
Combining String Abstract Domains for
JavaScript Analysis: An Evaluation

Roberto Amadini1, Alexander Jordan2, Graeme Gange1, François Gauthier2,
Peter Schachte1, Harald Søndergaard1, Peter J. Stuckey1, and Chenyi Zhang2,3

1 Department of Computing and Information Systems,
The University of Melbourne, Vic. 3010, Australia

2 Oracle Labs Australia, Brisbane Qld. 4000, Australia
3 College of Information Science and Technology,

Jinan University, Guangzhou, China

Abstract. Strings play a central role in JavaScript and similar script-
ing languages. Owing to dynamic features such as the eval function and
dynamic property access, precise string analysis is a prerequisite for au-
tomated reasoning about practically any kind of runtime property. Al-
though the literature presents a considerable number of abstract domains
for capturing and representing specific aspect of strings, we are not aware
of tools that allow flexible combination of string abstract domains. In-
deed, support for string analysis is often confined to a single, dedicated
string domain. In this paper we describe a framework that allows us to
combine multiple string abstract domains for the analysis of JavaScript
programs. It is implemented as an extension of SAFE, an open-source
static analysis tool. We investigate different combinations of abstract do-
mains that capture various aspects of strings. Our evaluation suggests
that a combination of few, simple abstract domains suffice to outperform
the precision of state-of-the-art static analysis tools for JavaScript.

1 Introduction

JavaScript is a highly dynamic and flexible language. Flexibility has a price:
features such as dynamic property access and code execution, prototype-based
inheritance, profligate coercion, and reflection combine to make the static anal-
ysis of JavaScript very challenging.1

Precise reasoning about strings is especially critical in JavaScript analysis.
A coarse treatment of string values, and in particular of property names, may
result in an inefficient and less than useful analysis. For example, consider the
dynamic access obj[x] for property name x of object obj. Since the value of x
can be unknown (or difficult to know) at compile time, a rough static analysis
may approximate x with the set of all possible string values. This can lead to a
1 In JavaScript, an object is a map that associates property names to values. The pro-
totype of an object is instead the object from which it inherits (possibly recursively)
methods and properties. Each object has a property named __proto__ (standardized
in ECMAScript6, even if deprecated) which points to its prototype.

dramatic loss of precision (and, consequently, of efficiency) since obj[x] would
point to any property of obj and any property of its prototype.

In this paper we consider static analysis of string values by means of ab-
stract interpretation [8], a well-known theory of reasoning with approximations.
Informally, each JavaScript string is approximated by an abstract counterpart,
an “abstract” string. The abstract values used for abstracting a “concrete” string
constitute a string abstract domain, or just string domain.

State-of-the-art JavaScript static analysers such as TAJS [11], JSAI [13], and
SAFE [15] use similar, yet slightly different, abstract domains for representing
string values. However, each commits to one single string domain defined ad
hoc for JavaScript analysis. The precision of such JavaScript-specific domains is
often limited, e.g., for most of the web applications relying on the well-known
jQuery library [12], owing to the inherently dynamic nature of such libraries. On
the other hand, the literature contains proposals for a large variety of general-
purpose string domains [6, 16, 14, 7, 17].

Here we describe a usable and open-source tool which implements and inte-
grates several string domains. The tool is built on top of SAFE and we refer to
it as SAFEstr. It allows a user to use combinations of different string domains for
the analysis of JavaScript programs. Analysis with SAFEstr is not limited to a
single specific string domain but allows arbitrary combination of string domains.
This is useful, since a large number of string abstract domains have been pro-
posed. It facilitates experiments with different combinations and investigation
into the (complementary) advantages of different domains.

We have validated the performance of SAFEstr on different JavaScript pro-
grams, most of which rely on the jQuery library. Our experiments suggest that
the use of a single domain often leads to a severe loss of precision, whereas a suit-
able combination of relatively simple string domains can match, and sometimes
outperform the precision of state-of-the-art JavaScript analysers.

The contributions of this paper are:

– a detailed discussion of state-of-the-art string domains, useful also in contexts
beyond JavaScript, that we have integrated into SAFEstr;

– a description of SAFEstr, a major extension and re-engineering of SAFE
which enables the tuning of different string abstract domains;

– an empirical evaluation of SAFEstr on different JavaScript benchmarks that
shows the impact and the benefits of combining string domains.

Paper Structure. Section 2 recapitulates string analysis concepts and gives
examples. Section 3 discusses a range of string domains we have implemented
and evaluated. Section 4 describes SAFEstr. Section 5 reports on the experimental
results. Section 6 discusses related work and Section 7 concludes.

2 Preliminaries

JavaScript is a high-level, dynamic, and untyped language. It has been standard-
ised in the ECMAScript language specification [10]. The flexibility of JavaScript
is a double-edged sword that might surprise the user with unexpected behaviours.

2

var obj = {0: "pr", 1: "to"};
obj [0/0] = "_";
obj[Math.pow(2, 1024)] = function(i) {

return obj[obj[i]/i] + obj["0"] +"o"+ obj[i] + obj[obj[-i]]
};
obj.undefined = obj[0 * 1/0] + obj [1/0 - 1/0]
var res = "_" + obj [1/0](1);

Fig. 1: Unusual but legal property access in JavaScript

function lookup(o, x) {
while (x.length < N)

x = "0" + x;
return o[x]

}
var v = lookup(obj , "123");

function update(o, x, v) {
while (x.length < N)

x = "0" + x;
o[x] = v

}
update(obj , "123", "foo");

Fig. 2: A lookup function (left) and an update function (right)

Consider the snippet of code in Figure 1. The value of variable res will
be the string __proto__. This is due to the coercion of numbers to strings for
property access, including not only digits but also special literals. For instance,
the numerical expressions 1/0 and Math.pow(2, 1024) both evaluate to the
Infinity string literal, while 0/0 turns into the string NaN.

In this case, the value of res can be statically determined since all the ac-
cesses to the properties of obj are known at compile time. Unfortunately, as we
shall see, this is not always the case.

Example 1. Consider Figure 2 (left). The call to lookup returns the value of
property 0n123 of object obj (that we assumed defined somewhere in the code)
where n = max{0, N − 3} and N is a value unknown at compile time (it may
be a random-generated number or an input value provided by the user). This
function might encode the lookup to a dictionary where the keys are numbers
of at least N digits. A precise string analysis should be able to infer that x =
0n123. Unfortunately, static analysis often results in over-approximations and
thus imprecision, so it is possible that a sound analysis says that x can be any
string and therefore the function lookup(obj, x) points to any of the properties
of obj, including all the properties of the prototype hierarchy of obj. ut

Example 2. Dynamic writes can be even nastier, since JavaScript enables to
override properties dynamically. Consider the code in Figure 2 (right) which acts
analogously to lookup. The update function might encode the update of a value
in a dictionary where the input key is padded to length N with n = max{0, N−3}
leading zeros. In this case obj[0n123] is set to value "foo". If the analysis can
not say anything about x, we have a situation where any property of object
obj (including special property __proto__) can be overwritten by "foo". In our
example, this raises a false alarm that a coarse analysis cannot avoid. ut

3

For the static analysis of string-manipulation we take advantage of the ab-
stract interpretation framework [8].

Let Σ be the set of characters allowed in JavaScript. We define the concrete
domain as the lattice 〈P(Σ∗),⊆, ∅, Σ∗,∩,∪〉 where Σ∗ is the set of all the strings
of Σ, P(Σ∗) is its powerset, and ⊆, ∅, ∩, and ∪ have the usual set-theoretic
meanings. We define a string (abstract) domain as a lattice 〈S,v,⊥,>,u,t〉
where each abstract string ŝ ∈ S denotes a set of concrete strings γ(ŝ) ∈ P(Σ∗)
via a concretisation function γ such that ŝ v ŝ′ ⇒ γ(ŝ) ⊆ γ(ŝ′). Hence v
captures the relation “is at least as precise as” on S.

Often we require that γ has a (lower) adjoint α : P(Σ∗)→ S, the so-called ab-
straction function.2 In this case, every k-ary “concrete operation” f : P(Σ∗)k →
P(Σ∗) has a unique optimal counterpart on S, namely the “abstract operation”
f̂ such that f̂(ŝ1, . . . , ŝk) = (α ◦ f)(γ(ŝ1), . . . , γ(ŝk)).

Now suppose we have n ≥ 1 string abstract domains 〈Si,vi,⊥i,>i,ui,ti〉,
each abstracting the concrete domain P(Σ∗). We can define their direct product
as a structure 〈S,v,⊥,>,u,t〉 such that:

– S = S1 × · · · × Sn
– (ŝ1, . . . , ŝn) v (ŝ′1, . . . , ŝ

′
n) ⇐⇒ ŝ1 v1 ŝ

′
1 ∧ . . . ∧ ŝn vn ŝ

′
n

– ⊥ = (⊥1, . . . ,⊥n) and > = (>1, . . . ,>n)
– (ŝ1, . . . , ŝn) u (ŝ′1, . . . , ŝ

′
n) = (ŝ1 u1 ŝ′1, . . . , ŝn un ŝ′n)

– (ŝ1, . . . , ŝn) t (ŝ′1, . . . , ŝ
′
n) = (ŝ1 t1 ŝ′1, . . . , ŝn tn ŝ′n)

– γ(ŝ1, . . . , ŝn) =
⋂n

i=1 γi(ŝi) and α(S) = (α1(S), . . . , αn(S))

The direct product simply captures an analysis which acts componentwise on
the Cartesian product S1 × · · · × Sn. A drawback of the direct product is that
γ may not be injective, even if all of γ1, . . . , γn are. This may give rise to a not
optimal, but still sound, precision of the analysis.

3 String Domains

This section summarises the string domains we have integrated in SAFEstr. We
show how they behave in analysis of the programs from Figure 2, assuming
that lookup(obj, "123") is called after update(obj, "123", "foo") on an
initially empty object obj, in a context where N has an unknown value.

3.1 The String Set and Constant String domains

The String Set (SSk) enables precise representation of at most k ≥ 1 concrete
strings. Formally, SSk = {>SSk

} ∪ {S ∈ P(Σ∗) | |S| ≤ k} and the lattice
operations vSSk

,uSSk
,tSSk

correspond to ⊆,∩,∪ respectively (⊥SSk
= ∅).

The concretisation function is: γCS(S) = S, if S 6= >SSk
; Σ∗ otherwise. The

abstraction function is: αCS(S) = S, if |S| ≤ k; >SSk
otherwise. The abstract

2 In this case α and γ form a Galois connection, i.e., α(S) v ŝ ⇐⇒ S ⊆ γ(ŝ).

4

concatenation is S �SSk
S′ = {s · s′ | s ∈ S, s′ ∈ S′}. If the set resulting from an

abstract operation exceeds k strings, >SSk
is returned.

One instance of SSk is the Constant String (CS) domain, which is able to
represents a single concrete string exactly (i.e., CS = SS1). Despite the limited
expressive power, this domain is commonly used, as pointed out in [16].

The SSk domain is clearly more expressive than CS, and for some analysis a
well picked value of k can be enough for achieving high precision. Unfortunately,
when analysing loops with an unknown number of iterations, it is often no more
expressive. This is the case of the update function of Figure 2, where the ab-
stract value of variable x becomes > and thus string "foo" might potentially
be assigned to any property of obj. As a consequence, lookup(obj, "123")
returns not only "foo" but also all the properties of the prototype of obj.

3.2 The Character Inclusion domain

The Character Inclusion (CI) domain tracks the characters occurring in a string.
Each abstract string has the form [L,U] = {X ∈ P(Σ) | L ⊆ X ⊆ U}. The lower
bound L contains the characters that must occur in the concrete string(s), while
the upper bound U represents the characters that may appear.

Formally, CI = {⊥CI} ∪ {[L,U] | L,U ∈ P(Σ), L ⊆ U} and [L,U] vCI
[L′, U ′] ⇐⇒ L′ ⊆ L ∧ U ⊆ U ′. The meet operation is [L,U] uCI [L′, U ′] =
[L ∪ L′, U ∩ U ′] while the join is [L,U] tCI [L′, U ′] = [L ∩ L′, U ∪ U ′].

Let chars : Σ∗ → P(Σ) return the set of characters occurring in a string. The
abstraction function is αCI(S) = [

⋂
CS ,

⋃
CS], where CS = {chars(w) | w ∈ S},

while γCI([L,U]) = {w ∈ Σ∗ | L ⊆ chars(w) ⊆ U}. Abstract concatenation is
[L,U]�CI [L′, U ′] = [L ∪ L′, U ∪ U ′].

This domain completely ignores the structure of the concrete strings it ap-
proximates. But, CI is in general computationally cheap and sometimes provides
very useful information. For example, for the update function in Figure 2 we have
that αCI(x) = [{1, 2, 3}, {0, 1, 2, 3}]. This information is enough to avoid the as-
signment of αCI("foo") to all the properties of obj and to restrict the (string)
return value of the lookup function to αCI("foo") = [{f, o}, {f, o}].3

3.3 The Prefix-Suffix domain

An element of the Prefix-Suffix (PS) domain is a pair 〈p, s〉 ∈ Σ∗ × Σ∗, corre-
sponding to all the concrete strings that start as p and end as s. The domain is
PS = {⊥PS}∪(Σ∗×Σ∗). Let lcp(S) (respectively lcs(S)) be the longest common
prefix (suffix) of a set of strings S. Then 〈p, s〉 vPS 〈p′, s′〉 ⇐⇒ lcp({p, p′}) =
p′ ∧ lcs({s, s′}) = s′, the join is 〈p, s〉 tPS 〈p′, s′〉 = 〈lcp{p, p′}, lcs{s, s′}〉, and
the meet uPS is naturally induced by vPS .

Abstraction is defined by αPS(S) = 〈lcp(S), lcs(S)〉 while concretisation is
γ(〈p, s〉) = {p · w | w ∈ Σ∗} ∩ {w · s | w ∈ Σ∗}. The abstract concatenation is
〈p, s〉 �PS 〈p′, s′〉 = 〈p, s′〉.
3 This is actually the only possible string value. However, SAFE also tracks possible
non-string results (such as the special value undefined).

5

The PS domain can not keep track of concrete strings. Nonetheless, as for
CI, this domain is able to increase the precision of SSk. Indeed, for the update
function we have that αPS(x) = 〈ε, 123〉 which allows to restrict the string return
value of the lookup function to αPS("foo") = 〈"foo", "foo"〉.

3.4 The String Hash domain

The String Hash (SH) domain was proposed by Madsen and Andreasen [16].
For some fixed integer range U = [0, b] and hash function h : Σ∗ → U , a
concrete string s is mapped into a “bucket” of U according to the sum of the
character codes of s, i.e., α(S) =

⋃
s∈S h(Σc∈chars(s)I(c)) where I : Σ → N maps

a character of alphabet Σ to the corresponding code (e.g., ASCII or Unicode).
The concretisation function is γSH(X) = {s ∈ Σ∗ | h(Σc∈chars(s)I(c)) ∈ X}.

The abstract concatenation requires the hash function to be distributive. A
linear-time implementation is possible (see [16] for details). This is one of the
main strengths of SH, together with its ability to infer string disequality: if
αSH(s) uSH αSH(s′) = ∅ then we can safely conclude that s 6= s′.

Unfortunately, SH can display slow convergence when analysing loops (in
the worst case we may generate all elements of U before reaching a fixed point)
and its precision appears limited. As with CS and SSk, this domain loses all
information when analysing the programs in Figure 2.

3.5 JavaScript-specific domains

The string domains we have seen so far are “general-purpose”, rather than tai-
lored for specific applications. We now discuss three simple domains, UO, NO,
and NS, that constitute the bases for the string domains of the TAJS, SAFE,
and JSAI static analysers. Although easily extensible to other languages, these
domains are in fact JavaScript-specific.

The Unsigned-or-Other (UO) domain used by TAJS (see Figure 3) dis-
criminates between strings representing an unsigned integer and all the other
JavaScript strings. TAJS uses this domain to better analyse array indexing. Note
that if we concatenate two unsigned integers we do not necessarily get a valid
unsigned integer since we might exceed the maximum unsigned integer 232 − 1.
Also, if we concatenate an unsigned i with a string x we can still have i if x = ε.
However, concatenating two non-unsigned always results in a non-unsigned.

The Number-or-Other (NO) domain used by SAFE (see Figure 4) is very
similar to UO: the only difference is that it discriminates between numeric strings
and other strings. Literals like -3, 0.1, or NaN are considered numeric strings. In
this case the concatenation is even more imprecise: we can get a numeric string
by concatenating two non-numeric strings (e.g., "N" and "aN").

The Number-Special-or-other (NS) domain used by JSAI (see Figure 5) gen-
eralises NO by also distinguishing special JavaScript strings.4 Concatenating a
4 Namely, length, concat, join, pop, push, shift, sort, splice, reverse, valueOf,
toString, indexOf, lastIndexOf, constructor, isPrototypeOf, toLocaleString,
hasOwnProperty, and propertyIsEnumerable.

6

>T J

Unsigned NotUnsigned

0 . . . 4294967295 foo NaN. . .

⊥T J

UO

CS

Fig. 3: TAJS string domain
>SF

{42, NaN} {foo, bar}

Number NotNumber

{42} . . . {NaN} {foo} . . .

. . .
.

{bar}

⊥SF

NO

SSk

Fig. 4: SAFE string domain

>JS

NotSpecial NotNumber

Numeric Other Special

⊥JS

42 . . . NaN foo . . .bar length . . . sort

NS

CS

Fig. 5: JSAI string domain

special string with another special string or a numeric string always results in an
“Other ” string, i.e., a string neither special nor numeric. Concatenating a special
string with Other always results in a non-numeric string.

Although these domains are useful to capture specific aspects of JavaScript
they have little meaning when used stand-alone. In the next section we show
how TAJS, SAFE, and JSAI combine them with the CS and SSk lattices.

3.6 The TAJS, SAFE and JSAI domains

The string domains adopted by TAJS, SAFE, and JSAI are built respectively
on top of the UO, NO, and NS domains from Section 3.5 in combination with
the CS and SSk domains from Section 3.1. The T J domain used by TAJS is
shown in Figure 3. First, the analysis is conducted with the constant domain CS.
Then, when there is more than one constant string to track, T J falls back to
the UO domain trying to discriminate if all such strings are definitely unsigned
or definitely not unsigned integers. If such a distinction is not possible (e.g.,
-1 tT J 1) then >T J is returned.

The SF domain used by SAFE (Figure 4) uses a similar logic. The difference
is that the analysis is conducted with the string set domain SSk (for a certain
value of k ≥ 1) and then, when we have more than k constant strings to track, it
falls back to the NO domain trying to discriminate if such strings are numeric
or not. This is not a generalisation of T J : indeed, let us suppose k = 2 and
S = {foo, bar, -1}. We have αSF (S) = >SF and thus γSF (αSF (S)) = Σ∗.
Instead, αT J (S) = NotUnsigned so γT J (αT J (S)) = Σ∗ \ {0, . . . , 4294967295}.

7

Being built on top of SSk, SF is also parametric. When the set size is not
specified, we will assume k = 1 (which is the default value in SAFE).

The JS domain used by JSAI (Figure 5) acts analogously to SF . However,
like T J , a single constant string is tracked instead of a set of k strings. When
we have more than one constant string to track, the JS domain falls back to the
NS domain (which actually generalises NO, so we can say that JS generalises
SF if and only if k = 1 for the SSk domain of SF).

Even if not strictly comparable, T J , SF and JS are very similar. Their
JavaScript-driven nature is however not helpful for analysing the programs in
Figure 2. Indeed, when we call update(obj, "123", "foo") we have that the
abstract value of property x at the end of the loop is > for both T J and SF
(as seen in Section 3.5, they lose all the information when concatenating two
numbers) while αJS(x) = NotSpecial . However, this information is not enough
to prevent the return of all the properties of obj and its prototypes (except for
those corresponding to the special strings) when lookup(obj, "123") is called.

3.7 Direct products and the Hybrid domain

So far we have seen several string domains, some general, some JavaScript spe-
cific. We observed that each has its strengths and weaknesses. A natural ex-
tension is to combine different string domains into a single, compound string
domain that generalises them in order to improve the precision of the analysis.

In Section 2 we introduced the direct product S = S1 × · · · × Sn for sys-
tematically composing n string domains. We can thus apply this definition for
combining the string domains we have seen so far. Clearly, while the preci-
sion of S is never lower than for a component domain Si, it may be the case
that the direct product does not bring any benefit. For instance, SH × T J ×
SF × JS is not beneficial for analysing the Examples 1 and 2. Conversely,
CI ×PS significantly increases the precision: if we consider α(x) as the abstrac-
tion of property x of Examples 1 and 2 we have α(x) = (αCI(x), αPS(x)) =
([{1,2,3}, {0,1,2,3}], 〈ε, 123〉), so by definition the corresponding concretisa-
tion is γ(α(x)) = γCI(αCI(x)) ∩ γPS(αPS(x)) = {x · 123 | x ∈ {0,1,2,3}∗}.

The Hybrid (HY) string domain [16] is defined as the product of character
inclusion, string set, and string hash:HY = CI×SSk×SH. This domain appears
to perform well, so we consider it in our evaluation of Section 5.

As mentioned in Section 2, the systematic combination via direct product
does not always reach the optimal precision. For example, at first it may appear
that SF = SSk ×NO but this is not the case, as the following example shows.

Example 3. Consider the following JavaScript statement, where E is unknown:

x = "0"; if (E) x = x + "1";

If we approximate x with SS1×NO we have ({1}tSS1{01},NumbertNO>NO) =
(>SS1 ,>NO) after the statement. Conversely, even if the default SF domain can
not represent the set {0, 01}, it can infer from it that x is a Number . ut

8

None

PS

NO CS

CI SHNSUO SSk

T J JS SF HY

All

Fig. 6: String abstract domains

To avoid these precision leaks when combining different domains, the reduced
product [9, 4] has been introduced as a refinement of the direct product.

Figure 6 concludes the section with a diagram summarising the string do-
mains we have encountered so far. There is an upward edge between domain S
and domain S ′ if and only if S is never less precise than S ′.

4 Implementation

We now describe SAFEstr, the extension of the SAFE tool in which we have
implemented all the string domains discussed in Section 3.

SAFE [15] is a static analyser for ECMAScript developed for the JavaScript
community. We chose it as a starting point for our analyser because it is open-
source, under active development, exhaustively implements the DOM semantics,
and utilises loop-sensitive analysis.

The execution flow of SAFE is structured into three main parts. First, the
input JavaScript program is parsed and translated into a simplified Abstract
Syntax Tree (AST). Then, the AST is translated into an Intermediate Repre-
sentation (IR). Finally, the IR is used to build the Control Flow Graph (CFG).
The CFG is the best representation for tracing control flows of a program, and in
fact is used by SAFE to perform a type-based analysis of JavaScript programs.
SAFE is implemented in Scala (with some modules written in Java).

The static analysis performed by SAFE relies on the string abstract domain
described in Section 3.6 to model primitive JavaScript strings as well as for the
lookup and update of properties in abstract JavaScript objects. The user can tune
the size k of the underlying SSk domain, but can not choose among other string
domains. We therefore re-engineered and extended this tool to enable the user
to combine all the domains described in Section 3. The resulting tool, SAFEstr,
is a major extension of SAFE with improved usability, flexibility, and—as we
shall see in Section 5—precision of the static analysis.

Table 1 lists the Scala classes that we have implemented in SAFEstr. The
AbsString represents the base class, from which every other string domain in-
herits. AbsString has methods for the lattice operations (e.g., t, u, v), for the
abstraction/concretisation functions α and γ, for abstracting string operations

9

Class Description Class Description
AbsString Base class AbsStringHash SH

AbsStringConst CS AbsStringSet SSk

AbsStringPrefSuff PS AbsStringCharIncl CI
AbsStringUnsOth UO AbsStringTAJS T J
AbsStringNumOth NO AbsStringSAFE SF

AbsStringNumSplOth NS AbsStringJSAI JS
AbsStringProd Direct product of AbsString domains

Table 1: Scala classes implementing string domains into SAFEstr

(e.g., concatenation, trimming, slicing) and for general utility (e.g., toString
or equals). Each class that implements a string domain must be a subclass of
AbsString, and possibly overrides its methods.

The new design of SAFEstr is suitable for combining different string domains.
An important novelty is the AbsStringProd class—which is itself a subclass of
AbsString—that allows the user to systematically combine an arbitrary collec-
tion of AbsString classes. AbsStringProd can be specialised for refining the di-
rect product of different string domains (see Example 3). For example, the T J ,
SF , and JS domains are now specialised subclasses of AbsStringProd since
they actually combine other basic domains (as shown in Figures 3, 4, and 5).
Furthermore, theHY domain does not need to be implemented at all: it is enough
to define it as an AbsStringProd object consisting of AbsStringCharIncl,
AbsStringSet, and AbsStringHash domains.

We implemented the string domains in SAFEstr trying to be as un-intrusive
as possible and to preserve the original structure of SAFE. In this we faced a
number of design choices. For instance, SAFE analysis is not sound unless the
target string domain is able to keep track of a single, concrete string. With
SAFEstr it is trivial to ensure this by just adding (via direct product) a new
constituent domain like CS or SSk. Another crucial point for SAFE analysis is
the ability to distinguish whether an abstract string is definitely numeric or not
numeric. Again, with SAFEstr it is easy to enrich a given domain by composing
it with NO or NS for discriminating numeric strings.

The SAFEstr tool can be imported into a Scala application or used as a stand-
alone analyser from the command line. Notably, the user can choose and config-
ure the string domains for an analysis run via command line options. SAFEstr is
open-source and can be downloaded from https://git.io/vPH9w.

5 Evaluation

In this section we evaluate the string domains that we implemented in SAFEstr.
The default configuration for SAFEstr tries to be as precise as possible. In par-
ticular, like SAFE, it uses a loop-sensitive analysis with a context-depth of 10
(see [18] for more details). While SAFEstr diverged from the version of SAFE in
[17], we tried to resemble the evaluation environment as closely as possible.

10

We evaluated SAFEstr on two benchmark sets from the literature:5

– jQuery, a set of 61 JavaScript programs from a jQuery tutorial6. All the
programs of this benchmark, adopted also in [17], use jQuery version 1.7.0
without any modification.

– Jsai, a set of 11 JavaScript sources made available with the JSAI tool [13].
Because of their JSAI-specific modelling, we made some minor modifications
to conform with SAFEstr. Seven programs of Jsai are Firefox browser add-
ons, while the remaining four come from the linq.js project.7

We stress that the goal of the evaluation is not to assess the performance of
different analysis tools. Rather, our focus is on evaluating (the composition of)
different string domains within the SAFEstr environment. Note that we are com-
paring the implementation of TAJS and JSAI domains in SAFEstr, not the TAJS
and JSAI tools themselves. A direct comparison with such tools is impracticable
since a fair measurement of their performance requires knowledge, and modifi-
cation, of their internals.

Measuring the precision within a complex static analysis framework like
SAFE is inherently difficult. Simple metrics, such as runtime of the analysis
or reachable program states provide glib information at best. To measure the
overall performance we adopted three metrics—used in [17] and, with modi-
fications, in [18]—that count ‘how much imprecision’ occurs during the static
analysis. In more detail, the metrics are:

Multiple dereference (MD): The number of program points where derefer-
encing an abstract object leads to more than one object value.

Multiple call (MC): The number of program points where dereferencing an
abstract function object leads to more than one function.

Non-concrete property access (PR): The number of program points where
an object property is accessed with a non-concrete abstract string, i.e., with
an abstract string representing an infinite set of concrete strings.

Static analysis of non-trivial programs often involves the handling of failures
and timeouts. In particular, owing to the dynamic nature of JavaScript, a lack
of static boundaries like types or modules can cause the imprecision to spread
explosively, causing the analysis to become infeasible or its results to be unusable.

We devised a mechanism to possibly terminate the analysis early, thus avoid-
ing getting stuck in a non-meaningful analysis. We use empirically determined
bounds to trigger an “imprecision stop”, e.g., when the number of possible call
targets for a function encountered during analysis becomes greater than 20.8

Unfortunately, since MD, MC, and PR do not have a reasonable upper bound,
choosing a “penalty value” for these metrics when the analysis fails is not trivial.

5 All the benchmarks and the scripts we used are available at https://git.io/vPH9w
6 See http://www.jquery-tutorial.net
7 See https://linqjs.codeplex.com/
8 We noticed that imprecision stops only occurred in the analysis of jQuery.

11

To overcome this problem, inspired by the MiniZinc Challenge [20], we defined a
scoring system where we compare pairs of domains on each benchmark program.

Let P be a benchmark set of programs and D a collection of string domains.
For each program P ∈ P and each domain S ∈ D we define the imprecision index
of S on P as: IMPS(P) = MDS(P) + MCS(P) + PRS(P), if the analysis of P
using domain S terminates normally; IMPS(P) = ∞ if the imprecision stop is
triggered. Given two distinct domains S and S ′ we define a scoring function:

ScoreS(P,S ′) =


0 if IMPS(P) =∞∨ IMPS(P) > IMPS′(P)

0.5 if IMPS(P) = IMPS′(P) 6=∞
1 if IMPS(P) < IMP ′S(P)

Finally, the overall score of the domain S on benchmark P is the sum of each
ScoreS(P,S ′) value, for each P ∈ P and for each S ∈ D such that S 6= S ′.

We analysed all the domains depicted in Figure 6. As mentioned in Section 4,
because of the internal design of SAFE (which we did not want to modify), the
static analysis in SAFEstr needs a string abstract domain able to track (at least)
a single constant string. For each S ∈ {PS, CI,SH,NO,NS,JS} we therefore
evaluated the domain extension S = S × CS instead of S. Note that this did
not require any additional effort, since SAFEstr allows the user to specify the
preferred domain combination on the command line.

Similarly, instead of the original TAJS domain T J we actually considered
T J ∗ = T J ×NO. This is because the underlying UO domain allows to discrim-
inate only strings representing unsigned integers, but can not deal with numeric
strings in general (e.g., floats or negative numbers). Since SAFE’s design relies
heavily on the distinction between numeric and other strings, the T J domain is
inevitably penalised when used by SAFEstr. This is arguably due to the SAFE
structure, and not necessarily a weakness of TAJS. Thus, we took advantage of
SAFEstr for automatically combining T J with NO.

In addition, we evaluated the All baseline, i.e., the direct product of all the
implemented domains, and a new hybrid domain, namelyHY∗ = CI×NO×SSk.
That is, we replace the more complex SH domain of HY by the simpler NO.
For HY∗, as well as for SSk, we used the default set size of the HY domain,
k = 3. For SF we instead used the default set size of SAFE, k = 1. As we shall
see, the difference turned out to be irrelevant.

Table 2a shows the overall performance of the string domains. All is the
union of jQuery and Jsai, thus consisting of 61 + 11 = 72 programs.9

The “Score” column summarises the overall score of each domain. We note
that HY∗ has the same performance as All . Hence, at least for our benchmarks,
it sufficient to combine three simple domains, namely CI, NO, and SSk, to
reach the same precision as the combination of all the domains. However, if
we consider such domains independently the precision is far lower and often
results in imprecision stops (especially for jQuery, see the bottommost row of
Table 2a). This shows the potential of combining different string domains.
9 We have run all the experiments with a timeout of T = 600 seconds on Ubuntu 15.10
machines with 16 GB of RAM and 2.60 GHz CPU.

12

Score Fails [%]
Domain jQuery Jsai All jQuery Jsai All
All , HY∗ 418.5 99.0 517.5 49.2 18.2 44.4
HY 337 58.5 395.5 52.5 18.2 47.2
CI 330 58.5 388.5 52.5 18.2 47.2

T J ∗, SF , JS,
NO, NS 154 99.0 253.0 68.9 18.2 61.1
CS, SSk, PS,
SH, UO 0 7.5 7.5 100 72.7 95.8

(a) Scores and fail percentages

Domain jQuery Jsai All
HY∗ 321.6 137.2 293.1
All 323 142.1 295.4
HY 339.1 182.8 315.2
CI 339.7 179.6 315.6
T J ∗ 435 136.2 389.4
NS 435.8 140.0 390.6
JS 436.4 136.9 390.6
NO 436.3 138.3 390.7
SF 436.9 137.4 391.1

(b) Average runtimes (s)
Table 2: Performance of string domains

The HY∗ domain outperforms HY. Why is replacing the String Hash domain
by the Numeric-or-Other domain advantageous? In our context, SH appears
to be unfruitful, but the NO domain is essential for detecting (non-)numeric
strings. While that other HY∗ component, CI, can be helpful in this regard (as
noticed in Section 3.2), it is often not enough. For example, let x be a variable
representing a string in S = {-1,0,1}. Its abstraction is αCI(S) = [∅, {-, 0, 1}],
but this does not suffice to state that x is a number (e.g., the string - belongs
to αCI(S) but it is not a number). However, αNO(S) = Number .

The benefits of NO are noticeable especially for the Jsai benchmark, while
for jQuery, CI remains important. CI never causes a loss of precision in abstract
concatenation, and this is very important, especially when concatenating an un-
known string (as often happens when generating the jQuery.expando property).
Overall, HY∗ scores better than HY and CI for 40 programs (31 of jQuery and
9 of Jsai) and is never worse than any other domain.

TheHY domain is better than CI for only seven programs of jQuery. This is
the only benefit that SS3 has brought to the analysis, compared to the constant
domain CS. We tried to investigate this aspect further, by performing a sensi-
tivity analysis on the k parameter of SSk for all the domains we implemented,
varying k ∈ {8, 16, 32, 64, 128}. No improvement was observed for larger k.

If we look at the domains used by TAJS, SAFE, and JSAI, we observe a
substantial equivalence. They are all very effective on the Jsai benchmark, but
they have rather poor performance for the problems of jQuery. We believe
that this happens because these domains fail when concatenation involves an
unknown string. Note that, in spite of Example 3 highlighting their difference,
SF and NO = NO × CS have identical performance. Similarly, JS and NS
perform equally well.

Looking at the bottom of the table, apart from the aforementioned SH,
SSk and UO, we see that PS too has a rather poor performance. This was
somewhat unexpected, considering the benefits seen in Examples 1 and 2. One
explanation is that PS is less precise than CI when joining different abstract
strings, and it loses all the information about the ‘inner’ structure of the string.

13

A curious drawback of PS is that abstracting the empty string means losing all
information, since αPS(ε) = 〈ε, ε〉 = >PS .

The “Fails” column of Table 2 shows, in percentage, the number of times the
analysis failed due to imprecision stops or timeouts. Again in this case we see
the advantage of combining the string domains. For example, while the analysis
using the TAJS, SAFE, or JSAI domains often fail, the HY∗ domain we in-
troduced significantly improve on them (in particular for jQuery benchmark).
Nevertheless, even for HY∗ we still notice a remarkable number of cases (about
44%) where the analysis fails. This calls for further investigation.

Although in this work we are more concerned in the precision of the analysis,
it is clear that also efficiency plays an important role. Table 2b reports the
average analysis time, where we assign a penalty of T = 600 seconds when the
analysis fails. We see that in this case HY∗ slightly outperforms the combination
of all the domains. This is due to its lighter composition (only three domains).
On average, the analysis with HY∗ takes about 100 seconds less than analysing
programs with the TAJS, SAFE, or JSAI domains.

Let us finally compare our evaluation with that of [16]. In that work, 12 string
domains (including HY, referred as H in the paper) are proposed and compared.
We note that, while the dynamic analysis evaluation of [16] is exhaustive, the
static analysis evaluation is limited: it is performed on only 10 JavaScript pro-
grams (for which sources are not available) and HY is only compared against
the constant domain CS (which is inherently less precise than HY). The more
comprehensive evaluation we provide in this paper in part confirms the good
intuition of [16] of including the CI domain within a collection of other domains.

6 Related Work

Our work has taken the SAFE framework [15] as inspiration and starting point.
There are other well-engineered mature analysis frameworks such as TAJS [11],
WALA [19], and JSAI [13]. We chose SAFE because of its conformance with the
latest ECMAScript standard, formal specification, loop-sensitivity [18], accessi-
bility, and active development (SAFE 2.0 was released in October 2016).

The number of (string) abstract domains that have been proposed is surpris-
ingly large. In [1, 2] the configurable program analysis (CPA) and the dynamic
precision adjustment (CPA+) frameworks are introduced to make the analysis
configurable and possibly improve its precision.

Many of the domains we have evaluated were discussed by Madsen and An-
dreasen [16] who cover 12 string domains, half of which were new. Costantini
et al. [5, 7] discuss two domains whose product amounts to PS, the CI domain,
and two additional (rather more complex) string domains. In the context of Java
analysis, Choi et al. [3] have used restricted regular expressions as an abstract
domain. Sets of strings are approximated by sets of “regular string expressions”.
Such expressions are liberally defined and allow for nesting of Kleene stars. How-
ever, regular expressions of the form r∗ cannot be juxtaposed. So while a∗ab∗ is
a valid regular string expression, aa∗b∗ is not, and the latter, should it arise, will

14

effectively be “flattened” into the coarser a(a + b)∗. Excessive nesting of stars
is curbed through widening, which similarly flattens expressions at a certain
star-depth.

Park, Im and Ryu [17] use a stricter variant of this idea, with a more clearly
defined string abstract domain. Here sets of strings are approximated by sets
of “atomic” regular expressions. A regular expression is atomic (over alphabet
Σ = {a1, . . . , an}) iff it can be generated by the grammar

S → ‘ε’ | ‘Σ∗’ | A S | ‘Σ∗’A S A→ a1 | . . . | an

Quotes indicate that ε andΣ∗ are not meta-symbols, but terminals. This abstract
domain is more restrictive than that of Choi et al. [3]. What is gained by this is
faster analysis, and in particular tractability of the inclusion relation.

The number and richness of different string abstract domains provides a
rich seam for experimental work and comparative evaluation. In spite of that,
the number of systematic studies is very limited. An exception is the work by
Madsen and Andreasen [16] which, in the static analysis evaluation, compares
the precision of HY-based analysis against CS.

7 Conclusion

We have presented SAFEstr, an extension of the SAFE JavaScript static analy-
sis tool. SAFEstr provides support for a number of string analysis domains, as
well as for analysis using arbitrary combinations of these domains. Precise string
analysis is of paramount importance in a programming language like JavaScript,
because almost any other kind of analysis relies heavily on the quality of string
analysis to aid it; without precise string analysis, control and data flow informa-
tion is weak; for example, field access becomes ambiguous. The required precision
is ultimately achieved through the combination of a variety of string domains,
each capturing some relevant aspect of strings and, accordingly, the literature is
replete with proposals for string abstract domains.

We have used SAFEstr to conduct the first systematic comparison of a broad
range of such string abstract domains for the static analysis of JavaScript pro-
grams. We have measured precision and analysis time over two established bench-
mark sets. The results suggest that there is little value in maintaining string sets
(elements of SSk) of cardinality k > 3; and that the relatively simple combi-
nation CI × NO × CS achieves higher precision than the various combinations
proposed elsewhere—in fact, for our sets of benchmarks, it achieves as high pre-
cision as the combination of all of the string domains we have studied.

Future work will focus on the evaluation, and the combination, of new do-
mains over new benchmarks. In particular, we wish to compare the use of direct
products with reduced products [9] of string abstract domains.

Acknowledgements. This work is supported by the Australian Research Coun-
cil (ARC) through Linkage Project Grant LP140100437.

15

References

1. Dirk Beyer, Thomas A. Henzinger, and Grégory Théoduloz. Configurable software
verification: Concretizing the convergence of model checking and program analysis.
In Computer Aided Verification: Proceedings of the 19th International Conference
(CAV 2007), pages 504–518, 2007.

2. Dirk Beyer, Thomas A. Henzinger, and Grégory Théoduloz. Program analysis with
dynamic precision adjustment. In 23rd IEEE/ACM International Conference on
Automated Software Engineering (ASE 2008), pages 29–38, 2008.

3. Tae-Hyuong Choi, Oukseh Lee, Hyunha Kim, and Kyung-Goo Doh. A practical
string analyzer by the widening approach. In N. Kobayashi, editor, Programming
Languages and Systems: Proceedings of the Fourth Asian Symposium (APLAS’06),
volume 4279 of Lecture Notes in Computer Science, pages 374–388. Springer, 2006.

4. Agostino Cortesi, Giulia Costantini, and Pietro Ferrara. A survey on product
operators in abstract interpretation. In Semantics, Abstract Interpretation, and
Reasoning about Programs: Essays Dedicated to David A. Schmidt on the Occasion
of his Sixtieth Birthday, pages 325–336, 2013.

5. Giulia Costantini. Lexical and Numerical Domains for Abstract Interpretation.
PhD thesis, Università Ca’ Foscara Di Venezia, 2014.

6. Giulia Costantini, Pietro Ferrara, and Agostino Cortesi. Static analysis of string
values. In S. Qin and Z. Qiu, editors, Formal Methods and Software Engineering,
volume 6991 of Lecture Notes in Computer Science, pages 505–521. Springer, 2011.

7. Giulia Costantini, Pietro Ferrara, and Agostino Cortesi. A suite of abstract
domains for static analysis of string values. Software Practice and Experience,
45(2):245–287, 2015.

8. Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approximation of fixpoints.
In Proceedings of the Fourth ACM Symposium on Principles of Programming Lan-
guages, pages 238–252. ACM Publ., 1977.

9. Patrick Cousot and Radhia Cousot. Systematic design of program analysis frame-
works. In Proceedings of the Sixth Annual ACM Symposium on Principles of Pro-
gramming Languages, pages 269–282. ACM Publ., 1979.

10. ECMAScript 2016 language specification. http://www.ecma-international.org/
publications/files/ECMA-ST/Ecma-262.pdf.

11. Simon Holm Jensen, Anders Møller, and Peter Thiemann. Type analysis for
JavaScript. In J. Palsberg and Z. Su, editors, Static Analysis, volume 5673 of
Lecture Notes in Computer Science, pages 238–255. Springer, 2009.

12. jQuery JavaScript library. https://jquery.com/.
13. Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gibbons,

John Sarracino, Ben Wiedermann, and Ben Hardekopf. JSAI: A static analysis
platform for JavaScript. In Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, pages 121–132. ACM Publ.,
2014.

14. Se-Won Kim, Wooyoung Chin, Jimin Park, Jeongmin Kim, and Sukyoung Ryu.
Inferring grammatical summaries of string values. In J. Garrigue, editor, Pro-
gramming Languages and Systems: Proceedings of the 12th Asian Symposium
(APLAS’14), volume 8858 of Lecture Notes in Computer Science, pages 372–391.
Springer, 2014.

15. Hongki Lee, Sooncheol Won, Joonho Jin, Junhee Cho, and Sukyoung Ryu. SAFE:
Formal specification and implementation of a scalable analysis framework for EC-

16

MAScript. In Proceedings of the 19th International Workshop on Foundations of
Object-Oriented Languages (FOOL’12), 2012.

16. Magnus Madsen and Esben Andreasen. String analysis for dynamic field access. In
A. Cohen, editor, Compiler Construction, volume 8409 of Lecture Notes in Com-
puter Science, pages 197–217. Springer, 2014.

17. Changhee Park, Hyeonseung Im, and Sukyoung Ryu. Precise and scalable static
analysis of jquery using a regular expression domain. In Proceedings of the 12th
Symposium on Dynamic Languages, DLS 2016, Amsterdam, The Netherlands,
November 1, 2016, pages 25–36, 2016.

18. Changhee Park and Sukyoung Ryu. Scalable and precise static analysis of
JavaScript applications via loop-sensitivity. In J. T. Boyland, editor, Proceedings
of the 29th European Conference on Object-Oriented Programming (ECOOP’15),
Leibniz International Proceedings in Informatics, pages 735–756. Dagstuhl Pub-
lishing, 2015.

19. Manu Sridharan, Julian Dolby, Satish Chandra, Max Schäfer, and Frank Tip. Cor-
relation tracking for points-to analysis of JavaScript. In J. Noble, editor, ECOOP
2012—Object-Oriented Programming, volume 7313 of Lecture Notes in Computer
Science, pages 435–458. Springer, 2012.

20. Peter J. Stuckey, Thibaut Feydy, Andreas Schutt, Guido Tack, and Julien Fischer.
The MiniZinc challenge 2008–2013. AI Magazine, 35(2):55–60, 2014.

17

