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Abstract

In this paper, we propose a bottom-up partial evaluation of normal programs with a
top-down expansion of negated atoms to obtain equivalent logic programs. A program
P is transformed to Pω by a bottom-up computation on the positive component of P
while the negative counterpart is left untouched. During this process, we collect all
substitutions describing a partial answer set to all the positive atoms in the bodies of
P. The declarative semantics of P is given by the completion of Pω. The completed
predicate definitions in Pω, if they do not contain local variables, can be used as a
basis for expanding each negated atom in the bodies of Pω. We show that for a class of
programs where every negative subgoal can be expanded, the resultant program P′ is
a definite logic program with equality and disequality constraints. If the program falls
outside this class, the resultant program may be executed using Chan’s SLD−CNF
resolution.

Our proposed scheme provides a sound and complete query answering system for
a class of programs whose positive part has a finite Tω

P and whose clauses satisfy
the positive grounded property defined herein. With the bottom-up computation,
all infinite positive loops are removed. With all the negated atoms expanded or
eliminated at partial evaluation time, less work is required during the run-time query
answering and problems with floundering are removed.

1 Introduction

In logic programming, when negation is introduced in queries, the meaning of a pro-
gram is based upon the Clark completion [4] of the original program which basically
turns implication signs into equivalence signs. SLDNF provides a sound and com-
plete proof procedure for definite programs, but when negated atoms are allowed in
the body of a program clause, the completeness of SLDNF is lost. In addition, for
the case of 2-valued logic, the Clark completion comp(P) of a program P can be
inconsistent even if P is consistent. comp(P) also has other drawbacks even without
the presence of negated atoms in the program, as shown in ([14, 19]), where there are
infinite looping SLDNF−derivations for P.

Recent approaches to giving declarative semantics that capture the intended mean-
ing of normal programs tend to adopt the stable model semantics [7] as the natural
semantics for normal programs in the case of 2-valued logic. Other semantics with
equivalent 2-valued models are the fixcomp model [6] and the well−founded model
[19]. Ross [15] gave a procedural semantics for well-founded model semantics which
is sound and complete for non-floundering programs in 3-valued logic.

We propose an operational model for a query-answering system for normal pro-
grams with respect to stable model semantics. It uses both the bottom-up and top-
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down computational models; the bottom-up computation during a partial evaluation
phase and a top-down SLD−resolution at run-time. The idea is to eliminate negated
atoms so that SLD is sound and complete with improved run-time performance. We
first apply a program transformation which evaluates all the positive atoms in the
bodies of the program. Each positive atom in the body of the program gets expanded
until there are no more positive atoms left on the right hand side. In other words,
we generalize a TP operator defined in [6] to non-ground programs. The transformed
program Pω consists of clauses whose body consist only of equality constraints and
negated atoms. We then take the Clark completion of Pω and use its negated pred-
icate definitions to expand the negated subgoals in Pω. There are negated subgoals
whose negated definitions cannot be used for expansion due to the appearances of
local variables. For cases where a program has all its negative atoms expanded, its
transformed version will be in a form of a constraint logic program P′ over the Her-
brand universe with equality and disequality constraints and only positive atoms in
the body.

Example 1.1 Let P be

q(x)←¬p(x)
p(a)
p(x)← s(y) ∧ ¬r(y,x)
s(b)
r(b, c)

Given a query ←q(x), Prolog will fail and SLDNF flounders. Pω is

q(x)←¬p(x)
p(a)
p(x)←¬r(b,x)
s(b)
r(b, c)

comp(Pω) is

q(x)↔ ¬p(x)
p(x)↔ x = a ∨ ¬r(b,x)
s(x)↔ x = b.
r(z,x)↔ z = b ∧ x = c.

Expanding all the negated atoms by their negated definitions, P′ becomes

q(x)← x 6= a ∧ r(b,x)
p(a)
p(x)← x 6= c
s(b)
r(b, c)

Now if we ask ←q(x), an SLD−derivation on P′ will give us a ′yes′ answer with
x = c.

Our transformation preserves the stable model semantics of the program. Before
describing the transformation, we give a brief review of the declarative semantics for
normal programs in section 2. In section 3, we formally describe our transformation.
We then describe a class of programs for which our system provides a sound and
complete query evaluation procedure in section 4.

2



2 Semantics of Normal Programs

An early approach to understanding negation in normal logic programs is by the
program completion introduced by Clark [4]. The meaning of a program is given
by its completed definition which is simply a first order formula. The corresponding
proof procedure for this scheme is the SLDNF-resolution which is SLD augmented by
a non-monotonic rule called negation as failure. Problems related to this approach
are: there are programs whose Clark completion is inconsistent and there are also
programs with consistent Clark completion which have unintuitive models.

Another approach to the question of negation is to identify a model for which
a program is “intended” to mean. This approach has lead to the introduction of
classes of programs for which unique “intended” model exist, for example, stratified
programs with unique iterated least models [1] and locally stratified programs with
unique perfect models [13]. Stratified program are ones where recursion through nega-
tion is forbidden. Locally stratified programs are programs [13] whose stratification
requirement is defined based on priority relationship on ground atoms instead of the
predicate symbols as for the case of stratified programs. Przymusinski [13] has shown
that by this generalization he has extended the class of stratified programs to include
programs which are not stratified.

There are programs outside this class which have unique minimal models whose
models can be obtained by the stable model semantics [7] and equivalently, the fix-
comp semantics [6] and the 2-valued well-founded semantics [19]. A sufficient condi-
tion for programs to have unique stable model called sufficiently stratified is given in
[6] which will be described in section 3.

In this paper we concentrate on programs with unique stable models.

3 Transformation of P to P′

Throughout this paper, a program means a normal logic program as defined in
[10] where negative literals can occur in the body of any clause. We divide our
tranformation into two phases: the bottom-up computation on positive atoms (P to
Pω) and the expansion of the negative atoms (Pω to P′).

3.1 Positive Tranformation

Our tranformation from P to Pω is a generalization of a continuous operator TP of [6]
which operates on ground normal program clauses mapping one quasi-interpretation
to another. The TP operator in [6] is virtually identical to the TP operator as defined
for definite programs [18].

Instead of operating on ground clauses, our tranformation operates on the program
clauses themselves. We will first reproduce the definitions of TP from [6] together
with its important properties.

Let HB(P) denote the Herbrand Base of program P.

Definition. A ground quasi-interpretation 1 for P is a set of ground program clauses
of the form A← ¬B1, . . . ,¬Bn, n ≥ 0, where A,Bi are ground atoms in HB(P).

1In [6] a ground quasi-interpretation is called a quasi-interpretation.
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The set of all ground quasi-interpretations for P is denoted by GQIP. It is clear
that GQIP is a complete lattice w.r.t. set inclusion.

Let C be the ground clause A←¬B1, . . . ,¬Bn,A1, . . . ,Am with n ≥ 0,m ≥ 0
and let Ci be ground clauses Ai←¬Bi1 , . . . ,¬Bini

with 1 ≤ i ≤m and ni ≥ 0. Then
TC(C1, . . . ,Cm) is the following clause

A←¬B1, . . . ,¬Bn,¬B11 , . . . ,¬B1n1
, . . . ,¬Bm1 , . . . ,¬Bmnm

.

We now introduce the transformation TP on ground quasi-interpretations. Let
GP be the ground instances of clauses in P.

TP : GQIP → GQIP

TP(GQ) = {TC(C1, . . . ,Cm) |C ∈ GP and Ci ∈ GQ, 1 ≤ i ≤m}

Theorem 3.1 TP is continuous [6].

We define the semantic kernel 2 SK of P as follows:

Let SKn(P) = Tn
P(∅), and

SK(P) =
⋃

n≥1
SKn(P) (The least fixpoint of TP)

Let p be a predicate of P and {C1,C2, . . .} be the set of clauses in SK(P)
whose heads are atoms with predicate symbol p. Ci is a clause of the form p(t̃)←
¬B1, . . . ,¬Bn. Then the Clark completion of p is

∀(p(x̃)↔ E1 ∨ . . . ∨ Em ∨ . . .

where the right hand side is a (possibly infinite) disjunction. Every Ei is of the
following form:

x̃ = t̃ ∧ ¬B1 ∧ . . . ∧ ¬Bn.

An infinite disjunction is true w.r.t. an interpretation if one or more of its elements
is true w.r.t. this interpretation. Clark’s completion of SK(P), which is called the
fixpoint completion of P, denoted by fixcomp(P), is a collection of the completed
definitions of predicates of P together with Clark’s equality theory.

Theorem 3.2 (Basic theorem) [6]

(a) Every Herbrand model of P is a model of SK(P).

(b) Every Herbrand model of the fixpoint completion of P, fixcomp(P), is a model
of the Clark’s completion of P, comp(P).

Note: In general, the reverse of part (b) of theorem 3.2, does not hold.

Other important properties of SK(P) that are discussed in [6] are the following:

2It is denoted as LFP in [6]
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Definition. P is sufficiently stratified if the priority relation on the ground atoms
of SK(P) is well-founded. That is to say SK(P) is locally stratified.

Theorem 3.3 [6]

(a) Every Herbrand model of fixcomp(P) is a stable model of P and vice versa.

(b) If P is sufficiently stratified then there exists a unique stable model for P.

We now define a tranformation TP which is a generalization of TP to non-ground
atoms. This bears some similarity to the fixpoint operator of the non-ground seman-
tics for definite programs [5]. We extend the definition of ground quasi-interpretations
to a general case as follows.

Definition. A negative clause NC is a clause of the form

A←¬B1, . . . ,¬Bn

Let [[NC]] be the set of ground instances NC θ of a negative clause NC

Aθ←¬B1θ, . . . ,¬Bnθ

We extend the [[ ]] notation to sets of negative clauses in the obvious manner.

Definition. A quasi-interpretation for P is a set of negative clauses over the alphabet
of P.

Let the set of all quasi-interpretations for P be denoted by QIP. We define the
following relation � on QIP:

Definition. A � B where A and B ∈ QIP iff [[A]] ⊆ [[B]].

Clearly, A � B and B � A iff [[A]] = [[B]]. When this is the case, we say that A
and B belong to the same equivalence class. It is easy to show the following

Lemma 3.1 If X̃ is a directed subset of QIP/= ( set of equivalence classes of QIP),

then [[lub X̃]] = lub[[X̃]].

Definition. Let γ: QIP/= → GQIP be defined by γ (S) = [[S]].

Lemma 3.2 γ is a bijection.

Corollary 3.1 QIP/= and � is a complete lattice.
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Our operator TP is defined on QIP in the same manner as TP on GQIP. Let C be
a clause of P of the following form

A←¬B1, . . . ,¬Bn,A1, . . . ,Am

with n and m ≥ 0.

Let NCi be negative clauses of the following form

A′
i←¬Bi1 , . . . ,¬Bini

with 1 ≤ i ≤m and ni ≥ 0.

Let θ be a most general substitution such that A1θ = A′
1θ, . . . ,Amθ = A′

mθ.

If no such θ exists then TC(NC1, . . . ,NCm) is the empty clause, otherwise TC(NC1, . . . ,NCm)
is the following clause

Aθ←¬B1θ, . . . ,¬Bnθ,¬B11θ, . . . ,¬B1n1
θ, . . . ,¬Bm1θ, . . . ,¬Bmnm

θ

We now formally define the transformation TP on quasi-interpretations

Definition. TP : QIP → QIP

TP(Q) = {TC(NC1, . . . ,NCm) | where C ∈ P and
NCi , 1 ≤ i ≤m
are renamed apart copies of elements of Q}

Lemma 3.3 For any quasi-interpretation I, TP([[I]]) = [[TP(I)]].

Proof: Clearly, [[TC(NC1, . . . ,NCm)]] =
⋃

TC′([[NC1]], . . . , [[NCm]]), where C′ ranges
over ground instances of C.

Lemma 3.4 TP is continuous on QIP/=.

Proof: For any directed subset X̃ of QIP/=,

[[lubTP(X̃)]] = lub[[TP(X̃)]] (bylemma 3.1)

= lub(TP([[X̃]])) (bylemma 3.3)

= TP(lub([[X̃]]))

= TP([[lub(X̃)]])

= [[TP(lub(X̃))]] (bylemma 3.3).

Since γ is a bijection, TP(lub(X̃)) = lub(TP(X̃)).

Since TP is continuous T k
P (∅) reaches a fixpoint at or before ω steps. Denote the least

fixpoint of T k
P (∅) as Pω. In general, Pω will contain infinitely many clauses, but if

T k
P (∅) reaches its fixpoint in a finite number of steps then Pω is finite, since each step

only produces finitely many negative clauses. From now on, we shall assume Pω is
finite. Obviously Datalog programs, where no function symbols occur, have finite Pω.
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Lemma 3.5 Every model of comp(Pω) is a model of comp(P).

Proof: Let head(C) denote the head of a clause C and body(C) denote its body.
Let I be a model of comp(Pω).

Consider a clause C′ ∈ Pω of the form

Aθ←¬B1θ, . . . ,¬Bnθ,¬B′
11

θ, . . . ,¬B′
1n1

θ, . . . ,¬B′
m1

θ, . . . ,¬B′
mnm

θ,

where C′ ∈ TC(C1, . . . ,Cm) where C ∈ P is of the form

A←¬B1, . . . ,¬Bn,A1, . . . ,Am,

and Ci ∈ Pω is of the form,

A′
i←¬B′

1i
, . . . ,B′

ini

and θ is the mgu of A1 = A′
1 ∧ . . . ∧ Am = A′

m.

Let α and γ be assignments of elements in the domain of I to variables.

(a) First we show that I models P. Suppose I |= body(C)γ then I |= Aiγ and since
I |= comp(Pω) there exists a clause Ci ∈ Pω such that I |= ¬Biγ, . . . ,¬Bini

γ.
Thus

I |= ¬B1γ, . . . ,¬Bnγ,¬B′
11

γ, . . . ,¬B′
1n1

γ, . . . ,¬B′
m1

γ, . . . ,¬B′
mnm

γ.

Since I models Clarks axioms, A1 = A′
1 ∧ . . . ∧ Am = A′

m is unifiable,
thus there exists C′ ∈ TC(C1, . . . ,Cm) as above and its instance α such that
body(C)γ = body(C′)α. Hence I |= Aγ = Aθα.

(b) Suppose I |= Aγ then since I |= comp(Pω) there exists C′ ∈ Pω as above and
its instance α such that Aγ = Aθα. Now I |= body(C′)α and since I |= Ci

and I |= (¬Bi1θ, . . . ,¬Bini
θ)α then I |= Aiθα. Hence I |= body(C)θα i.e.

I |= body(C)γ.

Pω is merely a finite representation of SK(P), since [[Pω]] = SK(P), and hence its
Clark completion yields the same set of Herbrand models as SK(P). It follows from
theorem 3.3(a) that the Herbrand models of comp(Pω) are equivalent to the stable
models [7] of P.

Lemma 3.6 Every Herbrand model of comp(Pω) is a stable model of P.

3.2 Negative Expansion

Pω consists of clauses which only have negated atoms in the body. With the aim of
obtaining a definite program, we expand the negated atoms as follows.

Removing Redundant Atoms If the predicate symbol of a negated atom never
occurs as the head of a clause in Pω, then remove the negated atom from the
clause in Pω in which it appears.
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Completed Definitions We now take the Clark completion of Pω. The completion
of each predicate contains a set of equality constraints together with a set of
conjunctive negative atoms. Let x̃ be n new variables, where n is the arity
of p. For each clause p(s̃i)← Bi in Pω let Ei ≡ x̃ = s̃i ∧ Bi. For example,
p(f(f(z)))←¬q(f(z)) becomes p(x)← x = f(f(z)) ∧ ¬q(f(z)).

The completed definition of p is then

p(x̃)↔ ∃Y1E1 ∨ ∃Y2E2 ∨ . . . ∨ ∃YnEn

where Yi are the variables in x̃ = s̃i ∧ Bi not in x̃.

We call a variable y ∈ Yi a local variable [12] if it does not occur in x̃ = s̃i. If
no variables in each Ei of p are local, we say p has an eligible definition .

Example 3.1 In Pω resulting from the following program, p(x) is not eligible.

p(x)← e(x,y) ∧ ¬q(y)
e(x,y).

However, if the fact e(x,y) is replaced by e(x, f(x)) or e(f(x),x), for example,
then the definition of p in comp(Pω) becomes eligible.

Expansion For each negated atom in Pω whose definition in comp(Pω) is eligible,
replace it by its negated definition. We describe how to negate a completed
eligible definition in the following section. The remaining negated atoms whose
definitions are not eligible are left to be expanded during run-time by construc-
tive negation.

Redundancy Elimination After the transformation, clauses in the final program
may be redundant such as p(x)← x = b ∧ x 6= b or they may have redun-
dant constraints such as x = f(y) ∧ ∀ z x̃ 6= g(z) ∧ ∀ t x̃ 6= h(t, t). These
redundancies can be removed without affecting the semantics of the program.

3.3 Negating Predicate Definition

Sato and Tamaki [16] proposed a negation technique for tranforming definite pro-
grams to their dual programs. Their technique of taking the negation of a completed
definition can be applied to programs with negated atoms (as Chan and Wallace did
in [3]). For the following discussion, we assume that the clauses are eligible.

Suppose we have the following predicate definition where for

∀ x̃(p(x̃) ↔ ∃ ỹ1x̃ = t(ỹ1) ∧ Q1[x̃, ỹ1]
∨ . . .
∨ ∃ ỹnx̃ = t(ỹn) ∧ Qn[x̃, ỹn])

and Qi[x̃, ỹi] is a conjunction of negated atoms containing variables in x̃ and ỹi.
Then we have a special property of the Herbrand Universe following from the equality
theory that

¬(∃yi x̃ = t(ỹi) ∧ Qi[x̃, ỹi])↔ (∀yi x̃ 6= t(ỹi)) ∨ (∃ ỹi x̃ = t(ỹi) ∧ ¬Q[x̃, ỹi])
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Applying the above property to the definition of ¬p(x̃),

∀ x̃(¬p(x̃) ↔ (∀ ỹ, x̃ 6= t(ỹ1)) ∨ (∃ ỹ1, x̃ = t(ỹ1) ∧ ¬Q1[x̃, ỹ1])
∧ . . .
∧ (∀ ỹn, x̃ 6= t(ỹn) ∨ (∃ ỹn, x̃ = t(ỹn) ∧ ¬Qn[x̃, ỹn])).

We can expand all negated atoms using their negated definition above and reor-
ganize the result of the expansion into clausal form again.

Example 3.2 Let a completed definition of p(x̃) be

p(x) ↔ x = f(a, a) ∧ ¬e(x)
∨ x = f(a,y) ∧ ¬f(y)
∨ x = a ∧ ¬g(x)

Its negated definition is

¬p(x) ↔ x 6= f(a, a) ∨ (x = f(a, a) ∧ e(x))
∧ ∀y x 6= f(a,y) ∨ ∃y (x = f(a,y) ∧ f(y))
∧ x 6= a ∨ (x = a ∧ g(x))

We show by example that when there exists a local variable in any of the negated
predicates in Pω, we cannot apply the above negation technique without losing clausal
form.

Example 3.3 Let Pω be

p(x)←¬r(x,y) ∧ ¬s(x,y)

Negation of definition of p

¬p(x)↔ ∀y (r(x,y) ∨ s(x,y))

which means a non-clausal form will result from any negative expansion of ¬p(x).

If we allow our negated atoms to be expanded by ineligible definitions and use the
transformation of Lloyd and Topor [11] for removing quantifiers from the final pro-
grams, we obtain clauses similar to those from which we started. Hence we leave
negated atoms whose definition in comp(Pω) is not eligible to be expanded during
run-time by constructive negation.

3.4 Correctness

As Pω is a non-ground semantic kernel of P, its Clark completion gives the declar-
ative semantics for P. Since the negative expansion simply replaces atoms by there
equivalents in the Clark completion of Pω, we have the following theorem.

Theorem 3.4 If the Clark completion of Pω is consistent, the Herbrand models of
comp(P′), comp(Pω) and fixcomp(P) are identical.

comp(P′) =H comp(Pω) =H fixcomp(P).
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Corollary 3.2 If the Clark completion of Pω is consistent, the Herbrand models of
comp(P′) are the stable models of P.

For definite programs P′, SLD-resolution (for constraint logic programs involving
equalities and disequalities over the Herbrand Universe) is sound and complete with
respect to comp(P′) for success and finite failure due to the following result of Jaffar
and Lassez.

Theorem 3.5 [8]
comp(P′) |= G iff G ∈ SS(P′)
comp(P′) |= ¬G iff G ∈ FF(P′)

Unfortunately if we just consider the Herbrand models of comp(P′) SLD-resolution
is, in general, not complete for finite failure, just as for definite logic programs [10].
The canonical programs [9] are those programs where the greatest fixpoint of the
familiar TP operator of Van Emden and Kowalski [18] is TP ↓ ω. Let A |=H B be
true if every Herbrand model of A models B, then we have the following result from
Jaffar and Lassez.

Theorem 3.6 [8]
comp(P′) |=H G iff G ∈ SS(P′)
If P′ is canonical comp(P′) |=H ¬G iff G ∈ FF(P).

Hence the canonical programs are exactly those programs for which SLD-resolution
is complete with respect to finite failure. All practical programs are canonical, and it
seems unlikely that P′ will not be canonical. We can, however, construct examples
where P′ is not canonical.

Example 3.4 The program P = Pω is ineligible due to its first clause.

p(a)←¬q(x)
q(x)←¬r(x)
r(f(x))←¬q(x)

P′ is

p(a)← r(x)
r(f(x))← r(x)
q(x)←∀ z x 6= f(z)
q(x)← x = f(z) ∧ q(z)

The inelegibility of P is unimportant since the first clause is not required to be negated.
Now p(a) does not finitely fail, but there are no Herbrand models of P′ that make
p(a) true, hence P′ is not canonical.

We now show that for the class of programs which we are principally interested
in our transformation always produces canonical programs.

Lemma 3.7 If Pω is completely eligible then P′ is canonical.
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Proof: If Pω is completely eligible then every variable in the body appears in the
head. Replacing equality constraints in P′ by substituting with there mgus leaves P′

such that every (free) variable appearing in the body appears in the head. Let GFF
be the set of atoms all of whose ground derivations are finitely failed. Now from [8]
GFF = gfp(TP′). We show that FF = GFF for the programs under consideration.

Any derivation of a ground goal G in P′ contains only ground goals because every
variable in the body appears in the head. Hence any atom A ∈ FF whose derivations
are all finitely failed is also in GFF and vice versa.

Hence gfp(TP′) = GFF = FF = TP′ ↓ ω. Thus P′ is canonical.

Theorem 3.7
For sufficiently stratified P with finite and completely eligible Pω,

(a) SLD-resolution on P′ is sound and complete for success.

(b) SLD-resolution on P′ is sound and complete for finite failure,

with respect to the unique stable model of P.

Proof: By Corollary 3.2 the unique Herbrand model of comp(P′) is the unique sta-
ble model of P. Now P′ contains only positive atoms and equality and disequality
constraints, and is canonical by Lemma 3.7. Hence by Theorem 3.6 the result follows.

4 Restrictions

In this section we discuss conditions under which our approach faces difficulties and
suggest how to overcome these problems.

4.1 Sufficiently Stratification

We wanted to consider only programs with unique stable model. A sufficient condition
for this class of programs is the “sufficiently stratified” condition as defined by [6]
which says that the priority relation on ground atoms of Pω is well-founded. This is
a larger class than locally stratified as shown in example 4.1.

4.2 Eligibility

We can characterise those programs P whose positive expanded version Pω will con-
tain only eligible clauses as follows.

Definition. Let P+ be the program P with negative literals removed. A program P
is positive grounded if for each clause, C in P

A←B1, . . . ,Bn,¬Bn+1, . . . ,¬Bm

and each successful derivation←B1, . . . ,Bn from P+ with answer substitution θ, then
all variables in Cθ appear in Aθ.
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Positive groundness is not a syntactic condition. It is clear that if a program is positive
ground it is admissible (see [10]). Sufficient conditions for positive groundness include
allowedness (see [10]) and mode correctness [17].

Theorem 4.1 P is positive grounded iff all clauses of Pω are eligible.

Proof: The proof proceeds by induction. We show P is positive grounded for each
BF−derivation [20] of length ≤ n in P+ iff all clauses in T n+1

P (∅) are eligible.

Concurrently we show A ∈ T n
P+(∅) for iff A←¬B̃ ∈ T n

P (∅).

Base Case n = 0. Trivial.

Induction step Take a clause, C,

A←B1, . . . ,Bn,¬Bn+1, . . . ,¬Bm

in P, the corresponding clause in P+ is

A←B1, . . . ,Bn.

Let B′
i ∈ T n

P+(∅) and B′
i ← B̃i be corresponding elements of T n

P (∅) and let

Biθ = B′
iθ for 1 ≤ i ≤ n. Now by induction hypothesis each B′

i ← ¬B̃i is
eligible hence all variables in ¬B̃iθ appear in B′

iθ = Biθ. Then Aθ ∈ T n+1
P+ (∅)

and similarly the clause C′ ∈ TC(B′
1←¬B̃1, . . . ,Bn←¬B̃n),

Aθ←¬B̃1θ, . . . ,¬B̃nθ,¬Bn+1θ, . . . ,¬Bmθ

is in T n+1
P (∅). Let θ be an answer substitution for a BF-derivation of B1, . . . ,Bn

of length ≤ n. θ is positive grounding for C iff,

• all variables in Cθ are in Aθ, iff

• all variables in Biθ and ¬Biθ are in Aθ, iff

• all variables in ¬B̃iθ and ¬Biθ are in in Aθ, iff

• C′ is eligible.

Example 4.1 The following program ,P, [7] is not locally stratified but is sufficiently
stratified and positive grounded.

p(a,b).
q(x)← p(x,y) ∧ ¬q(y).

Pω becomes

p(a,b)
q(a)←¬q(b).

Then P′ becomes
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p(a,b)
q(x)← x = a ∧ b 6= a
q(x)← x = a ∧ q(b).

For a program with ineligible clauses, it is still possible to eliminate all negated
atoms if it satisfies the following property: Pω is finite and stratified. We can replace
each remaining negated atom by its negated set of answer constraints. Note that
if P is stratified we do not loose stratification in the positive transformation e.g.
p← q,q←¬r becomes p←¬r.

Lemma 4.1 If P is stratified, Pω is stratified.

In fact, the stratification requirement for all of Pω is too strong. It is sufficient to
impose the stratification condition on a module of Pω which is needed for a derivation
of the negated atoms containing local variables only.

Example 4.2 The first clause of the following program is ineligible but q(x,y) has
a finite set of answers.

p(x)←¬q(x,y)
q(a, a)
q(a, f(x))

can be transformed to

p(x)← x 6= a ∧ y 6= a
p(x)← x 6= a ∧ ∀ z y 6= f(z)

That is p(x)↔ x 6= a.

4.3 Finite Representation

We need to keep our intermediate program Pω and subsequently P′ finite which
implies a finite T ω

P . Pω may be infinite when we have positive recursion involving
function symbols. However this includes most practical programs. In these cases, we
can omit the bottom-up expansion of some positive literals to ensure a finite fixpoint
of TP. If R are the positive recursively defined predicates, then we treat R−atoms
exactly like negative literals in the bottom-up computation.

Definition. Let PR be the program obtained by removing negative literals and R−
atoms from the body of clauses in P. P is positive ground w.r.t. R if for each clause
C in P

A←B1, . . . ,Bn,R1, . . . ,Rm,¬B1, . . . ,¬Bp.

and every successful derivation of ←B1, . . . ,Bn in PR with answer substitutions θ,
all variables in Cθ appear in Aθ.

Since there is no recursion T k
P (∅) has a finite fixpoint. It follows from Thorem 4.1

that the resulting program Pω is completely eligible iff P is positive grounded w.r.t.
R.
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Example 4.3 The following program is positive grounded w.r.t. ‘even(x)’.

p(x)← even(x) ∧ ¬q(x)
q(x)← t(x) ∧ ¬r(x)
t(s4(y))
r(s6(0))
even(0)
even(s2(x))← even(x).

P′ is

p(x)← even(x) ∧ ∀y x 6= s4(y)
p(x)← even(x) ∧ x = s4(y) ∧ r(s4(y))
q(x)← x = s4(y) ∧ s4(y) 6= s6(0)
t(s4(y))
r(s6(0))
even(0)
even(s2(x))← even(x).

5 Discussion

5.1 Related Work

Chan and Wallace [3] proposed a treatment of negation during partial evaluation
time by expanding negated subgoals or eliminating them in order to improve run-
time efficiency. They applied Sato and Tamaki ’s [16] negation technique and Chan
[2] negated answers to eliminate negated atoms whenever possible. The remaining
negated atoms are treated by constructive negation [2] technique during run-time.
Both schemes use the Sato and Tamaki transformation which is restricted to eligible
clauses. Because Chan and Wallace apply the transformation to the original program
while we apply apply the transformation to Pω, they are unable to eliminate all
negations from positive grounded programs.

5.2 Conclusion

We have proposed a scheme which partially evaluates normal programs to obtain
their semantic kernels. From this point, for positive grounded programs or programs
with finite and stratified Pω, we can expand the negated atoms to obtain a program
which is free from negation. For programs which fall outside this class, we propose
the application of a constructive negation technique for evaluation. The scheme can
readily be extended to include disequality constraints in the original programs.

Acknowledgement : We would like to thank Phan Minh Dung, James Harland, Kotagiri
Ramamohanarao and Harald Sondergaard for useful comments and discussions on earlier
drafts.
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