
A Complete Solution to the Maximum Density Still
Life ProblemI

Geoffrey Chu, Peter J. Stuckey

NICTA Victoria Laboratory,
Department of Computing and Information Systems,

University of Melbourne, Australia

Abstract

The Maximum Density Still Life Problem (CSPLib prob032) is to find the max-
imum number of live cells that can fit in an n × n region of an infinite board,
so that the board is stable under the rules of Conway’s Game of Life. It is con-

sidered a very difficult problem and has a raw search space of O(2n
2

). Previous
state of the art methods could only solve up to n = 20. We give a powerful
reformulation of the problem into one of minimizing “wastage” instead of max-
imizing the number of live cells. This reformulation allows us to compute very
strong upper bounds on the number of live cells, which dramatically reduces the
search space. It also gives us significant insights into the nature of the prob-
lem. By combining these insights with several powerful techniques: remodeling,
lazy clause generation, bounded dynamic programming, relaxations, and cus-
tom search, we are able to solve the Maximum Density Still Life Problem for
all n. This is possible because the Maximum Density Still Life Problem is in
fact well behaved mathematically for sufficiently large n (around n > 200) and
if such very large instances can be solved, then there exists ways to construct
provably optimal solutions for all n from a finite set of base solutions. Thus we
show that the Maximum Density Still Life Problem has a closed form solution
and does not require exponential time to solve.

1. Introduction

The Game of Life was invented by John Horton Conway and is played on an
infinite board made up of square cells. The game takes place through discrete
time steps. Each cell c in the board is either alive or dead during each time
period. The live/dead state of cell c at time t + 1, denoted as state(c, t + 1),
can be obtained from the number l of live neighbors of c at time t and from

IThis paper includes and significantly extends the earlier work [1]

Preprint submitted to Elsevier November 8, 2011

state(c, t) as follows:

state(c, t + 1) =

l < 2 dead [Death by isolation]
l = 2 state(c, t) [Stable condition]
l = 3 alive [Birth condition]
l > 3 dead [Death by overcrowding]

The board is said to be a still life at time t if it is stable under these rules,
i.e., it is identical at t + 1. For example, an empty board is a still life. Given a
finite n× n region where all cells outside must be dead, the Maximum Density
Still Life Problem is to compute the maximum density of live cells that can
appear in the n× n region in a still life, or equivalently, the maximum number
of live cells that can appear in the n× n region.

The raw search space of the Still Life Problem has size O(2n
2

) and it is
extremely difficult even for small values of n. Previous search methods using
integer programming (IP) [2] and constraint programming (CP) [3] could only
solve up to n = 9, while a CP/IP hybrid method with symmetry breaking [3]
could solve up to n = 15. An attempt using bucket elimination [4] reduced the
time complexity to O(n223n) but increased the space complexity to O(n22n).
This method could solve up to n = 14 before it ran out of memory. A subsequent
improvement that combined bucket elimination with search [5] used less memory
and was able to solve up to n = 20.

In this paper, we combine some mathematical insights into the Still Life
Problem with several powerful search techniques to completely solve the prob-
lem for all n. This is possible because the Still Life Problem becomes well
behaved mathematically for sufficiently large n (around n > 200). The overall
solution plan has four parts: 1) use complete search with a model that propa-
gates strongly to solve the problem for all “small” n (n ≤ 50), 2) use bounded
dynamic programming on a relaxation of the problem to prove a closed form
upper bound on live cells for all medium and large n (n > 50) 3) use a custom
search to look for special form solutions to prove lower bounds on live cells for
medium n (around 50 < n ≤ 200), 4) look for special form periodic solutions
that can be tiled to construct arbitrarily large solutions to prove lower bounds
on live cells for large n (around n > 200). The lower and upper bounds proved
in parts 2, 3 and 4 coincide, thus they are the optimums for those n. Each of
these parts require some mathematical insights into the problem as well as the
appropriate application of search techniques. We give a brief overview of them
here.

Part 1. In Section 2 we give a new insightful proof that the maximum density
of live cells in the infinite case (n = ∞) is 1

2 . The proof is based on counting
“wastage”. Wastage is calculated by looking at each 3 × 3 pattern and seeing
how much space we have “wasted” by not fitting in enough live cells into the
local area. This proof allows us to reformulate the Maximum Density Still Life
Problem into one of minimizing wastage rather than maximizing the number
of live cells. The new model gives very tight lower bounds on wastage that
dramatically increases the pruning strength of the model. In Section 3 we
show how this model, coupled with a simple lookahead, allows a Lazy Clause
Generation [6] solver to solve the problem up to around n = 50 using complete

2

search.

Part 2. In Section 4, we conjecture that for sufficiently large n, all wastage
which is forced to occur by the still life constraints are forced by only the
constraints near the edge of the n × n region. That is, only the boundary
conditions cause suboptimality compared to the optimal density of 1

2 in the
infinite case. If this conjecture holds, then it is possible to get a very good or
optimal lower bound on the wastage (and thus upper bound on live cells) simply
by relaxing the Still Life Problem onto its boundary and solving it, i.e., ignore all
constraints other than then those within the first k rows of the edge of the n×n
region for some small k. This relaxed problem has the interesting property that
the pathwidth of its constraint graph is O(k) instead of the O(n) of the original.
There exists various techniques for solving such low pathwidth problems which
can reduce the complexity from O(2nk) to only O(n22k), e.g., caching [7], nogood
learning [6, 8], dynamic programming [9], variable elimination [4]. In Section 5
we show how to use bounded dynamic programming [10] to solve the boundary
relaxation. For fixed and small k, these relaxed problems can be solved in O(n)
time. Furthermore, due to the translational symmetry in the problem, we can
solve the boundary relaxation for all n using induction by examining a finite
number of base cases. Thus we can derive a closed form expression which gives
a very tight upper bound on the number of live cells.

Part 3. In Section 6, we conjecture that for sufficiently large n, there always
exists optimal solutions of the following form: wastage only exists at the four
4×4 corners of the board, or in the one row beyond the edge of the board. Based
on this conjecture, we search for these special form solutions using a variant of
limited discrepancy search with dynamic relaxations as a lookahead. Such a
search can find optimal solutions for up to n = 200 or so. We know that the
solution is optimal if the number of live cells in the solution coincides with the
upper bound on live cells proved in part 2.

Part 4. The Still Life Problem becomes mathematically well behaved for suf-
ficiently large n. This raises the possibility that optimal solutions can be con-
structed in a systematic way. In Section 7 we find optimal solutions for n ∼ 200
which are periodic, and which satisfy certain other constraints. If such solu-
tions are found, then they can be tiled indefinitely to produce arbitrarily large,
provably optimal solutions.

We conclude the paper in Section 8.

2. Wastage Reformulation

The maximum density of live cells in a still life on an infinite board is known
to be 1

2 [11]. However, this proof is quite complex and only applies to the
infinite case. In this section we provide a much simpler proof that can easily
be extended to the finite case and gives much better insight into the possible
sub-patterns that can occur in an optimal solution.

Theorem 1. The maximum density of live cells in a still life on an infinite
board is 1

2 .

3

Pattern:

? ?

? ?

? ?

??

? ?

??

? ?

??

? ?

??

? ?

??

Beneficiaries {} { S } {S, W} {E, W} {E, W} {}
Wastage 2 1 0 0 0 2

Table 1: Possible patterns around dead cells, showing where they donate their tokens and any
wastage.

Proof. Consider any configuration of the board which is a still life. We show
that the density of live cells in this configuration is ≤ 1

2 . We initially assign 2
tokens to each cell in the board. We will show below that there exists a way to
redistribute these tokens such that: 1) each live cell ends up with ≥ 4 tokens,
and 2) each token either remains at the original cell to which it was assigned, or
is redistributed to one of the 4 orthogonal neighbours. If such a redistribution
exists, then in any n× n region of the infinite board, if L is the number of live
cells, then: 2(n2 + 4n) ≥ 4L. This is because at most 2(n2 + 4n) tokens could
have ended up in the n × n region after redistribution, and each live cell must
have ≥ 4 of them. Rearranging, we get L/n2 ≤ 1

2 + 2/n, where the LHS is the
density of live cells. As n approaches infinity, the RHS approaches 1

2 and the
result follows.

We now describe a redistribution of tokens satisfying the above two prop-
erties, i.e., 1) each live cell ends up with ≥ 4 tokens, and 2) each token either
remains at the original cell or is redistributed to one of the 4 neighbours. The
redistribution occurs in two phases. In the first phase, the tokens of a dead cell
are redistributed only to its orthogonal neighboring live cells, i.e. those that
share an edge with the dead cell. Table 1 shows all possible patterns of orthogo-
nal neighbors (up to symmetries) around a dead cell. Live cells are marked with
a black dot, dead cells are unmarked, and cells whose state is irrelevant for our
purposes are marked with a “?”. Each pattern indicates the beneficiaries, i.e.,
the North, East, South or West neighbors that receive 1 token from the center
dead cell, as well as a number indicating the “wastage”, which we will discuss
later.

As can be seen from Table 1, a dead cell gives 1 token to each of its live
orthogonal neighbors if it has ≤ 2 live orthogonal neighbors, 1 token to the two
opposing live orthogonal neighbors if it has 3, and gives no tokens if it has 0 or
4 orthogonal neighbors. Given this set of redistribution rules, it is sufficient to
examine the 3 bordering cells on each side of a live cell to determine how many
tokens are obtained from the orthogonal neighbor on that side. For example,
the token obtained by the central live cell from its South neighbor is illustrated
in Table 2.

The tokens obtained by a live cell can therefore be computed by simply
adding up the tokens obtained from its four orthogonal neighbors. Since each

4

Pattern:

? ?
??

? ? ?
??

? ? ?
??

?

token received 1 1 0

Table 2: Contributions to the tokens of a live cell from its South neighbor.

Pattern:

Benefactors: {N,S} {N,E,S} {N,E,S,W} {S,W} {N,S,W}
Wastage: 0 1 2 0 1

Pattern:

Benefactors: {S,W} {N,S} {E,S,W} {E,S} {E,W}
Wastage: 0 0 1 0 0

Pattern:

Benefactors: {S,W} {S,W} {S,W} {N,E,W} {S}
Wastage: 0 0 0 0 0

Table 3: Possible patterns around a live cell showing token benefactors and any wastage.

live cell starts off with 2 tokens, it must receive at least 2 extra tokens to end up
with ≥ 4 tokens. Let us look at all possible patterns around a live cell and see
where the cell will receive tokens from. Table 3 shows all possible neighborhoods
of a live cell (up to symmetries). For each pattern, it shows the benefactors,
i.e., the North, East, South or West neighbors that give 1 token to the live cell,
as well as a number indicating the “wastage”, which we will discuss later. As
can be seen from the table, after the first redistribution phase, almost every live
cell already has the required 4 tokens. The only exceptions are the live cells at
the center of the last pattern in Table 3, which only received 1 extra token and
so currently has 3 tokens.

In the second phase of redistribution, we fix up these remaining cases. Note
that due to the still life constraints, the last two patterns in Table 3 always

5

occur together in unique pairs such that the last pattern is one cell down from
the second last. To see this, suppose somewhere, the second last pattern occurs.
The bottom middle live cell in the second last pattern already has three live
neighbours. The still life constraints says that it cannot have more than 3 live
neighbours, thus the next row from the bottom of the second last pattern has to
be three dead cells, which then forms the last pattern one cell down as claimed.
Similarly, suppose somewhere, the last pattern occurs. The top middle live cell
in the last pattern already has three live neighbours. The still life constraints
says that it cannot have more than 3 live neighbours, thus the next row from the
top of the last pattern has to be three dead cells, which then forms the second
last pattern one cell up as claimed.

Also, note that the second last pattern has one extra unneeded token since
it received 3 from its neighbours in the first redistribution phase. Thus, in the
second phase of redistribution, for each live cell at the center of the second last
pattern, we take 1 of the 2 original tokens it had and redistribute it to the live
cell at the bottom middle of the pattern, which must be the center live cell of
a last pattern. After this, all live cells have ≥ 4 tokens, and each token either
remained where it was originally, or was redistributed to one of the orthogonal
neighbours. Thus this redistribution has the two properties we claimed and our
proof is complete. �

The above proof is not only much simpler than that of [11], it also provides
us with good insight into how to compute useful bounds for the case where
the board is finite. In particular, it tells us which 3 × 3 patterns are optimal
and which are suboptimal with respect to maximizing the number of live cells.
Let us define wastage as follows. For a dead cell, let the wastage of the cell
be the number of tokens which was not given to any of the adjacent live cells
during redistribution (shown in Table 1). For a live cell, let the wastage of the
cell be the number of excess tokens above 4 it has after redistribution (shown
in Table 3). Every live cell must end up with ≥ 4 tokens after redistribution.
Thus every 4 tokens which are not used to satisfy the ≥ 4 token requirement
for some live cell reduces the number of live cell in the region by 1. In other
words, the 3× 3 patterns which have 0 wastage are precisely the ones which are
packing in live cells optimally, whereas the ones with > 0 wastage precisely the
ones which are suboptimal and should be avoided.

Since the number of live cells and the wastage is inversely related, we can
reformulate the objective function in the Maximum Density Still Life Problem
as follows. For each cell c, let P (c) be the 3× 3 pattern around that cell. Note
that if c is on the edge of the n× n region, the dead cells beyond the edge are
also included in this pattern. Let q(P) be the wastage for each 3× 3 pattern as
listed in Tables 1 and 3. Define w(c) for each cell c as follows. If c is within the
n × n region, then w(c) = q(P (c)). If c is in the row immediately beyond the
n× n region and shares an edge with it (there are 4n such cells), then w(c) = 1
if the cell in the n×n region with which it shares an edge is dead, and w(c) = 0
otherwise. For all other c, let w(c) = 0. Let W =

∑
w(c) over all cells.

6

Theorem 2. Wastage and live cells are related by

live cells =
n2

2
+ n− W

4
(1)

Proof. We adapt the proof for the infinite board to a finite n× n region. Let
us assign 2 tokens to each cell within the n×n region, 1 token to each of the 4n
cell in the row immediately beyond the edge of the n × n region, and 0 tokens
to all cells beyond. In the first redistribution phase, for each dead cell within
the n× n region, we redistribute its token among its live orthogonal neighbors
exactly as we did before. For each dead cell in the row immediately beyond the
n × n region, we redistribute its 1 token to the cell in the n × n region with
which it shares an edge if it is a live cell and do nothing otherwise.

Once again, the still life constraints force the last two 3 × 3 patterns listed
in Table 3 to occur in unique pairs. Note that it is impossible for them to exist
on the boundary so that one is in the n × n region and the other not, as that
violates the still life constraints. In the second phase of the redistribution, for
each live cell at the center of the second last pattern, we take 1 of the 2 original
tokens it had and redistribute it to the live cell at the bottom middle of the
pattern, which must be the center live cell of a last pattern.

After this, all live cells have ≥ 4 tokens. The undistributed tokens of a dead
cell in the n× n region is exactly given by the wastage count shown in Table 1.
The excess tokens (above 4) of a live cell in the n × n region is exactly given
by the wastage count shown in Table 3. The undistributed tokens of a dead
cell in the row just beyond the n × n region is 1 if the cell in the n × n region
with which it shares an edge is dead, and 0 otherwise. As can be seen, these
wastage numbers correspond exactly with w(c) as defined above. Now, 4 times
the number of live cells will be equal to the total number of tokens minus the
total wastage. Hence we end up with Equation (1). �

We can trivially derive some upper bounds on the number of live cells using

this equation. Clearly W ≥ 0 and, thus, we have: live cells ≤ bn
2

2 + nc. Also,
by the still life constraints, there cannot be three consecutive live cells along the
edge of the n × n region. Hence, there is always at least 1 wastage per 3 cells

along the edge and we can improve the bound to: live cells ≤ bn
2

2 + n− b 13ncc.
While this bound is very close to the optimal value for small n, it differs from
the true optimum by O(n) and will diverge from the optimum for large n.

3. Solving Small n with Complete Search

The power of a branch and bound algorithm is hugely dependent on how
strong a bound we can prove on the objective at each node in the search tree.
The stronger the bound we can prove, the earlier we can prune off failed subtrees.
The naive Still Life model based on counting the number of live cells is very
weak, because the upper bound on the number of live cells that propagation can
prove is usually very weak and search generally does not fail until the board is
at least half filled.

7

Remodeling the Still Life Problem in terms of minimizing wastage instead
of maximizing live cells allows us to propagate much stronger bounds on the
objective, as it is easy to tell how much space has already been wasted in
the parts of the board that are labeled. Let sl waste be a width 10 table
which specifies the wastage value of each 3 × 3 pattern satisfying the still life
constraints. For example, the entries corresponding to the first and second
patterns in Table 3 would be (0, 1, 0, 0, 1, 0, 0, 1, 0, 0) and (0, 1, 0, 0, 1, 0, 1, 0, 0, 1).
A single table constraint using sl waste will be sufficient to enforce the still life
constraints and set the value of the wastage variable. We propose the following
simple MiniZinc [12] model:

int: n; % instance parameter

array [0..n+1,0..n+1] of var 0..1: x; % cell live/dead status

array [0..n+1,0..n+1] of var 0..2: w; % cell wastage

var 0..2*n*n+4*n: total_wastage;

var 0..n*n: live_cells;

% still life and wastage constraints in n by n region

constraint forall (i,j in 1..n) (

table(sl_waste, [x[i-1,j-1], x[i,j-1], x[i+1,j-1], x[i-1,j],

x[i,j], x[i+1,j], x[i-1,j+1], x[i,j+1], x[i+1,j+1], w[i,j]]));

% boundary conditions

constraint forall (i in 0..n+1) (

x[i,0] = 0 /\ x[0,i] = 0 /\ x[i,n+1] = 0 /\ x[n+1,i] = 0);

constraint forall (i in 1..n-2) (

sum (j in i..i+2) (x[1,j]) <= 2 /\

sum (j in i..i+2) (x[n,j]) <= 2 /\

sum (j in i..i+2) (x[j,1]) <= 2 /\

sum (j in i..i+2) (x[j,n]) <= 2

);

% wastage constraints for boundary

constraint forall (i in 1..n) (w[i,0] = 1 - x[i,1]);

constraint forall (i in 1..n) (w[0,i] = 1 - x[1,i]);

constraint forall (i in 1..n) (w[i,n+1] = 1 - x[i,n]);

constraint forall (i in 1..n) (w[n+1,i] = 1 - x[n,i]);

% objective function

constraint total_wastage = sum (i,j in 0..n+1) (w[i,j]);

constraint live_cells = (2*n*n+4*n - total_wastage)/4;

solve maximize live_cells;

This basic model is capable of counting the wastage in the labeled parts of

8

the board and using it to enforce an upper bound on the number of live cells.
However, it is also important to get a good lower bound on the wastage that
must occur in the parts of the board which are not yet labeled. The simplest
bound we can get is that there must be at least 1 wastage per 3 cells along any
unlabeled edge. We can implement this by adding a few lines and modifying
the constraint on total wastage:

% wastage per 3 edge cells along edge i

array [1..4,1..n/3] of var 1..3: ew;

constraint forall (i in 1..n/3) (

ew[1,i] = sum (j in 3*i-2..3*i) (w[0,j]) /\

ew[2,i] = sum (j in 3*i-2..3*i) (w[j,0]) /\

ew[3,i] = sum (j in 3*i-2..3*i) (w[n+1,j]) /\

ew[4,i] = sum (j in 3*i-2..3*i) (w[j,n+1])

);

constraint total_wastage = sum (i,j in 1..n) (w[i,j]) +

sum (i in 1..4, j in 1.. n/3) (ew[i,j]) +

sum (i in n/3*3+1..n) (w[0,i] + w[i,0] + w[n+1,i] + w[i,n+1]);

In this modified model, the wastage of groups of three consecutive edge cells
are summed together into variables ew[i,j] before being added to the objective.
Since each ew[i,j] variable has a lower bound of 1, this facilitates the “at least
1 wastage per 3 edge cells” lookahead rule. However, this model is still a bit too
weak for the bigger instances, and we use a more advanced lookahead based on
relaxations. We defer detailed discussion of this to Section 4.

The search strategy is also important. We use a labeling strategy where we
label from the boundary of the board inwards. We first label the first 3 rows
of each edge and each 8 × 8 corner. Thereafter, we label one row in at a time
in concentric squares. The reason for this labeling strategy will become much
clearer in view of the insights discussed in Section 4. Basically, most wastage
that is forced to occur by the constraints occurs along the boundary of the n×n
region, and thus labeling those cells first increases the bound on the objective
the quickest, allowing us to detect suboptimal assignments earlier.

Finally, we must note that a certain feature of the solver we used is critical
for solving this problem effectively. One major problem with any search strategy
for the Still Life problem is that it is possible to make a “mistake” in labeling
that makes the subtree unsatisfiable, but propagation may not be able to notice
this until many decision levels later. A normal constraint programming solver
will take an exponential amount of nodes to backtrack to this mistake and fix it.
The solver we use however, is the Lazy Clause Generation [6] solver Chuffed,
which supports conflict analysis and backjumping. Thus Chuffed can analyze
conflicts and immediately backjump to the mistake and fix it without having
to waste an exponential amount of time searching in the failed subtree. If the
conflict analysis is turned off so that Chuffed behaves as a normal CP solver,

9

n opt. time n opt. time n opt. time
21 232 7.0 31 497 121.3 41 864 89.2
22 253 82.4 32 531 86.9 42 907 25696
23 276 5.1 33 563 54.2 43 949 402.3
24 302 35.4 34 598 2.0 44 993 103.3
25 326 0.4 35 633 155.2 45 1039 218.4
26 353 116.3 36 668 165.1 46 1085 403.2
27 379 98.9 37 706 161.2 47 1132 200.2
28 407 48.8 38 744 193.0 48 1181 65.3
29 437 76.6 39 782 312.2 49 1229 456.9
30 467 240.8 40 824 17.6 50 1280 585.1

Table 4: Optimum number of live cells in the Maximum Density Still Life Problem found by
complete search and the time in seconds to find and prove them.

Figure 1: Optimal solutions for n = 21 and n = 22.

then the optimal solution cannot be found for any 21 < n ≤ 30 within a 1 hour
timeout (we did not try larger n where this presumably continues to hold).

In Table 4, we show the results for 21 ≤ n ≤ 50 (n ≤ 20 have previously
been solved). Clearly, we are already able to solve instances which are much
larger than the previous state of the art methods. Optimal solutions for n = 21
and n = 22 are shown in Figure 1. We can solve instances somewhat larger than
n = 50 using complete search, but the run time grows very quickly. Instead, we
use better methods to tackle larger n in the next few sections.

4. Upper Bounds for Large n

To solve the problem for larger n, we need more mathematical insight into
the problem. We make the following conjecture:

10

Conjecture 1. For sufficiently large n, all “forced” wastage occuring in an
optimal soluton is caused by the still life constraints within k rows from the edge
of the n× n region, where k is some small, fixed constant. �

By “forced” wastage, we mean wastage that is unavoidable due to the con-
straints of the problem, as opposed to “unforced” wastage that may occur simply
because we picked a suboptimal labelling of the board. In the later sections of
this paper, we will prove experimentally that Conjecture 1 does indeed hold,
but this requires solving the Still Life problem for all n. For now, we treat it
as a conjecture. Conjecture 1 is inspired by the following two facts. Firstly, in
the optimal solutions for n ≤ 20 that were found by previous methods, it was
often the case that wastage only appeared in the corners or within the first 3
rows from the edge. Secondly, we already know that there exist wastage free
labellings in the infinite case, thus there is nothing inherent in the still life con-
straints which force wastage. Instead, it would appear that it is the boundary
conditions in the finite case which is forcing the extra wastage to occur.

If the conjecture holds, then it should be possible to relax the Still Life
problem onto just the boundary variables (variables within k rows of the edge)
and still derive the same wastage lower bound. This has the advantage that: 1)
such a relaxed problem has far fewer variables (O(nk) instead of O(n2)) and thus
a much smaller search space, 2) such a relaxed problem has low pathwidth (O(k)
instead of O(n)) and there exist various techniques that can take advantage of
this to reduce the search space even further to O(n22k), e.g., caching, nogood
learning, dynamic programming, variable elimination.

It is well known that any lower bound we prove for the objective function
in the relaxed problem is also a valid lower bound for the original problem.
However, this bound may or may not be the optimal bound for the original
problem. If we relaxed the problem too much, then the bound we derive from
the relaxed problem will be weaker than the optimal bound for the original
problem. Now, if Conjecture 1 holds, then there should exist some small k such
that the bound from relaxing the problem onto a width k boundary should still
be optimal for the original problem. We need to find this k.

The complexity of solving the relaxation is O(n22k), so choosing k too large
will make the problem intractable. We wish to find the smallest k such that
the relaxation is sufficient to prove the optimal bounds for the original problem.
We performed a series of experiments to try to guess what this minimal k is.
We define the edge still life problem edge(n, k) in MiniZinc as follows:

int: n, k; % instance parameters

array [0..n+1,0..k+1] of var 0..1: x; % cell live/dead status

array [1..n,0..k] of var 0..2: w; % cell wastage

% still life and wastage constraints in n by k region

constraint forall (i in 1..n, j in 1..k) (

table(wastage, [x[i-1,j-1], x[i,j-1], x[i+1,j-1], x[i-1,j],

x[i,j], x[i+1,j], x[i-1,j+1], x[i,j+1], x[i+1,j+1], w[i,j]]));

11

k r(k) (exact) r(k) (decimal) castles blocks
1-2 1/3 0.333 0 1
3-11 4/11 0.364 1 1
12 7/19 0.368 2 1
≥ 13 10/27 0.370 3 1

Table 5: Ratio of wastage to edge cells in an optimal edge for different edge width, and number
of patterns that appear in the first three rows.

(a) (b)

Figure 2: Optimal edge patterns for a width 2 and width 3 boundary relaxation. Wastage is
highlighted with a star.

% boundary conditions

constraint forall (i in 0..n+1) (x[i,0] = 0);

constraint forall (i in 1..n-2) (sum (j in i..i+2)(x[1,j]) <= 2);

% wastage constraints for boundary

constraint forall (i in 1..n) (w[i,0] = 1 - x[i,1]);

% objective function

solve minimize sum (i in 1..n, j in 0..k) (w[i,j]);

Let m(n, k) be the minimum wastage for problem edge(n, k). For each k, we
calculate the edge wastage ratio r(k) as: r(k) = limn→∞ m(n, k)/n. These limits
exist and can be calculated using a combination of dynamic programming and
mathematical induction in a finite amount of time. This is because the optimal
edge patterns all become periodic for sufficiently large n for any k. We discuss
this in more detail below. See Table 5 for the values of r(k) and Figure 2 for a
sample of optimal edge patterns.

First, we note that r(1) = r(2) = 1/3 = 0.333 gives us the trivial edge
wastage bound discussed in Section 2. The optimal edge pattern for k = 2 is
unique and periodic and is shown in Figure 2(a). However, this optimal width
2 edge cannot be extended to a width 3 edge without introducing additional
wastage. For a width 3 edge, r(3) = 4/11 = 0.364 and the optimal edge pattern
is once again unique and periodic and is shown in Figure 2(b). We will refer
to the pattern shown in the first 8 columns of Figure 2(b) the “castle” pattern
and the next 3 columns of Figure 2(b) the “block” pattern. The castle pattern
has length 8 with 3 wastage and the block pattern has length 3 with 1 wastage.
As k increases, r(k) continues to increase slightly. At k = 13, we have r(13) =
10/27 = 0.370. The optimal edge is no longer unique or periodic, however, all
of them are identical within the first 3 rows up to translational symmetry, and

12

are composed of three castle patterns followed by a block pattern, which gives
3∗3+1 = 10 wastage per 3∗8+3 = 27 cells. All of the optimal edge patterns only
have wastage in the row beyond the edge, which is an interesting fact to note.
Beyond, k = 13, the value of r(k) plateaus, and we stopped our experimentation
at k = 20. We show later in Section 7 that there exists arbitrarily thick edge
patterns which achieve exactly an edge wastage ratio of r(13) = 10/27. So in
fact, r(k) = 10/27 for all k ≥ 13.

What the edge wastage ratio results show is that the still life constraints up
to a depth of 13 are capable of forcing wastage to occur. We should not relax
these constraints away, as that will degrade the bound that we can prove using
the relaxed problem. Thus we need to look at an edge relaxation of at least
width 13. However, the fact that r(k) plateaus after k = 13 also suggests that
width 13 is sufficient, i.e. the still life constraints beyond a depth of 13 can
have no effect on forcing edge wastage, and we can relax them away without
changing the bound. This turns out to be correct, as our results later show.

5. Solving the Boundary Relaxation

We wish to solve a relaxed form of the Still Life problem where we only
consider a width 13 boundary. The technique we choose to use is bounded
dynamic programming [10]. We discuss the choice of this technique and show
how it can be applied. First of all, it is necessary to choose one of the methods
that can exploit the low pathwidth of the relaxed problem. Of these, dynamic
programming is by far the easiest to implement. However, we use a variant of
dynamic programming called bounded dynamic programming [10]. For some
kinds of dynamic programs, instead of calculating the exact value for every
subproblem, it is actually sufficient to prove a bound on the value of many of
the subproblems.

Example 1. Consider the recursion:

a(n) = min{a(n− 1) + 1, b(n− 1) + 2}
b(n) = min{a(n− 1) + 3, b(n− 1) + 1}

Suppose we want to calculate the value of a(n). Suppose we have already
calculated that a(n−1) = 6. Now, we need to find some information on b(n−1).
However, we note that one of the terms in the min: a(n− 1) + 1 = 7, is already
known, therefore if it is known that b(n−1) ≥ 5, then its exact value is irrelevant
as far as the value of a(n) is concerned. We only want to know: is b(n− 1) ≥ 5,
or if it is < 5, then what is its exact value? Thus we only wish to answer a
bounded query on the value of b(n − 1), where we do not care what its exact
value is if it is above or below a certain range.

On certain types of problems, bounded dynamic programming can be ex-
ponentially faster than normal dynamic programming, as there are a lot of
subproblems whose exact values are irrelevant and all we need to do is to prove
a certain bound on their value. Proving a weak bound is often exponentially
faster than finding the exact value. In the case of the Still Life problem, there

13

are many, many ways to label the cells, and most of them lead to large amounts
of wastage. Therefore, we often just need to prove that a subproblem is suf-
ficiently bad (has at least a certain amount of wastage), rather than calculate
exactly how bad it is. Bounded dynamic programming is a rigorous way to do
this.

We illustrate how dynamic programming can be applied with a simplified
example. Consider a more constrained version of edge(n, k) where we have addi-
tional boundary conditions which fix the first 2 and last 2 columns. We denote
this problem by edge(n, k, s1, s2, e1, e2) where the model has the additional lines:

% instance parameters

int: s1, s2, e1, e2;

% additional boundary conditions

constraint s1 = sum (i in 0..k-1) (x[1,i] * 2^i);

constraint s2 = sum (i in 0..k-1) (x[2,i] * 2^i);

constraint e1 = sum (i in 0..k-1) (x[n,i] * 2^i);

constraint e2 = sum (i in 0..k-1) (x[n-1,i] * 2^i);

As can be seen, we are denoting the value of a column of k cells by a single
number in {0, . . . , 2k − 1}, where the value of the cells are being interpreted
as the binary digits of this number. We define the Boolean function s(a, b, c)
where a, b, c ∈ {0, . . . , 2k − 1} as true if three consecutive columns labeled as a,
b, and c in that order do not violate the still life constraints, and false otherwise.
We define the integer function w(a, b, c) where a, b, c ∈ {0, . . . , 2k − 1} as the
wastage in the central column b if three consecutive columns are labeled as a,
b, and c in that order.

Let m(n, k, s1, s2, e1, e2) be the minimum wastage for problem edge(n, k, s1, s2,
e1, e2). Then the following recursive formulas hold: ∀n ≥ 3, s1, s2, e1, e2 ∈
{0, . . . , 2k − 1},

m(n, k, s1, s2, e1, e2) = min { m(n− 1, k, s1, s2, e2, e3) + w(e1, e2, e3)

| e3 ∈ {0, . . . , 2k − 1}, s(e1, e2, e3) }.

Let’s consider why. Firstly, consider any solution of edge(n, k, s1, s2, e1, e2).
We must have fixed the (n − 3)th column to something. Let it be denoted by
e3. To satisfy the still life constraints, we must have s(e1, e2, e3) be true. For
each such solution, w(e1, e2, e3) gives us the wastage in the n− 2th column. If
we project this solution onto the first n − 1 columns, then we clearly have a
solution for edge(n− 1, k, s1, s2, e2, e3). Hence the minimum wastage among all
such solutions is m(n − 1, k, s1, s2, e2, e3) + w(e1, e2, e3). Taking the minimum
of these over all possible e3 gives m(n, k, s1, s2, e1, e2), and hence the recursive
formula.

Such a set of recursive formulas can be solved using dynamic programming
in O(n). We can use precalculated values of m(n, k, s1, s2, e1, e2) as a wastage
lookahead in the complete search method described in Section 3. Given a par-
tially filled edge where the last two columns are given by s1 and s2, we can look
up mini,jm(n, k, s1, s2, i, j) to get a lower bound on the wastage in the remain-
ing cells of the edge. This will give a bound of approximately 10/27 wastage per

14

remaining edge cell instead of the trivial 1/3 wastage per remaining edge cell
we had before. Although the difference is small, it is quite crucial for solving
the larger n with complete search.

Now, it turns out that for any k, for sufficiently large n, the values of
m(n, k, s1, s2, e1, e2) become periodic. This is formalized by the following theo-
rem.

Theorem 3. If for some constants M , p, q, we have: ∀s1, s2, e1, e2, m(M +
p, k, s1, s2, e1, e2) = m(M,k, s1, s2, e1, e2)+q, then ∀n ≥M,∀s1, s2, e1, e2,m(n+
p, k, s1, s2, e1, e2) = m(n, k, s1, s2, e1, e2) + q. That is, once n ≥ M , the values
of m simply increase by q every p cells.

Proof. The proof is by induction. The base case of n = M is true by assump-
tion. Suppose it is true for n = t. Consider n = t + 1. We have:

m(t + 1 + p, k, s1, s2, e1, e2)

= min{m(t + p, k, s1, s2, e2, e3) + w(e1, e2, e3)|e3 ∈ {0, . . . , 2k − 1}, s(e1, e2, e3)}
= q + min{m(t, k, s1, s2, e2, e3) + w(e1, e2, e3)|e3 ∈ {0, . . . , 2k − 1}, s(e1, e2, e3)}
= q + m(t + 1, k, s1, s2, e1, e2) �

Theorem 3 tells us that if we ever reach an n where the m values become
periodic, then it remains periodic for all larger n. This always happens due to
the translational symmetry in the Still Life Problem. For k = 13, the values
typically become periodic by the time we reach n = 200. Once this happens, we
can derive closed form equations for m(n, k, s1, s2, e1, e2) for all larger n. Thus,
we can calculate the values of m(n, k, s1, s2, e1, e2) for all n using a constant
number of mathematical operations.

We now describe the full relaxed problem which we use to derive our bounds.
We begin with the basic model described in Section 3. We relax the problem in
two steps. In the first step, we eliminate the depth 14+ cells to leave a width 13
boundary. That is, for each x[i, j] where 13 < i, j ≤ n− 13, we eliminate x[i, j]
from the problem by existentially quantifying it in every constraint in which
it appears. Existential quantification of a variable in a constraint weakens the
constraint, so this is a valid relaxation. In the second step, we cut a “slit” in this
width 13 boundary in order to reduce the pathwidth further. The “slit” goes
from the 1st to 13th columns between the 13th and 14th row. For each constraint
c which includes variables from both sides of the slit, i.e., both variables with
i ≤ 13 and variables with i ≥ 14, 1 ≤ j ≤ 13, we create two copies of c. In
one copy, we existentially quantify all variables below the slit. In the other, we
existentially quantify all variables above the slit. Once again, this is a valid
relaxation. The resulting relaxed problem is shown graphically in Figure 3.

The reason for the first part of the relaxation is to get rid of the variables
and constraints which we conjecture are irrelevant for forcing the lower bound.
The reason for the second part of the relaxation is to lower the pathwidth so
that the problem becomes tractable. Recall that the complexity of solving a
problem with pathwidth w is O(2w). Without the “slit”, the pathwidth of the

15

Figure 3: Boundary relaxation for calculating wastage lower bounds.

relaxed problem is around 5 ∗ 13 = 65, which is too high to be solved. With the
slit, this drops to around 3 ∗ 13 = 39, which is solvable.

Once these relaxation are performed, we can simplify the objective function
of the resulting relaxed problem. Consider w[i, j] where 14 < i, j ≤ n − 14.
These variables occur in exactly one table constraint (involving the 3x3 pattern
centered at that coordinate), and as a positive term in the objective function.
For such w[i, j] variables, since all 9 of the x[i, j] variables in the corresponding
table constraint has been existentially quantified, w[i, j] is free to take any value
allowed by the table constraint. In particular, in any optimal solution, it would
be set to its lower bound of 0. Thus we can simplify the objective function of
the relaxed problem by removing all such w[i, j] terms. Similarly, if two out of
three columns of the x[i, j] in a 3x3 pattern are existentially quantified, then
w[i, j] can always be set to 0. So we can also remove x[i, j] where i = 14 or
n − 13 and 14 < j ≤ n − 14, or where j = 14 or n − 13 and 14 < i ≤ n − 14.
The resulting problem is of the same form as the simplified problem we showed
above (except it has corners and multiple edges). It is easy to see that the
same kind of recursive formulation into a dynamic program is possible. Thus
the relaxed problem can be completely solved for all n using bounded dynamic
programming very efficiently.

Table 6 shows the wastage lower bounds and the corresponding live cell
upper bounds we derive for 21 ≤ n ≤ 56. We note several things. Firstly, all the
bounds calculated by bounded dynamic programming on the relaxed problem
are consistent with the optimal live cell values calculated by complete search in
Section 3. Secondly, the bounds on the relaxed problem are often the optimal
bounds for the original problem (the only exceptions being n = 24, 26, 28, 38).
This is consistent with Conjecture 1, which stated that for sufficiently large
n, the relaxed problem should have the same bound as the original. It would
appear that the “sufficiently large n” in the conjecture is n > 38. Of course,
to fully prove Conjecture 1, we must prove it for all n > 38. We do this in
Section 7.

For n ≥ 61, the wastage lower bounds becomes periodic and is given by the
equations in Figure 4. The corresponding live cell upper bound is given by the

16

n waste lb. live ub. n waste lb. live ub. n waste lb. live ub.
20 40 210 34 56 598 48 76 1181
21 36 232 35 59 632 49 80 1229
22 42 253 36 62 668 50 80 1280
23 43 276 37 60 706 51 80 1331
24 40 302* 38 64 744* 52 85 1382
25 46 326 39 67 782 53 84 1436
26 44 353* 40 64 824 54 87 1490
27 48 379 41 68 864 55 89 1545
28 51 407* 42 68 907 56 88 1602
29 48 437 43 71 949 57 91 1658
30 53 466 44 73 993 58 92 1717
31 55 497 45 72 1039 59 92 1776
32 53 530 46 76 1085 60 97 1835
33 56 563 47 78 1132 61 96 1897

Table 6: Lower bounds on wastage and corresponding upper bounds on live cells as calculated
by bounded dynamic programming on a problem relaxation. Instances where the bound on
the relaxed problem differed from the original problem are indicated with an asterisk.

wastage ≥

b40/27 ∗ n + 5c, n ≡ 5, 13, 21, 24, 32, 35, 40, 43, 48, 51 mod 54
b40/27 ∗ n + 6c, n ≡ 0, 2, 7, 8, 10, 14, 15, 16, 18, 22, 23, 26,

29, 30, 34, 37, 38, 42, 45, 46, 50, 53 mod 54
b40/27 ∗ n + 7c, n ≡ 1, 3, 4, 9, 11, 12, 17, 19, 20, 25, 27, 28,

31, 36, 39, 41, 44, 47, 49, 52 mod 54
b40/27 ∗ n + 8c, n ≡ 6, 33 mod 54

Figure 4: Closed form equations for the wastage lower bound for n ≥ 61.

equations in Figure 5. We shall see in the next two sections that these live cell
upper bounds are in fact achievable, so the equations in Figure 5 actually give
us the optimal number of live cells for n ≥ 61.

6. Lower Bounds for Large n

Lower bounds on live cells can be proved by finding actual solutions to the
problem. If the number of live cells in the solution found coincides with the
upper bound proved in Section 5, then we know that it is an optimal solution
and we have solved the problem for that n. However, finding optimal solutions is
very hard, because the default search space of the Still Life Problem is extremely
large. The model given in Section 3 was good enough for us to solve up to

livecells ≤

bn2/2 + 17/27 ∗ n− 2c n ≡ 0, 1, 3, 8, 9, 11, 16, 17, 19, 25, 27,
31, 33, 39, 41, 47, 49 mod 54

bn2/2 + 17/27 ∗ n− 1c n ≡ 2, 4, 5, 6, 7, 10, 12, 13, 14, 15, 18,
20, 21, 22, 23, 24, 26, 28, 29, 30,
32, 34, 35, 36, 37, 38, 40, 42, 43,
44, 45, 46, 48, 50, 51, 52, 53 mod 54

Figure 5: Closed form equations for the live cell upper bound for n ≥ 61.

17

Figure 6: The two best ways to fill a corner (up to symmetry). Wastage is highlighted with
a star. Note that there are two units of wastage in the cell in the 4th column and 4th row in
the second pattern.

around n = 50 using complete search. However, to go beyond that size, we need
something that reduces our search space much further. We make the following
conjecture:

Conjecture 2. For sufficiently large n, there always exists optimal solutions of
the following form: wastage only exists at the four 4 × 4 corners of the board,
or in the one row beyond the edge of the board. �

Conjecture 2 is supported by the experiments described in Section 4. We
reasoned that for sufficiently large n, the edges should follow one of the optimal
edge patterns, and we know that none of them have any wastage other than in
the one row beyond the edge of the board. Similarly, there are only two ways to
label a corner with minimum wastage (see Figure 6) and both of them only have
wastage within the 4 × 4 corners. And finally, the center of the board should
be wastage free, because by Conjecture 1, the constraints in the center of the
board do not force any wastage, and any wastage there would simply make the
solution suboptimal.

Assuming that Conjecture 2 holds, we can look only for solutions of this
special form. Note that searching only for solutions of this special form gives
an incomplete search on the Still Life Problem. However, incomplete search is
perfectly sufficient for proving lower bounds on the number of live cells, since
the solution itself is the proof. To solve for all n, we must be able to find an
optimal solution for every single n. We use two further techniques to reduce the
search space: 1) dynamic relaxations as lookahead, and 2) a customized limited
discrepancy search.

In Section 4, we described how we can perform a relaxation onto the bound-
ary of the board in order to derive a lower bound on the wastage. We can do
the same thing during search. Our search strategy is to label the board 8 rows
at a time from top to bottom. Conjecture 1 tells us that for sufficiently large n,
wastage is only forced by the boundary constraints. In a subproblem however,
the boundary also includes the values of the cells we have labeled. If we relax
the subproblem onto the boundary of the unlabeled region, we should be able
to derive a very strong lower bound on the wastage in the unlabeled region of
the board. Thus, at each search node, we relax the remaining problem onto:

18

13

8

8

13

13

Previously filled

Relaxation

Figure 7: Dynamic relaxation lookahead for still life search.

the unlabeled parts of the width 13 boundary, and the 8 unlabeled rows below
the last row we labeled (see Figure 7).

We note several things. Firstly, the set of variables involved in the relaxation
is different at each search depth. Secondly, the boundary conditions of the
relaxation are different even for two nodes at the same search depth if their
cells in the last two rows are labeled differently. Thus each of these relaxed
subproblems are different and have to be solved separately to derive the wastage
lower bound. Now, as before, we can solve each of these in O(n) using dynamic
programming. However, we can do better by noting that the relaxed problem
at any node is very similar to the relaxed problem at its parent node, differing
only by one column of 8 variables. By appropriately caching the solutions to
the relaxed subproblem at the parent node, we can solve the relaxed problem
at each node in O(1). The cost is still non-trivial, however, the wastage lower
bounds derived by these relaxations are very strong and provide a large amount
of pruning, so it is well worth it.

One might wonder why we use a different search order than that described
in Section 3, where we label the board from outside in rather than from top
to bottom. This is because the relaxation lookahead already tells us how much
wastage there has to be in the unlabeled parts of the boundary, thus it is unnec-
essary to actually label it to force the wastage lower bound up. It is better not
to label the boundary yet, as there are exponentially many ways to do it, but
most of them are probably bad. It is better to fix the variables which are close
to those variables already fixed so that we can detect inconsistencies earlier,
hence the top to bottom strategy.

We also use the relaxation lookahead as a branching heuristic. When faced
with the choice of labeling the next column of 8 variables as any one of the
256 possible values, our relaxation lookahead is able to tell us how much the
wastage lower bound will increase by, given each of those choices. We order the
choices according to how low the wastage lower bound given by the lookahead
is. This is far superior to a naive, greedy branching heuristic which orders the
choices based on the wastage in only the labeled part of the board, as it is often
the case that greedily minimizing wastage locally will cause much more wastage

19

further on. Our lookahead is capable of seeing the wastage caused further on
and will not pick such locally optimal but globally suboptimal choices.

We use a modified version of limited discrepancy search [13]. Firstly, rather
than defining a discrepancy as any choice which is not the first choice given
by the branching heuristic, we define it as the amount that the wastage lower
bound given by the relaxation lookahead would increase by if we made this
decision. This means that there can be ties, i.e. multiple choices which are
all equally good according to the lookahead. In such cases, we randomly tie-
break between them. Secondly, we add randomized restarts to the search. At
randomized points in time, the search will backtrack by a random number of
rows. This is important, because despite our lookahead, there still exist vast
subtrees where no optimal solutions can be found, and a complete search will
take an exponential number of nodes to backtrack out of them. The combination
of random restarts, plus random tie-breaking between equally good choices, is
very effective. Using these techniques, we are able to find optimal solutions to
instances as large as n = 200 in several hours on average. An optimal solution
for n = 100 is shown in Figure 8.

7. Constructing Optimal Solutions for Arbitrarily Large n

Through our experimentation and analysis, it became clear that the Still
Life Problem is actually fairly well behaved for sufficiently large n. We have
the following properties: 1) the wastage lower bound is periodic in n, 2) there
exists optimal periodic edge patterns which achieves this wastage lower bound,
3) it is “easy” to fill in the center of the board without any wastage. Combining
these facts together, it seems possible that with a bit of work, we can construct
closed form optimal solutions for arbitrarily large n.

In Section 5, we already worked out wastage lower bounds for all n. If we
can construct solutions that achieve these wastage lower bounds for all n, then
we are done. This can be done by solving instances of the Still Life Problem
under additional periodic constraints, so that parts of the solution can be tiled
indefinitely to produce arbitrarily large optimal solutions (see Figure 9). The
initial solution is broken up by two horizontal and two vertical cuts into: 4 corner
pieces, 4 edge pieces, and 1 center piece. The edge pieces and center pieces must
satisfy periodic constraints so that they can be tiled and still satisfy the still
life constraints. Furthermore, there are strong restrictions on the amount of
wastage that can occur in these tiled pieces. We know that for sufficiently large
n, the wastage lower bounds from Section 4 has a wastage to edge cell ratio
of exactly 10/27. Thus to hit this lower bound, our 4 periodic edge pieces
must have precisely this wastage ratio. Also, the periodic center piece must be
completely wastage free.

Now, for the periodic edge pieces to have precisely a wastage to edge cell
ratio of 10/27, their period must be a multiple of 27. Unfortunately, if the center
piece is 27×27, then it is impossible for it to be wastage free, since it has an odd
number of cells. Thus the minimum period we can use is 2 ∗ 27 = 54. The aim
then is to solve an instance with n = n′ under additional period 54 constraints
and wastage constraints on the edge and center pieces. If an optimal solution
can be found, then it can be tiled to create optimal solutions for n = n′ + k ∗ 54

20

Figure 8: Optimal solution for n = 100.

for any k ∈ N. Clearly, to solve for all n, this has to be done for each value of
n′ mod 54, so there are 54 cases. We found that n′ had to be around 150 or
higher before the Still Life problem became sufficiently well behaved that the
periodic version was solvable. So we had to solve 54 instances of size 150+, one
for each modulus class mod 54, under the additional periodic constraints and
wastage constraints.

Rather than directly solving such problems from scratch, we decided to uti-
lize the solutions that we had already found, and try to extend them into periodic
solutions by splicing in a periodic section. We first take an optimal solution for
n = n′ − 54. We cut it into two pieces vertically at some point. We then move
the two pieces apart by 54 cells and try to fill up the gap with a periodic 54 sec-
tion which satisfies the additional wastage constraints. This periodic 54 section
will end up being two of the periodic edge pieces. Secondly, we take this new
solution and cut it horizontally at some point. We then move the two pieces
apart by 54 cells and do the same again. This new section will end up being
the other two periodic edge pieces plus the center piece. Now we end up with

21

Figure 9: A periodic optimal solution where the center sections can be tiled indefinitely to
produce optimal solutions for n = 100 + k ∗ 54.

an optimal solution for n = n′ which satisfies the periodic constraints and the
wastage constraints. Here is a MiniZinc model for the first step. The second
step is analogous.

int: n; % instance parameter

% four columns covering the splice point from sol of n = n’ - 54

array [1..4,1..n] of 0..1: s;

array [1..54,0..n+1] of var 0..1: x; % cell live/dead status

% still life and wastage constraints in 54 by n region

constraint forall (i in 2..53, j in 1..n) (

22

table(sl_waste, [x[i-1,j-1], x[i,j-1], x[i+1,j-1], x[i-1,j],

x[i,j], x[i+1,j], x[i-1,j+1], x[i,j+1], x[i+1,j+1], 0]));

% boundary conditions

constraint forall (i in 0..n+1) (

x[i,0] = 0 /\ x[i,n+1] = 0);

constraint forall (i in 1..52) (

sum (j in i..i+2) (x[j,1]) <= 2 /\

sum (j in i..i+2) (x[j,n]) <= 2

);

constraint forall (i in 1..n) (

x[1,i] = s[3,i] /\ x[2,i] = s[4,i] /\

x[n-1,i] = s[1,i] /\ x[n,i] = s[2,i]);

% wastage constraints for boundary

constraint sum (i in 1..54) (x[i,1]) = 34;

constraint sum (i in 1..54) (x[i,n]) = 34;

solve maximize satisfy;

This splicing does not always succeed as the constraints are very, very strong.
Whether it is satisfiable or not depends on the initial solution and the point at
which we make the cut. In particular, the cuts must be made at a point where
both edges have already transitioned into the optimal edge pattern of 3 castles
per 1 block periodic pattern. If we could not solve a particular instance after
a reasonable time, we tried a different cut point or tried it using a different
solution of n = n′ − 54. The success rate was around 80%, so most of them
succeeded on the first try. After approximately 3000 hours of computation,
we were able to find periodic solutions for all 54 cases, and thus the Still Life
Problem was solved for all large n. The Still Life shown in Figure 9 is one such
periodic solution where the center sections can be tiled indefinitely to produce
optimal solutions for n = 100 + k ∗ 54.

These results prove Conjecture 1, Conjecture 2, and closes off the Maximum
Density Still Life Problem for all n. We restate our results for clarity:

Theorem 4. For n > 39, all “forced” wastage is caused by the still life con-
straints within 13 rows from the edge of the n× n region.

Theorem 5. For n > 50, there always exists optimal solutions of the following
form: wastage only exists at the four 4 × 4 corners of the board, or in the one
row beyond the edge of the board.

Theorem 6. For n ≤ 60, the maximum number of live cells that can appear in
an n× n still life is given in Table 7. For n ≥ 61, the maximum number of live
cells that can appear in an n× n still life is given by:

23

n live cells n live cells n live cells n live cells
1 0 16 136 31 497 46 1085
2 4 17 152 32 531 47 1132
3 6 18 171 33 563 48 1181
4 8 19 190 34 598 49 1229
5 16 20 210 35 633 50 1280
6 18 21 232 36 668 51 1331
7 28 22 253 37 706 52 1382
8 36 23 276 38 744 53 1436
9 43 24 302 39 782 54 1490
10 54 25 326 40 824 55 1545
11 64 26 353 41 864 56 1602
12 76 27 379 42 907 57 1658
13 90 28 407 43 949 58 1717
14 104 29 437 44 993 59 1776
15 119 30 467 45 1039 60 1835

Table 7: Maximum number of live cells in an n× n still life for n ≤ 60.

bn2/2 + 17/27 ∗ n− 2c n ≡ 0, 1, 3, 8, 9, 11, 16, 17, 19, 25, 27,
31, 33, 39, 41, 47, 49 mod 54

bn2/2 + 17/27 ∗ n− 1c n ≡ 2, 4, 5, 6, 7, 10, 12, 13, 14, 15, 18,
20, 21, 22, 23, 24, 26, 28, 29, 30,
32, 34, 35, 36, 37, 38, 40, 42, 43,
44, 45, 46, 48, 50, 51, 52, 53 mod 54

8. Conclusion

We have solved the Maximum Density Still Life Problem for all n by combin-
ing mathematical insights into the problem with appropriate applications of re-
modeling, lazy clause generation, bounded dynamic programming, relaxations,
and custom search. The complete solution consists of four parts: 1) complete
search which can solve n ≤ 50, 2) bounded dynamic programming with relax-
ation to prove optimal live cell upper bounds for n > 50, 3) incomplete search
for special form solutions which can prove optimal live cell lower bounds for
50 < n ≤ 200, 4) incomplete search to find optimal periodic solutions which can
be tiled to construct arbitrarily large solutions that prove the optimal live cell
lower bounds for n > 200. The optimal values for all n are given in Theorem 6.
Optimal solutions for small and medium n and periodic optimal solutions for
large n can be found at www.csse.unimelb.edu.au/~pjs/still-life/. The
total time taken to completely solve the Maximum Density Still Life Problem
for all n was approximately 3000 hours.

Acknowledgements

NICTA is funded by the Australian Government as represented by the De-
partment of Broadband, Communications and the Digital Economy and the
Australian Research Council through the ICT Centre of Excellence program.

24

References

[1] G. Chu, P. Stuckey, M. Garcia de la Banda, Using relaxations in maximum
density still life, in: I. Gent (Ed.), Proceedings of the 15th International
Conference on Principles and Practice of Constraint Programming, Vol.
5732 of LNCS, Springer-Verlag, 2009, pp. 258–273.

[2] R. Bosch, Integer programming and Conway’s game of life, SIAM Review
41 (3) (1999) 596–604.

[3] R. Bosch, M. Trick, Constraint programming and hybrid formulations for
three life designs, Annals OR 130 (1-4) (2004) 41–56.

[4] J. Larrosa, R. Dechter, Boosting search with variable elimination in con-
straint optimization and constraint satisfaction problems, Constraints 8 (3)
(2003) 303–326.

[5] J. Larrosa, E. Morancho, D. Niso, On the practical use of variable elimina-
tion in constraint optimization problems: ’Still-life’ as a case study, Journal
of Artificial Intelligence Research 23 (2005) 421–440.

[6] O. Ohrimenko, P. Stuckey, M. Codish, Propagation via lazy clause gener-
ation, Constraints 14 (3) (2009) 357–391.

[7] B. M. Smith, Caching search states in permutation problems, in: P. van
Beek (Ed.), Proceedings of the 11th International Conference on Principles
and Practice of Constraint Programming, Vol. 3709 of Lecture Notes in
Computer Science, Springer, 2005, pp. 637–651.

[8] T. Feydy, P. J. Stuckey, Lazy Clause Generation Reengineered, in: I. P.
Gent (Ed.), Proceedings of the 15th International Conference on Principles
and Practice of Constraint Programming, Vol. 5732 of Lecture Notes in
Computer Science, Springer, 2009, pp. 352–366.

[9] R. Bellman, Dynamic Programming, Princeton University Press, 1957.

[10] J. Puchinger, P. Stuckey, Automating branch-and-bound for dynamic pro-
grams, in: R. Glück, O. de Moor (Eds.), Proceedings of the ACM SIGPLAN
2008 Workshop on Partial Evaluation and Program Manipulation (PEPM
’08), ACM, 2008, pp. 81–89.

[11] N. Elkies, The still-life density problem and its generalizations, Voronoi’s
Impact on Modern Science: Book I (1998) 228–253 arXiv:math/9905194v1.

[12] N. Nethercote, P. Stuckey, R. Becket, S. Brand, G. Duck, G. Tack, Miniz-
inc: Towards a standard CP modelling language, in: C. Bessiere (Ed.),
Proceedings of the 13th International Conference on Principles and Prac-
tice of Constraint Programming, Vol. 4741 of LNCS, Springer-Verlag, 2007,
pp. 529–543.

[13] W. D. Harvey, M. L. Ginsberg, Limited discrepancy search, in: Proceedings
of the 14th International Joint Conference on Artificial Intelligence, Morgan
Kaufmann, 1995, pp. 607–615.

25

