) = [−2 .. 2 ]. It is clear that |= Dinit ∧ c1 ∧ c2 → c3. By Theorem 2, we
have {dsb(c1∧c2)} � {dsb(c3)}. Note that c1 and c2 share only one integer variable
x2. By Theorem 4, we have {dsb(c1), dsb(c2)} ≈ {dsb(c1 ∧ c2)}. Hence, we show
that {dsb(c3)} is propagation redundant w.r.t. {dsb(c1), dsb(c2)} as demonstrated
in Example 1.

Note that for Example 2 the constraints x1 − x2 ≥ 0 and x1 + x2 ≥ 0 share
more than one variable, hence {dsb(x1 − x2 ≥ 0 ∧ x1 + x2 ≥ 0)} 6≈ {dsb(x1 − x2 ≥
0), dsb(x1 + x2 ≥ 0)}. Thus, while x1 ≥ 0 is logically redundant w.r.t x1 − x2 ≥
0 ∧ x1 + x2 ≥ 0, it is not propagation redundant. �

Note that Theorem 4 does not hold when the single variable shared is a set
variable, because we only apply set bounds propagation. If we did use set domain
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propagators the result readily extends to the case where a single shared variable is
a set variable.

Example 11 (Counter-example). Consider the constraints c1 ≡ S ∈ {{1}, {2, 3}}
and c2 ≡ S ∈ {{2}, {1, 3}} where D(S) = {∅..{1, 2, 3}}. Now, dsb(c1)(D) =
dsb(c2)(D) = D, but dsb(c1 ∧ c2)(D) is a false domain since c1 ∧ c2 is unsatis-
fiable. Hence, Theorem 4 does not hold when the shared variable is a set variable
and we use set bounds propagators.

However, if we use set domain propagators, then dom(c1)(D) = D1 where
D1(S) = {{1}, {2, 3}} and dom(c2)(D1)(S) = ∅. Hence, Theorem 4 holds when
the shared variable is a set variable and we use set domain propagators. �

4. CHANNELING CONSTRAINTS

Redundant modeling [Cheng et al. 1999] models a problem from more than one
viewpoint. By joining two models using channeling constraints, we can get the
advantage of both sources of propagation.

Assume we have one model of the problem MX using variables X, and another
model MY using disjoint variables Y . Channeling constraints can be used to join
these two models together by relating X and Y . There is no real agreement, as yet,
as to precisely what channeling constraints are. For the purposes of our theorems
we define a channeling constraint as follows.

Let AX be the atomic constraints for Dinit on variables X, and AY be the atomic
constraints for Dinit on variables Y . A channel function ♦ is a bijection from atomic
constraints AX to AY . We extend channel functions to map conjunctions of atomic
constraints in the obvious way,

♦(c1 ∧ · · · ∧ cn) = ♦(c1) ∧ · · · ∧ ♦(cn)

where c1, . . . , cn are atomic constraints.

Definition 7. A channeling constraint (or simply channel) C♦ is the constraint∧
c∈AX

(c ⇔ ♦(c))

Definition 8. The channel propagator F♦ is the set of propagation rules inferred
from the channel function ♦.

F♦ =
⋃

c∈AX

{c � ♦(c),♦(c) � c}

Note that for channel function ♦, by definition, ♦−1 is also a channel function,
and C♦ and C♦−1 , as well as F♦ and F♦−1 , are identical. We now illustrate how
common channels fit into this framework.

4.1 Permutation Channels

A common form of redundant modeling is when we consider two viewpoints to
a permutation problem [Geelen 1992]. In a permutation problem, the objective
is to find a bipartite matching between two sets of objects A = {a1, . . . , an} and
B = {b1, . . . , bn} satisfying all other problem specific constraints. Generally, we can
model a permutation problem from two different viewpoints. In the first viewpoint,
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we assign objects from B to A. We use the set of variables X = {x1, . . . , xn} to
denote objects in A, and the domain D(xi) = {1, . . . , n}, for all 1 ≤ i ≤ n to denote
objects in B. The second viewpoint swaps the role between A and B, i.e. assign
objects from A to B. We use the set of variables Y = {y1, . . . , yn} to denote objects
in B, and the domain D(yj) = {1, . . . , n}, for all 1 ≤ j ≤ n to denote objects in A.

The permutation channel function 1 is defined as 1 (xi = j) = (yj = i) and
1(xi 6= j) = (yj 6= i) for all 1 ≤ i, j ≤ n. The permutation channel C1 is equivalent
to the conjunction of constraints

n∧
i=1

n∧
j=1

(xi = j ⇔ yj = i)

Example 12. Langford’s Problem The problem “prob024” in CSPLib is an
example of permutation problem. The problem is to find an (m×n)-digit sequence
which includes the digits 1 to n, with each digit occurring m times. There is one
digit between any consecutive pair of the digit 1, two digits between any consecutive
pair of the digit 2, . . . , and n digits between any consecutive pair of the digit n.

Smith [2000] suggests two ways to model the Langford’s problem. We use the
(3 × 9) instance to illustrate the two models. In the first model, MX , we use 27
variables X = {x1, . . . , x27}, which we can think of as 11, 12, 13, 21, . . . , 92, 93. Here,
11 represents the first digit 1 in the sequence, 12 represents the second digit 1, and
so on. The initial domain of these variables, Dinit(xi) = {1, . . . , 27} for 1 ≤ i ≤ 27,
represents the positions of the digit xi in the sequence. We enlist the constraints
of Smith’s model as follows:

— (LX1) disequality constraints: ∀1 ≤ i < j ≤ 27. xi 6= xj

— (LX2.1) separation constraints: ∀1 ≤ i ≤ 9. x3i−1 = x3i−2 + (i + 1)
— (LX2.2) separation constraints: ∀1 ≤ i ≤ 9. x3i = x3i−1 + (i + 1)

In the second model, MY , we again use 27 variables Y = {y1, . . . , y27} to represent
each position in the sequence. The initial domain of these variables, Dinit(yi) =
{1, . . . , 27} for 1 ≤ i ≤ 27, corresponds to the digits 11, 12, 13, 21, . . . , 92, 93 in
position yi of the sequence. The constraints are:

— (LY1) disequality constraints: ∀1 ≤ i < j ≤ 27. yi 6= yj

— (LY2.1) separation constraints: ∀1 ≤ i ≤ 9.∀1 ≤ j ≤ 27−2(i+1). yj = 3i−2 ⇔
yj+(i+1) = 3i− 1

— (LY2.2) separation constraints: ∀1 ≤ i ≤ 9.∀1 ≤ j ≤ 27−2(i+1). yj = 3i−2 ⇔
yj+2(i+1) = 3i

— (LY3) separation constraints: ∀1 ≤ i ≤ 9.∀(28− 2(i + 1)) ≤ j ≤ 27. yj 6= 3i− 2

The permutation channel for the two models is simply xi = j ⇔ yj = i for all
1 ≤ i, j ≤ 27. �

Example 13. All Interval Series Problem The problem “prob007” in CSPLib
is from musical composition. The problem is to find a permutation of n numbers
from 1 to n, such that the differences between adjacent numbers form a permutation
from 1 to n− 1. We give two ways to model the problem. The first model derives
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from the model suggested by Puget and Régin [2001], and the the second model
slightly modifies the model suggested by Choi and Lee [2002].

The first model, MX , consists of n variables, X = {x1, . . . , xn}. Each xi denotes
the number in position i, and Dinit(xi) = [ 1 .. n ] for 1 ≤ i ≤ n. We introduce auxil-
iary variables, {u1, . . . , un−1} that denote the difference between adjacent numbers,
where Dinit(ui) = [ 1 .. n− 1 ] for 1 ≤ i ≤ n− 1. The constraints are:

—(IX1.1) disequality constraints: ∀1 ≤ i < j ≤ n. xi 6= xj

—(IX1.2) disequality constraints: ∀1 ≤ i < j ≤ n− 1. ui 6= uj

— (IX2) interval constraints: ∀1 ≤ i ≤ n− 1. ui = |xi − xi+1|

The second model, MY , also consists of n variables, Y = {y1, . . . , yn}. Each yi

denotes the position for the number i, and Dinit(yi) = [ 1 .. n ] for 1 ≤ i ≤ n. The
auxiliary variables {v1, . . . , vn−1} denote the position where the difference value of
1 to n − 1 belongs, and Dinit(vi) = [ 1 .. n− 1 ] for 1 ≤ i ≤ n − 1. The constraints
are:

— (IY1.1) disequality constraints: ∀1 ≤ i < j ≤ n. yi 6= yj

— (IY1.2) disequality constraints: ∀1 ≤ i < j ≤ n− 1. vi 6= vj

— (IY2.1) interval constraints: ∀1 ≤ i < j ≤ n. (yi − yj = 1) ⇒ (vj−i = yj)
— (IY2.2) interval constraints:∀1 ≤ i < j ≤ n. (yj − yi = 1) ⇒ (vj−i = yi)

The (IY2.1) and (IY2.2) constraints enforce that if yi and yj are adjacent, the
position for their difference must be the smaller of them. In the second model,
observe the fact that only the numbers 1 and n can give us the difference of n− 1.
Therefore, we can add the following redundant constraints:

(IY3): (|y1 − yn| = 1) ∧ (vn−1 = min(y1, yn)),

which requires y1 and yn to be adjacent.
The permutation channels for this problem are more interesting because we have

two distinct kinds of variables in each model, each of which is related by a per-
mutation channel. The channels are xi = j ⇔ yj = i for all 1 ≤ i, j ≤ n and
ui = j ⇔ vj = i for all 1 ≤ i, j ≤ n− 1. �

4.2 Boolean Channels

Another common form of redundant modeling is when we give both an integer
and Boolean models. Suppose we have an integer model using the integer variables
X = {x1, . . . , xn} and the domain Dinit(xi) = [ 1 .. k ]. We can have a corresponding
Boolean model using the Boolean variables Z = {zij | 1 ≤ i ≤ n, 1 ≤ j ≤ k}. Each
variable zij encodes the proposition that xi = j.

The Boolean channel function 4 is defined as 4(xi = j) = (zij = 1) and 4(xi 6=
j) = (zij = 0) for all 1 ≤ i ≤ n, 1 ≤ j ≤ k. Note that the atomic constraints
zij 6= 1 and zij 6= 0 are not needed for Boolean variables since they are equivalent
(respectively) to zij = 0 and zij = 1. The Boolean channel C4 is equivalent to the
conjunction of constraints

n∧
i=1

k∧
j=1

(xi = j ⇔ zij = 1)
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Example 14. n-Queens Problem This well-known problem is to place n queens
on an n×n chess board so that no two queens can attack each other. There are two
common ways to model this problem, i.e., an integer model and a Boolean model.

The integer model, MX , consists of n variables, X = {x1, . . . , xn}. Each xi

denotes the column position of the queen on row i, and Dinit(xi) = {1, . . . , n}, for
1 ≤ i ≤ n. The constraints are:

— (QX1) column constraints: ∀1 ≤ i < j ≤ n. xi 6= xj

— (QX2.1) diagonal constraints: ∀1 ≤ i < j ≤ n. xi − i 6= xj − j

— (QX2.2) diagonal constraints: ∀1 ≤ i < j ≤ n. xi + i 6= xj + j

The Boolean model, MZ , consists of n× n Boolean variables, Z = {z11, . . . , z1n,
. . . , zn1, . . . , znn}. Each Boolean variable zij denotes whether we have a queen at
row i column j or not. The constraints are:

— (QZ1) row constraints: ∀1 ≤ i ≤ n.
∑n

j=1 zij = 1

— (QZ2) column constraints: ∀1 ≤ j ≤ n.
∑n

i=1 zij = 1

— (QZ3.1) diagonal constraints: ∀0 ≤ k ≤ n− 1.
∑n−k

i=1 zi(i+k) ≤ 1

— (QZ3.2) diagonal constraints: ∀1 ≤ k ≤ n− 1.
∑n−k

i=1 z(i+k)i ≤ 1

— (QZ3.3) diagonal constraints: ∀0 ≤ k ≤ n− 1.
∑n−k

i=1 zi(n−i−k+1) ≤ 1

— (QZ3.4) diagonal constraints: ∀1 ≤ k ≤ n− 1.
∑n−k

i=1 z(i+k)(n−i+1) ≤ 1

We combine the two models using the Boolean channel xi = j ⇔ zij = 1 for all
1 ≤ i ≤ n, 1 ≤ j ≤ k. �

4.3 Set Channels

Another common form of redundant modeling is where one model deals with integer
variables, and the other with variables over finite sets of integers, and the relation
xi = j holds iff i ∈ Sj . This generalizes the permutation problem to where two or
more integer variables can take the same value. Suppose the integer variables are
X = {x1, . . . , xn}, where Dinit(xi) = [ 1 .. k ] for all 1 ≤ i ≤ n, and the set variables
are S = {S1, . . . , Sk} where Dinit(Sj) = [ ∅ .. {1, . . . , n} ] for all 1 ≤ j ≤ k.

The set channel function {} is defined as {}(xi = j) = (i ∈ Sj) and {}(xi 6= j) =
(i 6∈ Sj) for all 1 ≤ i ≤ n, 1 ≤ j ≤ k. The set channel C{} is equivalent to

n∧
i=1

k∧
j=1

(xi = j ⇔ i ∈ Sj)

Example 15. Social Golfers Problem The problem “prob010” in CSPLib is
to arrange n = g × s players into g groups of s players each week, playing for w
weeks, so that no two players play in the same group twice. Smith [2001] suggests
two ways to model this problem.

In the first model we use variables X = {xlk|1 ≤ l ≤ n, 1 ≤ k ≤ w} to denote
the group which player l plays on week k, and Dinit(xlk) = [ 1 .. g ] for all 1 ≤ l ≤
n, 1 ≤ k ≤ w.

The constraints of the problem are expressed as:

— (GX1) each group has s players: ∀1 ≤ i ≤ g.∀1 ≤ k ≤ w.
∑n

l=1(xlk = i) = s
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— (GX2) two players only play in the same group in one week:

∀1 ≤ k1 < k2 ≤ w.∀1 ≤ l1 < l2 ≤ n. ¬(xl1k1 = xl2k1 ∧ xl1k2 = xl2k2)

The second model uses set variables S = {Sik|1 ≤ i ≤ g, 1 ≤ k ≤ w} to denote
the set of players play in group i on week k. and Dinit(Sik) = [ ∅ .. {1, . . . , n} ] for
all 1 ≤ i ≤ g, 1 ≤ k ≤ w. The constraints are expressed as:

— (GS1) no groups in the same week have a player in common:

∀1 ≤ k ≤ w.∀1 ≤ i1 < i2 ≤ g. Si1k ∩ Si2k = ∅

— (GS2) each group has s players: ∀1 ≤ i ≤ g.∀1 ≤ k ≤ w. |Sik| = s

— (GS3) no different groups have more than one player in common:

∀1 ≤ i1 6= i2 ≤ g.∀1 ≤ k1 < k2 ≤ w. |Si1k1 ∩ Si2k2 | ≤ 1

We can use the set channels to combine the two models, xlk = i ⇔ l ∈ Sik for all
1 ≤ l ≤ n, 1 ≤ k ≤ w, 1 ≤ i ≤ g. �

Example 16. Balanced Academic Curriculum Problem The problem, listed
as “prob030” in CSPLib, is to design an academic curriculum aiming to balance
the loads in each academic period. Following the description in Hnich et al. [2002],
we can have both an integer model MX and set model MS .

Given m courses, and n periods, a, b are the minimum and maximum academic
load allowed per period, c, d are the minimum and maximum number of courses
allowed per period, ti specifies the number of credits for course i, and R is a set of
prerequisite pairs 〈i, j〉 specifying that course i must be taken before course j.

We introduce a set of auxiliary variables lj , which is shared by both models,
to represent the academic load in period j as well as a variable u representing
the maximum academic load in any period, i.e. u = max{lj | 1 ≤ j ≤ n}. The
objective function simply minimizes u. We also introduce another set of shared
auxiliary variables qj to represent the number of courses assigned to a period. We
have Dinit(u) = Dinit(lj) = [ 0 ..

∑m
i=1 ti ] and Dinit(qj) = [ 1 ..m ].

We have the following constraints that are common to both models:

— (B1.1) load allowed per period: ∀1 ≤ j ≤ n. a ≤ lj ≤ b

— (B1.2) number of courses allowed per period: ∀1 ≤ j ≤ n. c ≤ qj ≤ d

We also add the following redundant constraints:

— (B2.1) all the credits must be fulfilled: (
∑n

j=1 lj) = (
∑m

i=1 ti)

— (B2.2) all the courses must be taken: (
∑n

j=1 qj) = m

In the integer model, MX , the variables X = {xi|1 ≤ i ≤ m} represent the
period to which course i is assigned and Dinit(xi) = [ 1 .. n ] for all 1 ≤ i ≤ m. The
constraints for the integer model MX are:

— (BX1) lj is the load taken in period j: ∀1 ≤ j ≤ n. (
∑m

i=1((xi = j)× ti)) = lj

— (BX2) qj is the number of courses in period j: ∀1 ≤ j ≤ n. (
∑m

i=1(xi = j)) = qj

— (BX3) courses are taken respecting prerequisites: ∀〈i, j〉 ∈ R. xi < xj
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c l(c)

Si = ∅ {zij = 0 | 1 ≤ j ≤ k}
Sa ⊆ Sb {zaj ≤ zbj | 1 ≤ j ≤ k}
Sa ∩ Sb = ∅ {zaj + zbj ≤ 1 | 1 ≤ j ≤ k}
Sa = Sb ∪ Sc {zbj ≤ zaj | 1 ≤ j ≤ k}∪

{zcj ≤ zaj | 1 ≤ j ≤ k} ∪
{zaj ≤ zbj + zcj | 1 ≤ j ≤ k}

Sa = Sb ∩ Sc {zaj ≤ zbj | 1 ≤ j ≤ k}∪
{zaj ≤ zcj | 1 ≤ j ≤ k} ∪
{zbj + zcj ≤ zaj + 1 | 1 ≤ j ≤ k}

Sa = Sb − Sc {zaj ≥ zbj − zcj | 1 ≤ j ≤ k} ∪
{zaj ≤ zbj | 1 ≤ j ≤ k} ∪
{zaj + zcj ≤ 1 | 1 ≤ j ≤ k}

|Si| = m {m =
Pk

j=1 zij}

Fig. 1. Mapping of Common Set Constraints to Boolean Constraints

In the set model, the set variables S = {Sj |1 ≤ j ≤ n} represent the set of
courses assigned to period j and Dinit(Sj) = [ ∅ .. {1, . . . ,m} ] for all 1 ≤ j ≤ n.
The constraints for the set model MS are:

— (BS1) No course is taken twice: ∀1 ≤ i < j ≤ n. Si ∩ Sj = ∅
— (BS2) lj is the load in period j: ∀1 ≤ j ≤ n. (

∑
i∈Sj

ti) = lj

— (BS3) qj is the number or courses in period j: ∀1 ≤ j ≤ n. |Sj | = qj

— (BS4) courses are taken respecting prerequisites:

∀〈i, j〉 ∈ R.∀1 ≤ k ≤ n− 1.∀1 ≤ k′ ≤ k. (i ∈ Sk) ⇒ (j 6∈ Sk′)

We can use the set channels to combine the two models, xi = j ⇔ i ∈ Sj for all
1 ≤ i ≤ m, 1 ≤ j ≤ n �

4.4 Channels between Set and Boolean Models

A very uncommon form of redundant modeling is when we give a set model and
a Boolean version of this model. The reason it is uncommon is that there is no
natural gain in expressiveness in moving to the Boolean model.

Suppose the set variables are {S1, . . . , Sn}. where Dinit(Si) = [ ∅ .. {1, . . . , k} ],
and the Boolean variables are zij , 1 ≤ i ≤ n, 1 ≤ j ≤ k. The set2bool channel
function l is defined as l(j ∈ Si) = (zij = 1) and l(j 6∈ Si) = (zij = 0). The
set2bool channel Cl is equivalent to

n∧
i=1

k∧
j=1

(j ∈ Si ⇔ zij = 1)

With the l channel, we can map common set constraints (c) to Boolean con-
straints (l(c)) as given in Figure 1. We shall prove that set bounds propagation
of set constraints (c) is equivalent to domain propagation for the corresponding
Boolean constraints (l(c)).
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5. PROPAGATION REDUNDANT CONSTRAINTS IN REDUNDANT MODELING

In redundant modeling, each model is logically redundant with respect to the other
model plus the channeling constraints. In general, the propagators defined for two
viewpoints act in different ways and discover information at different stages in the
search. However, we show two possibilities in which propagation caused by some
constraints in one model can be made redundant by: (a) propagation induced from
constraints in the other model through channels and (b) propagation of the channels
themselves. For brevity, we shall concentrate on one model when stating some of
the lemmas and theorems. The restrictions on the other model can be seen easily
by examining the inverse channel function.

5.1 Propagation Redundancy Through Channels

In order to show that the propagation caused by some constraints in one model
is subsumed by propagation induced from constraints in the other model through
channels, we often need to break up the consideration of propagator into individual
propagation rules. Therefore, we need the following lemma to ensure that the
domain and set bounds propagator of a constraint is equivalent to the union of the
propagation rules implemented by the propagator.

Lemma 5. Consider a minimal set of propagation rules, Πdsb(c), implemented
by dsb(c) for constraint c. Then {dsb(c)} ≈ Πdsb(c).

Proof. See the appendix.

Next, we need to define formally the notion of subsumption.

Definition 9. A propagation rule C1 � c1 directly subsumes a rule C2 � c2 iff

|= (Dinit ∧ C2) → C1 and |= (Dinit ∧ c1) → c2.

A channel function enables us to map a propagation rule r from one model to
the other model. If the mapped propagation rule is directly subsumed by another
propagation rule r′ in the other model, then the following lemma tells us that r is
propagation redundant w.r.t. the channel propagator and r′.

Lemma 6. Let C � c be a propagation rule on Y variables, and C ′ � c′ be a
propagation rule on X variables. If C ′ � c′ directly subsumes ♦−1(C) � ♦−1(c),
then ({C ′ � c′} ∪ F♦) � {C � c}.

Proof. Consider the case that |= D → C for all D v Dinit . Applying F♦
to D, D1 = solv(F♦, D), we have |= D1 → ♦−1(C) using the definition of F♦.
By the condition of the lemma and Definition 9, we have that |= D1 → C ′. By
applying C ′ � c′ to D1, D2 = (C ′ � c′)(D1), we have |= D2 → c′. By the
condition of the lemma and Definition 9, we have |= D2 → ♦−1(c). Applying F♦
to D2, D3 = solv(F♦, D2), we have |= D3 → c using the definition of F♦. Since we
have show that |= solv({C ′ � c′} ∪ F♦, D) → c for |= D → C, {C ′ � c′} ∪ F♦
implements C � c. By definition, ({C ′ � c′} ∪ F♦) � {C � c}.

We can straightforwardly lift the results of Lemma 6 to talk about propagation
rules that are directly subsumed by the domain and set bounds propagator for a
constraint.
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Theorem 7. Let cX be a constraint on X variables and C � c be a propagation
rule on Y variables. If

|= (Dinit ∧ cX ∧ ♦−1(C)) → ♦−1(c),

then {dsb(cX)} ∪ F♦ � {C � c}.

Proof. By Lemma 5, we have that dsb(cX) implements the propagation rule
♦−1(C) → ♦−1(c). Hence by Lemma 6 the result holds.

A corollary of Theorem 7 is that if every propagation rule in a minimal set of
propagation rules implemented by dsb(cY ) is subsumed by dsb(cX) through the
channel function, then dsb(cY ) is propagation redundant w.r.t. the channel propa-
gator and dsb(cX).

Corollary 8. Let cX be a constraint on X variables, cY be a constraint on
Y variables, and Πdsb(cY ) be a minimal set of propagation rules implemented by
dsb(cY ). If

|= (Dinit ∧ cX ∧ ♦−1(C)) → ♦−1(c) for all (C � c) ∈ Πdsb(cY ),

then {dsb(cX)} ∪ F♦ � {dsb(cY )}.

Example 17. Consider the (LY2.1) constraints of the Langford’s Problem (Ex-
ample 12),

cY ≡ yj = 3i− 2 ⇔ yj+(i+1) = 3i− 1

for all 1 ≤ i ≤ 9 and 1 ≤ j ≤ 27 − 2(i + 1). A minimal set of propagation rules
Πdsb(cY ) for dsb(cY ) consists of the rules:

(r1) yj = 3i− 2 � yj+(i+1) = 3i− 1
(r2) yj+(i+1) = 3i− 1 � yj = 3i− 2
(r3) yj 6= 3i− 2 � yj+(i+1) 6= 3i− 1
(r4) yj+(i+1) 6= 3i− 1 � yj 6= 3i− 2

Using the channel function 1−1, the propagation rule (r1) is mapped to

x3i−2 = j � x3i−1 = j + i + 1.

Now, it is straightforward to show that

|= (Dinit ∧ cX ∧ x3i−2 = j) → x3i−1 = j + i + 1

where cX ≡ x3i−1 = x3i−2 + (i + 1) of (LX2.1). Similar arguments apply for the
other propagation rules (r2), (r3) and (r4). Hence, using Corollary 8, dsb(cY ) is
propagation redundant w.r.t F1 and dsb(cX).

For the (LY2.2) constraints, c′Y ≡ yj = 3i− 2 ⇔ yj+2(i+1) = 3i where 1 ≤ i ≤ 9
and 1 ≤ j ≤ 27 − 2(i + 1), we can similarly show that dsb(c′Y ) is propagation
redundant w.r.t. F1 and dsb(cX ∧ c′X) where c′X ≡ x3i = x3i−1 +(i+1) of (LX2.2).
Although model MX does not include the propagator dsb(cX∧c′X), we can still show
propagation redundancy since {dsb(cX), dsb(c′X)} ≈ {dsb(cX ∧c′X)} by Theorem 4.

Similar arguments apply for the (LY3) constraints yj 6= 3i− 2, where 1 ≤ i ≤ 9
and (28− 2(i + 1)) ≤ j ≤ 27, is propagation redundant w.r.t. C1 and cX . �
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For brevity we shall introduce pseudo atomic constraints x ≤ d equivalent to the
conjunction x 6= d + 1, . . . , x 6= supDinit

(x) and x ≥ d equivalent to the conjunction
x 6= infDinit

(x), . . . , x 6= d− 1, to discuss the next example.

Example 18. Consider the (BX2) constraints of the balanced academic curricu-
lum problem (Example 16),

cX ≡ (
m∑

i=1

(xi = j)) = qj

for all 1 ≤ j ≤ n. A minimal set of propagation rules Πdsb(cX) consists of the
rules:

(r1) xi1 = j ∧ · · · ∧ xid
= j � qj ≥ d

(r2) xi1 6= j ∧ · · · ∧ xim−d
6= j � qj ≤ d

(r3) qj ≤ d ∧ xi1 = j ∧ · · · ∧ xid
= j � xk 6= j

(r4) qj ≥ d ∧ xi1 6= j ∧ · · · ∧ xim−d
6= j � xl = j

∀d ∈ {1, . . . ,m}, ∀k ∈ ({1, . . . ,m} − K), and ∀l ∈ ({1, . . . ,m} − L) where K =
{i1, . . . , id} ⊆ {1, . . . ,m} and L = {i1, . . . , im−d} ⊆ {1, . . . ,m}. All the atomic
constraints involving qj are mapped to themselves by the channel function {} since
qj is shared by the two models, e.g. the propagation rule (r1) is mapped to:

i1 ∈ Sj ∧ · · · ∧ id ∈ Sj � qj ≥ d

Now, it is straightforward to show that

|= (Dinit ∧ cS ∧ i1 ∈ Sj ∧ · · · ∧ id ∈ Sj) → qj ≥ d

where cS ≡ |Sj | = qj of (BS3). Similarly arguments apply for the other propa-
gation rules (r2), (r3) and (r4). Hence, using Corollary 8, dsb(cX) is propagation
redundant w.r.t. to F{} and dsb(cS).

Similar arguments apply to show that for constraint (BX1), c′X ≡ (
∑m

i=1((xi =
j)× ti)) = lj for all 1 ≤ j ≤ n, dsb(c′X) is made propagation redundant by F{} and
dsb(c′S) where c′S ≡ (

∑
i∈Sj

ti) = lj of (BS2). �

Often a single constraint does not capture all the propagation effects of a con-
straint on the other side of the permutation model. In that case we may need to
find for each particular propagation rule, a constraint on the other side that causes
the same propagation to occur.

Theorem 9. Let cY be a constraint on Y variables and Πdsb(cY ) be a minimal
set of propagation rules implemented by dsb(cY ). If there exists a constraint cr on
X variables for each (r ≡ (C � c)) ∈ Πdsb(cY ) such that

|= (Dinit ∧ cr ∧ ♦−1(C)) → ♦−1(c),

then ⋃
r∈Πdsb(cY )

{dsb(cr)} ∪ F♦ � {dsb(cY )}.

Proof. The proof follows straightforwardly from Lemma 5 and Theorem 7.
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Example 19. Consider the (IY2.1) constraints of the all intervals series (Exam-
ple 13),

cY ≡ (yi − yj = 1) ⇒ (vj−i = yj)

for all 1 ≤ i < j ≤ n. A minimal set of propagation rules Πdsb(cY ) for dsb(cY ) is of
the forms,

(r1) yi = k + 1 ∧ yj = k � vj−i = k
(r2) vj−i 6= k ∧ yj = k � yi 6= k + 1
(r3) yi = k + 1 ∧ I � yj 6= k

where I (of r3) is any conjunction of disequations on vj−i and yj , excluding yj 6= k,
ensuring that vj−i 6= yj . To apply Theorem 9, we look at each of the propagation
rules:

— For the propagation rule (r1), we can show that

|= (Dinit ∧ cr1 ∧ xk+1 = i ∧ xk = j) → (uk = j − i)

where cr1 ≡ (uk = |xk − xk+1|) of (IX2).
— For the propagation rule (r2), we can show that

|= (Dinit ∧ cr2 ∧ uk 6= j − i ∧ xk = j) → (xk+1 6= i).

where cr2 ≡ (uk = |xk − xk+1|) of (IX2).
— For the propagation rule (r3), I must contain vj−i 6= k since it does not contain

yj 6= k and it must force the two to be different. We can show that

|= (Dinit ∧ cr3 ∧ uk 6= j − i ∧ xk+1 = i) → (xk 6= j).

where cr3 ≡ (uk = |xk − xk+1|) of (IX2).

Note that even though each example propagation rule (r1) to (r3) is made propa-
gation redundant by C1 and the same uk = |xk−xk+1| of (IX2), we indeed require
a different constraint for each different value of k.

Similar arguments apply to show that the other (IY2.2) constraints (yj − yi =
1) ⇒ (vj−i = yi) is propagation redundant w.r.t. C1 and constraints of (IX2).

Note that the logically redundant constraint (|y1−yn| = 1)∧(vn−1 = min(y1, yn))
of (IY3) is not propagation redundant. �

5.2 Propagation Redundancy Caused by Channels

The channels themselves may actually restrict the possible solutions in one or both
models involved.

Definition 10. A channel function ♦ is restrictive (on the variables X) iff

6|= Dinit → ∃Y C♦

that is not all valuations on X variables are extensible to solutions of C♦.

Example 20. The permutation channel functions 1 is restrictive, for example
{x1 = 2, x2 = 2} cannot be extended to be a solution of C1, since it requires y2 to
take both values 1 and 2.
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The Boolean channel function 4 is unrestrictive. Any valuation on X variables
can be extended to a solution of C4. However, 4−1 is restrictive, for example
{z11 = 1, z12 = 1} cannot be extended to a solution of C4 since it requires x1 to
be both 1 and 2.

Similarly the set channel function {} is unrestrictive while {}−1 is restrictive.
For example S1 = {1}, S2 = {1} cannot be extended to a solution of C{} since it
requires x1 to be both 1 and 2.

The set2bool channel l is clearly unrestrictive in both directions. �

5.2.1 Restrictive Channel Functions. Restrictive channel functions can them-
selves make constraints propagation redundant. Smith [2000] first observed that
the permutation channel makes each of the disequations between variables in either
model propagation redundant. Walsh [2001] proves this holds for other notions of
consistency.

Theorem 10 (Walsh [2001]). F1 � {dsb(xi 6= xj)} for all 1 ≤ i < j ≤ n.

Example 21. Using Theorem 10, the permutation channel makes the following
constraints propagation redundant: the (LX1) and (LY1) constraints of the Lang-
ford’s Problem (Example 12); and the (IX1.1), (IX1.2), (IY1.1) and (IY1.2) con-
straints of the all intervals series (Example 13) �

Implicit in the Boolean channel is that each integer variable can take only one,
and must take one value. This is represented in the Boolean model as the constraint∑k

j=0 zij = 1. It is enforced by the restrictive channel function 4−1.

Theorem 11. F4 � {dsb(
∑k

j=1 zij = 1)} for all 1 ≤ i ≤ n.

Proof. A minimal set of propagation rules for dsb(
∑k

j=1 zij = 1) consist of the
rules:

(r1) zij = 1 � zij′ = 0, for all j′ 6= j
(r2) zi1 = 0, . . . , zi(j−1) = 0, zi(j+1) = 0, . . . , zik = 0 � zij = 1.

We show that F4 implements both (r1) and (r2).

— For the rule (r1), suppose D v Dinit where D(zij) = {1}. Let D1 = solv(F4, D).
By the rule (zij = 1 � xi = j) ∈ F4, we have D1(xi) = {j}. Hence, j′ 6∈ D1(xi)
for all j′ 6= j. By the rule (xi = j′ � zij′ = 1) ∈ F4, we have 1 6∈ D1(zij′) for
all j′ 6= j.

— For the rule (r2), suppose D v Dinit where D(zij′) = {0} for all 1 ≤ j′ 6= j ≤ k.
Let D1 = solv(F4, D). By the rule (zij′ = 0 � xi 6= j′) ∈ F4 for all j′ 6= j, we
have D(xi) ∩ {1, . . . , j − 1, j + 1, . . . , k} = ∅. Hence, D(xi) = {j}. By the rule
(xi = j � zij = 1) ∈ F4, we have 0 6∈ D(zij).

By Lemma 1 and Lemma 5, we have F4 � {dsb(
∑k

j=1 zij = 1)}.

Example 22. The (QZ1) constraints of the n-Queens Problem (Example 14) are
propagation redundant w.r.t. the Boolean channel using Theorem 11. �

The channel function {}−1 is restrictive, since each variable xi ∈ X can only take
a single value j. It means that Sj ∩ Sj′ = ∅ for all 0 ≤ j < j′ ≤ m. It is clear that
F{} makes these constraints propagation redundant.
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Theorem 12. F{} � {dsb(Sj ∩ Sj′ = ∅)} for all 1 ≤ j < j′ ≤ m.

Proof. A minimal set of propagation rules for dsb(Sj ∩ Sj′ = ∅), where j < j′,
consists of the rules:

(r1) i ∈ Sj � i 6∈ Sj′

(r2) i ∈ Sj′ � i 6∈ Sj

We show that F{} implements both (r1) and (r2).

— For the rule (r1), suppose D v Dinit where i ∈ infD(Sj). Let D1 = solv(F{}, D).
By the rule (i ∈ Sj � xi = j) ∈ F{}, we have D1(xi) = {j} and j′ 6∈ D1(xi). By
the rule (xi 6= j′ � i 6∈ Sj′) ∈ F{}, we have i 6∈ supD1

(Sj′).

— For the rule (r2), suppose D v Dinit where i ∈ infD(Sj′). Let D1 = solv(F{}, D).
By the rule (i ∈ Sj′ � xi = j′) ∈ F{}, we have D1(xi) = {j′} and j 6∈ D1(xi).
By the rule xi 6= j � i 6∈ Sj , we have i 6∈ supD1

(Sj).

By Lemma 1 and Lemma 5, we have F{} � {dsb(Sj ∩ Sj′ = ∅)}.

Example 23. Using Theorem 12, the set channel makes both the (GS1) con-
straints of the social golfers problem (Example 15) and (BS1) constraints of the
balanced academic curriculum problem (Example 16) propagation redundant. �

5.2.2 Unrestrictive Channel Functions. Unrestrictive channel functions do not
make any constraints (on X) propagation redundant. Interestingly in this case we
can argue about propagation redundancy simply in terms of logical consequence.
If a constraint cX logically implies another constraint cY through an unrestrictive
channel, then dsb(cX) subsumes all the propagation rules implemented by dsb(cY ).

Lemma 13. Let cX a constraint on X variables, cY be a constraint on Y vari-
ables and Πdsb(cY ) be a minimal set of propagation rule implemented by dsb(cY ). If
♦ be an unrestrictive channel function and

|= (Dinit ∧ cX ∧ C♦) → cY ,

then

|= (Dinit ∧ cX ∧ ♦−1(C)) → ♦−1(c)) for all (C � c) ∈ Πdsb(cY ).

Proof. Suppose to the contrary that for some rule (C � c) ∈ Πdsb(cY ) there
exists a solution θX of Dinit ∧ cX ∧♦−1(C) but not a solution of ♦−1(c). Since θX

is a solution of Dinit ∧ cX and ♦ is unrestrictive, we can map θX to θY using ♦ and
θ = θX∪θY is a solution of Dinit ∧cX∧C♦. By the condition of the lemma, we have
that θ is a solution of cY . In particular, θY ⊂ θ is a solution of cY since vars(cY )
contains only Y variables. By construction, θY is also a solution of C since θX is a
solution of ♦−1(C). Similarly, θY is not a solution of c since θX is not a solution
of ♦−1(c). Using Lemma 1, dsb(cY ) does not implement C � c, contrary to the
hypothesis.

We can straightforwardly lift the results of Lemma 13 to determine propagation
redundancy of constraints simply in terms of logical implication through unrestric-
tive channel.
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Theorem 14. Let cX a constraint on X variables and cY be a constraint on Y
variables. If ♦ be an unrestrictive channel function and

|= (Dinit ∧ cX ∧ C♦) → cY ,

then {dsb(cX)} ∪ F♦ � {dsb(cY )}.

Proof. The proof follows straightforwardly from Lemma 13 and Corollary 8.

The reason the channel function must be unrestrictive for this result to hold is
that the |= (Dinit ∧ cX ∧ C♦) → cY is too weak a condition in the general case.

Example 24 (Counter-example). The permutation channel function is restric-
tive. Now |= C → y3 = 3, where C ≡ x1 + x2 < 4 ∧ C1 since the only solutions of
C are

{x1 7→ 1, x2 7→ 2, x3 7→ 3, y1 7→ 1, y2 7→ 2, y3 7→ 3} and
{x1 7→ 2, x2 7→ 1, x3 7→ 3, y1 7→ 2, y2 7→ 1, y3 7→ 3}.

However, it is not the case that x1 + x2 < 4 → x3 = 3. The problem is that the
channel C1 removes solutions of x1 + x2 < 4 like {x1 7→ 1, x2 7→ 1, x3 7→ 1} from
consideration. �

We can use Theorem 14 to prove propagation redundancy of many of the prop-
agators in our examples.

Example 25. Consider the (QZ3.1) constraint of the n-Queens Problem (Exam-
ple 14) for k = 0,

cZ ≡
n∑

i=1

zii ≤ 1.

It is clear that
cX ≡ (x1 − 1 6= xi − i) ∧ · · · ∧ (xi−1 − (i− 1) 6= xi − i) ∧

(xi+1 − (i + 1) 6= xi − i) ∧ · · · ∧ (xn − n 6= xi − i)

of (QX2.1) satisfies |= Dinit ∧ cX ∧ C4 → cZ . We also have

{dsb(cX)} ≈ {dsb(x1 − 1 6= xi − i), . . . , dsb(xi−1 − (i− 1) 6= xi − i),
dsb(xi+1 − (i + 1) 6= xi − i), . . . , dsb(xn 6= xi + n− i)}

by Theorem 4. Since 4 is an unrestrictive channel function, dsb(cZ) is propagation
redundant w.r.t. F4 and the propagators of constraints (QX2.1) by Theorem 14.

Similar arguments apply to show that the other constraints of (QZ3.1) and
(QZ3.2) are propagation redundant w.r.t. C4 and the propagators of (QX2.1).
Also, the constraints of (QZ3.3) and (QZ3.4) are propagation redundant w.r.t. to
C4 and the propagators of (QX2.2).

Note that the (QZ2) constraints
∑n

i=1 zij = 1, where 1 ≤ j ≤ n, are not propa-
gation redundant. However, we can split (QZ2) into two constraints:

— (QZ2.1)
∑n

i=1 zij ≤ 1

— (QZ2.2)
∑n−1

i=0 zij ≥ 1.

Using similar arguments to cZ , we can show that constraint (QZ2.1) is propagation
redundant w.r.t. C4 and (QX1). �
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The following example demonstrates that our approach is also applicable to prop-
agators for global constraints. The use of the alldifferent global constraints in
the n-Queens problem can make constraints (QZ2) propagation redundant.

Example 26. Consider the (QX1) constraints of the n-Queens Problem (Exam-
ple 14). Rather than using a set of separate disequality constraints, we can use a
single alldifferent global constraint:

(QX1’) alldifferent([x1, . . . , xn]).

The propagator dsb(alldifferent([x1, . . . , xn])) is equivalent to

dsb
( n−1∧

i=1

n∧
j=i+1

xi 6= xj

)
and has an efficient implementation [Régin 1994].

Consider the (QZ2) constraints, cZ ≡
∑n

i=1 zij = 1, where 1 ≤ j ≤ n. It is
straightforward to verify that

|= Dinit ∧ alldifferent([x1, . . . , xn]) ∧ C4 → cZ .

Since 4 is an unrestrictive channel function, dsb(cZ) is propagation redundant
w.r.t. F4 and the propagator dsb(alldifferent([x1, . . . , xn])) by Theorem 14, �

Example 27. Consider the (GS2) constraints of the social golfers problem (Ex-
ample 15),

cS1 ≡ |Sik| = s

where 1 ≤ i ≤ g and 1 ≤ k ≤ w. It is clear that cX1 ≡
∑n

l=1(xlk = i) = s of (GX1)
satisfies |= Dinit ∧ cX1 ∧ C{} → cS1 . Since {} is an unrestrictive channel function,
by Theorem 14, dsb(cS1) is propagation redundant w.r.t. F{} and dsb(cX1).

We can similarly show that the (GS3) constraints are propagation redundant
w.r.t. C{} and the (GX2) constraints. �

Example 28. Consider the (BS4) constraints of the balanced academic curricu-
lum problem (Example 16),

cS ≡ (i ∈ Sk) ⇒ (j 6∈ Sk′)

where 〈i, j〉 ∈ R, 1 ≤ k ≤ n−1 and 1 ≤ k′ ≤ k. It is clear that the (BX3) constraint,
cX ≡ xi < xj , satisfies |= (Dinit ∧ cX ∧ C{}) → cS . Since {} is an unrestrictive
channel function, by Theorem 14, dsb(cS) is propagation redundant w.r.t. F{} and
dsb(cX). �

In part because the l channel is unrestrictive in both directions, we can prove
that set bounds propagation provide the same propagation strength as the mapping
of set constraints to Booleans.5

Theorem 15. Let dsb(c) be the set bounds propagator for set constraint c and
l(c) be the Boolean equivalent of c. Then

5Set bounds propagation, however, does still provide a more efficient implementation.
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Channel Function Type Applicable Theorems

Corollary 8 (Example 17)
1 / 1−1 Restrictive Theorem 9 (Example 19)

Theorem 10 (Example 21)

4 Unrestrictive Theorem 14 (Examples 25 and 26)

Corollary 8

4−1 Restrictive Theorem 9

Theorem 11 (Example 22)

{} Unrestrictive Theorem 14 (Examples 27 and 28)

Corollary 8 (Example 18)

{}−1 Restrictive Theorem 9
Theorem 12 (Example 23)

l / l−1 Unrestrictive Theorem 15

Table I. A Summary of Results

(a). {dsb(c)} ∪ Fl � {dsb(c′) | c′ ∈ l(c)} and
(b). {dsb(c′) | c′ ∈ l(c)} ∪ Fl � {dsb(c)}.

Proof. See the appendix.

For ease of referencing, Table I summarizes the results presented in this section.
This serves as a guide for problem modelers to quickly identify which theorems are
related to their problem.

6. EXPERIMENTS

We can take advantage of the reasoning about propagation redundancy to eliminate
propagators that are propagation redundant. We then get a model with exactly
the same propagation strength but with less propagators. This can translate
into faster propagation.6 We verify empirically the improvement of removing
propagation redundant constraints for the problems in Section 4, except for the
n-Queens problem, the reason being that there exist better single models for the
n-Queens problem using the global alldifferent constraint so that redundant
modeling is not worthwhile.

In the following experiments, all the benchmarks are executed using ILOG Solver
4.4 on Sun Ultra 5/400 workstations running Solaris 8. The first column of each
table indicates the problem instances. The second column describes the models
under comparison. The third column indicates the choices of search variables. In
the case of combined models, we have the choice of searching the variables for
just one model, or from both models together. However, the question of choosing
the “best” set of search variables that gives the smallest search space is out of
the scope of this paper. To compare the performance of the different models, we
measure the total number of fails (fourth column), total memory used in kilobytes
(fifth column), and CPU time in seconds (sixth column). Table entries marked
with a “—” mean failure to solve the problem after one hour of execution. To
highlight the benefits of removing propagation redundant constraints, we place the

6Note there is no guarantee since the number of propagation steps may have increased depending

on the order and the events which propagators are processed.
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Table II. Finding the First Solution of the Langford’s Problem

Instance Model Search Fails KBytes Seconds

3× 9 MX X 192 142 0.08

full/opt X 77/77 2079/142 0.56/0.07

MY Y — — —
full/opt Y 48/48 2362/142 0.36/0.05

full/opt X ∪ Y 42/42 2075/142 0.40/0.05

3× 10 MX X 569 161 0.27
full/opt X 217/217 3002/165 2.24/0.21

MY Y — — —

full/opt Y 22/22 3166/161 0.28/0.03
full/opt X ∪ Y 116/116 2978/165 1.55/0.13

figures for the full combined model and the opt imized combined model on the
same cell separated by the symbol “/”. To improve the efficiency of combined
models, we use the IlcInverse global constraint in ILOG Solver to implement
the permutation channel. However, ILOG Solver does not provide such a global
constraint implementation for the other two channels. Hence, we have implemented
our own global constraints for the Boolean channel and set channel to make the
results more consistent.

6.1 Langford’s Problem

Table II compares the different models for finding the first solution of the Langford’s
Problem. The models under comparison include the single models: MX and MY ,
the full combined model (MX + C1 + MY ), and an opt imized combined model
(LX2.1 + LX2.2 + C1) as discussed in Examples 17 and 21. We use the smallest
domain first (i.e. IlcChooseMinSizeInt in ILOG Solver) variable ordering heuristic
and order values in the domain from the least to the greatest.

Our opt model corresponds to the minimal combined model of Smith [2000].
Smith empirically shows that using the minimal combined model with search vari-
ables X ∪ Y is more efficient in solving this problem. Our results agree with those
presented by Smith, where the opt model is faster and maintains the same number
of fails as the full model for all three sets of search variables, and the opt model
with search variables X ∪ Y is the fastest among all the models under comparison.
In addition to time and number of fails, the amount of memory consumption needed
to solve a problem is also an important measure of performance (which is not pre-
sented by Smith). The presence of propagation redundant constraints consumes a
lot of unnecessary memory spaces. From Table II, we can see that the opt model
requires a lot less memory than the corresponding full model.

The benefits of removing propagation redundant constraints are more apparent
when we solve for all the solutions of the Langford’s Problem (see Table III). Prob-
lem instances “4 × 14” and “4 × 15” are infeasible and have no solutions. For all
instances, the experiment confirms that the opt model has the same search space
as the full model. As the problem size increases, the opt model leads to a more
significant saving of time and memory consumption over the full model.
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Table III. Finding All the Solutions of the Langford’s Problem

Instance Model Search Fails KBytes Seconds

3× 9 MX X 938 142 0.38

full/opt X 432/432 2220/142 3.11/0.35

MY Y — — —
full/opt Y 348/348 2413/142 2.77/0.28

full/opt X ∪ Y 251/251 2260/142 2.32/0.25

3× 10 MX X 3114 161 1.39
full/opt X 1318/1318 3166/169 13.51/1.16

MY Y — — —

full/opt Y 1059/1059 3575/169 11.22/0.88
full/opt X ∪ Y 768/768 3190/169 9.52/0.78

4× 14 MX X 83068 475 89.03
full/opt X 20885/20885 21574/491 1494.09/46.74

MY Y — — —

full/opt Y 8139/8139 25206/487 704.30/21.01
full/opt X ∪ Y 6553/6553 22870/487 640.13/16.87

4× 15 MX X 351126 538 399.14

full/opt X —/78556 —/550 —/176.24
MY Y — — —

full/opt Y 25270/25270 32957/550 2440.22/66.57

full/opt X ∪ Y 20526/20526 29243/546 2270.67/55.63

Table IV. Finding All the Solutions of the All Interval Series Problem

Instance Model Search Fails KBytes Seconds

12 MX X 880112 189 265.91

full/opt X 39241/39241 2587/169 213.31/33.37
MY Y — — —

full/opt Y 16280/16280 2846/173 76.58/6.13

full/opt X ∪ Y 39195/39195 2587/173 216.03/32.23

13 MX X 4914499 228 1632.54
full/opt X 158383/158383 3494/200 1016.96/142.78

MY Y — — —

full/opt Y 62949/62949 3859/200 310.22/24.14
full/opt X ∪ Y 158297/158297 3494/200 1008.84/177.39

14 MX X — — —
full/opt X —/685301 —/228 —/696.12

MY Y — — —
full/opt Y 266130/266130 5127/240 1473.22/107.39
full/opt X ∪ Y —/684592 —/228 —/696.25

15 MX X — — —
full/opt X —/3096868 —/267 —/3415.98

MY Y — — —
full/opt Y —/1275661 —/271 —/521.63
full/opt X ∪ Y —/3091947 —/267 —/3444.73

6.2 All Interval Series

Finding the first solution for the All Interval Series problem is an easy problem.
The challenge is to find all the solutions. Table IV compares the different models
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for finding all the solutions of the all interval series problem. The models under
comparison include the single models: MX and MY , the full combined model (MX

+ C1 + MY ), and an opt imized combined model (IX2 + C1 + IY3) as discussed in
Examples 19 and 21. We use the smallest domain first variable ordering heuristic
and order values in the domain from the least to the greatest.

Given the same set of search variables (X or Y ), the full models reduce the num-
ber of fails significantly as compared to the single models (MX and MY ). However,
the overhead of redundant modeling surpasses the gains from the reduction in search
space. By removing propagation redundant constraints from the combined models,
the opt model with search variables Y is the fastest. The experiment confirms that
the opt model maintains the same number of fails as the full model for all test
cases. As the problem size increases, the benefit of the opt model is more apparent
for both time and memory consumption, and it is the only model which could solve
instance n = 15 within the time limit. The amount of memory consumption for
the opt models is competitive to the single models (MX , MY ), as opposed to huge
memory overhead for the full model.

6.3 Social Golfers Problem

The social golfers problem has a large number of symmetric solutions and it is
impractical to search for all the solutions.7 Table V compares the different models
for finding the first solution to the social golfers problem. The problem instances
are indicated using the parameters g-s-w as described in Example 15. The models
under comparison include the single models: MX and MS , the full combined model
(MX + C{} + MS), and an opt imized combined model (GX1 + GX2 + C{}) as
discussed in Examples 23 and 27. The following heuristics are used for variable
ordering. For search variables X, we use ascending order of variables indices and
variables are ordered players by weeks. Barnier and Brisset [2002] show that this
heuristic can solve the 8-4-9 instances efficiently. For search variable S and X∪S, we
simply use smallest domain first with values ordered from the least to the greatest.

The experiment confirms that the opt model has the same number of fails as the
full model and, at the same time, speeds up the search and reduces the memory
consumption for all test cases. The combined models (full and opt) with search
variables S reduce the number of fails when compared to the single model MS , but
this is not the case when compared to MX with search variables X. In terms of
runtime, no one model dominates the others. The opt model with search variables
S is the fastest for instance 4-3-4, opt model with search variables X ∪ S is the
fastest for instance 7-2-13, and the single model MX is the fastest for instances
8-4-9 and 9-2-17.

7Although many effective (and often sophisticated) symmetries breaking techniques have been

studied (e.g. Puget [2002]), we restrain from doing so since the focus of this paper is on removing

propagation redundant constraints. To have a fair comparison, we also avoid the addition of
symmetry constraints because the same constraint might be easy to express in one model but not

the other [Smith 2001].
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Table V. Finding the First Solution of the Social Golfers Problem

Instance Model Search Fails KBytes Seconds

4-3-4 MX X 1509146 240 395.31

full/opt X 1509146/1509146 330/244 592.41/459.66

MS S 2389 142 0.41
full/opt S 1102/1102 326/244 0.41/0.27

full/opt X ∪ S 4587/4587 326/244 1.81/1.33

7-2-13 MX X 63860 2587 33.56
full/opt X 63860/63860 6048/2627 122.96/37.62

MS S 37158 3598 30.44

full/opt S 27998/27998 6064/2603 34.87/13.38
full/opt X ∪ S 361/361 6079/2627 1.37/0.42

8-4-9 MX X 32 5952 0.32
full/opt X 32/32 8519/6015 0.89/0.35

MS S — — —

full/opt S —/— —/— —/—
full/opt X ∪ S —/— —/— —/—

9-2-17 MX X 7355 7039 8.00

full/opt X 7355/7355 17474/7114 29.39/8.46
MS S 74098 10718 111.78

full/opt S 51444/51444 17531/7055 134.26/45.68

full/opt X ∪ S 6788/6788 17580/7114 26.67/7.43

6.4 Balanced Academic Curriculum Problem

Hnich et al. [2002] report that it is difficult to find the optimal solution of the bal-
ance academic curriculum problem with propagation-based constraint solver alone.
The challenge of this problem is to find the optimal solution and prove optimality.
Table VI compares the different models for finding the optimal solution and prov-
ing optimality for the three problem instances of the balanced academic curriculum
problem posted in CSPLib. The models under comparison include the single mod-
els: MX and MS , the full combined model (MX + C{} + MS), and an opt imized
combined model (B1.1 + B1.2 + B2.1 + B2.2 + BX3 + C{} + BS2 + BS3) as
discussed in Examples 18, 23 and 28. The following heuristics are used for variable
ordering. We use smallest domain first for search variables X and X ∪ S, and
ascending order of variable indices for search variable S. Values are ordered from
the least to the greatest.

It is interesting to note that we were able to solve all the problem instances with
MX alone after adding redundant constraints (B2.1) and (B2.2). The experiment
confirms that the opt model has the same number of fails as the full model for all
three sets of search variables. The opt model is faster and consumes less memory
than the full model. It is interesting to note that for this problem, the amount of
memory consumption for the opt model is minimal, even less than the single model
MX . The performance of the opt model is clearly superior to the other models.
The opt model with search variable X is the fastest for instances with 8 periods,
the opt model with search variables X ∪ S is the fastest and has the least number
of fails for instances with 10 periods, and the opt model with search variables S is
the fastest and has the least number of fails for the instance with 12 periods.
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Table VI. Finding the Optimal Solution and Proving Optimality of the Balanced Academic Cur-

riculum Problem

Instance Model Search Fails KBytes Seconds

8 Periods MX X 101 377 0.08
full/opt X 101/101 589/79 0.19/0.02

MS S — — —
full/opt S 1577/1577 589/79 2.16/0.19
full/opt X ∪ S 118/118 589/79 0.21/0.03

10 Periods MX X 468 432 0.50

full/opt X 470/470 766/87 1.62/0.12

MS S — — —
full/opt S 323/323 766/83 0.63/0.07

full/opt X ∪ S 149/149 766/87 0.32/0.02

12 Periods MX X 33602 801 27.47

full/opt X 33530/33530 1692/102 147.46/4.97
MS S — — —

full/opt S 882/882 1669/98 3.78/0.19

full/opt X ∪ S —/10541901 —/102 —/1393.21

7. RELATED WORK

Smith [2000; 2001] has examined the redundant models for a number of individual
problems including the n-Queens problem, Langford’s problem and the social golfers
problems. Smith empirically demonstrates that some constraints in the redundant
models can be removed without increasing the search space. Smith points out that
for these problems the so-called minimal combined model, which combine the first
model and only the variables of the second model (without the constraints) using
channeling constraints, produces the same search behavior as combining the models
in full. This is proved in an ad hoc manner by Choi and Lee [2002]. In this paper,
we aim for a theoretical framework which can determine propagation redundancy
of a particular constraint involved in redundant models a priori.

Apt and Monfroy [2001] develop “membership rules” as a way of building propa-
gators for any constraints. Propagation rules are similar to the “membership rules”
when restricted to integer variables. However, we develop propagation rules as a
method for reasoning about the parts of a propagator’s behavior.

Brand [2003] gives a general theorem to determine when a rule is propagation
redundant with respect to a set of rules in rule-based constraint programming, and
illustrates the applicability using “membership rules.” In fact, our definition of a
propagation rule satisfies the required properties of Brand’s theorem. Hence, we
can apply Brand’s theorem to determine when a propagation rule is propagation
redundant with respect to a set of propagation rules. In this paper, we are in-
terested in propagation redundancy beyond the individual propagation rules, but
propagation redundancy of the constraint as a whole. We also generalize the notion
of propagation redundancy of a propagation rules through a channel function.

Hnich et al. [2004] and Walsh [2001] introduce the notion of constraint tight-
ness as a measure to compare the propagation strength of different permutation
constraints. Their work focuses on comparing the propagation strength of the
different notions of consistency over the disequations, channeling constraints, and
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alldifferent global constraints in redundant modeling of only permutation prob-
lems and injection problems. Our comparison measure is similar to constraint
tightness except that constraint tightness is parameterized by a local consistency
property. However, in existing constraint solvers, there are propagators which im-
plement none of the (established) local consistency properties. An example is the
multiplication constraint x = y × z over integer domain as discussed in Apt [2003,
pages 219–220]. In such cases where the local consistency property of a constraint
is unknown, our comparison measure would still be applicable. In this paper, we
are not only interested in studying the propagation of the permutation constraints,
but also the other constraints in redundant models. We also cover a broader class
of channeling constraints beyond the permutation channels.

Walsh [2003] proves that “bounds consistency” on set (multiset) variables is
equivalent to bounds consistency on the corresponding occurrence representation.
This result is related to Theorem 15 since the occurrence representation of set vari-
ables corresponds to Boolean variables described in Section 4.4. However, existing
constraint solvers break Boolean constraints into parts and propagate each part
separately. We prove the theorem based on this more realistic assumption.

A corollary of Theorem 4 is that we can determine domain consistency of an entire
integer CSP with tree structure just using the individual domain propagators, since
we can repeatedly apply the above lemma to break the conjunction of constraints
into individual constraints. This is highly related to the “backtrack-free” approach
to solving CSPs with tree structure of Freuder [1982].

8. CONCLUSION

The contributions of this paper are three-fold. First, we define channeling con-
straints in terms of channel functions which allow us to cover a broad form of
redundant modeling. By breaking up a propagator into individual propagation
rules, we reason that constraints in one model can be made propagation redun-
dant by constraints in the other model through channels. Second, we introduce the
notion of restrictive and unrestrictive channel functions to characterize channel-
ing constraints. Restrictive channel functions can themselves make a constraint in
the combined model propagation redundant. Unrestrictive channel functions allow
the detection of propagation redundancy of a constraint in one model with respect
to a constraint in the other model plus the channels simply in terms of logical
consequence. Third, benchmarking results confirm that removals of propagation
redundant constraints from combined model can often lead to a faster implemen-
tation with the same search space and consuming less memory. As explained in
Section 7, this paper extends related work by covering a broader form of redundant
modeling and reasoning about the propagation redundancy of all the constraints in
the redundant models.

Although we have concentrated on domain and set bounds propagators, many
of our results can be used for other propagators. Lemma 6 can be applied for any
propagator, since it only relies on the propagation rules. We can use Theorems 7,
9, 14, and Corollary 8 to prove the weaker propagators for c than dsb(c) are prop-
agation redundant, or that stronger propagators for c than dsb(c) make another
propagator redundant.
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Our work prompts a number of important future directions for research. It is
interesting to investigate if the process of removing propagation redundant con-
straints can be (semi-)automated. To use Theorem 9 we can straightforwardly
define the propagation rules for many constraints (parametrically in Dinit) or con-
struct them automatically using the approach of Abdennadher and Rigotti [2002].
The number of propagation rules for most constraints, however, are exponential.
A naive implementation would be computationally too expensive and impractical
for more complex real-life applications. A possible approach is to consider param-
eterized propagation rules, which denotes a set of propagation rules, so that the
number of rules is vastly reduced. We can also try to use Theorem 14 to prove
propagation redundancy without considering propagation rules.

The amount of computation overhead induced by propagation redundant con-
straints depends on the order and on the events which constraints are processed
during constraint propagation. Our experimental platform, ILOG Solver, is a pro-
prietary constraint programming library which does not provide access to such
information. It would be interesting to study how these factors affect the perfor-
mance of constraint solving after propagation redundant constraints are removed
from the model.

Our existing approach analyzes the propagation behavior of the redundant con-
straints in the model statically before search. It is interesting to investigate for
an alternative approach of analyzing dynamically the propagation behavior of re-
dundant constraints during search. Based on the results of dynamic analysis, the
constraint solver should avoid (as much as possible) processing the propagation
redundant constraints during constraint propagation. This would minimize the
computation overhead incurred by the propagation redundant constraints even if
they are present in the model.

Redundant modeling gives rise to the need to decide which variables to label
during search. As demonstrated in Section 6, the choice of search variables can
greatly affect the size of the search space. For example, Geelen [1992], Smith [2000;
2001] and Hnich et al. [2004], also show that certain choices of search variables do
lead to a smaller search space. Therefore, it is interesting to study and establish
criteria in choosing the better set of search variables.

APPENDIX

We present the longer proofs, in full, in this appendix, to improve the readability
of the main body of the text.

Lemma 1. Given a constraint c, dsb(c) implements C � c′ iff

|= (Dinit ∧ c) → (C → c′).

Proof. To prove the if direction (⇒), suppose to the contrary that dsb(c) im-
plements C � c′ and 6|= (Dinit ∧ c) → (C → c′). Then, there exists a solution
θ ∈ Dinit such that θ satisfies c ∧ C ∧ ¬(c′). Now, we build a domain, Dθ v Dinit ,
from θ as follows:

Dθ(v) =
{
{θ(v)} for all v ∈ vars(θ),
Dinit(v) otherwise
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Since θ satisfies c and ¬(c′), we have |= Dθ → C and 6|= Dθ → c′. Since θ is a
solution of c, we have dsb(c)(Dθ) = Dθ. Thus, 6|= dsb(c)(Dθ) → c′. By Definition 5,
dsb(c) does not implements C � c′, contrary to the hypothesis.

For the only if direction (⇐), suppose to the contrary that |= (Dinit ∧c) → (C →
c′) and dsb(c) does not implement C � c′. Then, there exists D v Dinit such that
|= D → C but 6|= dsb(c)(D) → c′. For each form of c′, we show that there exists a
solution θ ∈ D of c.

— If c′ ≡ x 6= d where x ∈ vars(c) and d ∈ D(x), then 6|= dsb(c)(D) → c′ means
that d ∈ dsb(c)(D). By the definition of dsb(c), there exists a solution θ ∈ D of
c where θ(x) = d.

— If c′ ≡ x = d where x ∈ vars(c) and d ∈ D(X), then 6|= dsb(c)(D) → c′ means
that d′ ∈ dsb(c)(D) where d′ 6= d and d′ ∈ D(X). By the definition of dsb(c),
there exists a solution θ ∈ D of c where θ(x) = d′.

— If c ≡ d ∈ S where X ∈ vars(c) and d 6∈ infD(S), then 6|= dsb(c)(D) → c′ means
that d 6∈ infD′(S) where D′ = dsb(c)(D). By the definition of dsb(c), there exists
a solution θ ∈ D of c where d 6∈ θ(S).

— If c ≡ d 6∈ S where X ∈ vars(c) and d ∈ supD(S), then 6|= dsb(c)(D) → c′

means that d ∈ supD′(S) where D′ = dsb(c)(D). By the definition of dsb(c),
there exists a solution θ ∈ D of c where d ∈ θ(S).

Now, we know that θ ∈ dsb(c)(D) since θ is a solution of c. Using 6|= dsb(c)(D) → c′,
we have that θ is not a solution of c′. However, we also know that θ satisfies
Dinit ∧ c ∧ C since D v Dinit and |= D → C. Hence, 6|= (Dinit ∧ c) → (C → c′),
contrary to the hypothesis.

Theorem 4. If c1 and c2 are two constraints sharing at most one integer vari-
able, x ∈ VI , then {dsb(c1), dsb(c2)} ≈ {dsb(c1 ∧ c2)}.

Proof. We have {dsb(c1 ∧ c2)} � {dsb(c1), dsb(c2)} by Lemma 3. To show
{dsb(c1), dsb(c2)} � {dsb(c1 ∧ c2)}, suppose to the contrary that there exists a
variable y ∈ vars(c1 ∧ c‘2) such that

solv({dsb(c1), dsb(c2)}, D)(y) 6⊆ solv({dsb(c1 ∧ c2)}, D)(y)

for certain D v Dinit . Let D1 = solv({dsb(c1), dsb(c2)}, D) and D2 = solv({dsb(c1∧
c2)}, D). Assume w.l.o.g. that y ∈ vars(c1). For each type of domain changes by
dsb(c1 ∧ c2), we show that it leads to a contradiction.

— If dsb(c1 ∧ c2) eliminates a value d from D(y) where y ∈ VI , then d ∈ D1(y)
and d 6∈ D2(y). By definition of dsb(c1), there exists a solution θ1 ∈ D1 of c1

such that θ(y) = d since d ∈ D1(y). Now if there exists a solution θ2 ∈ D of c2

where θ2(x) = θ1(x) then we have a contradiction, since θ1 ∪ θ2 ∈ D is a solution
of c1 ∧ c2. Otherwise there is no such θ2, hence dsb(c2)(D) eliminates the value
θ1(x) from D(x). Hence θ1(x) 6∈ D1(x). But then θ1 6∈ D1 which contradicts the
hypothesis.

— If dsb(c1 ∧ c2) adds a value d to infD(y) where y ∈ VS , then d 6∈ infD1(y) and
d ∈ infD2(y). By definition of dsb(c1), there exists a solution θ1 ∈ D1 of c1
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such that d 6∈ θ1(y) since d 6∈ infD1(y). Now if there exists a solution θ2 ∈ D
of c2 where θ2(x) = θ1(x) then we have a contradiction, since θ1 ∪ θ2 ∈ D is a
solution of c1∧ c2 which gives a solution where y = d. Otherwise there is no such
θ2, hence dsb(c2)(D) eliminates the value θ1(x) from the domain of x. Hence
θ1(x) 6∈ D1(x). But then θ1 6∈ D1 which contradicts the hypothesis.

— If dsb(c1∧c2) eliminates a value d from supD(y) where y ∈ VS , then d ∈ supD1
(y)

and d 6∈ supD2
(y). By definition of dsb(c1), there exists a solution θ1 ∈ D1 of c1

such that d ∈ θ1(y) since d ∈ supD1
(y). Now if there exists a solution θ2 ∈ D

of c2 where θ2(x) = θ1(x) then we have a contradiction, since θ1 ∪ θ2 ∈ D is a
solution of c1∧ c2 which gives a solution where y = d. Otherwise there is no such
θ2, hence dsb(c2)(D) eliminates the value θ1(x) from the domain of x. Hence
θ1(x) 6∈ D1(x). But then θ1 6∈ D1 which contradicts the hypothesis.

Lemma 5. Consider a minimal set of propagation rules, Πdsb(c), implemented
by dsb(c) for constraint c. Then {dsb(c)} ≈ Πdsb(c).

Proof. We have {dsb(c)} � Πdsb(c) by Lemma 1 and Theorem 2. To show that
Πdsb(c) � {dsb(c)}, suppose to the contrary that there exists a variable xi ∈ vars(c)
where 1 ≤ i ≤ n such that

solv(Πdsb(c), D)(xi) 6⊆ solv({dsb(c)}, D)(xi)

for certain D v Dinit . Let D1 = solv(Πdsb(c), D) and D2 = solv(dsb(c), D). For
each type of domain changes by dsb(c), we show that it leads to a contradiction.

— If dsb(c) eliminates a value d from D(xi) where xi ∈ VI , then d ∈ D1(xi) and
d 6∈ D2(xi). Clearly, dsb(c) implements a rule r ∈ Φdsb(c) such that

r ≡
( n∧

j=1

∧
d′∈A

xj 6= d′
)

� xi 6= d

where A = (Dinit(xj)−D(xj)). Now Πdsb(c) � {r} by the definition of Πdsb(c).
Hence, d 6∈ D1(xi), contrary to the hypothesis.

— If dsb(c) adds a value d to infD(xi) where xi ∈ VS , then d 6∈ infD1(xi) and
d ∈ infD2(xi). Clearly, dsb(c) implements a rule r ∈ Φdsb(c) such that

r ≡
( n∧

j=1

∧
d′∈A

d′ ∈ xj

n∧
k=1

∧
d′′∈B

d′′ 6∈ xk

)
� d ∈ xi.

where A = infD(Sj) − infDinit (Sj) and B = supDinit
(Sk) − supD(Sk). Now

Πdsb(c) � {r} by the definition of Πdsb(c). Hence, d ∈ infD1(xi), contrary to
the hypothesis.

— If dsb(c) eliminates a value d from supD(xi) where xi ∈ VS , then d ∈ supD1
(xi)

and d 6∈ supD2
(xi). Clearly, dsb(c) implements a rule r ∈ Φdsb(c) such that

r ≡
( n∧

j=1

∧
d′∈A

d′ ∈ xj

n∧
k=1

∧
d′′∈B

d′′ 6∈ xk

)
� d 6∈ xi.
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where A = infD(Sj) − infDinit
(Sj) and B = supDinit

(Sk) − supD(Sk). Now
Πdsb(c) � {r} by the definition of Πdsb(c). Hence, d 6∈ supD1

(xi), contrary
to the hypothesis.

In order to prove Theorem 15, we need to introduce the notion of nogood con-
straints. A nogood constraint c is an integer constraint where every valuation in
Dinit except one valuation θ is a solution of c. We call the non-solution valuation
θ of c as the nogood.

Consider a conjunction of a nogood constraint c1 and an integer constraint c2,
such that vars(c2) ⊆ vars(c1). The following lemma tells us about two useful
properties of the nogood of c1 if a value is removed by {dsb(c1 ∧ c2)} and not by
{dsb(c1), dsb(c2)}.

Lemma 16. Let c1 be a nogood constraint with vars(c1) = {x1, . . . , xn} ⊆ VI

with the nogood θ, and c2 be a constraint with vars(c2) ⊆ vars(c1). Suppose D1 =
solv({dsb(c1), dsb(c2)}, D) and D2 = solv({dsb(c1∧c2)}, D) for D v Dinit . If there
exists a value d ∈ D(xk), 1 ≤ k ≤ n such that d ∈ D1(xk) and d 6∈ D2(xk), then

(a). θ ∈ D and
(b). θ(xk) = d.

Proof. For (a), suppose to the contrary that d ∈ D1(xk), d 6∈ D2(xk) and θ 6∈ D,
then there must exists 1 ≤ i ≤ n such that θ(xi) 6∈ D(xi). Since d ∈ D1(xk), by
definition, d ∈ dsb(c2)(D)(xk). Thus there exists a solution θ1 ∈ D of c2 where
vars(θ1) = vars(c1) and θ1(xk) = d. Since θ1(xi) 6= θ(xi), clearly θ1 is also a
solution of c1. Hence, d ∈ D2(xk) by the definition of dsb(c1 ∧ c2), contrary to the
hypothesis.

For (b), suppose to the contrary that d ∈ D1(xk), d 6∈ D2(xk), and θ(xk) 6= d,
by definition, d ∈ dsb(c2)(D)(xk). Thus there exists a solution θ1 ∈ D of c2 where
vars(θ1) = vars(c1) and θ1(xk) = d. Since θ1(xk) 6= θ(xk), clearly θ1 is also a
solution of c1. Hence, d ∈ D2(xk) by the definition of dsb(c1 ∧ c2), contrary to the
hypothesis.

The following lemma identifies the condition where propagation of the conjunc-
tion of a nogood constraint c1 and an integer constraint c2, such that vars(c2) ⊆
vars(c1), is equivalent to propagation on the individual conjuncts. The condition
requires that each valuation θ′ ∈ Dinit differing from the nogood θ of c1 by only
one assignment must be a solution of c2.

Lemma 17. Let c1 be a nogood constraint with the nogood θ, vars(c1) = {x1, . . . , xn} ⊆
VI , and c2 be a constraint with vars(c2) ⊆ vars(c1). If for all valuations θ′ ∈ Dinit ,
such that there exists 1 ≤ j ≤ n and θ′(xi) = θ(xi) for all 1 ≤ i 6= j ≤ n, are
solutions of c2, then {dsb(c1), dsb(c2)} ≈ {dsb(c1 ∧ c2)}.

Proof. By Lemma 3 we have that {dsb(c1∧ c2)} � {dsb(c1), dsb(c2)}. To show
{dsb(c1), dsb(c2)} � {dsb(c1 ∧ c2)}, suppose to the contrary that there exists a
variable xk where 1 ≤ k ≤ n such that

solv({dsb(c1), dsb(c2)}, D)(xk) 6⊆ solv({dsb(c1 ∧ c2)}, D)(xk)
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for certain D v Dinit . Let D1 = solv({dsb(c1), dsb(c2)}, D) and D2 = solv({dsb(c1∧
c2)}, D), then there exists a value d ∈ D(xk) such that d ∈ D1(xk) and d 6∈ D2(xk).
By the definition of solv , d ∈ dsb(c1)(D)(xk) since d ∈ D1(xk). Now it is not the
case that D(xi) = {θ(xi)} for 1 ≤ i ≤ n, i 6= k (otherwise, d 6∈ dsb(c1)(D)(xk) since
θ is the nogood of c1.) Thus, there must exists 1 ≤ j ≤ n and j 6= k such that
|D(xj)| ≥ 2. Hence, there exists dj ∈ D(xj) such that dj 6= θ(xj). By Lemma 16,
we have that θ ∈ D and θ(xk) = d. Consider the valuation θ′ defined as θ′(xj) = dj

and θ′(xi) = θ(xi) for all 1 ≤ i ≤ n where i 6= j. Note that θ′(xk) = θ(xk) = d. By
construction, θ′ ∈ D and θ′ is a solution of c1. By the condition of the lemma, θ′

is also a solution of c2. Hence, d ∈ D2(xk) using definition of dsb(c1 ∧ c2), contrary
to the hypothesis.

Theorem 15. Let dsb(c) be the set bounds propagator for set constraint c and
l(c) be the Boolean equivalent of c. Then

(a). {dsb(c)} ∪ Fl � {dsb(c′) | c′ ∈ l(c)} and

(b). {dsb(c′) | c′ ∈ l(c)} ∪ Fl � {dsb(c)}.

Proof. For (a), since l is an unrestrictive channel, this immediately gives us
that {dsb(c)} ∪ Fl � {dsb(c′) | c′ ∈ l(c)} using Theorem 14 and Theorem 2.

For (b), since l−1 is also an unrestrictive channel, we also have that

{dsb(∧{c′ | c′ ∈ l(c)})} ∪ Fl � {dsb(c)}

using Theorem 14. It remains to show that

{dsb(∧{c′ | c′ ∈ l(c)})} ≈ {dsb(c′) | c′ ∈ l(c)}

for each of the constraints c in Figure 1.
For c of the form: Si = ∅, Sa ⊆ Sb, Sa∩Sb = ∅, and |Si| = m, no two constraints

in l(c) share a variable. Hence, the results hold by Theorem 4.
For the remaining constraints, Sa = Sb∪Sc, Sa = Sb∩Sc, Sa = Sb−Sc, we show

the proof for Sa = Sb − Sc the others are similar.
Consider the 3 Boolean constraints in l(Sa = Sb − Sc) for a particular j: c1 ≡

zaj ≥ zbj − zcj , c2 ≡ zaj ≤ zbj , and c3 ≡ zaj + zcj ≤ 1. Note that c1 is a nogood
constraint with nogood {zaj 7→ 0, zbj 7→ 1, zcj 7→ 0}, and the valuations: {zaj 7→
1, zbj 7→ 1, zcj 7→ 0}, {zaj 7→ 0, zbj 7→ 0, zcj 7→ 0}, and {zaj 7→ 0, zbj 7→ 1, zcj 7→ 1}
are all solutions of c2 ∧ c3. By Lemma 17, we have that {dsb(c1 ∧ (c2 ∧ c3))} ≈
{dsb(c1), dsb(c2 ∧ c3)}. Now c2 and c3 share only one Boolean variable zaj , by
Theorem 4, {dsb(c2 ∧ c3)} ≈ {dsb(c2), dsb(c3)}. Hence, {dsb(c1 ∧ c2 ∧ c3)} ≈
{dsb(c1), dsb(c2), dsb(c3)}. Since for any two constraints in l (c) with different
values of j do not share any variables, the results hold by Theorem 4.
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