
Exploiting Subproblem Dominance in Constraint

Programming

Geoffrey Chu1, Maria Garcia de la Banda2, and Peter J. Stuckey1

1 National ICT Australia, Victoria Laboratory,
Department of Computer Science and Software Engineering,

University of Melbourne, Australia
{gchu,pjs}@csse.unimelb.edu.au

2 Faculty of Information Technology,
Monash University, Australia

mbanda@infotech.monash.edu.au

Abstract. Many search problems contain large amounts of redundancy
in the search. In this paper we examine how to automatically exploit
subproblem dominance, which arises when different partial assignments
lead to subproblems that dominate (or are dominated by) other subprob-
lems. Subproblem dominance is exploited by caching subproblems that
have already been explored by the search, using keys that characterise
the subproblems, and failing the search when the current subproblem is
dominated by a subproblem already in the cache. In this paper we show
how we can automatically and efficiently define keys for arbitrary con-
straint problems using constraint projection. We show how, for search
problems where subproblem dominance arises, a constraint programming
solver with this capability can solve these problems orders of magnitude
faster than solvers without caching. The system is fully automatic, i.e.,
subproblem dominance is detected and exploited without any effort from
the problem modeller.

1 Introduction

When solving a combinatorial search problem, it is common for the search to
do redundant work due to the existence of different search paths leading to
subproblems whose information can be somehow re-used by other subproblems.
For example, the solutions and failures to subproblem P can be re-used by
subproblem P ′ if P and P ′ satisfy certain properties (e.g., if they are equivalent,
if they are symmetric, or if P ′ is dominated by P). There are a number of
different methods that avoid (or reduce) redundant search, including caching
solutions (e.g. [20]), symmetry breaking (e.g. [9]), and nogood learning (e.g. [15]).

This paper focuses on caching, which works by storing information in a cache
regarding every new subproblem explored during the search. Right before a
subproblem is explored, the search performs a lookup on the cache to check
whether it contains an already explored subproblem whose information (such as
failure, solutions or a bound on the objective function) can be used for the current
subproblem. If so, the search does not explore the current subproblem and,
instead, uses the stored information. Otherwise, the search continues exploring

2 Chu, Garcia de la Banda, and Stuckey

the subproblem and, once this is done, it stores the appropriate subproblem
information in the cache.

For caching to be useful, the lookup operation must be efficient. A popular
way to implement this operation is to map each subproblem to a key which is
then used to store and access the information for that subproblem. The mapping
is done in such a way that any test for re-usability can be performed on the
subproblem keys rather than on the subproblems themselves. In the case of
subproblem equivalence (which is the most restrictive form of re-usability and,
thus, simplest to detect) the subproblems are often mapped to the same key
and, thus, the test is a simple equality. Other kinds of re-usability might require
more complex tests, such as logical entailment.

This paper explores how to use caching automatically to avoid redundancy
in constraint programming (CP) search. While caching has been previously used
in CP search, it has either relied on the careful manual construction of the key
for each model and search strategy (e.g. [20]), or on being able to decompose the
problem into independent components by fixing some of its variables (e.g. [11,
13]). Instead, we describe an approach that can automatically detect and exploit
caching opportunities in arbitrary optimization problems, and does not rely on
decomposition. The principal insight of our work is to define a key that can
be efficiently computed during the search and can uniquely identify a relatively
general notion of re-usability that we will refer to as subproblem dominance.
The key is obtained by simply projecting each primitive constraint onto the set
of subproblem variables not yet fixed to a particular value. We experimentally
demonstrate the effectiveness of our approach, which has been implemented in
the competitive CP solver Chuffed. We also provide interesting insights into
the relationships between subproblem dominance and dynamic programming,
symmetry breaking and nogood learning.

The rest of the paper is organized as follows. The next section provides
the necessary background for constraint programming and the notation that
will be used throughout the paper. Section 3 defines subproblem dominance
and subproblem equivalence, and shows how we can make use of these notions
to improve search by caching. Section 4 gives some examples of manual keys
to support caching of specific models with specific search strategies. Section 5
shows how we can define keys for arbitrary problems on a per constraint basis and
taking into account the propagation algorithm of the constraint. Section 6 shows
how to construct keys and efficient representations of keys for common primitive
and global constraints. Section 7 illustrates the keys generated by automatic
caching on a number of example problems. Section 8 discusses earlier work on
caching in constraint programming and the relationship with related approaches
such as dynamic programming and symmetry elimination. Section 9 provides a
experimental evaluation showing that automatic caching can be very effective
when subproblem equivalence exists. Finally, Section 10 provides our conclusions.

2 Background

Let ≡ denote syntactic identity and vars(O) denote the set of variables of ob-
ject O. A constraint problem P is a tuple (C,D), where D is a set of domain

Caching in Constraint Programming 3

constraints of the form x ∈ Sx (we will use x = d as shorthand for x ∈ {d}),
indicating that variable x can only take values in the fixed set Sx, and C is a set
of constraints such that vars(C) ⊆ vars(D). We will assume that for every two
x ∈ Sx, y ∈ Sy in D : x 6≡ y. A false domain is one where (x ∈ ∅) ∈ D for some
variable x. The restriction of D to variables V is the set of domain constraints
DV = {(x ∈ Sx) ∈ D|x ∈ V }. Each set D and C is logically interpreted as the
conjunction of its elements. Note that a false domain D is logically equivalent to
false. We use D(x) to denote the set of possible values for x in domain D, that
is, the set Sx where (x ∈ Sx) ∈ D.

Given a constraint problem P ≡ (C,D), a literal of P is of the form x 7→ d,
where d ∈ D(x). A valuation θ of P over set of variables V ⊆ vars(D) is a
set of literals of P with exactly one literal per variable in V . In other words, it
is a mapping of variables to values. The projection of valuation θ over a set of
variables U ⊆ vars(θ) is the valuation θU = {x 7→ θ(x)|x ∈ U}. We define the
set of fixed variables in D as fixed(D) = {x|(x = d) ∈ D} and the associated
fixed valuation as fx(D) = {x 7→ d|(x = d) ∈ D}. We also define fixed(P) as
fixed(D) and fx(P) as fx(D).

A constraint c ∈ C can be considered a set of valuations solns(c) over the
variables vars(c). Valuation θ satisfies constraint c iff vars(c) ⊆ vars(θ) and
θvars(c) ∈ solns(c). A solution of P is a valuation over vars(P) that satisfies
every constraint in C. We let solns(P) be the set of all its solutions and say that
problem P is satisfiable if it has at least one solution and unsatisfiable otherwise.

We use ⇒ to denote logical entailment and ⇔ to denote logical equivalence.
Given a logical formula F and a set of variables V ≡ {v1, . . . , vn} where V ⊆
vars(F), we use ∃V .F to denote the existential quantification of every variable
in V in formula F , i.e., ∃v1.∃vn.F .

Existential quantification effectively projects constraints onto a subset of
their variables. For example, the projection of alldiff ([x1, x2, x3, x4]) onto the
subset of variables {x3, x4} is: ∃x1.∃x2.alldiff ([x1, x2, x3, x4]) which is equivalent
to alldiff ([x3, x4]). The projection of (x1 = 1∧ x1 + x2 + x3 ≥ 10) onto {x2, x3}
is: ∃x1.(x1 = 1 ∧ x1 + x2 + x3 ≥ 10) which is equivalent to x2 + x3 ≥ 9. Note
that it is perfectly possible to existentially quantify a variable which is fixed by
the constraint (as in the second example above).

In constraint programming systems each constraint c is implemented by a
propagator pc that maps domains to domains. For correctness, we require that
c ∧ D ⇔ c ∧ pc(D) for any propagator pc implementing c. We assume each
propagator is checking, i.e., it is strong enough to decide the satisfiability of
constraint c when all the variables in c are fixed by the domain. Formally, we
say that a propagator pc is checking if fixed(D) ⊇ vars(c) implies pc(D) = D
if fx(D) is a solution of c, and pc(D) ⇔ false if fx(D) is not a solution of c. A
propagator is domain consistent if it removes all values from the domain that
cannot be extended to a valuation that satisfies c. Formally, we say propagator
pc for c over variables {x1, . . . , xn} is domain consistent if (xi ∈ Si) ∈ pc(D) iff
Si = {θ(xi)|θ ∈ solns(c),∧n

i=1θ(xi) ∈ D(xi)}.
A propagation solver, denoted by solv, repeatedly applies propagators for

each constraint in C until each propagator is at a fixpoint. Hence, solv(C,D) =
D′ where D′ is the weakest domain such that D′ ⇒ D and pc(D

′) = D′, ∀c ∈ C.
Note that if D′ = solv(C,D), then D′ ⇒ D and C ∧ D ⇔ C ∧ D′. We assume

4 Chu, Garcia de la Banda, and Stuckey

the solver detects unsatisfiability if D′ is a false domain. If the solver returns a
domain D′ where all variables are fixed (fixed(D) = vars(D)), then the solver
has detected satisfiability of the problem and fx(D) is a solution (since we
assume that each propagator is checking).

Given an initial constraint problem P0 ≡ (Cinit, Dinit), constraint program-
ming solves P0 by a search process that creates a tree of problems. For each
problem P ≡ (C,D) appearing in the tree, the search first uses the constraint
solver to determine whether P can immediately be classified as satisfiable or
unsatisfiable. If this is not possible, the search splits P into n subproblems as
follows. Let split(C,D) = {c1, . . . , cn} where C ∧D ⇒ (c1 ∨ c2 ∨ . . . ∨ cn)). The
n children of P are the subproblems (C ∪ {ci}, D), which are then explored by
the search according to some particular order.

The idea is for the search to drive towards subproblems that can be immedi-
ately detected by solv as being satisfiable or unsatisfiable. This solving process
implicitly defines a search tree rooted by the original problem P0 where each node
represents a new (though perhaps logically equivalent) subproblem P , which will
be used as the node’s label. For the purposes of this paper we restrict ourselves
to the case where each ci added by the search takes the form x ∈ s. This allows
us to obtain the i-th subproblem from P ≡ (C,D) and ci ≡ (x ∈ s) as simply
Pi ≡ (C, join(x, s,D)), where join(x, s,D) modifies the domain of x to be a subset
of s as follows: join(x, s,D) = (D − {x ∈ D(x)}) ∪ {x ∈ s ∩D(x)}. While this is
not a strong restriction, it does rule out some kinds of constraint programming
search. The main advantage of this restriction is that the set C of constraints
in each subproblem is identical (and, thus, identical to the original Cinit in P0).
As we will see later, this is crucial for our approach.

3 Subproblem Dominance and Subproblem Equivalence

Subproblem dominance is a general notion of re-usability which allows us to
reuse information such as solutions, failures, and bounds on the optimization
function, from one subproblem for another. Intuitively, dominance arises if the
search finds a subproblem that poses the same or more constraints on the unfixed
variables as a previously encountered subproblem. Formally, we define subprob-
lem dominance and subproblem equivalence as follows:

Definition 1. Let P ≡ (C,D) and P ′ ≡ (C,D′) be two different subprob-
lems arising during the search from some initial constraint problem. Let F =
fixed(D), U = vars(C)− F , F ′ = fixed(D′), and U ′ = vars(C)− F ′. We say
that P dominates P ′ iff

• F = F ′ (which is equivalent to saying U = U ′)
• ∃F .(C ∧D′) ⇒ ∃F .(C ∧D)

The formula ∃F .(C ∧D) is the projecting out of the fixed variables F from
the subproblem, or equivalently the projecting onto the unfixed variables U .

P dominates P ′ if the same set of variables are fixed in each, and the pro-
jection of P ′ onto U entails the projection of P onto U , that is P ′ constrains
the unfixed variables more than P . Note that dominance may hold even if the

Caching in Constraint Programming 5

fixed variables in P and P ′ are fixed to different values. If P dominates P ′, then
each solution of P ′ corresponds to a solution of P , as formalized by the following
proposition.

Proposition 1. Suppose subproblem P dominates subproblem P ′. Then ∀θ ∈
solns(P ′), (θU ∪ fx(P)F) ∈ solns(P). �

The above proposition states that whenever P dominates P ′, every solution
θ of P ′ corresponds to a solution of P where the literals for the unfixed variables
are taken from θ (by projecting it over U), and the literals for the fixed variables
are taken from the valuation fx(P) projected over F .

Example 1. Consider P0 ≡ (C,D0) where C ≡ {x1 +2x2 + x3 + x4 +2x5 ≤ 20},
D0 ≡ {x1 ∈ {1..3}, x2 ∈ {1..4}, x3 ∈ {2..4}, x4 ∈ {3..5}, x5 ∈ {3..5}}. Consider
two subproblems P ≡ (C,D) and P ′ ≡ (C,D′) where DF ≡ {x1 = 3, x2 = 1},
and D′

F ≡ {x1 = 1, x2 = 3}. Then U ≡ {x3, x4, x5} and DU ≡ D′
U ≡ {x3 ∈

{2..4}, x4 ∈ {3..5}, x5 ∈ {3..5}}. P dominates P ′ since ∃F .(C ∧D′) ⇔ (x3+x4+
2x5 ≤ 13 ∧D′

U) ⇒ (x3 + x4 + 2x5 ≤ 15 ∧DU) ⇔ ∃F .(C ∧D). �

For the remainder of the paper we will often make the implicit assumption
that for the subproblem of interest P , we have P ≡ (C,D) where C is the set
of constraints common to all subproblems considered (i.e., the initial constraint
problem P0 ≡ (C,Dinit)), D ⇒ Dinit and that, for the given domain D, F =
fixed(D) and U = vars(C)− F .

Subproblem equivalence arises when dominance holds in both directions.

Definition 2. Subproblems P and P ′ are equivalent iff P dominates P ′ and P ′

dominates P .

Example 2. Consider problem P0 ≡ (C,D0) where C ≡ {alldiff ([x1, x2, x3, x4, x5])}
and D0 ≡ {x1 ∈ {1..3}, x2 ∈ {1..4}, x3 ∈ {2..4}, x4 ∈ {3..5}, x5 ∈ {3..5}}. Con-
sider two subproblems P ≡ (C,D) and P ′ ≡ (C,D′) where DF ≡ {x1 = 1, x2 =
2}, andD′

F ≡ {x1 = 2, x2 = 1}. Both subproblems project to alldiff ([1, 2, x3, x4, x4])∧
{x3 ∈ {2..4}, x4 ∈ {3..5}, x5 ∈ {3..5}} and are therefore equivalent. �

Proposition 2. Suppose subproblems P and P ′ are equivalent. Then θ ∈ solns(P)
iff (θU ∪ fx(P ′)F ∈ solns(P ′). �

The above proposition states that whenever P and P ′ are equivalent, there is
a bijection that maps every solution θ of P ′ to a solution of P where the literals
for the unfixed variables are taken from θ (by projecting it over U), and the
literals for the fixed variables are taken from the valuation fx(P) projected over
F .

3.1 Satisfaction with Caching

Detecting subproblem domination allows the search to avoid exploring the domi-
nated subproblem and, instead, reuse the solutions of the dominating subproblem
(Proposition 1). This is particularly easy when we are only interested in find-
ing whether a problem is satisfiable, since we know the dominated subproblem

6 Chu, Garcia de la Banda, and Stuckey

cache search(C,D)
1 D′ := solv(C,D)
2 if (D′ ⇔ false) return false
3 if (∃P ∈ Cache where P dominates (C,D′)) return false
4 if fixed(D′) ≡ vars(D)
5 return true
6 foreach (x ∈ s) ∈ split(C,D)
7 S := cache search(C, join(x, s,D))
8 if (S) return true
9 Cache := Cache ∪ {(C,D′)}
10 return false

Fig. 1. Computing satisfiability under subproblem dominance.

must have no solutions. An algorithm for satisfaction search using domination
is shown in Figure 1. It is called with the cache initially empty (Cache = ∅). At
each search node, the algorithm first propagates using solv. If it detects unsatisfi-
ability it immediately fails. Otherwise, it checks whether the current subproblem
is dominated by something already visited (and, thus, in Cache), and if so it
fails. It then checks whether we have reached a solution and, if so, returns it.
Otherwise, it splits the current subproblem into a logically equivalent set of sub-
problems and examines each of them separately. When the entire subtree has
been exhaustively searched, the subproblem is added to the cache.

3.2 Optimization with Caching

The above algorithm can be straightforwardly extended to a branch and bound
optimization search. This is because any subproblem cached has failed under a
weaker set of constraints, and will thus also fail with a strictly stronger set of
constraints. As a result, to extend the algorithm in Figure 1 to, for example,
minimize the objective function given by some expression e, we need only a
slight modification. We assume there exists an upper bound u on the objective
function so that we can have a pseudo-constraint e ≤ u in the problem from the
beginning. Whenever a new solution is found we replace this pseudo-constraint
by a tighter one reflecting the new bound. Hence, we simply replace the line 5
in Figure 1 by the following lines.

globally store fx(D) as the current best solution
globally replace the objective function constraint by e ≤ fx(D)(e)− 1
return false

Note that in this algorithm, the search always fails with the optimal solution
being the last one stored.

4 Manual Keys for Caching

The principal difficulty in implementing the cache search algorithm of Figure 1
is implementing the lookup and test for subproblem dominance (line 3 in Fig-
ure 1). As previously mentioned, a common way of doing this is by representing

Caching in Constraint Programming 7

each subproblem with a key that allows dominance to be detected efficiently
(preferably in O(1) time). Naively, one may think that D could be used as a key
to characterise subproblem P ≡ (C,D). However, while D certainly uniquely
identifies the subproblem, it is useless as a key since D is different for each sub-
problem (i.e., node) in the search tree and will never produce a match. Thus we
need to find a more powerful key; one that can be identical even for equivalent
subproblems with different domain constraints. We now present hand crafted
keys for three problems.

4.1 Minimization of Open Stacks

The Minimization of Open Stacks Problem (MOSP) [5] can be described as
follows. A factory manufactures a number of different products in batches, i.e.,
all copies of a given product need to be finished before a different product is
manufactured. Each customer of the factory places an order requiring one or
more different products. Once one product in a customer’s order starts being
manufactured, a stack is opened for that customer to store all products in the
order. Once all the products for a particular customer have been manufactured,
the order can be sent and the stack is freed for use by another order. The aim
is to determine the sequence in which the products should be manufactured to
minimize the maximum number of open stacks, i.e., the maximum number of
customers whose orders are simultaneously active.

Most MOSP models focus on the products and directly search for the order
in which each product is manufactured. Instead, the approach discussed in [4],
focuses on the customers and searches for the order in which each customer’s
stack is closed (which in turn determines the order in which each product needs
to be manufactured). The latter approach provides significant advantages [4],
mainly due to the increased amount of subproblem dominance it achieves. A
model for this approach using the modelling language MiniZinc [14] is as follows:

int: n; % number of customers

% which pairs of customers share at least 1 product
array[1..n,1..n] of 0..1: W;

array[1..n] of var 1..n: s; % customer start time
array[1..n] of var 1..n: e; % customer end order
array[1..n] of var 1..n: x; % closing schedule, labeling vars
var 0..n: objective; % number of stacks

constraint inverse(e,x);
constraint forall (i in 1..n) (

minimum(s[i], [e[j] | j in 1..n where W[i,j]]));
constraint forall (t in 1..n) (sum (i in 1..n) (

bool2int((s[i] <= t) /\ (e[i] >= t))) <= objective);

solve :: int_search(x, input_order, indomain_min, complete)
minimize objective;

8 Chu, Garcia de la Banda, and Stuckey

Each MOSP instance is defined by n, the number of customers, and a Boolean
function W (i, j) which tells us whether customers i and j share a product. The
model uses variables s[i] ∈ {1, . . . , n} representing when each customer’s stack
is opened (e.g., s[i] = j means the stack for customer ci is opened at time j),
and variables e[i] ∈ {1, . . . , n} representing the order in which each customer’s
stack is closed (e.g., e[i] = j means the stack for customer ci is the jth stack
to be closed). Note that two different variables s[i] and s[j] can have the same
value (if their customer’s stacks are opened at the same time), while two different
variables e[i] and e[j] cannot, since they represent an order and, thus, if their
customer’s stacks are closed at the same time, we will arbitrarily put the closure
of one in front of the other. To obtain the closing schedule, the model uses a
new array of variables x[i] (e.g., x[i] = j means the ith stack to be closed is that
of customer cj . The variables in x and e are channeled together via inverse(e,x)
constraint, which constrains e[i] = j iff x[j] = i. Thus it forces all variables in
e (and similarly in x) to have different values. Each customer’s stack must be
opened before the stack of any of the customers with which they share a product
closes, because the product they share must have begun production. This gives
rise to the minimum constraints. Lastly, the number of stacks which are open
during each time period is less than or equal to the total number of stacks we
need, giving rise to the linear inequality constraints. Note that bool2int converts
a Boolean to a 0-1 integer.

We label the x[i] in order, i.e. we pick which customer closes first, then which
customer closes second, etc. which is described by the MiniZinc int search
annotation.

This problem contains many subproblem equivalences that, if exploited, can
yield speedups of several orders of magnitude [5]. The subproblem equivalences
arise as follows: after labeling the x[1], . . . , x[m], the remaining subproblem does
not depend on what order those customer’s stacks were closed, but only on the
set of customers whose stacks were closed.

Example 3. Let us consider a problem where n = 6, customers 1, 3 and 4 want
product 1, customers 2 and 6 want product 2, and customers 3 and 5 want
product 3. This is represented by the data file:

n = 6;
W = [| 1, 0, 1, 1, 0, 0

| 0, 1, 0, 0, 0, 1
| 1, 0, 1, 1, 1, 0
| 1, 0, 1, 1, 0, 0
| 0, 0, 1, 0, 1, 0
| 0, 1, 0, 0, 0, 1 |];

where a 1 in position (i, j) represents that customers i and j have a product in
common. Consider the following two subproblems P ≡ (C,D) whereD ≡ {x[1] =
4, x[2] = 3, x[3] = 5}, and P ′ ≡ (C,D′) whereD′ ≡ {x[1] = 5, x[2] = 4, x[3] = 3}.
If the partial assignment D does not violate the constraints and all extensions
of this partial assignment fail, then any extension of {x[1], x[2], x[3]} = {3, 4, 5}
for any permutation of the assignments will also fail. �

Caching in Constraint Programming 9

This subproblem equivalence can be exploited with a simple key: (V ars, V als)
where V ars is the set of x variables already labeled and V als the set of their
values. In the example above, this key would be ({x[1], x[2], x[3]}, {3, 4, 5}). Or
even more simply, we could just use {3, 4, 5}, since the order of fixing variables
is fixed by the search, and the size of the set determines how many are fixed.
Clearly the key is dependent on the search strategy, and this is always the case
with caching constraint programs.

Fig. 2. Two starting sequences for the Blackhole problem that lead to an identical
remaining subproblem.

4.2 Blackhole

Consider the Blackhole Problem [20], which seeks to find a solution to the Black-
hole patience game. In this game the 52 playing cards (of a standard 52-card
deck) are laid out in 17 piles of 3, with the ace of spades starting in a “black-
hole”. Each turn, a card at the top of a pile can be played into the blackhole
if it is ±1 from the card that was played previously, with king wrapping back
around to ace. The aim is to play all 52 cards. This was one of two examples
used to illustrate CP with caching in [20].

Suppose the first k cards have been played. The remaining subproblem only
depends on the set of unplayed cards, and the value of the last card played,
since completing the game only depends on the last card played and the state
of the 17 piles (which is given by the initial configuration and the unplayed
cards). Subproblem equivalences arise because, for any particular assignment,
there may be many permutations of the first k−1 assignments which also satisfy
the constraints, and all of these will lead to an equivalent subproblem. Figure 2
shows an example of two assignments that lead to the same subproblem. Note
that the order of the cards is completely different and this is impossible or very
difficult to capture as conditional symmetries. We can exploit the subproblem
equivalence by defining the key as (l, S), where l is the value of the last card
played, and S is the set of unplayed cards. This key allows us to detect the
equivalence of all of these subproblems and avoid the redundant search.

10 Chu, Garcia de la Banda, and Stuckey

1

1

3

4

3

x6

x7

x8

2

1

3

4

3

x6

x7

x8

2

4

4

3

3

x6

x7

x8

(a) (b) (c)

Fig. 3. Three examples of partially colored graphs

4.3 Graph Colouring

Consider the Graph Colouring Problem, which seeks to colour a graph with some
set of colors (represented by integers) so that no two adjacent nodes have the
same color. Given a partial (coloring) labelling of the nodes, define the frontier
as the set of labelled nodes that are adjacent to an unlabeled node. The problem
of coloring the remaining uncolored nodes is characterised by the set of labelled
nodes, and the values of the labelled nodes on the frontier. It does not depend on
the values of the non-frontier labelled nodes, as their value can have no further
effect on the unassigned nodes.

Subproblem equivalences arise because there could be many different ways to
label the non-frontier labelled nodes while producing the same frontier, and all
of these lead to equivalent subproblems. Whether this occurs frequently depends
on the particular structure of the graph and the labelling strategy. We can define
the key as (L, [(x, dx)|x ∈ F]), where L is the set of labelled nodes, F is the set
of frontier nodes, and dx is the value assigned to node x. This key allows us
to detect the equivalence of these subproblems and avoid the redundant search.
Consider the partially colored graph in Figure 3(a) which has a frontier (the
second column) labelled 3, 4, 3. This frontier is identical to that of the graph in
Figure 3(b). (We will refer to Figure 3(c) in Section 7.3)

5 Automatic Keys for Caching

Manually generating keys is reasonably straightforward for problems that are
simple and highly structured. However, it can be very difficult for more complex
problems. In this section, we examine how keys can be automatically constructed
for arbitrary constraint problems.

By definition, if P dominates P ′ then the projection of P ′ onto U entails the
projection of P onto U . If we could automatically construct keys that characterise
the projections of subproblems, we can use such keys for automatic dominance

Caching in Constraint Programming 11

detection. We can do this by exploiting the fact that the piecewise dominance
of the projections of all constraints in C is a sufficient condition for subproblem
dominance. This is formalised in the following theorem:

Theorem 1. Let P ≡ (C,D) and P ′ ≡ (C,D′) be subproblems arising during
search, where fixed(D) = fixed(D′) = F and U = vars(C) − F . If ∀c ∈
C, ∃F .(c ∧D′

F) ⇒ ∃F .(c ∧DF) and D′
U ⇒ DU , then P dominates P ′.

Proof.
∃F .(C ∧D′)

⇔ ∃F .(C ∧D′
F ∧D′

U)
⇔ ∃F .(∧c∈C(c ∧D′

F)) ∧D′
U

(⋆) ⇔ ∧c∈C(∃F .(c ∧D′
F)) ∧D′

U

⇒ ∧c∈C(∃F .(c ∧DF)) ∧DU

(⋆) ⇔ ∃F .(∧c∈C(c ∧DF)) ∧DU

⇔ ∃F .(C ∧DF ∧DU)
⇔ ∃F .(C ∧D)

The third and fifth (marked) equivalences hold because all variables being pro-
jected out in every c ∧D′

F and c ∧DF were already fixed. �

The importance of Theorem 1 lies in the fact that it allows us to treat the
projection of each constraint in C separately. Thus, if we can characterise the
projection of each constraint in C, we can concatenate these, together with DU

and F , to form a projection key which completely characterises the subproblem.

5.1 Projection Keys

Naively, for any subproblem P ≡ (C,D), we can define a function key(c,D) ≡
∃F .(c ∧ DF), where as usual F = fixed(D) and U = vars(D) − F , to charac-
terize the projection of the constraint c onto the unfixed variables U . There are
two main problems with this. Firstly, it means that we need one key per con-
straint, which could make the key for the whole subproblem very large (as we
will see later, more sophisticated definitions do not need to explicitly represent
all constraints). And secondly, the projection of complex constraints isn’t always
easy to describe or represent, thus ∃F .(c ∧ DF) may have no reasonably sized
representation. We therefore use a more complex definition of key(c,DF) that
allows for more flexibility and several important optimizations.

Definition 3. Let w(c,DF) be the weakest domain on U that the propagator
pc for constraint c can return given DF , i.e. for any D′ s.t. D′ ⇒ DF and
D′ ⇒ Dinit we have pc(D

′) ⇒ w(c,DF).

For monotonic propagators pc, where pc(D) ⇒ pc(D
′) whenever D ⇒ D′,

we can compute the weakest domain w(c,D) as follows. Let D′ = pc(DF ∪ {x ∈
s | (x ∈ s) ∈ Dinit ∧ x ∈ vars(C) − F}), that is, the result of applying the
propagator pc to the weakest domain with fixed subset DF . Then w(c,DF) =
D′

U .

12 Chu, Garcia de la Banda, and Stuckey

Definition 4. The projection key key(c,DF) of a constraint c for domain D is
a set of constraints over vars(c), such that

∃F .(c ∧ key(c,DF)) ∧ w(c,DF) ⇔ ∃F .(c ∧DF).

In general, there are many ways to correctly define key(c,DF). However, we
are interested in defining key(c,DF) such that we can detect as much dominance
as possible. Note that whether a particular definition of key(c,DF) is correct
or not depends on the consistency level of the propagator used for constraint
c. Whether a particular key is effective or not, depends on how good it is at
detecting dominance and, in general, one can say that the weaker the set of
constraints in the key and the more independent of DF , the more dominance it
can detect. There are two trivially correct definitions for key(c,DF): DF∩vars(c)

and ∃F .(c ∧ DF). The former is correct and can always be represented, but it
does not allow us to detect any dominance. The latter is correct and allows us to
detect the maximum amount of dominance, but it cannot always be represented
in a reasonable size.

Example 4. Let us consider four different definitions of key(c,DF) for the alldiff
constraint and their associated dominance detection properties. Consider the
subproblem P0 ≡ (C,Dinit), where C ≡ {alldiff ([x1, x2, x3, x4, x5, x6])} and
Dinit(xi) = [1..6] for 1 ≤ i ≤ 6. Consider a subproblem P ≡ (C,D) of P0

where DF ≡ {x1 = 3, x2 = 4, x3 = 5}. Define key1(c,DF) ≡ DF∩vars(c) ≡
x1 = 3 ∧ x2 = 4 ∧ x3 = 5. Define key2(c,DF) ≡ ∧x∈(F∩vars(c))x ∈ {v|xi =
v, xi ∈ F} ≡ x1 ∈ {3, 4, 5} ∧ x2 ∈ {3, 4, 5} ∧ x3 ∈ {3, 4, 5}. Define key3(c,DF) ≡
∃F .(c ∧ DF) ≡ alldiff ([3, 4, 5, x4, x5, x6]). Define key4(c,D) ≡ ∧x∈vars(c)−Fx 6∈
{v|xi = v ∈ Dvars(c)∩F } ≡ x4 6∈ {3, 4, 5} ∧ x5 6∈ {3, 4, 5} ∧ x6 6∈ {3, 4, 5}. While
key1 and key3 are trivially correct, key2 is correct because as long as the fixed
vars take the same set of values, the constraints on the remaining unfixed vars
will be the same, and key4 is correct because it captures the entire effect of DF

on the unfixed variables U .

Let us now consider a different subproblem P ′ ≡ (C,D′) where D′
F ≡ x1 =

4∧x2 = 5∧x3 = 3. Clearly, key1(c,D
′
F) ≡ x1 = 4∧x2 = 5∧x3 = 3 does not match

key1(c,DF), while key2(c,D
′
F) ≡ {x1 ∈ {3, 4, 5} ∧ x2 ∈ {3, 4, 5} ∧ x3 ∈ {3, 4, 5}}

matches key2(c,DF) and shows that the alldiff projects to the same constraint
in both subproblems. Also, while key3(c,D

′
F) ≡ alldiff ([4, 5, 3, x4, x5, x6]) does

not syntactically match key3(c,DF), it is semantically equivalent to it. Finally,
key4(c,D

′
F) ≡ x4 6∈ {3, 4, 5} ∧ x5 6∈ {3, 4, 5} ∧ x6 6∈ {3, 4, 5} also matches. �

We now illustrate how to use projection keys for checking subproblem dom-
inance. Note that dominance checking, and thus projection key calculation, is
only ever performed when the solver is at propagation fixpoint.

Theorem 2. Let P ≡ (C,D) and P ′ ≡ (C,D′) be subproblems arising during
search from problem P0 ≡ (C,Dinit). Let F = fixed(D) and U = vars(C)−F . If
fixed(D′) = fixed(D), and ∀c ∈ C, key(c,D′

F) ⇒ key(c,DF), and D′
U ⇒ DU ,

then P dominates P ′.

Caching in Constraint Programming 13

Proof.
∃F .(C ∧D′)

⇔ ∃F .(C ∧D′
F ∧D′

U)
(⋆) ⇔ ∧c∈C(∃F .(c ∧D′

F)) ∧D′
U

⇔ ∧c∈C(∃F .(c ∧ key(c,D′
F)) ∧ w(c,D′

F)) ∧D′
U

⇔ ∧c∈C(∃F .(c ∧ key(c,D′
F))) ∧D′

U

⇒ ∧c∈C(∃F .(c ∧ key(c,DF))) ∧DU

⇔ ∧c∈C(∃F .(c ∧ key(c,DF)) ∧ w(c,DF)) ∧DU

⇔ ∧c∈C(∃F .(c ∧DF)) ∧DU

(⋆) ⇔ ∃F .(C ∧DF ∧DU)
⇔ ∃F .(C ∧D)

The second and eighth (marked) equivalences hold because, again, all variables
being projected out in each c ∧D′

F and c ∧DF were already fixed. The fourth
and sixth equivalences hold because when we are at propagation fixpoint, DU ⇒
w(c,DF) for any c ∈ C. �

Definition 5. The subproblem projection key skey(C,D) for subproblem (C,D)
is defined as the triple (F, [key(c,DF)|c ∈ C], DU).

We extend the implication operator ⇒ w.r.t. subproblem projection keys as
follows: skey(C,D) ⇒ skey(C,D′) iff F ′ = F and ∀c ∈ C, key(c,D′

F) ⇒
key(c,DF), and D′

U ⇒ DU .
Similarly we extend the equivalence operator so that skey(C,D) ⇔ skey(C,D′)

iff skey(C,D) ⇒ skey(C,D′) and skey(C,D′) ⇒ skey(C,D).

Thanks to Theorem 2, it is obvious that if skey(C,D′) ⇒ skey(C,D), then
P dominates P ′. Clearly, if skey(C,D′) ⇔ skey(C,D), then P and P ′ are equiv-
alent.

Example 5. Consider the problem C ≡ {alldiff ([x1, x2, x3, x4, x5, x6]), x1+2x2+
x3+x4+2x5 ≤ 20} and domain D ≡ {x1 = 3, x2 = 4, x3 = 5, x4 ∈ {0, 1, 2}, x5 ∈
{0, 1, 2}, x6 ∈ {1, 2, 6}}. Then, F = {x1, x2, x3} and U = {x4, x5, x6}. A cor-
rect projection key for the subproblem is given by the following skey(C,D)
({x1, x2, x3}, [{x1, x2, x3} = {3, 4, 5}, x4+2x5 ≤ 4], {x4 ∈ {0, 1, 2}, x5 ∈ {0, 1, 2},
x6 ∈ {1, 2, 6}}). We choose ∃F (c∧DF) to define the key for the linear constraint
c ≡ x1 + 2x2 + x3 + x4 + 2x5 ≤ 20 in the projection key. �

Example 6. Consider P ≡ (C,D) of Example 5 and the new subproblem P ′ ≡
(C,D′) where D′ ≡ {x1 = 4, x2 = 5, x3 = 3, x4 ∈ {0, 1, 2}, x5 ∈ {0, 1}, x6 ∈
{1, 2, 6}}. We have that fixed(D′) = fixed(D) = {x1, x2, x3} and the keys for
the alldiff are identical. Also, the projection of the linear inequality is x4+2x5 ≤
3. This is stronger than the projection in key(P): x4 +2x5 ≤ 3 ⇒ x4 +2x5 ≤ 4.
Similarly, D′

U ⇒ DU . Hence, P dominates P ′. �

5.2 Special Cases

The more complex definition of key(c,DF), introduced above, allows us to define
key(c,DF) ≡ true in the following two cases. First, suppose F ∩ vars(c) = ∅.
Then ∃F .(c∧DF) ⇔ c and, therefore, key(c,DF) ≡ true is trivially correct. This

14 Chu, Garcia de la Banda, and Stuckey

means that for any DF , if c is inactive (none of its variables are fixed by DF),
we can define key(c,DF) ≡ true. And second, suppose w(c,DF) ⇒ ∃F .(c∧DF).
Then key(c,DF) ≡ true is trivially correct. This means that for any DF , if c’s
propagator is strong enough that the propagation from DF makes c satisfied, we
can define key(c,DF) ≡ true. The vast majority of the constraints satisfied by
D fall under this category.

Example 7. Consider the problem C ≡ {x1 6= x2, x2 6= x3, x3 6= x4} and do-
main D ≡ {x1 = 3, x2 = 4, x3 ∈ {0, 1, 2, 3, 5, 6}, x4 ∈ {0, 1, 2, 3, 4, 5, 6}}. Then,
F = {x1, x2} and U = {x3, x4}. A correct projection key for the subproblem
is given by: skey(C,D) ≡ ({x1, x2}, [true, true, true], {x3 ∈ {0, 1, 2, 3, 5, 6}, x4 ∈
{0, 1, 2, 3, 4, 5, 6}}). The projection key for x1 6= x2 is true since it is satisfied,
similarly the projection key for x2 6= x3 is true since it is satisfied (even though
x3 is not fixed), and the projection key for x3 6= x4 is true since none of its
variables are fixed. �

Defining key(c,DF) as true is good because, as mentioned before, the weaker
the set of constraints in the key is, and the more independent it is of DF , the
better a key it is at detecting dominance. Thus, when applicable, true is the best
possible key for dominance detection. Further, it allows us to save space since (as
we will see in the next section) it does not contribute to our key representation.

5.3 Representing and Using Projection Keys

In this section, we discuss how to represent projection keys and how to use
them to cache subproblems and to carry out dominance checks. Recall that each
subproblem P ≡ (C,D) is characterised by skey(C,D) ≡ (F, [key(c,DF)|c ∈
C], DU). We are free to take any low level representation rep(C,D) of skey(C,D),
as long as it is uniquely identified. In particular, we can take advantage of glob-
ally known information like the constraint type of each c, their arguments, any
constants involved, F , and Dinit, to dramatically reduce the size of the repre-
sentation.

We define representations rep(c,DF) for each key(c,DF) on a per constraint
basis. We require that there be a bijection between tuple (F, c, rep(c,DF)) and
the possible values of key(c,DF). Note that different values of key(c,DF) can
map to the same value of rep(c,DF), as long as F and c are sufficient to distin-
guish them. See Section 6 for many examples of key(c,DF) and rep(c,DF).

We also need to define a representation rep(Dv) for each Dv where v ∈ U . In
practice, we simply use the existing solver representation of variable domains,
e.g. a bit string, a set of ranges, etc. Finally, we need to define a representation
rep(F) to represent F , for which we use a bit string.

We can define the representation of a subproblem (C,D), rep(C,D), in one
of two ways:

– The dense representation always includes a representation for each constraint
appearing in C, and for every unfixed variable U appearing in the problem:
repd(C,D) ≡ (rep(F), [rep(c,DF)|c ∈ C], [rep(Dv)|v ∈ U]); and

Caching in Constraint Programming 15

– the sparse representation which omits constraints whose key is true, and
omits unfixed variables whose domain is their initial domain: reps(C,D) =
(rep(F), [(id(c), rep(c,DF))|c ∈ C, key(c,DF) 6≡ true], [(id(v), rep(D(v))|v ∈
U,D(v) 6= Dinit(v)]), where id(v) and id(c) are unique id’s for variables and
constraints respectively.

Clearly, both representations uniquely identify (F, [key(c,DF)|c ∈ C], DU). For
problems with lots of subproblem equivalences, it is generally the case that
D(v) = Dinit(v) and key(c,DF) ≡ true for a very substantial portion of the
variables and constraints. Thus, in the implementation we use reps(C,D) which
can take advantage of the sparsity. Note that this means that we only need to
define rep(c,DF) for DF where key(c,DF) 6≡ true.

Clearly, if rep(C,D) = rep(C,D′), then skey(C,D) ⇔ skey(C,D′) and P
and P ′ are equivalent. If all we wanted to do was to detect subproblem equiva-
lence, we can accomplish this very efficiently by using a hashtable to check for
rep(C,D) = rep(C,D′), where the projection key is used as both the hashtable
key and value. We can thus alter the algorithm in Figure 1 by replacing line 3
by:

if ((rep(C,D′) 7→ rep(C,D′)) ∈ Hashtable) return false

and replacing line 9 by:

Hashtable := Hashtable ∪ (rep(C,D′) 7→ rep(C,D′))

where we consider a hashtable is a set of pairs key 7→ item mapping from keys
to stored items.

Example 8. Consider the problem P ≡ (C,D) of Example 5. We can store its
projection key {x1, x2, x3} = {3, 4, 5}∧x4+2x5 ≤ 4∧DU as follows: We store the
fixed variables {x1, x2, x3} for the subproblem since these must be identical for
the equivalence check in any case. We store {3, 4, 5} for the alldiff constraint, and
the fixed value 4 for the linear constraint, which give us enough information given
the fixed variables to define the key. The remaining part of the key are domains.
Thus, the projection key is ({x1, x2, x3}, {3, 4, 5}, 4, {0, 1, 2}, {0, 1, 2}, {1, 2, 6})
using the dense representation, and ({x1, x2, x3}, (c1, {3, 4, 5}), (c2, 4), (x4, {0, 1, 2}),
(x5, {0, 1, 2}), (x6, {1, 2, 6})) using the sparse representation. �

To exploit subproblem dominances, and not simply equivalences, we need a
method to detect when skey(C,D′) ⇒ skey(C,D). Some constraints naturally
produce projections which can dominate one another, while others do not. Con-
sider a linear constraint x1+x2+x3 ≤ 5. If x1 = 1, this projects to x2+x3 ≤ 4. If
x1 = 2, this projects to x2+x3 ≤ 3, which is clearly a strictly stronger constraint.
Thus, linear constraints tend to produce dominating projections. This is not the
case for other kinds of constraints such as alldiff . No projection of the alldiff
constraint ever strictly dominates another. e.g. alldiff ([1, 2, x3, x4, x5]) does not
dominate and is not dominated by alldiff ([1, 2, 3, x4, x5]). Thus, we can parti-
tion constraints into two groups: those which can generate (strictly) dominating
projections, and those which cannot. Note that domain constraints Dv fall in
the first group as they can strictly dominate another D′

v.

16 Chu, Garcia de la Banda, and Stuckey

We can detect subproblem dominances as follows. We first divide the sub-
problem representation into two parts. The equivalence part repe(C,D) consists
of rep(F) and rep(c,DF), for each c ∈ C that cannot generate dominating pro-
jections. The dominance part repd(C,D) consists of rep(c,DF), for each c ∈ C
that can generate dominating projections, together with rep(DU).

For dominance detection, we use only the equivalence part repe(c,DF) as
the hashtable key, and the whole representation rep(C,D) as the value. Now,
looking up matches in the hashtable returns a set of subproblems with the same
repe(C,D), but possibly different repd(C,D). We then simply compare the dom-
inance parts of each to see if P is dominated by one of these. We alter the
algorithm in Figure 1 as follows. Line 3 is replaced by:

if (∃(repe(C,D) 7→ rep(C,D)) ∈ Hashtable s.t. repe(C,D) = repe(C,D
′)

and repd(C,D) dominates repd(C,D
′)) return false

and line 9 is replaced by:

Hashtable := Hashtable ∪ (repe(C,D
′) 7→ rep(C,D′))

In the above, we put all the rep(c,DF) and rep(Dv) that can generate dom-
inating projections into the dominance part. However, we can actually decide
on an individual basis whether to put them in the equivalence or dominance
part, as long as we are consistent throughout the search. There is a trade off
between speed and dominance detection strength. The more things we include
in the equivalence part, the fewer matches we get and the quicker the dominance
check, but the less dominance we can detect.

Example 9. Consider P ≡ (C,D) of Example 5. Entailment for alldiff is sim-
ply identity on the set of values, while for the linear constraint we just com-
pare fixed values. For the problem P ′ of Example 6 we determine the key
({x1, x2, x3}, {3, 4, 5}, 3, {0, 1, 2}, {0, 1}, {1, 2, 6}). We can hash on the first two
arguments of the tuple to retrieve the key for P , and then compare 3 versus 4
and check that each of the three last arguments is a superset of that appearing
in key(P ′). Hence, we determine the dominance holds. �

Note that, for efficiency, our implementation checks D′
U ⇒ DU by using

identity (D′
U ≡ DU) so the domains can be part of the hash value. This means

that the problem P ′ of Example 6 will not be detected as dominated in our
implementation, since the domain of x5 is different.

5.4 Branch and Bound Optimization

The presentation so far has concentrated on satisfaction problems. We show that
the theory can be extended to branch and bound optimization search. Without
loss of generality, let us consider a minimization problem. Branch and bound
optimization typically proceeds as follows. We have an expression e which de-
scribes the objective function, e.g. e ≡

∑n
i=1 aixi or e ≡ maxn

i=1xi, and one
of the constraints in the problem is of the form cobj ≡ e ≤ k, where k is the
current upper bound. If during search, a better solution with e = k′ is found,

Caching in Constraint Programming 17

the search is constrained so that only solutions better than k′ can be found, i.e.
cobj is strengthened to c′obj ≡ e ≤ k′ − 1. The search continues until the search
space is exhausted, and no better solution exists.

Our previous theorems were proved based on the assumption that C is the
same in P and P ′. However, this is not true in branch and bound optimization,
as cobj is strengthened to c′obj . We can easily extend Theorem 2 to the case where
all constraints in C monotonically increase in strength as search progresses.

Lemma 1. Suppose c′ ⇒ c, key(c′, D′
F) ⇒ key(c,DF), and D′

U ⇒ DU . Then
∃F .(c

′ ∧D′
F) ∧D′

U ⇒ ∃F .(c ∧DF) ∧DU .

Proof.
∃F .(c

′ ∧D′
F) ∧D′

U

⇔ ∃F .(c
′ ∧ key(c′, D′

F)) ∧D′
U

⇒ ∃F .(c ∧ key(c,DF)) ∧DU

⇔ ∃F .(c ∧DF)) ∧DU

�

Theorem 3. Let P ≡ (C,D) and P ′ ≡ (C ′, D′) be subproblems arising during
search. Let F = fixed(D), U = vars(C)− F , Suppose there is a bijective map-
ping m : C → C ′ s.t. m(c) ⇒ c, i.e. every constraint c ∈ C has a corresponding
constraint m(c) ∈ C ′ which is at least as strong. If fixed(D) = fixed(D′),
D′

U ⇒ DU , and ∀c ∈ C. key(m(c), D′
F) ⇒ key(c,DF), then P dominates P ′. �

The proof is analogous to that of Theorem 2, except that we apply Lemma 1
at the appropriate place. Clearly, branch and bound optimization search is cov-
ered by Theorem 3 and we can use projection keys to detect dominance as we
did for satisfaction problems.

One special case to note. If e is simply a variable, then the keys generated are
always true, and the optimal subproblem value is effectively cached in the unfixed
variables domain for e. In this case in order to obtain dominance reasoning
(rather than equivalence) we need to exclude this domain from the equivalence
part of the key, and add it to the dominance part.

5.5 Redundant constraints

Problems are often modelled with redundant constraints that enhance propaga-
tion and reduce the search space. These constraints can actually be ignored in
the subproblem projection. This is formalized as follows.

Lemma 2. Suppose we have P ≡ (C,D) and P ′ ≡ (C ′, D) where C ′ ⊆ C s.t.
C ⇔ C ′. Then the projection of P and P ′ onto U w.r.t. any D is equivalent, i.e.
∃F .(C ∧D) ⇔ ∃F .(C

′ ∧D).

Proof. Since C ⇔ C ′, C ∧D ⇔ C ′ ∧D, thus ∃F .(C ∧D) ⇔ ∃F .(C
′ ∧D) for any

F and D. �

Theorem 4. Let P ≡ (C,D) and P ′ ≡ (C,D′) be subproblems arising during
search. Let F = fixed(D) and U = vars(C)− F . Suppose C ′ ⊆ C s.t. C ⇔ C ′.
If fixed(D) = fixed(D′), D′

U ⇒ DU and ∀c ∈ C ′. key(c,D′
F) ⇒ key(c,DF),

then P dominates P ′. �

18 Chu, Garcia de la Banda, and Stuckey

The proof is analogous to that of Theorem 2, except that we apply Lemma 2
at the beginning and end. This means that instead of creating projecting keys
from the full set of constraints C, it is sufficient to choose a subset C ′ ⊆ C which
fully define the problem.

6 Constructing Projection Keys

In this section we discuss how to create projection keys for many common con-
straints. Constructing the function key(c,DF) is a form of constraint abduc-
tion [12], which can be a very complex task. However, we only need to perform
constraint abduction on a per constraint basis. Recall that we can always de-
fine key(c,DF) as DF∩vars(c) or ∃F .(c ∧ DF). However, we want a definition
for key(c,DF) that detects as much dominance as possible and is representable
in a reasonable size. First we try to see if key(c,DF) ≡ true is a valid defi-
nition, as this detects the most dominance. Recall that if F ∩ vars(c) = ∅ or
w(c,DF) ⇒ ∃F .(c∧DF), then we can always define key(c,DF) ≡ true. We only
need to consider more complex definitions of key(c,DF) if neither of these con-
ditions obviously hold, i.e. we only consider c if at least a variable in vars(c) is
fixed and DF is not enough to satisfy c. Next we try key(c,DF) ≡ ∃F .(c∧DF),
which has the maximum potential to detect dominance, but is not always rep-
resentable. Thirdly, we try to find something weaker but representable. If all
else fails, we use key(c,DF) ≡ DF∩vars(c), which detects no dominance, but is
always representable.

6.1 Simple Constraints

Here we give the function key(c,DF) and the representation rep(c,DF) for some
simple constraints. Any assumption about the minimum consistency level of the
propagator is stated as necessary.

Binary Constraints Almost all commonly used propagators for binary con-
straints have the property that once one variable is fixed, propagation on the
other variable causes the constraint to become satisfied. For such constraints,
either F ∩ vars(c) = ∅ or w(c,DF) ⇒ ∃F .(c ∧ DF). Thus, we can define
key(c,DF) ≡ true for any DF which means that such constraints never need
to contribute to the projection key. We give a non-exhaustive list of some of
these constraints, along with a sufficient set of propagation rules for the above
condition to hold in Figure 4.

Linear Let c be a linear constraint of the form c ≡
∑n

i=1 aixi ≤ a0. Let S =
{i|xi ∈ F} and di be the value that xi is fixed to in DF , for i ∈ S. Let a′0 =
a0 −

∑

i∈S aidi. We can define key(c,DF) ≡
∑

i6∈S aixi ≤ a′0. The variables xi

and the constants ai are implicitly known from c, and S is implicitly known from
F and vars(c). Thus, the representation only needs to store the single number
a′0. We can define rep(c,DF) = {a′0}. The ≥ and = case of the linear constraint
are analogous.

Caching in Constraint Programming 19

Constraint c Sufficient set of propagation rules
x = y x = d ↔ y = d

x 6= y x = d → y 6= d, y = d → x 6= d

x ≥ y x = d → y ≤ d, y = d → x ≥ d

x ∨ y ¬x → y, ¬y → x

(x = d) ⇒ b x = d → b, ¬b → x 6= d

(x = d) ⇐ b x 6= d → ¬b, b → x = d

(x ≥ d) ⇒ b x ≥ d → b, ¬b → x < d

(x ≥ d) ⇐ b x < d → ¬b, b → x ≥ d

(x = d′) ⇒ (y = d) x = d′ → y = d, y 6= d → x 6= d′

y = bool2int(b) b ↔ y = 1, ¬b ↔ y = 0
y = abs(x) x = d → y = abs(x), y = d → x ∈ {d,−d}

Fig. 4. Sufficient conditions on propagation to ensure no key is required for the binary
constraints above. Note the bool2int() function converts a Boolean b to a 0-1 integer y.

Reified Linear Let c be a reified linear constraint of the form c ≡ b →
∑n

i=1 aixi ≤ a0, that is if b is true the linear constraint holds and if the lin-
ear constraint does not hold then b is false. Let S = {i|xi ∈ F}, and di be the
value that xi is fixed to in DF , for i ∈ S. Let a′0 = a0 −

∑

i∈S aidi. There are
two cases. If b = true, then we can define key(c,DF) ≡

∑

i6∈S aixi ≤ a′0 and

rep(c,DF) = {a′0, true}. If b = false the constraint is satisfied and key(c,DF) =
true. Otherwise if b 6∈ F , then we can define key(c,DF) ≡ b →

∑

i6∈S aixi ≤ a′0
and rep(c,DF) = {a′0, false}. Note that the representation is thus simply the
representation of the non-reified linear, plus an additional Boolean value. Other
kinds of reified constraints can be handled in a similar manner.

Clause Let c be a clausal constraint of the form c ≡ ∨n
i=1li where li are Boolean

literals (either bi or ¬bi). Let S = {i|bi ∈ F}. Suppose ∃i ∈ S s.t. li = true (that
is li ≡ bi and D(bi) = true or li ≡ ¬bi and D(bi) = false). Then w(c,DF) ⇒
∃F .(c ∧ DF) and we can define key(c,DF) ≡ true and rep(c,DF) = {true}.
Suppose ∄i ∈ S s.t. li = true. Then we can define key(c,DF) ≡ ∨n

i=1,i6∈Sli. Once

again, S is implicitly known from F and vars(c), so in fact, we don’t need to
store any additional information. We can define rep(c,DF) = {true} in the first
case and rep(c,DF) = {false} in the second.

Arithmetic constraints Most arithmetic constraints like c ≡ z = x × y,
c ≡ z = x mod y, do not project well. Thus, we can only use as last resort
key(c,DF) ≡ DF∩var(c) and rep(c,DF) = [Dv|v ∈ (F ∩ var(c))].

6.2 Global Constraints

Constraint programming models often make use of global constraints to define
important subproblems of the model. On the face of it defining a projection key
for a complex global constraint may seem a daunting task. But in many cases it
is quite straightforward.

20 Chu, Garcia de la Banda, and Stuckey

For many global constraints, we can use the following theorem to work out
a correct definition of key(c,DF):

Theorem 5. Let c ⇔ ∧n
i=1ci be a decomposition of c that introduces no new

variables. If w(c,DF) ⇒ w(ci, DF) for all i, then we can define key(c,DF) ≡
∧n
i=1key(ci, DF).

Proof.

∃F .(c ∧ key(c,DF)) ∧ w(c,DF)
⇔ ∃F .(∧

n
i=1(ci ∧ key(ci, DF))) ∧ ∧n

i=1w(ci, DF) ∧ w(c,DF)
⇔ ∧n

i=1(∃F .(ci ∧ key(ci, DF)) ∧ w(ci, DF)) ∧ w(c,DF)
⇔ ∧n

i=1∃F .(ci ∧DF) ∧ w(c,DF)
⇔ ∃F .(∧

n
i=1(ci ∧DF)) ∧ w(c,DF)

⇔ ∃F .(c ∧DF)

The reverse direction of the last equivalence holds because for any correct prop-
agator, we must have ∃F .(c ∧DF) ⇒ w(c,DF) if D is a fixpoint of pc.

Thus, if our global constraint c can be decomposed into simpler constraints
for which we already have correctly defined key(ci, DF), we can simply take
their conjunction as the definition for key(c,DF). Note that the solver does not
need to use the constraint decomposition for propagation. The decomposition
is introduced purely to define key(c,DF). For this reason it is more effective
to take a simple, weak decomposition, than to take a complicated and strong
decomposition with many redundant constraints. Simpler decompositions with
fewer constraints produce fewer keys to conjoin, and there is a higher chance
that our global propagator has stronger propagation than the decomposition.

Here we give the function key(c,DF) and the representation rep(c,DF) for
some global constraints. Again, any assumption about the minimum consistency
level of the propagator is stated as necessary.

Alldiff The alldiff constraint is defined by (and decomposes to):

c ≡ alldiff ([x1, . . . , xn]) ⇔ ∧n
i=1 ∧

n
j=1,j 6=i xi 6= xj .

If our propagator enforces at least xi = v → xj 6= v for all i 6= j, then we can
apply Theorem 5 with this decomposition. Since all of the constraints in the
decomposition are binary, key(ci, DF) ≡ true for all of them. So we can define
key(c,DF) ≡ true for all DF for the alldiff constraint, which means we don’t
need to define rep(c,DF).

And Let c be a global conjunction constraint of the form c ≡ y = ∧n
i=1xi. We

can decompose c into clausal constraints: c ⇔ ∧n
i=1(¬y ∨ xi) ∧ (y ∨ ∨n

i=1¬xi).
Suppose our and propagator is domain consistent. Then we can apply Theorem 5.
So we can define key(c,DF) ≡ ∧n

i=1key(¬y ∨ xi, DF) ∧ key(y ∨ ∨n
i=1¬xi, DF).

Now key(ci, DF) ≡ true for all the binary clauses in the decomposition, and
so this simplifies to key(c,DF) ≡ key(y ∨ ∨n

i=1¬xi, DF). Thus, the key and
representation is exactly the same as that for a clause, which we have already
covered in the previous subsection.

Caching in Constraint Programming 21

Element Let c be an element constraint of the form c ≡ element(x, [a1, . . . , an], y)
where ai are constants. The element constraint is defined by (and decomposes
to): element(x, [a1, . . . , an], y) ⇔ ∧n

i=1(x = i → y = ai). Suppose our propagator
enforces at least x = i → y = ai and y 6= ai → x 6= i. Then, we can apply Theo-
rem 5 with this decomposition. Since all of the constraints in the decomposition
are binary, key(ci, DF) ≡ true for all of them. Hence just as for alldiff , we don’t
need to define rep(c,DF).

Inverse The inverse constraint is defined by (and decomposes to):

c ≡ inverse(x1, . . . , xn, y1, . . . , yn) ⇔ ∧n
i=1 ∧

n
j=1 xi = j ↔ yj = i.

If our propagator enforces at least xi = j → xj = i and xi 6= j → xj 6= i, then
we can apply Theorem 5 with this decomposition. Since all of the constraints in
the decomposition are binary, again we don’t need to define rep(c,DF).

Minimum Let c be a minimum constraint of the form c ≡ y = minni=1 xi. Let
S = {i|xi ∈ F} and let di be the value that xi is fixed to in DF for i ∈ S. Let d =
mini∈Sdi. Assume we have a special constant ∞, whose value cannot be taken
by any integer variable in the system. There are three cases. If y 6∈ F and S 6= ∅,
then we can define key(c,DF) ≡ y = min(d,mini6∈S xi) and rep(c,DF) = (∞, d).
If y ∈ F and S 6= ∅ then we can define key(c,DF) ≡ e = min(d,mini6∈S xi) and
rep(c,DF) = (e, d) where e is the fixed value of y (y = e ∈ DF). Finally,
if y ∈ F and S = ∅, then we can define key(c,DF) ≡ e = minni=1 xi and
rep(c,DF) = (e,∞) where e is defined as before. The maximum constraint is
analogous to minimum.

Global Cardinality Constraint The global cardinality constraint gcc con-
straint [17] requires that the number of variables in {x1, . . . , xn} taking value j
is nj , where here we assume nj are fixed, is defined by:

c ≡ gcc([x1, . . . , xn], [n1, . . . , nk]) ⇔ ∧k
i=1(

n
∑

j=1

bool2int(xj = i) = ni).

Let S = {i|xi ∈ F}. Let n′
j = nj −

∑

i∈S bool2int(xi = j) for j = 1, . . . , k. Then

we can define key(c,DF) ≡ ∧k
j=1(

∑

i6∈S bool2int(xi = j) = n′
j). S is known im-

plicitly from vars(c) and F , so we can simply define rep(c,DF) = {n′
1, . . . , n

′
k}.

The global cardinality low up constraint which requires the number of values
taking value j to be between lower bound lj and upper bound uj ,defined by

gcclu([x1, . . . , xn], [l1, . . . , lk], [u1, . . . , uk]) ⇔ ∧k
i=1(li ≤

n
∑

j=1

bool2int(xj = i) ≤ ui),

is analogous.

22 Chu, Garcia de la Banda, and Stuckey

Cumulative Constraint The cumulative constraint [1] requires that n tasks
with start time si, duration di and resource utilization ri are scheduled such
that at no time more than b resources are used. It can be defined as:

c ≡ cumulative([s1, . . . , sn], [d1, . . . , dn], [r1, . . . , rn], b])

≡
∧

t

n
∑

i=1

bool2int((si ≤ t) ∧ (si > t− di))× ri ≤ b,

where t ranges from minni=1 min(Dinit(si)) to maxni=1 max(Dinit(si) + di) which
are all the time periods when tasks can be scheduled. We consider only the
version where si are variables and ri, di and b are constants. We present a
handcrafted key key(c,DF) which is intuitively obvious, but which isn’t the
most powerful possible. Ideally, we would like to define key(c,D) ≡ ∃F .(c∧DF).
However, ∃F .(c ∧DF) cannot really be represented in any simple way.

Intuitively, if we fix the start times of the exact same set of tasks, in such
a way that the time profile of the resources they consumed is exactly identical,
then, the constraint on the remaining tasks must be the same. We define the
time profile of consumed resources as follows: Let S = [i|si ∈ F]. Let p(t) =
∑

i∈S bool2int(DF (si) ≤ t ∧ DF (si) > t − di) × ri be the amount of resources
consumed by the fixed tasks at time t. p(t) is a set of constants determined by
DF . Now we only have to examine the profile for times that unfixed tasks can
still actually make use of. Let tmin be the minimum start time of an unfixed
tasks in w(c,DF), and tmax be the maximum end time of an unfixed task in
w(c,DF). Now, we define key(c,DF) ≡ ∧t∈tmin..tmax

p(t) =
∑

i∈S bool2int(si ≤
t ∧ si > t − di) × ri, which is a constraint over F ∩ vars(c). Clearly, ∃F .(c ∧
key(c,DF)) ∧ w(c,DF) ⇔ ∃F .(c ∧ DF). Now, any two DF and D′

F which has
the same set of fixed tasks and produce the same tmin and tmax and p(t) over
this range of times will have matching keys.

!

B

C

D
E

F G

H

0 4 862 10

0

2

4

�

B
C

D

E

F

G

H

0 * + , 8 10

0

*

+

(a) (b)

Fig. 5. Different fixed sub-schedules for cumulative leading to the same key.

Example 10. Consider a cumulative constraint with fixed tasksA,B,C,D,E, F,G,H
illustrated in Figure 5(a) with task durations d = [4, 5, 2, 1, 3, 2, 2, 1] and resource
requirements r = [1, 3, 2, 2, 1, 1, 1, 1] and resource bound b = 4. The start times
illustrated in Figure 5(a) are s = [0, 0, 5, 5, 6, 6, 8, 7]. Assume that no other un-
fixed task (not shown) can start before time 7. Then the key is represented p(t)

Caching in Constraint Programming 23

for t = 7 onwards, that is p(7) = 3, p(8) = 2, p(9) = 1, p(t) = 0, t > 9. Now
consider the cumulative constraint with the same fixed tasks as illustrated in
Figure 5(b), where again no other task can start before time 7. The key is iden-
tical even though the fixed schedules and even profiles of the two subproblems
are different. �

6.3 More Global Constraints

For some global constraints, the best projection keys can only be expressed as
constraints over the internal variables, I, of the global propagator. We cannot
rigorously define key(c,DF) as constraints over such internal variables I un-
less they are explicitly defined. Such internal variables are often defined by the
decompositions of the global constraint.

Suppose c ⇔ ∃I .(∧
n
i=1ci) is a decomposition that introduces new variables

I. We extend P ≡ (C,D) to P ′ ≡ (C ′, D′) as follows: Define D′ = D ∪ {v ∈
Dinit(v)|v ∈ I}. Define c′ to be a constraint over vars(c) ∪ I s.t. c′ ⇔ ∧n

i=1ci.
Define C ′ = (C − {c}) ∪ {c′}. Then, P and P ′ are related as follows: C ∧D ⇔
∃I .(C

′ ∧D′). Clearly, P is satisfiable iff P ′ is, and there is a surjective mapping
from the solutions of P ′ to P . Thus we can work with the problem P ′ instead.

Let F ′ = F ∪fixed(I) and U ′ = vars(C ′)−F ′. Then D′
U ′ = DU∪D′

U∩I . Now
we can apply Theorem 5 to P ′. This tells us that if w(c′, D′

F ′) ⇒ w(ci, D
′
F ′) for all

i, then we can define key(c′, D′
F ′) ≡ ∧n

i=1key(ci, D
′
F ′). Thus the projection key

for P ′, as compared to P , changes in the following ways: F becomes F∪fixed(I),
DU becomes DU ∪ D′

U∩I , and key(c,DF) which we didn’t know how to define
before, becomes key(c′, D′

F ′) ≡ ∧n
i=1key(ci, D

′
F ′).

Although we had to explicitly define c′ and I in order to apply Theorem 5, c′

and I only have to be logically defined. They do not have to be implemented as
real constraints or real variables in the system. For example, suppose the global
propagator for c has some propagator-specific internal data structures, such that
the domains for the variables in I are uniquely determined by them. Then vari-
ables I exist logically in the propagator and the propagator is already imple-
menting a constraint over vars(c) ∪ I. Also, all extra parts of the key required
by the decomposition, i.e. fixed(I), D′

U∩I and key(c′, D′
F ′) ≡ ∧n

i=1key(ci, D
′
F ′),

depend only on ci and I. So if I is kept internally in the propagator, the propa-
gator can produce all of the extra key parts we need. Thus, we can completely
encapsulate the decomposition in the propagator without the rest of the system
ever needing to know anything about I, or that we extended from P to P ′. To
express this, we can simply define key(c,DF) ≡ ∧n

i=1key(ci, D
′
F ′) ∧ D′

U∩I and
rep(c,DF) = fixed(I) ++ rep(D′

U∩I) ++ [(id(ci), rep(ci, D
′
F ′))|key(ci, D

′
F ′) 6≡

true] (where ++ represents sequence concatenation), and use the normal key
construction algorithm as applied to P .

6.4 Table

The table constraint is defined by (and decomposes to):

c ≡ table([x1, . . . , xn], [ai,j |i = 1..k, j = 1..n]) ⇔ ∃I .(∧
k
i=1∧

n
j=1ri → xj = ai,j∧∨

k
i=1ri),

24 Chu, Garcia de la Banda, and Stuckey

where I = {r1, . . . , rk} are introduced Boolean variables. Suppose our prop-
agator internally keeps track of the domains of the ri (which tuples are still
possible) and enforces at least ri → xj = ai,j , xj 6= ai,j → ¬ri. Then we can ex-
tend the problem to include the ri and apply Theorem 5. All of the constraints
in the decomposition are binary and have key(ci, DF) ≡ true except for the
clause ∨k

i=1ri. Thus we can define key(c,DF) ≡ key(∨k
i=1ri, DF) ∧ DU∩I and

rep(c,DF) = fixed(I) ++ rep(DU∩I) ++ {rep(∨k
i=1ri, DF)}. Now, since the

variables in I are all Boolean, rep(DU∩I) is empty. We represent the projection
for the clause with just a single Boolean value b indicating whether it is satisfied
by DF or not. So rep(c,DF) = fixed(I) ++ [b].

Cumulative Now we define a projection key for the cumulative constraint via
decomposition. The cumulative constraint can be decomposed in the following
way:

cumulative([s1, . . . , sn], [d1, . . . , dn], [r1, . . . , rn], b])

⇔
∧

t

((soi,t ↔ si ≤ t) ∧ (eoi,t ↔ si > t− di) ∧ (oi,t ↔ soi,t ∧ eoi,t) ∧

n
∑

i=1

bool2int(oi,t)× ri ≤ b,

where t is appropriately limited by the ranges of si and di.
Suppose our propagator internally keeps track of the domains of the intro-

duced variables I = {soi,t} ∪ {eoi,t} ∪ {oi,t} and enforces the constraints in the
decomposition on them. Then we can extend the problem to include I and apply
Theorem 5. All the reified constraints are binary and have key(c,DF) ≡ true.
However, the Boolean constraints and the linear constraints may be active. We
know how to define keys and representations for those from Section 6.1. Thus we
simply conjunct them and DU∩I together to define key(c,DF) for the cumulative
constraint. rep(c,DF) consists of the concatenation of F∩I along with the repre-
sentations of the active constraints in the decomposition, and the representation
of DU∩I .

Now, let us consider what this projection key means semantically. The pro-
jection key of linear constraints is key(c,DF) ≡

∑

i6∈S aixi ≤ a′0. Since we have
one linear constraint for each time t, these keys tell us exactly how much re-
source is available at each time t for the set of tasks which can still fit there.
This is very similar to the resource profile used in the handcrafted key from
Section 6.2. However, there is one major difference. It is possible for the linear
constraint for some time t to become satisfied through propagation, in which
case key(c,DF) ≡ true and that part of the profile no longer matters. In the
handcrafted key, we manually took into account such times if they were at the
beginning or at the end of the schedule. Here, the projection key does it for all
such time t.

Example 11. Consider the cumulative example from Example 10 once more but
this time where B,E, F,G,H are fixed as shown in Figure 6(a). The earliest
start time for remaining tasks A,C,D is 4 (for task A), so clearly the previously

Caching in Constraint Programming 25

�

B
C

D

E

F

G

H

0 � � � 8 10

0

�

�
�

B
C

D
E

F

G

H

0 � � � 8 10

0

�

�

(a) (b)

Fig. 6. Different fixed sub-schedules for cumulative leading to the same key when using
decomposition based keys.

defined key for this partial schedule is different from that of the state shown in
Figure 6(b) since the profiles at time 5 are different. In the new key however, in
both cases the start times for A, C and D are exactly 4.., 7.. and {5} ∪ 7... The
linear constraint at t = 4 is satisfied since only oA,4 is unfixed, and task A fits in
the remaining 1 unit. The linear constraint at t = 5 is satisfied since only oA,5

and oD,5 are unfixed, and both A and D can simultaneously fit in the remaining
3 or 4 units in Figure 6(a) and Figure 6(b) respectively. The keys for the linear
constraint for t ≥ 7 are clearly equivalent. Hence the decomposition based key
will detect these situations as equivalent with respect to cumulative �

As can be seen, using decomposition allows us to define projection keys for
even complicated constraints in a straightforward manner. Further, such keys
are often fairly simple and powerful. In fact, they are often better at detecting
dominance than the intuitively obvious keys that a human may design.

All global constraints supported by MiniZinc [14] have decompositions, hence,
under the assumption that the decompositions propagate no stronger than the
global propagator actually used (which is always true in practice) we can auto-
matically cache all MiniZinc models.

7 Examples of Automatic Caching

In this section, we apply our algorithm to several problems to illustrate what
the projection keys look like and what kinds of subproblem dominances they can
detect. We also compare our automatically generated keys with handcrafted keys
that a human may design. In most cases, our automatically generated projection
keys contain significant amounts of redundant information. Thus, a handcrafted
key will almost always be smaller in size. However, there are several advantages
to automatically generating projection keys. Firstly, subproblem dominances are
often very hard to identify and describe. Secondly, altering a solver to exploit
subproblems dominances for a particular problem via handcrafted keys can re-
quire a tremendous amount of work. Thirdly, if the problem is ever altered, or
side constraints added, etc, the handcrafted key will have to be changed, its cor-
rectness will have to be proven, and the system will have to be altered. All of this
is very tedious and error prone. On the other hand, a system which implements
caching via projection keys can handle all this automatically. We go through the
three example problems presented previously.

26 Chu, Garcia de la Banda, and Stuckey

7.1 Minimization of Open Stacks Problem

The model for this problem was presented in Section 1. The linear constraints
∑n

i=1 bool2int((s[i] ≤ t) ∧ (e[i] ≥ t)) ≤ objective are flattened into primitive
constraints before being sent to the solver, since solvers typically only handle
primitive constraints natively. Explicitly, those linear inequalities would be re-
placed by:

array[1..n,1..n] of var bool: so;
array[1..n,1..n] of var bool: eo;
array[1..n,1..n] of var bool: o;

constraint forall (t in 1..n) (
forall (i in 1..n) (

so[i,t] <-> (s[i] <= t) /\
eo[i,t] <-> (e[i] >= t) /\
o[i,t] <-> (so[i,t] /\ eo[i,t])

) /\
sum (i in 1..n) (bool2int(o[i,t]) <= objective)

);

Consider the problem data used in Example 4.1 and assume we are cur-
rently solving the problem with objective ≤ 3. Let us consider the following
two subproblems P ≡ (C,D) where DF ≡ {x[1] = 4, x[2] = 3, x[3] = 5}, and
P ′ ≡ (C,D′) where D′

F ≡ {x[1] = 5, x[2] = 4, x[3] = 3}. We know from manual
analysis that these two should produce equivalent subproblems. Let us look at
the automatically generated projection keys.

In P , the inverse constraint gives e[4] = 1, e[3] = 2, e[5] = 3. The minimum
constraints give s[1] = 1, s[2] ∈ {4, 5, 6}, s[3] = 1, s[4] = 1, s[5] = 2, s[6] ∈
{4, 5, 6}. The binary reification constraints and the clausal constraints will now
fix many of the so, eo and o. Everything with t ≤ 3 becomes fixed. Every-
thing related to customers 3, 4, 5 become fixed. All the so[i, t], t ≥ 4 where
customer i’s stack is currently open (i.e. customer 1) become fixed. All the
eo[i, t], t = 4 becomes fixed. All the o[i, 4] where customer i’s stack is currently
open become fixed. All the rest are unfixed. In DU , s[2] ∈ {4, 5, 6}, s[6] ∈
{4, 5, 6}, e[1], e[2], e[6] ∈ {4, 5, 6}, x[4], x[5], x[6] ∈ {4, 5, 6}, and all other un-
fixed variables are at their initial domains. Now let’s consider the constraint
projections. The inverse(e, x) constraint and the binary reification constraints
so[i, t] ↔ (s[i] ≤ t) and eo[i, t] ↔ (e[i] ≥ t) all have key(c,DF) ≡ true. Of the
minimum constraints, the ones regarding s[i], i = 1, 3, 4, 5 are all satisfied and
have key(c,DF) ≡ true. The remaining two have no fixed variables and also have
key(c,DF) ≡ true. The linear constraints for t = 1, 2, 3 are all satisfied and have
key(c,DF) ≡ true. The linear constraint for t = 4, projects to o[2, 4]+o[6, 4] ≤ 2,
which is satisfied, so key(c,DF) ≡ true. The linear constraints for t = 5, 6 project
to o[1, t]+o[2, t]+o[6, t] ≤ 3 which is also satisfied, and so key(c,DF) ≡ true. Of
the clausal constraints o[i, t] ↔ (so[i, t]∧ eo[i, t]), all the ones with t = 1, 2, 3 are
satisfied and have key(c,DF) ≡ true. All the ones with i = 3, 4, 5 are satisfied
and have key(c,DF) ≡ true. The ones with o[i, t], i = 2, 6, t = 4, 5, 6 have no
fixed variables and have key(c,DF) ≡ true. The one with o[1, 4] is satisfied and

Caching in Constraint Programming 27

has key(c,DF) ≡ true. The ones with o[i, t], i = 1, t = 5, 6 are active, and have
key(c,DF) ≡ ¬eo[i, t] ∨ o[i, t]. As can be seen, almost all the constraints have
key(c,DF) ≡ true. This is typical of problems with lots of subproblem equiva-
lences. Many constraints will either be inactive, or will propagate in such a way
that they are no longer relevant for the remaining subproblem.

Let us now consider P ′. Propagation on the inverse constraint gives e[5] =
1, e[4] = 2, e[3] = 3. The minimum constraints give s[1] = 2, s[2] ∈ {4, 5, 6},
s[3] = 1, s[4] = 2, s[5] = 1, s[6] ∈ {4, 5, 6}. Once again, the binary reification
constraints and the clausal constraints will now fix many of the so, eo and o vari-
ables. We can see, from the previous description, that F ,DU and key(c,DF) only
depend on the set of closed customers and on the set of currently open customers.
Since these are identical for P and P ′, the projection keys of these two subprob-
lems match. The key point here is that although e[3], e[4], e[5], s[1], s[3], s[4], s[5]
take on different values in P and P ′, their effect on the variables with t ≥ 4 are
identical. And since the remaining non-satisfied constraints in each subproblem
only involve variables with t ≥ 4, the subproblems end up being equivalent.

In general, if the set of closed customers is S, then the set of currently open
customers is [i|i 6∈ S, ∃j ∈ S.W (i, j)], which clearly only depends on S. Thus,
any two subproblems with the same set of closed customers will have the same
projection key. This means that our automatically generated projection key de-
tects exactly the same amount of subproblem equivalence as the handcrafted key
presented in Section 4. However, the projection key is clearly much larger since it
involves the domains of all unfixed variables. On the other hand, this subproblem
equivalence is fairly hard to identify manually. The MOSP was the subject of the
2005 Modelling Challenge [19], and of the 13 entrants into the competition, only
3 identified this subproblem equivalence. Thus, such subproblem equivalences
are hard to identify even for expert problem modellers.

7.2 Blackhole

The Blackhole Problem can be modelled as follows:

array[1..17, 1..3] of int: layout; % layout: pile and layer
array[1..416, 1..2] of int: neighbours; % next card is +/- 1

array[1..52] of var 1..52: y; % Position of card
array[1..52] of var 1..52: x :: is_output; % Card at position

constraint y[1] == 1; % Ace of spades starts in blackhole
constraint inverse(x,y);
constraint forall (i in 1..17, j in 1..2) (

y[layout[i,j]] < y[layout[i,j+1]]);
constraint forall (i in 1..51) (

table([x[i], x[i+1]], neighbours));

solve :: int_search(x, input_order, indomain_min, complete)
satisfy;

28 Chu, Garcia de la Banda, and Stuckey

We take card value v to mean the (v−1%13)+1th number of the (v−3/13)+1th
suit (spades, hearts, clubs, diamonds), e.g. 1 is the ace of spades, 14 is the ace
of hearts, 27 is the ace of clubs, 40 is the ace of diamonds. The array layout
gives the layout of the cards in the 17 piles. The array neighbours lists pairs of
cards which are ±1 w.r.t to each other, and is used in the table constraints to
enforce the ±1 condition. For simplicity of explanation we assume that the table
constraint’s propagator is only checking, i.e. when all its variables are fixed, it
checks whether that set of values is in its table and fails if it isn’t. The search
places cards in the blackhole in order.

Consider two subproblems P ≡ (C,D) where DF ≡ {x1 = 1, x2 = 41, x3 =
42, x4 = 28, x5 = 16, x6 = 4, x7 = 29, x8 = 2} and P ′ ≡ (C,D′) where
DF ≡ {x1 = 1, x2 = 28, x3 = 29, x4 = 4, x5 = 16, x6 = 41, x7 = 42, x8 = 2},
illustrated in Figure 2. Assume that both partial assignments satisfy the con-
straints. According to our manual analysis, since the last cards are the same
and the set of unplayed cards are the same, P and P ′ should lead to equivalent
subproblems.

Let S denote the set of played cards, i.e. {1, 2, 4, 16, 28, 29, 41, 42}, which is
the same for both P and P ′. In P , the inverse constraint will enforce xi 6= v
for i ≥ 9, v ∈ S, and yi ≥ 9 for i 6∈ S. The table constraints perform no
propagation. The inequality constraints perform some propagation. For example,
if card i is under card j and neither have been played, then since yi > yj , yj ≥
9 → yi ≥ 10. Now, the inverse constraint and the binary inequalities all have
key(c,DF) ≡ true. A table constraint which is only checking, has key(c,DF) ≡
true if it is satisfied or inactive, and has key(c,DF) ≡ DF∩vars(c) otherwise.
The table constraints involving only xi where i ≤ 8 are all satisfied and has
key(c,DF) ≡ true. The ones involving only xi where i ≥ 9 are all inactive and
has key(c,DF) ≡ true. Thus, the only one with a non-trivial key is the one
involving x8 and x9, which has key(c,DF) ≡ x8 = 2. Therefore, the projection
key characterizes the subproblem by F , DU , and the last card played x8 = 2.
Since F and DU are uniquely determined by the set of unplayed cards, our
projection key detects the same amount of equivalence as the handcrafted key.
However, it is larger in size, due to the need to store DU .

7.3 Graph Colouring

In Section 4 we gave a handcrafted key for the graph colouring problem. It turns
out that this key, although intuitively obvious, is not the strongest key possible
for detecting subproblem equivalences. Projection gives a better key. Consider
the simple graph colouring problem shown in Figure 3.

Consider P ≡ (C,D) where DF ≡ {x1 = 1, x2 = 1, x3 = 3, x4 = 4, x5 = 3}
illustrated in Figure 3(a). After propagation, we have F = {x1, x2, x3, x4, x5} and
DU ≡ {x6 ∈ {1, 2}, x7 ∈ {1, 2}, x8 ∈ {1, 2, 3, 4}}. Since all constraints are binary
inequalities, we have key(c,DF) ≡ true. Thus, the projection key completely
characterises the subproblem by F and DU . Consider P

′ ≡ (C,D′) where D′
F ≡

{x1 = 2, x2 = 4, x3 = 4, x4 = 3, x5 = 3} illustrated in Figure 3(c). After
propagation, we have F ′ = {x1, x2, x3, x4, x5} and D′

U ′ ≡ {x6 ∈ {1, 2}, x7 ∈
{1, 2}, x8 ∈ {1, 2, 3, 4}}. Clearly, F = F ′ and DU = D′

U and our projection key
shows that these two subproblems are equivalent. However, our handcrafted key

Caching in Constraint Programming 29

would have characterised P with ({x1, x2, x3, x4, x5}, [(x3, 3), (x4, 4), (x5, 3)]) and
P ′ with ({x1, x2, x3, x4, x5}, [(x3, 4), (x4, 3), (x5, 3)]), which are clearly different.
Thus, on this problem, the projection key is stronger than the intuitively obvious
handcrafted key. The size of the keys are comparable as well.

8 Related Work

Problem specific approaches to dominance detection/subproblem equivalence are
widespread in combinatorial optimization (see e.g. [7, 20]). There is also a signif-
icant body of work on caching that relies on decomposing problems into disjoint
parts by fixing certain variables (e.g [11, 13]). This approach looks for equiva-
lent projected problems but, since it does not take into account the semantics
of the constraints, the approach effectively uses DF∩vars(c) for every constraint
c as the projection key. Thus, this approach finds strictly fewer equivalent sub-
problems than our approach. We could extend our approach to also split the
projected problem into disjoint components but this typically does not occur
in the problems of interest to us. Interestingly, [11] uses symmetry detection to
detect symmetric (rather than equivalent) subproblems, but the method used
does not appear to scale.

8.1 Dynamic Programming

Dynamic programming (DP) [3] is a powerful approach for solving optimiza-
tion problems whose optimal solutions are derivable from the optimal solutions
of its subproblems. It relies on formulating an optimization problem as recur-
sive equations relating the answers to optimization problems of the same form.
When applicable, this approach is often near unbeatable by other optimization
approaches.

Constraint programming (CP) with caching is similar to DP, but provides
several additional capabilities. For example, arbitrary side constraints not easily
expressible as recursions in DP can easily be expressed in CP, and dominance
can be expressed and exploited much more naturally in CP.

Consider the 0-1 Knapsack problem which is defined as follows:D ≡ ∧n
i=1xi ∈

{0, 1}, C ≡
∑n

i=1 wi ∗ xi ≤ W ∧ e > K where e ≡
∑n

i=1 pi ∗ xi is the expression
to be maximised, n is the number of available items, K is the bound on the
objective (minimum profit), W is the maximum weight the knapsack can carry,
wi is the weight of item i, and pi is the profit of item i. The DP formulation of
this problem defines knp(j, w) as the maximum profit achievable using the first
j items with a knapsack whose maximum weight is w. The recursive equation is

knp(j, w) =

{

0 j = 0 ∨ w ≤ 0
max(knp(j − 1, w), knp(j − 1, w − wj) + pj) otherwise

The DP solution is O(nW) since values for knp(j, w) are cached and only com-
puted once.

The performance of the 0-1 knapsack problem is terrible in its natural CP
formulation, it requires O(2n) search to prove the optimal solution. A CP ap-
proach with caching will represent the key as the triple (F,Rw,Rp), where F

30 Chu, Garcia de la Banda, and Stuckey

is the set of fixed variables, Rw is an integer representing the remaining weight
limit (i.e., the extra weight the knapsack can still carry), and Rp is an integer
representing the remaining profit required to achieve the optimal profit U . We
can see that with a fixed search ordering, F can only take on n values, the re-
maining weight limit can only take on W values, and the remaining profit can
only take on U values. Thus, the maximum number of distinct entries in the
hashtable, and hence the worse case complexity of the algorithm, is O(nWU),
which is much better than O(2n), but not quite as good as the DP solution.

The two approaches are in fact quite different: the DP approach stores the
optimal profit for each set of unfixed variables and remaining weight limit, while
the CP approach stores the fixed variables and remaining weight plus remaining
profit required. The CP approach thus implements a form of DP with bound-
ing [16], since it can detect subproblem dominance: a problem with remaining
weight Rw′ and remaining profit required Rp′ is dominated by a problem with
remaining weight Rw ≥ Rw′ and remaining profit Rp ≤ Rp′. The DP approach
must examine both subproblems since the remaining weights are different.

In practice, the number of remaining profits arising for the same set of fixed
variables and remaining weight is O(1) and, hence, the practical number of
subproblems visited by the CP approach is O(nW).

Note that while adding a side constraint like x3 ≥ x8 destroys the DP ap-
proach (or at least forces it to be carefully reformulated), the CP approach with
automatic caching works seamlessly. In some sense we can think of the auto-
matic caching approach as defining dynamic programming for free. Rather than
determine a complex recursive equation, we simply model the problem as usual,
and obtain a dynamic programming like solution.

8.2 Symmetry Breaking

Symmetry breaking aims to speed up execution by not exploring search nodes
known to be symmetric to nodes already explored. Once the search is finished,
all solutions can be obtained by applying each symmetry to each solution. In
particular, Symmetry Breaking by Dominance Detection (SBDD) [6] works by
performing a “dominance check” at each search node and, if the node is found
to be dominated, not exploring the node.

At first glance, SBDD may appear to be very similar to automatic caching.
However, the two techniques actually exploit different kinds of dominances.
SBDD detects and exploits symmetric subproblems, whereas automatic caching
exploits equivalent and dominated subproblems. In our terminology, we could de-
scribe SBDD as follows. Let σ be a mapping from valuations of constraint prob-
lem P to valuations of P . Mapping σ is a symmetry of P if: σ(θ) ∈ solns(P) iff
θ ∈ solns(P), i.e., if σ maps solutions to solutions. We can extend σ to a mapping
from constraints to constraints as follows: θ ∈ solns(c) iff σ(θ) ∈ solns(σ(c)).

Definition 6. Let P ≡ (C,D) and P ′ ≡ (C,D′) be two different subproblems
arising during the search from some initial constraint problem P0. Let F =
fixed(D), U = vars(C) − F , F ′ = fixed(D′), and U ′ = vars(C) − F ′. P
symmetrically dominates P ′ w.r.t. symmetry σ of P0 iff

– fx(D) = σ(fx(D′)) (or equivalently, DF = σ(D′
F ′))

Caching in Constraint Programming 31

– σ(∃F ′ .(C ∧D′)) ⇒ ∃F .(C ∧D)

It follows from the definition of entailment and symmetry that if P symmetri-
cally dominates P ′ and P has no solutions, then P ′ has no solutions either. SBDD
works by, given a current partial assignment fx(D′), detecting a previous failed
partial assignment fx(D) that is equal to σ(fx(D′)). Since σ(fx(D′)) = fx(D)
implies σ(∃F ′ .(C ∧ D′)) ⇒ ∃F .(C ∧ D), then SBDD can correctly prune P ′.
Automatic caching on the other hand, looks for a subproblem dominance of the
form ∃F .(C∧D′) ⇒ ∃F .(C∧D), where fx(D′) 6= fx(D), which yields a different
set of dominances.

Note that it is perfectly feasible, and correct, to use both automatic caching
and SBDD simultaneously. At a particular node, automatic caching will prune
the node if it detects that the subproblem is dominated by a previously failed
subproblem, while SBDD will prune the node if it detects that it is dominated by
a previously failed symmetric subproblem. We show with the following example
that neither method subsumes the other.

Example 12. Consider P0 ≡ (C,D) where C ≡ {alldiff ([x1, x2, x3, x4, x5]), x1 +
4 ≤ x4 + x5} and D ≡ {x1 ∈ {1..3}, x2 ∈ {1..4}, x3 ∈ {2..5}, x4 ∈ {1..5}, x5 ∈
{1..5}}. The problem has variable symmetry x4 ⇆ x5., i.e., every valuation of
P0 is symmetric to that obtained by swapping variables x4 and x5.

Consider the subproblems P and P ′ where fx(D) ≡ {x1 = 1, x2 = 2},
and fx(D′) ≡ {x1 = 2, x2 = 1}. In both cases, the alldiff propagates to give
x3 ∈ {3..5}, x4 ∈ {3..5}, x5 ∈ {3..5}. The linear constraint becomes satisfied
in both and has key(c,DF) ≡ true. Thus, their projection keys match and
automatic caching detects that P and P ′ are equivalent. On the other hand,
there is no symmetry σ of P0 that maps {x1 = 1, x2 = 2} to {x1 = 2, x2 = 1}
and, thus, SBDD can do nothing here.

Consider the subproblems P and P ′ where fx(D) ≡ {x1 = 2, x4 = 3},
and fx(D′) ≡ {x1 = 2, x5 = 3}. In P , propagation gives x2 = {1, 4}, x3 =
{4, 5}, x5 = {4, 5}. In P ′, propagation gives x2 = {1, 4}, x3 = {4, 5}, x4 = {4, 5}.
SBDD would detect that these two subproblems are symmetric, because the
partial assignments {x1 = 2, x4 = 3} and {x1 = 2, x5 = 3} map to each other
under x4 ⇆ x5. On the other hand, automatic caching determines that they are
not equivalent since F 6= F ′ and, thus, can do nothing here.

It is also possible for both techniques to detect the same subproblem dom-
inance. Consider the subproblems P and P ′ where fx(D) ≡ {x4 = 3, x5 = 4},
and fx(D′) ≡ {x4 = 4, x5 = 3}. Both propagate to x1 ∈ {1, 2}, x2 ∈ {1, 2}, x3 ∈
{2, 5}. The linear constraint becomes satisfied in both and has key(c,DF) ≡ true.
Thus, their projection keys match and automatic caching detects that P and P ′

are equivalent. SBDD detects that they are also symmetric since {x4 = 3, x5 = 4}
and {x4 = 4, x5 = 3} map to each other under variable symmetry x4 ⇆ x5. �

It is possible to extend our caching approach to exploit problem symmetries.

Theorem 6. Let P ≡ (C,D) and P ′ ≡ (C ′, D′) be subproblems arising during
the search from some initial constraint problem P0. Let F = fixed(D), U =
vars(C)−F , F ′ = fixed(D′), and U ′ = vars(C)−F ′. Suppose σ is a symmetry
of P0 s.t. ∀c ∈ C, σ(c) ∈ C. If σ(fx(D′)) = fx(D), σ(D′

U ′) ⇒ DU , and ∀c ∈

32 Chu, Garcia de la Banda, and Stuckey

C, σ(key(c,D′
F ′)) ⇒ key(σ(c), DF), then P symmetrically dominates P ′ w.r.t.

symmetry σ. �

Theorem 6 tells us that, once again, we can detect subproblem symmetric
dominance by doing a piecewise comparison of constraint projection keys.

Our characterisation of subproblem symmetry in terms of projections is
strictly more general than the characterisation using partial assignments. This is
because σ(fx(D′)) = fx(D) implies σ(∃F ′ .(C∧D′)) ⇒ ∃F .(C∧D), but not vice
versa. Therefore, it is possible for P and P ′ to be symmetric subproblems even
when σ(fx(D′)) 6= fx(D). For example, this can occur when conditional sym-
metries exist. Since SBDD only detects σ(fx(D′)) = fx(D), it only exploits a
subset of the possible subproblem symmetries. Automatic caching, which directly
works on subproblem projections, has the potential to exploit a strictly wider
range of subproblem symmetries than SBDD. Extending automatic caching to
efficiently exploit symmetries is a clear avenue of future work.

8.3 Nogood learning

Nogood learning approaches in constraint programming attempt to learn no-
goods from failures and record these as new constraints in the program. Au-
tomatic caching can be considered one such technique, since we record sets of
constraint projections which cause failure as nogoods. Another very successful
method is Lazy Clause Generation (LCG) [15]. LCG uses clauses on atomic
constraints v = d and v ≤ d to record the reasons for failures and uses SAT
techniques to efficiently manage the nogoods. LCG also exploits subproblem
equivalences/dominances.

In terms of pruning power, neither technique strictly dominates the other.
LCG has two advantages. Firstly, in LCG, only constraints which are directly
involved in the conflict are used to produce the nogood, whereas in automatic
caching, all active and non-satisfied constraints are used. This sometimes allows
LCG to produce more powerful nogoods than automatic caching. Secondly, the
nogoods derived by LCG can be propagated, rather than merely be checked
for failure, so they can prune more. These two factors sometimes allow a much
greater reduction in search space. However, this extra power comes with a high
overhead. In LCG, every nogood that is derived is added as a clausal propaga-
tor. This takes O(n) to propagate where n is the number of nogoods kept. In
automatic caching the failure check is done in O(1).

Automatic caching also has an advantage in terms of the kinds of nogoods
they can express. While the language of nogoods used by LCG only allows atomic
constraints of form v = d and v ≤ d to be used as the basic components of
nogoods, the constraint projections used in automatic caching can include more
powerful forms. Consider the subproblem x1 + 2x2 + x3 + x4 + 2x5 ≤ 20 ∧ C,
with D ≡ {x1 = 1 ∧ x2 = 2 ∧ x3 = 3}. If this subproblem fails, the projection
key stores that x4 + 2x5 ≤ 12 ∧ other keys leads to failure. LCG would express
this as x1 ≥ 1 ∧ x2 ≥ 2 ∧ x3 ≥ 3 ∧ other keys leads to failure, since there are no
literals to represent partial sums. The nogood from automatic caching is strictly
stronger. For example, D ≡ {x1 = 2 ∧ x2 = 3 ∧ x3 = 0} would fire the nogood
from automatic caching, but not the one from LCG. This difference is apparent
in the experimental results for 0-1 Knapsack.

Caching in Constraint Programming 33

Another advantage of automatic caching over LCG is in the ease of imple-
mentation. Automatic caching can be added to a CP solver by simply (1) adding
to each propagator the code needed to build a representation of the propagator
for inclusion in the key, as well as (2) adding a generic caching mechanism to the
search. In Section 6 we showed how to do this for many constraints, and gave
generic approaches to building an efficient representation of global constraints
via decomposition. LCG requires much more fundamental changes to a CP solver
in order to record an implication graph of the inferences made. In particular,
each global constraint needs to be extended to explain its inferences, a task that
is far from straightforward.

9 Experiments

We use the state of the art CP solverChuffed in our experiments.Chuffed can
be run as a naive CP solver (denoted as Chuffed), as a CP solver with caching
(denoted as ChuffedC), and as a Lazy Clause Generation solver (denoted as
ChuffedL). We also compare against Gecode 3.2.2 [18] – widely recognized
as one of the fastest constraint programming systems (to illustrate we are not
optimizing a slow system). We use the MurmurHash 2.0 hash function. We use
models written in the modelling language MiniZinc [14]. This facilitates a fair
comparison between the solvers, as all solvers use the same model and search
strategy. Note that caching and lazy clause generation do not interfere with
the search strategies used here, as all they can do is fail subtrees earlier. Thus,
Chuffed with caching or lazy clause generation always finds the same solution
as the naive version Chuffed and Gecode, and any speedup observed comes
from a reduced search.

The experiments were conducted on Xeon Pro 2.4GHz processors with a 900
second timeout. Tables 1 and 2 presents the number of variables and constraints
as reported by Chuffed, the times for each solver in seconds as well as the
number of (leaf) fails. For the three versions of Chuffed, we report the maxi-
mum memory usage in Mb. For the automatic caching solver we also report the
number of cache hits occurring in the search and the average key size in bytes.
We discuss the results for each problem below. All the MiniZinc models and
instances are available at www.cs.mu.oz.au/~pjs/autocache/.

9.1 Knapsack

0-1 knapsack is ideal for caching. The model has two linear constraints (one
for the weight and one for the objective) and all its domains are binary. Thus,
the representation of the key simply requires the set of fixed variables and two
integers. The non-caching solvers timeout as n increases, as their time complexity
is O(2n). This is a worst case for lazy clause generation since the nogoods
generated are not reusable at all. ChuffedC, on the other hand, is easily able
to solve much larger instances (see Table 1). The node to nW ratio (not shown)
stays fairly constant as n increases (varying between 0.86 and 1.06), showing that
it indeed has search (node) complexity O(nW). The time to nW ratio grows as
O(n) though, since we are using a general CP solver where the linear constraints

34 Chu, Garcia de la Banda, and Stuckey

take O(n) to propagate at each node, while DP requires constant work per node.
Hence, automatic caching is not as efficient as pure DP.

9.2 MOSP

The MOSP model used in the experiments is similar to that presented in Sec-
tion 4, but has some additional conditional dominance breaking constraints [4]
that make the (non-caching) search much faster. We use random instances
from [4]. Automatic caching gives up to two orders of magnitude speedup. The
speedup grows exponentially with problem size. LCG also exploits a similar
amount of equivalence/dominance and achieves a similar speedup.

9.3 Blackhole

The Blackhole model used in the experiments is similar to that presented in Sec-
tion 7.2, but has additional conditional symmetry breaking constraints [8]. We
generated random instances and used only the hard ones for this experiment. Au-
tomatic caching gives a modest speedup of around 2-3. The speedup is relatively
low on this problem because the conditional symmetry breaking constraints have
already removed many equivalent subproblems, and the caching is only exploit-
ing the ones that are left. Note that the manual caching reported in [20] achieves
speedups in the same range (on hard instances). LCG exploits even more domi-
nance than automatic caching. But this extra dominance exploitation comes at
such a high cost that it ends up being much slower overall.

9.4 BACP

In the Balanced Academic Curriculum Problem (BACP), we form a curriculum
by assigning a set of courses to a set of periods, with certain restrictions on how
many courses and how much “course load” can be assigned to each period. We
also have prerequisite constraints between courses. The BACP can be viewed as
a bin packing problem with a lot of additional side constraints. The subprob-
lem symmetry is the same as that in bin packing. Suppose that a set of courses
have been assigned to the first k periods and has “filled” them. The remaining
subproblem only depends on the set of unassigned courses, and not on how the
earlier courses were assigned to the first k periods. Any permutation of those
k period assignments that satisfy the constraints lead to the same subproblem.
We use the model of [10], but with some additional redundant constraints that
considerably reduce the search required to find an optimal solution for caching
and non-caching solvers. Note that by Theorem 4, the redundant linear con-
straints do not have to be considered in the projection key. The 3 instances
curriculum 8/10/12 given in CSPLIB can be solved to optimality in just a few
milliseconds. We generate random instances with 50 courses, 10 periods, and
course credit ranging between 1 and 10. Almost all are solvable in milliseconds
so we pick out only the non-trivial ones for the experiment. We also include the
3 standard instances from CSPLIB. Both automatic caching and lazy clause
generation are capable of exploiting the subproblem equivalences, giving orders
of magnitude speedup. In this case, lazy clause generation exploits more equiv-
alence/dominance and is faster.

Caching in Constraint Programming 35

9.5 Radiation Therapy

In the Radiation Therapy problem [2], the aim is to decompose an integral
intensity matrix describing the radiation dose to be delivered to each area, into a
set of patterns to be delivered by a radiation source, while minimising the amount
of time the source has to be switched on, as well as the number of patterns used
(setup time of machine). The subproblem equivalence arises because there are
equivalent methods to obtain the same cell coverages, e.g. radiating one cell with
two intensity 1 patterns is the same as radiating it with one intensity 2 pattern,
etc. We use random instances generated as in [2]. Once again both automatic
caching and lazy clause generation produce orders of magnitude speedup, though
lazy clause generation once again exploits more equivalence/dominance and is
faster.

9.6 Memory Consumption and Overhead

The memory consumption of our caching scheme is linear in the number of nodes
searched. The size of each key is dependent on the structure of the problem and
can range from a few hundred bytes to thousands of bytes. The memory results
in the table certainly show that caching requires substantially more memory
than executing a standard CP solver, and somewhat more than a lazy clause
generation solver. Still on a modern computer, we can usually search several
hundred thousand nodes before running out of memory.

There are simple schemes to reduce the memory usage, which we plan to
investigate in the future. For example, much like in SAT learning, we can keep
an “activity” score for each entry to keep track of how often they are used.
Inactive entries can then periodically be pruned to free up memory. The lazy
clause generation solver implements these strategies already, although they wont
be applied for searchs with less than 100,000 fails.

The overhead for caching is quite variable (it can be read from the tables as
the ratio of fail reduction to speedup). For large problems with little variable
fixing it can be substantial (up to 5 times for radiation), but for problems that
fix variables quickly it can be very low.

10 Conclusion

We have described how to automatically exploit subproblem dominances in a
general constraint programming system by automatic caching. Our automatic
caching can produce orders of magnitude speedup over our base solver Chuffed,
which (without caching) is competitive with current state of the art constraint
programming systems like Gecode. With caching, it can be much faster on prob-
lems that have subproblem dominances.

The automatic caching technique is quite robust. It can find and exploit sub-
problem dominances even in models that are not “pure”, e.g. MOSP with dom-
inance and conditional symmetry breaking constraints, Blackhole with condi-
tional symmetry breaking constraints, and BACP which can be seen as bin pack-
ing with many side constraints and some redundant constraints. The speedups

36 Chu, Garcia de la Banda, and Stuckey

from caching tends to grow exponentially with problem size/difficulty, as sub-
problem equivalences also grow exponentially.

Our automatic caching appears to be competitive with lazy clause generation
in exploiting subproblem dominance, and is superior on some problems, in partic-
ular those with large linear constraints. It is much easier to extend a CP system
to include automatic caching, than to extend it to implement Lazy Clause Gen-
eration. In particular, we have explained how to easily generate caching schemes
for arbitrary complex global constraints. Whereas adding global constraints that
explain their propagations, which is required for their use in a lazy clause gen-
eration system, is considerably more difficult.

Overall automatic caching can be highly beneficial for problems involving
subproblem dominance. Since it is trivial to invoke, it seems always worthwhile to
try automatic caching for a particular model, and determine empirically whether
it is beneficial or not.

Acknowledgments. NICTA is funded by the Australian Government as repre-

sented by the Department of Broadband, Communications and the Digital Economy

and the Australian Research Council. This research has been funded in part by the

ARC DP0879710 project.

References

1. Abderrahmane Aggoun and Nicolas Beldiceanu. Extending CHIP in order to solve
complex scheduling and placement problems. Mathematical and Computer Mod-
elling, 17(7):57–73, 1993.

2. D. Baatar, N. Boland, S. Brand, and P. J. Stuckey. Minimum cardinality matrix
decomposition into consecutive-ones matrices: CP and IP approaches. In Proc. of
CPAIOR 2007, pages 1–15, 2007.

3. R. Bellman. Dynamic Programming. Princeton University Press, 1957.
4. G. Chu and P.J. Stuckey. Minimizing the maximum number of open stacks by

customer search. In Proceedings of CP 2009, pages 242–257, 2009.
5. M. Garcia de la Banda and P.J. Stuckey. Dynamic programming to minimize the

maximum number of open stacks. INFORMS JOC, 19(4):607–617, 2007.
6. T. Fahle, S. Schamberger, and M. Sellmann. Symmetry breaking. In Proceedings

of CP 2001, pages 93–107, 2001.
7. A. Fukunaga and R. Korf. Bin completion algorithms for multicontainer packing,

knapsack, and covering problems. J. Artif. Intell. Res. (JAIR), 28:393–429, 2007.
8. I. Gent, T. Kelsey, S. Linton, I. McDonald, I. Miguel, and B. Smith. Conditional

symmetry breaking. In Proceedings of CP 2005, pages 256–270, 2005.
9. I. Gent, K. Petrie, and J-F. Puget. Handbook of Constraint Programming, chapter

Symmetry in Constraint Programming, pages 329–376. Elsevier, 2006.
10. Brahim Hnich, Zeynep Kiziltan, and Toby Walsh. Modelling a balanced academic

curriculum problem. In Proceedings of CP-AI-OR-2002, pages 121–131, 2002.
11. M. Kitching and F. Bacchus. Symmetric component caching. In Proceedings of

IJCAI 2007, pages 118–124, 2007.
12. Michael J. Maher. Herbrand constraint abduction. In 20th IEEE Symposium on

Logic in Computer Science (LICS 2005), pages 397–406. IEEE Computer Society,
2005.

13. R. Marinescu and R. Dechter. And/or branch-and-bound for graphical models. In
Proceedings of IJCAI 2005, pages 224–229, 2005.

Caching in Constraint Programming 37

14. N. Nethercote, P.J. Stuckey, R. Becket, S. Brand, G.J. Duck, and G. Tack. Miniz-
inc: Towards a standard CP modelling language. In Proceedings of CP 2007, pages
529–543, 2007.

15. O. Ohrimenko, P.J. Stuckey, and M. Codish. Propagation via lazy clause genera-
tion. Constraints, 14(3):357–391, 2009.

16. J. Puchinger and P.J. Stuckey. Automating branch-and-bound for dynamic pro-
grams. In Proceedings of PEPM 2008, pages 81–89, 2008.

17. J.-C. Regin. Generalized arc consistency for global cardinality constraint. In 14th
National Conference on Artificial Intelligence (AAAI-96), pages 209–215, 1996.

18. C. Schulte, M. Lagerkvist, and G. Tack. Gecode. http://www.gecode.org/.
19. B. Smith and I. Gent. Constraint modelling challenge report 2005.

http://www.cs.st-andrews.ac.uk/~ipg/challenge/ModelChallenge05.pdf.
20. B.M. Smith. Caching search states in permutation problems. In Proceedings of CP

2005,, pages 637–651, 2005.

3
8

C
h
u
,
G
a
rc
ia

d
e
la

B
a
n
d
a
,
a
n
d
S
tu
ck
ey

Table 1. Experimental Results: Knapsack, MOSP and Blackhole

Instance Vars. Cons. Gecode Chuffed ChuffedL ChuffedC
Time Fails Time Fails Mem Time Fails Mem Time Fails Mem Cache hits Key size

knapsack-20 21 2 0.01 977 0.01 1034 12 0.02 978 12 0.01 354 141 95 54
knapsack-30 31 2 0.38 145183 0.81 145438 12 3.42 145184 23 0.02 2160 142 1305 54
knapsack-40 41 2 17.9 6032500 37.80 6032644 12 168.48 6032500 33 0.04 3038 144 2259 59
knapsack-50 51 2 >900 – >900 – 12 >900 – 41 0.08 6176 148 4810 60
knapsack-60 61 2 >900 – >900 – 12 >900 – 44 0.10 7802 150 5993 60
knapsack-100 101 2 >900 – >900 – 12 >900 – 68 0.40 26581 177 23042 68
knapsack-200 201 2 >900 – >900 – 12 >900 – 125 2.33 110739 297 103505 80
knapsack-300 301 2 >900 – >900 – 12 >900 – 190 6.50 240581 484 230470 92
knapsack-400 401 2 >900 – >900 – 12 >900 – 255 13.77 393911 715 379063 104
knapsack-500 501 2 >900 – >900 – 12 >900 – 291 25.32 595400 1018 576916 116
mosp-30-30-4-1 1021 1861 13.93 34427 2.98 40456 16 0.49 3061 17 0.47 5331 146 225 1650
mosp-30-30-2-1 1021 1861 >900 – >900 – 16 4.23 21612 21 4.26 56012 148 4896 1656
mosp-40-40-10-1 1761 3281 0.93 766 0.15 814 22 0.18 655 22 0.15 703 153 3 2592
mosp-40-40-8-1 1761 3281 2.72 2652 0.40 2820 22 0.35 1464 22 0.27 1590 153 19 2737
mosp-40-40-6-1 1761 3281 40.85 46630 6.30 49904 21 1.58 6327 22 1.26 8632 153 288 2927
mosp-40-40-4-1 1761 3281 >900 – 328.24 2931342 20 10.56 32037 28 7.84 58609 156 3185 2995
mosp-40-40-2-1 1761 3281 >900 – >900 – 20 39.28 91074 46 36.49 268725 173 24040 3046
mosp-50-50-10-1 2701 5101 8.62 3513 0.78 3621 30 0.73 2333 30 0.59 2498 162 21 3976
mosp-50-50-8-1 2701 5101 36.88 16820 3.29 18164 29 1.96 6018 30 1.56 7327 161 125 4118
mosp-50-50-6-1 2701 5101 >900 – 234.47 1564331 27 19.87 41436 41 12.89 71894 165 2815 4190
blackhole-1 104 407 101.79 425470 36.85 590628 14 91.99 111522 216 17.90 203018 264 24665 680
blackhole-2 104 411 59.24 273090 21.19 313178 14 72.28 99595 182 14.12 161808 229 11199 650
blackhole-3 104 434 31.00 132406 25.02 541716 14 58.26 94384 176 17.63 299079 283 16704 598
blackhole-4 104 393 68.32 324063 27.77 500890 14 87.13 118694 193 15.42 196622 249 12886 631
blackhole-5 104 429 411.83 2032279 155.28 2654106 14 146.55 162946 201 66.41 840335 276 95166 672
blackhole-6 104 448 157.30 739404 57.60 882158 14 43.02 75068 150 24.14 255541 206 22362 655
blackhole-7 104 407 84.68 482083 32.43 642540 14 177.17 194795 206 11.05 125747 322 12078 632
blackhole-8 104 380 125.83 628861 47.27 777901 14 112.12 149123 192 27.35 313000 300 40262 646
blackhole-9 104 404 87.93 385227 42.69 724076 14 219.70 264754 205 23.55 295363 388 25839 658
blackhole-10 104 364 211.86 1035902 91.85 1567065 14 391.60 395195 218 38.09 445726 605 48605 640

C
a
ch
in
g
in

C
o
n
stra

in
t
P
ro
g
ra
m
m
in
g

3
9

Table 2. Experimental Results: BACP and Radiation

Instance Vars. Cons. Gecode Chuffed ChuffedL ChuffedC
Time Fails Time Fails Mem Time Fails Mem Time Fails Mem Cache hits Key size

curriculum 8 838 1942 0.01 0 0.01 0 13 0.01 0 13 0.01 0 142 0 626
curriculum 10 942 2214 0.01 1 0.01 1 14 0.01 1 14 0.01 1 142 0 714
curriculum 12 1733 4121 0.01 0 0.01 0 15 0.01 1 16 0.01 0 144 0 1012
bacp-medium-1 1121 2654 29.47 404779 35.21 404779 14 5.95 26764 19 11.59 133456 322 18505 1045
bacp-medium-2 1122 2650 >900 – >900 – 14 0.01 41 15 9.53 120186 298 71575 902
bacp-medium-3 1121 2648 462.64 8330028 383.81 8330028 14 0.03 105 15 2.40 43886 196 40973 951
bacp-medium-4 1119 2644 5.76 101650 4.59 101650 14 0.69 5441 14 0.61 10084 153 3178 869
bacp-medium-5 1119 2641 54.17 896859 56.90 896859 14 0.30 1783 14 2.41 33884 179 12688 867
bacp-hard-1 1121 2655 >900 – >900 – 14 0.01 5 14 55.94 727847 1112 479361 924
bacp-hard-2 1118 2651 >900 – >900 – 14 0.01 8 14 191.78 1518859 2389 669450 1039
radiation-6-9-1 877 942 >900 – >900 – 13 1.39 4290 22 11.37 184133 809 122799 2597
radiation-6-9-2 877 942 >900 – >900 – 13 2.68 7835 22 25.03 431953 1478 285552 2192
radiation-7-8-1 1076 1168 >900 – >900 – 14 0.31 1361 29 0.27 2748 158 393 3782
radiation-7-8-2 1076 1168 188.12 3940867 177.17 7881662 13 0.22 808 29 0.38 4467 163 2647 3030
radiation-7-9-1 1210 1301 312.09 5518905 283.70 11032846 13 0.78 3341 32 1.33 14993 226 7426 3814
radiation-7-9-2 1210 1301 140.44 2316137 110.82 4631769 14 3.13 18207 34 4.43 53683 446 14491 4068
radiation-8-9-1 1597 1718 >900 – >900 – 14 1.89 5232 42 23.92 227154 1831 152720 5686
radiation-8-9-2 1597 1718 >900 – >900 – 14 2.04 6518 43 9.71 107545 702 56586 3908
radiation-8-10-1 1774 1894 9.73 101062 8.95 201703 14 8.63 36612 48 10.54 88663 995 10980 7267
radiation-8-10-2 1774 1894 >900 – >900 – 15 5.75 10322 44 45.52 385431 2114 233590 3987

