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Abstract. Verification tasks frequently require deciding systems of lin-
ear constraints over modular (machine) arithmetic. Existing approaches
for reasoning over modular arithmetic use bit-vector solvers, or else ap-
proximate machine integers with mathematical integers and use arith-
metic solvers. Neither is ideal; the first is sound but inefficient, and the
second is efficient but unsound. We describe a linear encoding which
correctly describes modular arithmetic semantics, yielding an optimistic
but sound approach. Our method abstracts the problem with linear arith-
metic, but progressively refines the abstraction when modular semantics
is violated. This preserves soundness while exploiting the mostly integer
nature of the constraint problem. We present a prototype implementa-
tion, which gives encouraging experimental results.

1 Introduction

Linear integer arithmetic (LIA) and its decision procedures have been studied
for a long time. Here we consider the important variant in which the integers
involved are in fact integers modulo m for some m. We refer to this variant
as modular LIA, MLIA in short. Decision procedures for MLIA are needed for
sound reasoning about “machine arithmetic” and related problems in software
verification and analysis. In this paper we address the problem of deciding a
Boolean combination of MLIA constraints, that is, whether a system of MLIA
constraints is satisfiable, and if so, how.

Existing approaches for deciding MLIA either use bit-vector solvers, or else
approximate fixed-size integers (Zm, the integers modulo m) with unbounded
mathematical integers (Z) and use LIA solvers. The theory of bit-vectors allows
modeling the precise semantics of two’s complement arithmetic and is a natural
candidate for modelling MLIA constraints. However this approach is inefficient,
especially for large bit-vector problems that are primarily arithmetic in nature,
and for problems involving long bit-vectors [28, 19, 37]. Most bit-vector solvers
are based on some form of SAT encoding which tends to obscure word-level
information and consume excessive memory. On the other hand, the LIA ap-
proach is efficient but unsound because approximating fixed-size integers with
mathematical integers ignores the “wrap around” nature of fixed-width integer



arithmetic. As a result, the (un)satisfiability of a problem over Z does not imply
its (un)satisfiability over Zm, as we now show. To keep examples simple we shall
usually assume unsigned 4-bit arithmetic (so that m = 16). (Our method han-
dles signed or unsigned arithmetic equally well.) Constraints will often be given
in the form id : c, so that constraint c can be referred to through the identifier
id . We indicate a formula F interpreted in Zm with the notation [F ]m.

Example 1. Consider F1 = c1 : x ≥ y ∧ c2 : x+ 1 = y. Clearly [F1]16 allows so-
lution x = 15(1111) and y = 0(0000), but F1 is unsatisfiable in Z since c1 is in
conflict with c2. �

Example 1 is adapted from a benchmark in the pspace subset [18] of SMT-LIB

QF BV [11], translated to MLIA form. It is typical of software verification prob-
lems; it tests the overflow of integer addition. Its model consists of x with only
1-bits and y with only 0-bits regardless of the size of bit-vectors x and y. But
it has proven to be a challenging example for sufficiently long bit-vectors for
bit-blasting solvers, and the problem becomes increasingly intractable as the size
of bit-vectors increases [37]. On the other hand, LIA solvers may be efficient but
they produce an unsound result for Example 1 since F1 is unsatisfiable over Z
and satisfiable over Zm.

A formula may just as well be unsatisfiable over Zm and satisfiable over Z.

Example 2. Consider F2 = c1 : y = x+ 9 ∧ c2 : z = y + 9 ∧ c3 : x ≤ y ∧ c4 : y ≤ z.
Here F2 is satisfiable in Z with solutions like x = 0, y = 9, z = 18. But [F2]16
is unsatisfiable, as it requires (x + 18) ≡16 z, so there must be a wrap around
between x and z. And so at least one of the two inequalities fails not hold. �

Hence we can trust neither “satisfiable” nor “unsatisfiable” verdicts from a LIA
solver. In practice, neither conventional approach is satisfactory.

In this paper, we develop an optimistic but sound approach—abstracting the
problem with linear arithmetic, but progressively refining the abstraction when
modular semantics is violated. By transforming MLIA constraints to LIA con-
straints that correctly describe the modular arithmetic semantics, we can reuse
existing approaches for LIA problems while maintaining soundness. In contrast
to bit blasting, the method is independent of the number of bits used to represent
the variables and it uniformly handles (large) moduli, not necessarily powers of
2, including large primes. It is rather easy to understand and applies beyond
linear arithmetic. Moreover, assuming two’s complement arithmetic, signed and
unsigned integers can be treated uniformly.

In summary we make the following contributions:

1. We give a semantics preserving transformation of MLIA constraints to LIA
constraints (Section 3).

2. We design novel algorithms for deciding MLIA constraints which use this
transformation effectively (Section 4).

3. We present experimental results obtained with a prototype implementation
(Section 5). As they are comparable to those of the best state-of-the-art
solvers, we consider this a significant proof-of-concept.



2 Preliminaries

In this paper, we consider a logic of quantifier-free MLIA constraints defined as
follows, where F ranges over formulas, C over atomic constraints, E over fixed-
size linear arithmetic expressions, v over fixed-size integer variables and a over
fixed-size integer constants:

F = C | ¬C | F ∨ F | F ∧ F
C = E < E | E ≤ E | E = E E = a | v | a · E | E − E | E + E

The other linear constraints {>,≥, 6=} are rewritten as negated elements of C.
For e ∈ E, let vars(e) denote the set of variables appearing in e. We extend this
to elements of F and C in the obvious way.

For an integer k ∈ Z, let [k]m denote its value modulo m (the remainder on
division by m). This is the unique value satisfying:

0 ≤ [k]m < m ∧ ∃q ∈ Z . k = m · q + [k]m (1)

The quotient q encodes the number of times k “wraps around” in a number
circle before landing in the range [0,m). Equation 1 can be equivalently written
as Equation 2, where q′ = −q.

0 ≤ [k]m < m ∧ ∃q′ ∈ Z . [k]m = m · q′ + k (2)

We extend [ ]m onto integer-valued expressions such that all subexpressions are
computed in Zm: [E1 + E2]m = [[E1]m + [E2]m]

m
= (E1 + E2) mod m, and

similarly for subtraction and multiplication by a constant. Observe that [ ]m is
preserved under translation by multiples of m. Thus for e ∈ E, [e]2b reflects e
computed with b bit fixed precision machine arithmetic. We also extend [ ]m to
functions and maps pointwise.

Note that by our definition of Zm, negative E values are mapped to posi-
tive [E]m, so it is necessary to distinguish signed two-complement comparisons
(<s,≤s) from unsigned ones (<u,≤u). For C ∈ {<,≤,=}, the interpretation
of E1 Cu E2 under Zm is [E1 Cu E2]m ≡ [E1]m C [E2]m; for the signed case,
[E1 Cs E2]m ≡

[
E1 + m

2

]
m
C
[
E2 + m

2

]
m

. In the following, we shall assume un-
signed comparisons, but signed comparisons can be handled this way. Observe
that we must be careful when manipulating modular linear constraints: rewrit-
ing [A ≤ B]m as [A−B ≤ 0]m does not preserve equivalence (for either signed
or unsigned comparison).

An assignment µ to F is a mapping from vars(F ) onto Zm. We write µ(E)
to denote the value of E under µ. µ is a model of F if F evaluates to True under
µ and we denote it by µ |=Zm

F . Similarly if µ is a Z-model of F , we simply
write µ |= F . Also observe that if µ is a model of F , and for any expression E
appearing in an inequality 0 ≤ µ(E) < m, then [µ]m is a model of [F ]m (as then
[µ(E)]m = µ(E)).



P = minx,y f(x)

s.t. A(x) ≥ b ∧
B(x, y) ≥ c ∧
. . .

x ∈ Dx, y ∈ Dy

P ] = minx f(x)

s.t. A(x) ≥ b ∧
B](x) ≥ c ∧
x ∈ Dx

Q(x̃) = miny 0

s.t. B(x̃, y) ≥ c ∧
y ∈ Dy

(a) (b) (c)

Fig. 1. (a) A decomposable MIP, (b) initial relaxed master, (c) Benders subproblem

Benders decomposition

Benders decomposition [4] is an approach for solving large integer linear pro-
gramming problems, frequently applied where a problem consists of independent
subproblems, connected via a small set of variables.

Consider the mixed integer programming problem (MIP) shown in Figure 1(a).
P is an optimisation problem, minimising f(x) over variables x, y, consisting of
constraints A over x, and additional constraints over x, y. Rather than solving
P directly, we may instead fix x to some optimal value x̃, then check whether
there exists a consistent extension ỹ satisfying B(x̃, ỹ).

We thus construct a relaxed master problem P ], shown in Figure 1(b), which
is a relaxation of the projection ∃y. P . The projection constraint B](x) ≥ c is a
relaxation of ∃y. B(x, y) ≥ c; this may be any constraint (or set of constraints)
satisfying B](x) ≥ supy∈Dy

Bi(x, y). As B](x) may permit invalid solutions, this

is combined with a subproblem Q(x̃) which check feasibility. Solving P ] yields
a candidate optimum x̃. If Q(x̃) is satisfiable, we have found an optimum. If
not, we extract from Q a new constraint a′x ≥ b′, excluding x̃, which is added
to P ] (effectively strengthening B]). This procedure is repeated until either an
assignment is found, or P ] is proven unsatisfiable.

The classical form of Benders decomposition requires the subproblems to be
linear programs (i.e. over Q). However, in logic-based Benders decomposition [25],
the subproblem may be an arbitrary decision problem, and the feasibility cut is
extracted from the unsatisfiability proof of Q.

3 From MLIA to equivalent LIA constraints

In this section, we describe a linear encoding over Z of the semantics of con-
straints over Zm. Recall the definition of [k]m, being the unique value satisfying
Equation 2. By introducing fresh variables for the quotients and remainders, we
can encode a modular linear constraint [E1 C E2]m as a conjunction of linear
constraints on Z. We define a mapping Γ as:

Γ (E1 C E2) = ∃q1, q2, e1, e2 .


0 ≤ e1, e2 < m

∧ e1 = E1 +m · q1
∧ e2 = E2 +m · q2
∧ e1 C e2





The first three conjuncts compute the interpretation of Ei under Zm, and the
final constraint enforces the constraint of interest. Because [[E1]m + [E2]m]

m
=

[E1 + E2]m, and similarly for all operations in a MLIA expression, it is sufficient
to introduce one quotient variable qi in each of E1 and E2; quotient variables
are not needed for subexpressions. Γ (E1 C E2) can be simplified by eliminating
the existential variables e1 and e2 leaving behind only the quotient variables.

Γ (E1 C E2) = ∃q1, q2 .
(

0 ≤ E1 +m · q1, E2 +m · q2 < m
∧ E1 +m · q1 C E2 +m · q2

)
We extend Γ to Boolean combinations of constraints in the natural manner
(eliminating 6= through disjunction). The above encoding (Γ (F ) ) preserves equi-
satisfiability as stated in Lemma 1. Note that variables are not bounded in Γ (F ).

Lemma 1 (Equi-satisfiability). Let F be a formula and Γ (F ) be its LIA
encoding. Then F and Γ (F ) are equi-satisfiable. Further if Γ (F ) is satisfiable,
then there exists a model of Γ (F ) such that

∧
v∈vars(F ) 0 ≤ v < m. �

Let Γ1(F ) be Γ (F ) ∧
∧

v∈vars(F ) 0 ≤ v < m. These bounds restrict the search

space of LIA solvers; possibly resulting in a faster convergence. Γ1(F ) correctly
encodes the semantics of modular arithmetic as stated in Proposition 1.

Proposition 1 (Soundness of the encoding). Let F be a formula and Γ1(F )
be its LIA encoding. Then F and Γ1(F ) are logically equivalent. �

Note that Γ1(F ) is a quantified-formula though not F .
The formula Γ1(E1 CE2) contains: two constraints expressing the lower and

upper bounds of each expression Ei(i = 1, 2), a constraint computing the inter-
pretation of each expression and a constraint of interest totalling 5. In addition,
there are 2n constraints representing the upper and lower bounds of the vari-
ables, where n = # vars(E1 CE2). Then, the size of the transformed formula is
given by the following proposition.

Proposition 2 (Bound on the size of the transformed formula). Given
a formula F with n variables and m atomic constraints, Γ1(F ) contains at most
2n+ 5m atomic constraints. �

Encoding simplification

While straightforward, the quotient variables have unbounded domains and large
coefficients (the modulo integer m). This can have a dramatic impact on perfor-
mance, as it substantially weakens the (real) linear relaxation underlying the LIA
decision procedure. However, we can frequently infer reasonably tight bounds on
feasible quotient values as we show next. For some expression E, let lE and uE
be the minimum and maximum feasible values of E under Z (assuming variables
are restricted to [0,m)). As we have [E]m = E + m · qE , we may impose the
constraint −

⌊
uE

m

⌋
≤ qE ≤ −

⌊
lE
m

⌋
without changing satisfiability.

For example, given a modular expression x + 2y over unsigned integer and
its corresponding LIA expression x+ 2y +m.q, we derive −2 ≤ q ≤ 0.

An expression bound can be extended to a constraint E1 C E2 as follows.



Definition 1 (Quotient bound). Given a MLIA constraint E1CE2, we have
E1 +m · qE1

CE2 +m · qE2
as the corresponding LIA constraint. The following

conjunction of constraints is called a quotient bound for E1 C E2.

−
⌊uE1

m

⌋
≤ qE1 ≤ −

⌊
lE1

m

⌋
∧ −

⌊uE2

m

⌋
≤ qE2 ≤ −

⌊
lE2

m

⌋
.

If we infer a fixed value for qE (as will be the case for variables and constant
expressions), we may replace m · qE with the appropriate constant. If bounds on
qE are narrow but do not fix a value for qE , we may eliminate qE by introducing
a disjunction for the possible values of qE—moving the wrapping decision from
the LIA solver to the SAT solver. In case the bounds are not tight, we apply
Benders decomposition, as discussed in Section 4.

Example 3. Consider the constraint c2 : [x+ 1 = y]m from Example 1. Com-
puting bounds for the LHS and RHS, we find that y (unsurprisingly) cannot
overflow, and x+ 1 overflows at most once. This yields the encoding

x+ 1 +m · qx = y ∧ 0 ≤ x+ 1 +m · qx ≤ 15 ∧ − 1 ≤ qx ≤ 0
∧ 0 ≤ x ≤ 15 ∧ 0 ≤ y ≤ 15

As the domain of qx is small, we eliminate it by case-splitting:

x− 15 = y ∧ 0 ≤ x− 15 ≤ 15 ∧ 0 ≤ x ≤ 15 ∧ 0 ≤ y ≤ 15 (where qx = −1)

∨ x+ 1 = y ∧ 0 ≤ x+ 1 ≤ 15 ∧ 0 ≤ y ≤ 15 ∧ 0 ≤ x ≤ 15 (where qx = 0)

Similarly, the constraint [x ≥ y]m yields x ≥ y ∧ 0 ≤ x, y ≤ 15. �

Challenges in solving LIA formula directly

However, the resulting encodings turn out to be difficult to solve directly with
current MIP solvers. This is, in part, due to weakening of the linear relaxation.

Example 4. Consider the pair of constraints:

P = [x = y + 3 ∧ y = x− 4]m

These are inconsistent for any modulus m ≥ 2,m 6= 7. The transformed con-
straints are:

Γ (P ) = (x = m · qy + y + 3 ∧ y = m · qx + x− 4 ∧ x, y ∈ [0,m))

If integrality constraints on qx, qy are relaxed, Γ (P ) is easily satisfied—with
{x = 0, y = 0, qx = 4

m , qy = − 3
m}. Indeed, any pair of (x, y) values admits a

corresponding solution to the relaxation of the quotients. However, for any fixed
integer assignment to (qx, qy), the residual subproblem can easily be shown to
be inconsistent. �



A second pragmatic difficulty to solving these problems is due to numerical
behaviour of MIP solvers. Commercial MIP solvers are well known to return
non-solutions or claim optimality for non-optimal solutions due to rounding er-
rors [30, 31]. These problems are exacerbated in the presence of very large coef-
ficients: not only is the solver forced to divide by large constants, intermediate
computations and even integral solutions may have no exact floating-point rep-
resentation. This becomes a significant problem when using moduli above 232.

We now consider how to solve these problems in practice.

4 Solving MLIA constraints

For the reasons discussed above, the transformed formulae are difficult to solve
directly. We can ameliorate this in several ways. First, we can try to avoid
introducing quotient variables altogether; optimistically solving under integer
semantics, and transforming only when necessary (Algorithm 1). This can ac-
celerate solving, but in the worst case still requires transforming all constraints.
Second, we can reduce the impact of quotient variables by adopting a Benders
decomposition approach (Algorithm 2) to isolate quotient selection from the rest
of the problem. We detail these approaches below.

Solving algorithms

For simplicity of presentation we assume, without loss of generality, that the
input is a conjunction of MLIA constraints (though our method applies more
generally to a Boolean combination). Our algorithms assume the availability of
the following methods.

LIA Decide(H): An LIA solver (oracle) capable of generating either a model
or an unsatisfiable core (a minimal set of unsatisfiable constraints). We assume
that its output is a tuple of the form 〈Result ,Witness〉, which can be either
〈SAT,Model〉 or 〈UNSAT,Unsat Core〉.

MLIA Model(H,µ): Given an interpretation µ such that µ |= H (in this
context, returned by LIA Decide), the procedure checks whether µ |=Zm

H or
not. It returns a tuple 〈Result ,Witness〉, which can be either 〈Yes,Model〉 or
〈No,Conflict〉. We call c a conflict with respect to µ iff µ 6|=Zm c.

Putting all the pieces together, we present three algorithm for solving MLIA
problems. The third is the final product; it combines Algorithms 1 and 2.

1. Transforming constraints lazily. Algorithm 1 proceeds as follows. A set
H of MLIA constraints is passed to an LIA solver (line 7). The solver returns
one of the following:

– SAT(line 8): We have R |= H. Then we check whether R |=Zm
H or not. If

so, the procedure returns SAT and a model (line 11). Otherwise there exists
a constraint c such that R 6|=Zm

c, which is replaced by Γ1(c) (line 13).



Algorithm 1 Solves MLIA constraints lazily

1: function MLIA Decide Lazily(H)
2: Input: A set of linear constraints of the form
3: E1 C E2, with C ∈ {<,=,≤}
4: Output: 〈SAT,Model〉 or 〈UNSAT,Unsat Core〉
5: T ← ∅ . transformed constraints
6: while True do
7: 〈S,R〉 ← LIA Decide(H)
8: if S = SAT then
9: 〈IS , r〉 ←MLIA Model(H,R)

10: if IS = Yes then
11: return 〈SAT, R〉
12: else
13: H ← H \ {r} ∪ Γ1(r); T ← T ∪ {Γ1(r)}
14: else
15: if R ⊆ T then return 〈UNSAT, R〉
16: else
17: for each c ∈ R do
18: if c /∈ T then
19: H ← H \ {c} ∪ Γ1(c); T ← T ∪ {Γ1(c)}

– UNSAT(line 14): In this case, there is an unsatisfiable core R over Z. If all
constraints in R are transformed then it is also the core over Zm and the
algorithm terminates (line 15). Otherwise, it replaces each c ∈ R by Γ1(c) in
the solver (line 17-19).

The algorithm runs until it exits from one of the above cases. During the run of
the algorithm, we keep track of the set of the transformed constraints, which is
initialized to empty set at the start of the algorithm (line 5).

Example 5. Let us run the algorithm on Example 1. Applied to the original set of
constraints, the LIA solver returns UNSAT with {c1, c2} as unsat core. Next we
transform each MLIA constraint in the unsat core to LIA. Note that the resulting
constraint system becomes equivalent to the system of constraints obtained by
eager transformation as presented in Example 3. The resulting constraints are
fed to the solver which finds them satisfiable, with R = {x = 15, y = 0} as a
model. One can easily verify that this is in fact a model of the original constraints
over Zm. Then the algorithm terminates, returning 〈SAT, R〉.

Applied instead to the constraints from Example 2, the algorithm finds these
satisfiable over Z, returning the model {x = 0, y = 9, z = 18}. However, the
constraint c4 : y ≤ z is not satisfied under this model considering Z16 seman-
tics, as 9 6≤ 2. So we replace c4 in the solver by Γ1(c4). The resulting system of
constraints would still be satisfiable over Z but would still violate another con-
straint. We continue transforming MLIA constraints and finally we reach a state
where all the constraints are transformed and the LIA solver returns UNSAT,
thus proving the original system of constraints unsatisfiable over Zm. �



Algorithm 2 Solves MLIA constraints using Benders decomposition

1: function MLIA Decide Benders(H)
2: Input: A set of linear constraints of the form
3: E1 C E2, with C ∈ {<,=,≤}
4: Output: 〈SAT,Model〉 or 〈UNSAT,Unsat Core〉
5: Q← true . Quotient formula
6: Hr ← ∅
7: for each c ∈ H do
8: Hr ← Hr ∪ {Γ1(c)}
9: Q← Q ∧Quotient Bound(c) . Definition 1

10: Hb ← Hr

11: while True do
12: if UNSAT(Q) then
13: return 〈UNSAT, Hb〉
14: Let µQ be a model of Q (µQ |= Q) . Q is satisfiable
15: Hb ← {E +m · µQ(qi)C F +m · µQ(ri) | (E +m · qi C F +m · ri) ∈ Hr}
16: 〈S,R〉 ← LIA Decide(Hb)
17: if S = SAT then
18: return 〈SAT, R〉
19: else . (R is the unsat core in this case)
20: CR ←

∨
{σ(c) | c ∈ R} . (CR: a cut generated from R, σ: Equation 3)

21: Q← Q ∧ CR

2. Applying Benders decomposition. Though we can infer tight bounds on
quotient variables, the presence of quotient variables with large coefficient (m) in
the constraints causes problems for LIA solvers. To avoid this, we adopt a logic-
based Benders decomposition strategy. The master problem Q assigns values to
the quotient variables, and the subproblemHb tests whether the chosen quotients
can be extended to a model of H. If so, we terminate. Otherwise, we extract a
feasibility cut from the unsatisfiable core of Hb. See Algorithm 2.

Feasibility cuts. Let Cb = {Ei + q̃im ≤ Fi + r̃im | i = 1 . . . n} be the un-
satisfiable core of Hb, where q̃i and r̃i are the current assignments to quotients
qi, ri. To restore feasibility, at least one constraint in Cb must be relaxed—so
some qi must decrease, or some ri must increase. A valid cut, then, would be
c =

∨
i qi < q̃i ∨ ri > r̃i. However, this is somewhat weak: the constraint is only

relaxed if the difference between qi and ri increases. Instead, then, we add the
more general cut

∨
i ri − qi > r̃i − q̃i.

Let σ be the mapping defined as follows:

σ(Ei + q̃imC Fi + r̃im) =

{
ri − qi > r̃i − q̃i if C ∈ {≤, <}
ri − qi 6= r̃i − q̃i if C ∈ {=}

(3)

Then for an unsat core Cb = {Ei + q̃imCFi + r̃im | i = 1 . . . n}, the cut is given
by the formula

∨n
i=1 σ(Ei + q̃imC Fi + r̃im).



iteration 1 iteration 2

Q1 = [−1 ≤ qx ≤ 0], µQ1 = {qx = 0} Q2 = Q1 ∧ [qx 6= 0], µQ1 = {qx = −1}

Hb

c1 : x ≥ y ∧ 0 ≤ y ≤ 15 ∧ 0 ≤ x ≤ 15 ∧
c2 : x+ 1 +m · 0 = y ∧ 0 ≤ x+ 1 +m · 0 ≤ 15 ∧

0 ≤ x ≤ 15 ∧ 0 ≤ y ≤ 15

c1 : x ≥ y ∧ 0 ≤ y ≤ 15 ∧ 0 ≤ x ≤ 15 ∧
c2 : x− 15 = y ∧ 0 ≤ x− 15 ≤ 15∧

15 ≤ x ≤ 15 ∧ 0 ≤ y ≤ 15

R C = {c1, c2}, Cb = [qx 6= 0] µHb = {x = 15, y = 0}

Fig. 2. Steps performed during Algorithm 2 solving [x ≥ y ∧ x+ 1 = y]16.

Example 6. Consider again solving constraint [c1 : x ≥ y ∧ c2 : x+ 1 = y]16, but
this time using Algorithm 2. Encoding the constraints as LIA constraints, we
obtain

c1 : x ≥ y ∧ 0 ≤ y ≤ 15 ∧ 0 ≤ x ≤ 15 ∧
c2 : x+ 1 +m · qx = y ∧ 0 ≤ x+ 1 +m · qx ≤ 15 ∧

0 ≤ x ≤ 15 ∧ 0 ≤ y ≤ 15

The progress of the algorithm is outlined in Figure 2. Computing bounds on
qx, we derive the master problem Q1. Solving Q1, we obtain a model µQ1

=
{qx = 0}. Substituting µQ into H, we obtain the subproblem Hb. We find Hb is
unsatisfiable, with an unsatisfiable core of {x+ 1 +m · 0qx = y, x ≥ y} (having
noted occurrences of qx). From this, we derive the feasibility cut {qx > 0∨qx < 0}
and derive a new master problem. Solving Q2, we obtain µQ2

= {qx = −1}.
We again substitute into H, obtaining Hb2 . Solving Hb2 , we obtain a model
{x = 15, y = 0}, and terminate. �

Proposition 3 (Soundness of cut). Given a system of MLIA constraints H,
let Hb be an infeasible sub-problem of H for the quotient µQ and C = {Ei +
q̃imCFi + r̃im | i = 1 . . . n} be any unsat core of Hb, and Cb =

∨
{σ(c) | c ∈ C}.

Then (1) Cb excludes µQ and (2) Cb does not exclude any model of H.

3. Applying Benders decomposition lazily. Algorithms 1 and 2 are com-
plementary: the first algorithm transforms constraints lazily, whereas the second
deals with large coefficients of quotient variables. We now present Algorithm
3 which in a sense combines them. The first two algorithms are presentation-
purpose stepping stones for Algorithm 3 so the reader understands the two in-
novations separately. We do not evaluate and compare those algorithms.

All three algorithms are guaranteed to terminate. For the lazy approach
(Algorithm 1), each iteration causes at least one (of the finitely many) initial
constraints to be transformed. For the Benders decomposition, Q has finitely
many models (as all variables are integral and bounded), and each iteration
adds a cut eliminating at least one model. For the lazy Benders decomposition,
each iteration either transforms at least one initial constraint, or eliminates some
model of Q (without changing the number of transformed constraints), which
again yields a finite descending chain.



Algorithm 3 Solves MLIA constraints using Benders decomposition lazily

1: function MLIA Decide Mix(H)
2: Input: A set of linear constraints of the form
3: E1 C E2, with C ∈ {<,=,≤}
4: Output: 〈SAT,Model〉 or 〈UNSAT,Unsat Core〉
5: T ← ∅ . transformed constraints
6: Q← true . Quotient formula
7: Hr ← H
8: while True do
9: if UNSAT(Q) then

10: return 〈UNSAT, Hr〉
11: Let µQ be a model of Q (µQ |= Q) . Q is satisfiable
12: Hb ← {E +m · µQ(qi)C F +m · µQ(ri) | (E +m · qi C F +m · ri) ∈ Hr}
13: 〈S,R〉 ← LIA Decide(Hb)
14: if S = SAT then
15: 〈IS , r〉 ←MLIA Model(H,R)
16: if IS = Yes then
17: return 〈SAT, R〉
18: else
19: Hr ← Hr \ {r} ∪ {Γ1(r)}; T ← T ∪ {Γ1(r)}
20: Q← Q ∧Quotient Bound(r) . Definition 1

21: else . R is unsat core in this case
22: if R ⊆ T then
23: CR ←

∨
{σ(c) | c ∈ R} . (CR: a cut from R, σ: Equation 3)

24: Q← Q ∧ CR

25: else
26: for each s ∈ R do
27: if s 6∈ T then
28: Hr ← Hr \ {s} ∪ {Γ1(s)}; T ← T ∪ {Γ1(s)}
29: Q← Q ∧Quotient Bound(s) . Definition 1

Example 7. Recall again the problem of Example 1, extended with additional
variables and constraints:

H = [c1 : x ≥ y ∧ c2 : x+ 1 = y ∧ c3 : z + y ≤ 7x ∧ c4 : w − 2z ≤ 3y + 2x]16

Under Algorithm 3, the Q is initially trivial, and Hb = Hr = H (as no constraints
are initially transformed).

As before, this is unsatisfiable, with a core of R = {c1, c2}. R contains some
constraint c2 which is not yet transformed, so we replace c2 with Γ (c2), intro-
ducing quotient variable qx and appropriate bounds:

H ′ = (c1 :x ≥ y ∧ c′2 : x+ 1 +m · qx = y ∧ c3 : z + y ≤ 7x ∧
c4 :w − 2z ≤ 3y + 2x ∧ c5 : −1 ≤ qx ≤ 0 ∧ c6 : 0 ≤ x ∧ y < m)

Re-solving Q, we obtain µQ = {qx = 0}. As in Example 6, we find this to be
unsatisfiable, having a core of R = {c1, c′2}, yielding a feasibility cut qx 6= 0.



Solving again, we obtain a model µQ = {qx = −1}. Solving Hb now gives us
a model: µHb

= {x = 15, y = 0, z = 105, w = 240}. Evaluating this model under
Z16, we obtain µH = {x = 15, y = 0, z = 9, w = 0}. As µH is a valid model of
H, we terminate. �

Deciding Boolean combinations of MLIA constraints. Algorithms 2 and
3 can be extended to support Boolean combinations of MLIA constraints by
adding a selection of ‘active’ constraints to the quotient problem, implicitly
enumerating the Boolean skeleton.

5 Implementation and Experiments

Implementation. The algorithms are implemented in SoMoLIA (Solver for
Modular LIA) which is written in Java. It uses Z3 [14] for input reading and
pre-processing, and Gurobi [23] for solving LIA problems. The use of Gurobi
is driven by unsatisfiable core extraction; in Z3 this incurs severe performance
penalties (several orders of magnitude). Also, the Z3 LIA engine is ill-suited to
our problems (optimized for incrementality, not for hard instances). To mitigate
unsoundness, we fall back to Z3 if precision limits are exceeded as indicated by
Gurobi (e.g., pspace instances) or non-integral solutions are obtained. The pre-
processing we used includes simple word-level rewriting, constant propagation,
Gaussian elimination and elimination of unconstrained variables [9], which are
available from Z3 as tactics [14, 15]. Such pre-processing, including the more ad-
vanced ones are common to all bit-blasting solvers (see [24]). Our tool supports
input in SMT-LIB2 format [3] expressed over QF BV or QF LIA.

Benchmarks. Our main intent is to handle conjunctions of “pure” integer
constraints efficiently. Accordingly, we chose a set of 1271 benchmarks from
the CAV 2009, dillig, check, pb2010, pidgeons, miplib2003 and cut lemmas

sub-categories of the QF LIA category of SMT-COMP’16 [11] and interpreted
them over Zm (not over Z). These are first translated into QF BV logic so that
we can reuse the pre-processing for bit-vector formulas as well as compare our
results with the bit-vector solvers. Ideally, we would like to evaluate our approach
on some challenging benchmarks from the QF BV category, but unfortunately
they contain problems with bit-wise operations (bvand, bvor, etc.), not purely
word level operations (bvsub, bvmul, bvadd etc.) supported by SoMoLIA.
However we selected the 41 problems from the pspace sub-category of the QF BV

category (containing only word level operations) and experimented with them.
These contain very large bit-vectors (in the order of ≈ 23k bits).

Experimental Setting. We have conducted experiments on these benchmarks
and compared the results (using Algorithm 3) with four state-of-the-art SMT(BV)
solvers (the best of the currently available): Boolector [8] (winner SMT-COMP’16,
QF BV main track), Yices2 [16] (winner SMT-COMP’16, QF BV application track),



Table 1. Experimental results. Time (sec) is the average time over # solved instances
of each category (timeout 10 min). † indicates SoMoLIA run using Z3 as LIA solver.

Category (#inst) Boolector Yices2 CVC4 Z3 SoMoLIA

#correct Time #correct Time #correct Time #correct Time #correct Time

cut lemmas (93) 93 14.33 93 7.45 91 0.81 93 5.41 34 10.14

dillig (233) 230 3.47 233 0.08 217 16.73 126 69.00 233 0.37

miplib2003 (16) 16 6.25 16 9.93 11 208.36 16 3.81 16 5.38

CAV 2009 (591) 591 3.62 591 0.45 544 3.71 343 27.51 591 0.34

check (5) 5 0.20 5 0.01 5 0.20 5 0.01 5 0.40

pb2010 (81) 81 2.62 81 0.77 53 161.90 81 1.49 81 1.71

pidgeons (19) 13 15.00 10 4.10 7 4.28 10 32.40 19 0.78

pspace (41) 41 155.70 25 92.04 41 0.02 0 0.00 41† 0.34

Z3 [14] and CVC4 [2]. The pspace instances use very large moduli, making
Gurobi unsound. Therefore, for these instances (and these instances only), So-
MoLIA uses Z3 in place of Gurobi as the LIA solver. The experiments were
carried out on a MacBook Pro with a 2.7 GHz Intel Core i5 processor and 16
GB memory running OS X 10.11.6. The timeout for each experiment is set to 10
minutes and the memory limit is 6 GB. The benchmarks and the tool itself are
available at http://people.eng.unimelb.edu.au/gkgange/mod-arith/. The
results are summarized in Table 1. The first column indicates the sub-category
(and the number of problem instances in that sub-category). The columns that
follow present the number of correctly solved instances (#correct) and average
time taken (Time) to solve that many instances for the solvers Boolector [8]
Yices2 [16], CVC4 [2], Z3 [14] and SoMoLIA respectively. The best result in
each sub-category is bold-faced.

Discussion of the results. The different tools are seen to have complementary
success or timeout profiles. No solver consistently outperforms the others. We
note that SoMoLIA performed well on all sub-categories except cut lemmas,
owing to its ability to propagate “pure integer” level information, avoiding bit-
blasting completely. We find that performance quite remarkable for a tool which
is currently nothing more than a proof-of-concept. To us, it shows a great poten-
tial of a lazy form of Benders decomposition for this type of constraint problems.

Note that SoMoLIA leads in the CAV-2009 and pidgeons cases, and it
is the only solver which solves all the instances from pidgeons. The margin
is significant in some cases. The problems from the cut lemmas sub-category
contain large coefficients, resulting in a large range of values for the quotient
variables and requiring many iterations. The computation of unsat-cores also
hindered performance. We note that 101 instances were solved by pre-processing
alone. However we also note that it made a small number of problems timeout.

The problems from pspace sub-category are hard for all bit-blasting solvers
(since they often make solvers run out of memory). Our approach, which is
independent on the size of bit vectors, performed well on this subset and CVC4



performed extremely well. We believe CVC4’s strong performance is due to its
word level pre-processing of the formula. The approach taken by Zeljic et al. [37]
also appears to perform well on SAT instances of this subset (albeit not on
UNSAT instances as their experiment shows), but unfortunately we were not
able to experiment with their tool and include it in the evaluation. A comparison
of our approach against other solvers (with pre-processing turned off) allows us
to measure the impact of pre-processing as well as the performance of purely
bit-blasting approach against ours and we leave this task as future work.

6 Related work

The ubiquity of two-complement semantics has raised considerable interest in
the efficient solution of modular arithmetic constraints. Unfortunately, logics
over modular arithmetic also resist efficient analysis and decision procedures.

Systems of linear arithmetic equations, as well as systems of linear congru-
ences, can be solved in polynomial time [12]. However, the presence of inequalities
hampers tractability; the general integer programming problem is NP-complete
in the strong sense. For the special case of sets of integer difference constraints
of the form x−y ≤ k and x ≤ k (as used in our examples), there are well-known
efficient algorithms (for example, utilising the Bellman-Ford algorithm [12]), but
the modular arithmetic version is already intractable for this special case [5, 21].
In the absence of efficient decision procedures for even restricted subclasses of
constraints over modular arithmetic, it is typical to either use general bit-vector
solvers, or to simply interpret the problem over Z (rather than Zm).

Bit-vector constraints. The theory of bit-vectors offers a natural encoding of
modular arithmetic constraints (over modulus 2w), yet is no more amenable to
reasoning. The standard approach to solving bit-vector problems is bit-blasting :
mapping bit-vector operations down to the corresponding Boolean circuits, and
using a SAT solver to solve the resulting constraint system. They implement
lazy/eager bit-blasting procedures; see Hadarean et al. [24] for comparison of
these approaches. The most effective SMT(BV) solvers, such as Boolector [32],
Yices2 [16], MathSAT [10], Z3 [14] CVC [2] and STP [20] also apply word-
level simplification and rewriting, abstraction [32] and presolving over tractable
sub-theories [24]. An alternate approach which avoids bit-blasting is to use a
constraint programming (CP) approach—maintaining a compact abstraction of
feasible assignments for bit-vector variables, and applying word-level filtering
algorithms to prune inconsistent assignments. Such techniques have been inte-
grated into pure CP [29] and CLP [1] frameworks. These approaches share the
same domain abstraction, tracking which individual bits are fixed to particular
values (and therefore have expressiveness equivalent to the bit-blasted repre-
sentation). They offer compact representations and efficient local pruning, but
cannot reason about relationships between variables. More recently, hybrid ap-
proaches which combine word-level filtering with SAT-style conflict reasoning
have also arisen from both CP [36] and SMT [37] lineages.



Integer arithmetic. A common alternative is to simply decide that mathemat-
ical integers are “near enough” to the desired semantics, and ignore wrapping
effects altogether. Of course this is unsound, but it has the pragmatic advantage
of allowing use of existing procedures for reasoning over Z and R—particularly
abstract domains (for static analysis), decision procedures (for constraint solv-
ing) and interpolation algorithms (for verification). As a result, interpretation
over Z is a strategy adopted by many abstract interpretation-based static anal-
ysis [27, 13] and program verification [26, 22] tools.

LIA encoding. Solving bit-vector constraints by translation into arithmetic
constraints (linear and non-linear) is not new and has been studied for a while,
though their efficient solving has been a challenge [1, 6, 7, 17, 34, 35]. Bozzano et
al. [6] discuss encoding of bit-vector formulae into LIA. Their focus, however,
is on linearizing non-linear bit-vector constraints (e.g. bitwise expressions, non-
constant multiplication) by decomposing a word v of width w into individual
bits bw−1, . . . , b0 with w =

∑
i 2ibi, then encoding bit-vector constraints using

the introduced bi variables. This approach effectively emulates bit-blasting with
0–1 variables; it allows handling of a more extensive range of operations, but
suffers both the weak linear relaxation discussed in Section 3 and the encoding
blow-up of bit-blasting.

7 Conclusion

We have presented a practical and efficient algorithm for solving MLIA con-
straints and evaluated it on a set of SMT-COMP’16 benchmarks. The main
characteristic of the tool, SoMoLIA, is that it utilises Benders decomposition.
Importantly, unlike bit-vector solvers, our approach uniformly handles (large)
moduli, not necessarily powers of 2, including large primes, and the LIA encod-
ing is bit-width independent. In spite of its increased scope, we find that our
proof-of-concept implementation is competitive with state of the art bit-vector
solvers, even when benchmarks are restricted to using moduli of form 2w.

The experimental results are promising though there are many avenues for
improvement. For example, additional simplification and pre-solving may lead to
significant performance improvements (as has been seen in other solvers). More-
over, the current feasibility cuts are disjunctive, and somewhat weak; methods for
deriving stronger cuts should greatly reduce the number of necessary iterations.
Embedding this approach in a lazy DPLL(T) framework would provide several
advantages: early detection of inconsistent quotient assignments, more efficient
handling of Boolean combinations of constraints, and access to complementary
theories, such as the theory of arrays.

Currently, we are also exploring ways to extend our work to non-linear bit-
vectors problems. We can either encode non-linear bit-vector problems as non-
linear integer arithmetic [6] and use non-linear integer solvers or combine linear
integer and bit-blasted non-linear constraints and use a solver like IntSat [33],
which is good at handling clausal linear constraints.
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A. Reynolds, and C. Tinelli. CVC4. In G. Gopalakrishnan and S. Qadeer, ed-
itors, Computer Aided Verification: Proceedings of the 23rd International Confer-
ence (CAV’11), volume 6806 of Lecture Notes in Computer Science, pages 171–177.
Springer, 2011.

3. C. Barrett, P. Fontaine, and C. Tinelli. The SMT-LIB Standard: Version 2.5.
Technical report, Department of Computer Science, The University of Iowa, 2015.
Available at www.SMT-LIB.org.

4. J. F. Benders. Partitioning procedures for solving mixed-variables programming
problems. Numerische Mathematik, 4(1):238–252, Dec. 1962.

5. N. Bjørner, A. Blass, Y. Gurevich, and M. Musuvathi. Modular difference logic is
hard, November 2008. Unpublished, arXiv:0811.0987v1.

6. M. Bozzano, R. Bruttomesso, A. Cimatti, A. Franzén, Z. Hanna, Z. Khasidashvili,
A. Palti, and R. Sebastiani. Encoding RTL constructs for MathSAT: A preliminary
report. Electronic Notes in Theoretical Computer Science, 144(2):3–14, 2006.

7. R. Brinkmann and R. Drechsler. RTL-datapath verification using integer linear
programming. In Proceedings of the ASPDAC/VLSI Design Conference 2002,
pages 741–746. IEEE Comp. Soc. Press, 2002.

8. R. Brummayer and A. Biere. Boolector: An efficient SMT solver for bit-vectors
and arrays. In S. Kowalewski and A. Philippou, editors, Tools and Algorithms for
the Construction and Analysis of Systems: Proceedings of the 15th International
Conference (TACAS’09), volume 5505 of Lecture Notes in Computer Science, pages
174–177. Springer, 2009.

9. R. Bruttomesso, A. Cimatti, A. Franzén, A. Griggio, Z. Hanna, A. Nadel, A. Palti,
and R. Sebastiani. A lazy and layered SMT(BV) solver for hard industrial verifica-
tion problems. In W. Damm and H. Hermanns, editors, Computer Aided Verifica-
tion: Proceedings of the 19th International Conference (CAV 2007), volume 4590
of Lecture Notes in Computer Science, pages 547–560. Springer, 2007.

10. A. Cimatti, A. Griggio, B. J. Schaafsma, and R. Sebastiani. The MathSAT5 SMT
solver. In N. Piterman and S. A. Smolka, editors, Tools and Algorithms for the
Construction and Analysis of Systems: Proceedings of the 19th International Con-
ference (TACAS’13), volume 7795 of Lecture Notes in Computer Science, pages
93–107. Springer, 2013.
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Verification: Proceedings of the 27th International Conference (CAV’15), volume
9206 of Lecture Notes in Computer Science, pages 343–361. Springer, 2015.

23. Gurobi Optimization, Inc. Gurobi optimizer reference manual, 2016. Available
online at http://www.gurobi.com.

24. L. Hadarean, K. Bansal, C. Barrett, and C. Tinelli. A tale of two solvers: Eager and
lazy approaches to bit-vectors. In A. Biere and R. Bloem, editors, Computer Aided
Verification: Proceedings of the 26th International Conference (CAV’14), volume
8559 of Lecture Notes in Computer Science, pages 680–695. Springer, 2014.

25. J. N. Hooker and G. Ottosson. Logic-based Benders decomposition. Mathematical
Programming, 96(1):33–60, 2003.

26. D. Jackson. Software Abstractions: Logic, Language and Analysis. MIT Press,
2006.
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