
#∃SAT: Projected Model Counting

Rehan Abdul Aziz, Geoffrey Chu, Christian Muise, and Peter Stuckey

National ICT Australia, Victoria Laboratory ?

Department of Computing and Information Systems
The University of Melbourne

Abstract. Model counting is the task of computing the number of as-
signments to variables V that satisfy a given propositional theory F .
The model counting problem is denoted as #SAT. Model counting is
an essential tool in probabilistic reasoning. In this paper, we introduce
the problem of model counting projected on a subset of original variables
that we call priority variables P ⊆ V. The task is to compute the number
of assignments to P such that there exists an extension to non-priority
variables V \ P that satisfies F . We denote this as #∃SAT. Projected
model counting arises when some parts of the model are irrelevant to the
counts, in particular when we require additional variables to model the
problem we are counting in SAT. We discuss three different approaches
to #∃SAT (two of which are novel), and compare their performance on
different benchmark problems.

1 Introduction

Model counting is the task of computing the number of models of a given proposi-
tional theory, represented as a set of clauses (SAT). Often, instead of the original
model count, we are interested in model count projected on a set of variables P.

Given a problem on variables P, we may need to introduce additional vari-
ables to encode the constraints on the variables P into Boolean clauses in the
propositional theory F . Counting the models of F will not give the correct
count if the new variables are not functionally defined by the original variables
P. Thankfully most methods of encoding constraints introduce new variables
that are functionally defined by original variables, but there are cases where the
most efficient encoding of constraints does not enjoy this property. Hence we
should consider projected model counting for these kinds of problems.

Alternatively, in the counting problem itself, we may only be interested in
some of the variables involved in the problem. Unless the interesting variables
functionally define the uninteresting variables, we need projected model count-
ing. An example is in evaluating robustness of a given solution. The goal is to
count the changes that can be made to a subset of variables in the solution such

? NICTA is funded by the Australian Government as represented by the Department of
Broadband, Communications and the Digital Economy and the Australian Research
Council through the ICT Centre of Excellence program.

that it still remains a solution (possibly after allowing some repairs, e.g. in su-
permodels of a propositional theory [7]). The variables representing change are
priority variables. In our benchmarks, we consider an example from the planning
domain, where we are interested in robustness of a given partially ordered plan
to the initial conditions, i.e., we want to count the number of initial states, such
that the given partially ordered plan still reaches the given goal state(s).

Projected model counting is a challenging problem that has received little at-
tention. It is at least as hard as model counting which is the special case where
all variables are priority variables. Projected model counting can be considered
a special case of QBF counting with a single level of quantification. There has
been little development of specialized algorithms for projected model counting
in the literature. To the best of our knowledge, the only dedicated attempts
at solving the problem are presented in [9] and [6]. In the latter, the primary
motivation is solution enumeration, and not counting. There is work on closely
related problems such as projection or forgetting in formulas that are in deter-
ministic decomposable negation normal form (d-DNNF) [3] while maintaining
determinism [4].

In this paper, we present three different approaches for projected model
counting.

– The first technique is straight-forward and its basic idea is to modify DPLL-
based model counters to search first on the priority variables, followed by
finding only a single solution for the remaining problem. This technique is
not novel and has been proposed in [9]. It has also been suggested in [11] in a
slightly different context. Unlike [9] which uses external calls to Minisat to
check satisfiability of non-priority components, we handle all computations
within the solver.

– The second approach is a significant extension of the algorithm presented in
[6]. The basic idea is that every time a solution S is found, we generalize it by
greedily finding a subset of literals S′ that are sufficient to satisfy all clauses
of the problem. By adding ¬S′ as a clause, we save an exponential amount
of search that would visit all extensions of S′. This extension conveniently
blends in the original algorithm of [6], which has the property that the num-
ber of blocking clauses are polynomial in the number of priority variables at
any time during the search.

– Our third technique is a novel idea which reuses model counting algorithms:
computing the d-DNNF of the original problem, forgetting the non-priority
variables in the d-DNNF, converting the resulting DNNF to CNF, and count-
ing the models of this CNF.

We compare these three techniques on different benchmarks to illustrate the
various strengths and weaknesses they have.

2 Preliminaries

We consider the set of propositional variables V. A literal l is a variable v ∈ V
or its negation ¬v. The negation of a literal ¬l is ¬v if l = v or v if l = ¬v. Let

var(l) represent the variable of the literal, i.e., var(v) = var(¬v) = v. A clause
is a set of literals that represents their disjunction, we shall write in parentheses
(l1, . . . , ln). For any formula (e.g. a clause) C, let vars(C) be the set of variables
appearing in C. A formula F in conjunctive normal form (CNF) is a conjunction
of clauses, and we represent it simply as a set of clauses. An assignment θ is a set
of literals, such that if l ∈ θ, then ¬l /∈ θ. We shall write them using set notation.
Given an assignment θ then ¬θ is the clause

∨
l∈θ ¬l. Given an assignment θ over

V and set of variables P then θP = {l | l ∈ θ, var(l) ∈ P}
Given an assignment θ, the residual of a CNF F w.r.t. θ is written F |θ and is

obtained by removing each clause C in F such that there exists a literal l ∈ C∩θ,
and simplifying the remaining clauses by removing all literals from them whose
negation is in θ. We say that an assignment θ is a solution cube, or simply a
cube, of F iff F |θ is empty. The size of a cube θ, size(θ) is equal to 2|V|−|θ|. A
solution in the classical sense is a cube of size 1. The model count of F , written,
ct(F) is the number of solutions of F .

We consider a set of priority variables P ⊆ V. Let the non-priority variables
be N , i.e., N = V \ P. Given a cube θ′ of formula F , then θ ≡ θ′P is a projected
cube of F . The size of the projected cube is equal to 2|P|−|θ|. The projected
model count of F , ct(F,P) is equal to the number of projected cubes of size 1.
The projected model count can also be defined as the number of assignments θ
s.t. vars(θ) = P and there exists an assignment θ′ s.t. vars(θ′) = N and θ ∪ θ′
is a solution of F .

A Boolean formula is in negation normal form (NNF) iff the only sub-
formulas that have negation applied to them are propositional variables. An NNF
formula is decomposable (DNNF) iff for all conjunctive formulae c1 ∧ · · · ∧ cn in
the formula, the sets of variables of conjuncts are pairwise disjoint, vars(ci) ∩
var(cj) = ∅, 1 ≤ i 6= j ≤ n. Finally, a DNNF is deterministic (d-DNNF) if
for all disjunctive formulae d1 ∨ · · · ∨ dn in the formula, the disjuncts are pair-
wise logically inconsistent, di ∧ dj is unsatisfiable, 1 ≤ i 6= j ≤ n. A d-DNNF
is typically represented as a tree or DAG with inner nodes and leaves being
OR/AND operators and literals respectively. Model counting on d-DNNF can
be performed in polynomial time (in d-DNNF size) by first computing the satis-
faction probability and then multiplying the satisfaction probability with total
number of assignments. Satisfaction probability can be computed by evaluating
the arithmetic expression that we get by replacing each literal with 0.5, ∨ with
+ and ∧ with × in the d-DNNF.

3 Model Counting

In this section we review two algorithms for model counting that are necessary
for understanding the remainder of this paper. For a more complete treatment
of model counting algorithms, see [8].

3.1 Solution enumeration using SAT solvers

In traditional DPLL-algorithm [5], once a decision literal is retracted, it is guar-
anteed that all search space extending the current assignment has been ex-
hausted. Due to this, we can be certain that the search procedure is complete
and does not miss any solution. This is not true, however, for modern SAT
solvers [10] that use random restarts and First-UIP backjumping. In the latter,
the search backtracks to the last point in search where the learned clause is
asserting, and that might mean backjumping over valid solution space. It is not
trivial to infer from the current state of the solver which solutions have already
been seen and therefore, to prevent the search from finding an already visited
solution θ, SAT solvers add the blocking clause ¬θ in the problem formulation
as soon as θ is found.

3.2 DPLL-style model counting

One of the most successful approaches for model counting extends the DPLL
algorithm (see [2,12,14]). Such model counters borrow many useful features from
SAT solvers such as nogood learning, watched literals and backjumping etc to
prune parts of search that have no solution. However, they have three additional
important optimizations that make them more efficient at model counting as
compared to solution enumeration using a SAT solver. A key property of all
these optimizations is that their implementation relies on actively maintaining
the residual program during the search. This requires visiting all clauses in the
worst case at every node in the search tree.

Say we are solving F and the current assignment is θ. The first optimization
in model counting is cube detection; as soon as the residual is empty, we can stop
the search and increment our model count by size(θ). This avoids continuing the
search to visit all extensions of the cube since all of them are solutions of F .
The second optimization is caching [1] which reuses model counts of previously
encountered sub-problems instead of solving them again as follows. Say we have
computed the model count below θ and it is equal to c, we store c against F |θ.
If, later in the search, our assignment is θ′ and F |θ = F |θ′ , then we can simply
increment our count by c by looking up the residual. The third optimization
is dynamic decomposition and it relies on the following property of Boolean
formulas: given a formula G, if (clauses of) G can be split into G1, . . . , Gn such
that vars(Gi) ∩ vars(Gj) = ∅, 1 ≤ i 6= j ≤ n, and

⋃
i∈1..n vars(Gi) = vars(G),

then ct(G) = ct(G1)× . . .× ct(Gn). Model counters use this property and split
the residual into disjoint components and count the models of each component
and multiply them to get the count of the residual. Furthermore, when used with
caching, the count of each component is stored against it so that if a component
appears again in the search, then we can retrieve its count instead of computing
it again.

4 Projected Model Counting

In this section, we present three techniques for projected model counting.

4.1 Restricting search to priority variables

This algorithm works by slightly modifying the DPLL-based model counters as
follows. First, when solving any component, we only allow search decisions on
non-priority variables if the component does not have any priority variables.
Second, if we find a cube for a component, then the size of that cube is equal to
2 to the power of number of priority variables in the component. Finally, as soon
as we find a cube for a component, we recursively mark all parent components
that do not have any priority variables as solved, as a result, the count of 1
from the last component is propagated to all parent components whose clauses
are exclusively on non-priority variables. Essentially, we store the fact that such
components are ’satisfiable’.

Example 1. Consider the following program F with priority variables p, q, r and
non-priority variables x, y, z.

(¬q, x,¬p), (¬r,¬y, z), (r,¬z,¬p), (z, y,¬p, r), (r, z,¬y,¬p), (p, q)

Here is the trace of a possible execution using the algorithm in this subsection.
We represent a component as a pair of (unfixed) variables and residual clauses.
1a. Decision p. The problem splits into C1 = ({q, x}, {(¬q, x)}) and
C2 = ({r, y, z}, {(¬r,¬y, z), (r,¬z), (z, y, r), (r, z,¬y)}).
2a. We solve C1 first. Decision ¬q. We get C3 = ({x}, ∅) and ct(C3) = 1 (triv-
ial), we backtrack to C1. 2b. Decision q, propagates x, and it is a solution. We
backtrack and set ct(C1) = ct(C3) + 1 = 2.
2c. Now, we solve C2. Decision r gives C4 = ({y, z}, {(¬y, z)}).
3a. Decision z, we get C5 = ({y}, ∅) and ct(C5) = 1. We backtrack to level C2

setting ct(C4) = 1 since the last decision was a non-priority variable.
2d. Decision ¬r fails (propagates z, y, ¬y). We set ct(C2) = ct(C4) = 1 and
backtrack to root F to try the other branch.
1b. Decision ¬p, propagates q and gives C6 = ({x}, ∅) and C7 = ({r, y, z}, {(¬r,¬y, z)}).
We note that ct(C6) = 1 (trivial) and move on to solve C7.
2e. Decision ¬r gives C8 = ({y}, ∅) and C9 = ({z}, ∅) with counts 1 each. We go
back to C7 to try the other branch.
2f. Decision r gives C10 = ({y, z}, {(¬y, z)}) which is the same as C4 which has
the count of 1. Therefore, ct(C7) = ct(C8)×ct(C9)+ct(C4) = 2. All components
are solved, and there are no more choices to be tried, we go back to root to get
the final model count. A visualization of the search is shown in Figure 1.

The overall count is ct(F) = ct(C1)× ct(C2) + ct(C6)× ct(C7) = 4. ut

4.2 Blocking seen solutions

This approach extends the projected model counting algorithm given in [6]. The
algorithm is originally for model enumeration, not model counting, and therefore,
it suffers in instances where there are small number of cubes, but the number of
extensions of these cubes to solutions is large. We present a modification of the

(V, F) : 4

¬p

))

p

{{
× : 2 × : 2

C1 : 2

q

��

¬q

||

C2 : 1

¬r

��

r

{{

C6 : 1 C7 : 2

r

��

¬r

zz
C3 : 1 (∅, ∅) : 1 C4 : 1

z

��

fail × : 1 C10 = C4 : 1

C5 : 1

DD

C8 : 1 C9 : 1

Fig. 1: A visualization of the search tree for model counting with priority vari-
ables. Nodes are marked with residual clauses and counts. Dotted edges indicate
dynamic decomposition, dashed edged indicate backjumps over non-priority de-
cisions.

algorithm that does not have this shortcoming. But first, let us briefly summarize
the motivation behind the algorithm and its technical details.

The motivation presented in [6] is absence of any specialized algorithm in
SAT (as well as ASP) for model enumeration on a projected set of variables, and
the obvious flaws in the following two straight-forward approaches for model
enumeration. The first is essentially the approach from the previous subsection
without dynamic decomposition, caching, and cube detection, i.e., searching on
variables in P first and checking for a satisfying extension over N . This ap-
proach, according to the paper, is doomed to fail, although the claim is never
substantiated in the experiments. The second approach is to keep track of so-
lutions that have been found and for each explored solution θ, add the blocking
clause ¬θP (this is also presented in [9], although the algorithm restarts and
calls Minisat by adding the clause each time a solution is found). In the worst
case, the number of solutions can be exponential in |P|, and this approach, as
experiments confirm, can quickly blow up in space. Note that, as opposed to the
learned clauses which are redundant w.r.t. the original CNF and can be removed
any time during the search, the blocking clauses need to be stored permanently,
and cannot be removed naively.

The algorithm of [6] runs in polynomial space and works as follows. At any
given time during its execution, the search is divided into controlled and free
search. The free part of the search runs as an ordinary modern DPLL-based
SAT solver would run with backjumping, conflict-analysis etc. In the controlled
part of the search, the decision literals are strictly on variables in P and how they

are chosen is described shortly. Following the original convention, let bl represent
the last level of controlled search space. Initially, it is equal to 0. Every time a
solution θ (with projection θP) is found, the search jumps back to bl, selects
a literal x from θP that is unfixed, and forces it to be the next decision. It
increments bl by 1, adds the blocking clause ¬θP and most importantly, couples
the blocking clause with the decision x in the sense that when we backtrack from
x and try (force) ¬x, ¬θP can be removed from memory as it is satisfied by ¬x.
Since backtracking in the controlled region does not skip over any solution, all
solutions with x will have been explored. Furthermore, with ¬x, all subsequent
blocking clauses that were added will have been satisfied since all of them include
¬x. This removal of clauses ensures that the number of blocking clauses at any
given time is in O(|P|).

We now describe how we extend the above algorithm by adding solution
minimization to it. We keep a global solution count, initially set to 0. Once
a solution θ is found, we generalize (minimize) the solution as shown in the
procedure shrink Figure 2. We start constructing the new solution cube S by
adding all current decisions from 1 . . . bl. Then, for each clause in the problem
(C in pseudo-code) and current blocking clauses (B), we intersect it with the
current assignment. If the intersection contains a literal whose variable is in N or
S, we skip the clause, otherwise, we add one priority literal from the intersection
in S (we choose one with the highest frequency in the original CNF). After
visiting all clauses, we use ¬S as a blocking clause instead of the one generated
by the algorithm above (¬θP). Finally, we add 2|P|−|S| to the global count. The
rest of the algorithm remains the same. Note that the decision literals from the
controlled part of the search are necessary to add in the cube, since the algorithm
in [6] assumes that once a controlled decision is retracted, all the blocking clauses
that were added below it are satisfied. This could be violated by our solution
minimization if we do not add controlled decisions to S.

Example 2. Consider the CNF in Example 1. Initially, the controlled search part
is empty, B = ∅ and bl = 0 as per the original algorithm. Say clasp finds the
solution: {p,¬q, x, z, r,¬y}. shrink produces the generalized solution: S = {r, p}
by parsing the clauses (r, z,¬p) and (p, q) respectively (all other clauses can be
satisfied by non-priority literals). We increment the model count by 2 (23−|S|),
store the blocking clause ¬S ≡ (¬r,¬p) and increment bl by 1. Say, we pick r,
due to the added blocking clause, it propagates ¬p, which propagates q. Say that
clasp now finds the solution {r,¬p, q,¬y, z, x}. In shrink, we start by including
r in S since that is a forced decision, and then while parsing the clauses, we get
S = {r,¬p, q}. Note that if we didn’t have to include the blocking clause (¬r,¬p),
then we could get away with S = {r, q} which would be wrong since that shares
the solution {r, q, p} with the previous cube. We increment the count to 3 and
cannot force any other decision, so we try the decision ¬r in the controlled part.
At the same time, upon backtracking, we remove all blocking clauses from B, so
it is now empty. Say clasp finds the solution {¬r,¬p, q, x,¬y, z}, shrink gives
S = {¬r,¬p, q}. We increment the count to 4, and when we add ¬S as a blocking
clause, there are no more solutions under ¬r. Therefore, our final count is 4. ut

shrink(θ)
S := {} % universal solution cube
for (i ∈ 1 . . . bl)

S.add(dec(i)) % add decision to S
for (c ∈ C ∪B)

f := false
for (l ∈ C)

if (l ∈ θ) and (l ∈ N or l ∈ S)
f := true
break

if (f = false) % if nothing makes the clause true already
let p ∈ θ ∩ C ∩ P with highest freq
S.add(p) % add literal to cube

ct := ct + 2|P|−|S|

B.add(¬S)

Fig. 2: Pseudo-code for shrinking a solution θ of original clauses C and blocking
clauses B to a solution cube S, adding its count and a blocking clause to prevent
its reoccurrence.

4.3 Counting models of projected d-DNNF

As mentioned in Section 2, it is possible to do model counting on d-DNNF
in polynomial time (in the size of the d-DNNF), however, once we perform
projection on P (or forgetting on N [4]) by replacing all literals whose variables
are in N with true, the resulting logical formula is not deterministic anymore
and model counting is no longer tractable (see [4]).

In this approach, we first compute the d-DNNF of F , then project away the
literals from the d-DNNF whose variables are in N , convert this projected d-
DNNF back to CNF, and then count the models of this CNF. The pseudo-code
is given in Figure 5. The conversion from d-DNNF to CNF is formalized in the
procedure d2c, which takes as its input a d-DNNF (as a list of nodes Nodes)
and returns a CNF C. It is assumed that Nodes is topologically sorted, i.e., the
children of all nodes appear before their parents. d2c maps nodes to literals in
the output CNF with the dictionary litAtNode. It also maps introduced (Tseitin)
variables to expressions that they represent in a map litWithHash. v represents
the index of the next Tseitin variable to be created. d2c initializes its variables
with the method init(). Next, it visits each node n, and checks its type. If it
is a literal and if it is a non-priority variable, then it is replaced with true
(projected away), otherwise, the node is simply mapped to the literal. If n is
an AND or an OR node, then we get corresponding literals of its children from
the method simplify. We compute the hash to see if we can reuse some previous
introduced variable instead of introducing a new one. If not, then we create a
new variable through the method Tseitin which also posts the corresponding

.

��

.

r(¬r,¬p)

��

.

r

(¬r,¬p)
(¬r, p,¬q)

��
¬r

''{p,¬q, x, r, r,¬y} : 2 .

��

.

��
{r,¬p, q,¬y, z, x} : 1 {¬r,¬p,¬q, x,¬y, z} : 1

Fig. 3: A visualization of counting models via blocking solutions. The curly arcs
indicate free search, ending in a solution, with an associated count. The con-
trolled search is indicated by full arcs, and blocking clauses associated with
controlled search decisions are shown on arcs.

equivalence clauses in C. Finally, we post a clause that says that the literal for
the root (which is the last node) should be true. The method simplify essentially
maps all the children nodes to their literals. Furthermore, if one of the literals is
true and the input is an OR-node, it returns a list containing a true literal. For
an AND node, it filters all the true literals from the children.

The next theorem shows that the method described in this section for pro-
jected model counting is correct.

Theorem 1. ct(C) = ct(F,P)

Proof (sketch). The entire algorithm transforms the theory from F to C by
producing 2 auxiliary states: the d-DNNF of F (let us call it D) and the projec-
tion of this d-DNNF (let us call this DP). By definition, F and D are logically
equivalent. On the other end, notice that the models of DP and C are in one-
to-one correspondence. Although the two are not logically equivalent due to the
addition of Tseitin variables, it can be shown that these variables do not intro-
duce any extra model nor eliminate any existing model since they are simply
functional definitions of variables in P by construction (as a side note, the only
reason for introducing these variables is to efficiently encode DP as CNF, other-
wise, C and DP would be logically equivalent). Furthermore, we can show that
the simplifications (replacing true ∨ E with true and true ∧ E with E) in the
procedure simplify, and reusing Tseitin variables (through hashing) also do not
affect the bijection. This just leaves us with the task of establishing bijection
between the models of D and DP , which, fortunately, has already been done in
[3]. Theorem 9 in the paper says that replacing non-priority literals with true
literals in a d-DNNF is a proper projection operation, and Lemma 3 establishes
logical equivalence between D and DP modulo variables in P.

Example 3. Consider the formula F with priority variables p, q and non-priority
variables x, y, z:

(¬x, p), (q,¬x, y), (¬p,¬y,¬z, q), (x, q), (¬q, p)

d2c(Nodes)
init()
for (n ∈ Nodes)

if (n is a literal l)
if (var(l) ∈ N)

litAtNode[n] := true
else litAtNode[n] := l

elif (n = op(c1, . . . , ck))
(l1, . . . , lj) := simplify(n)
if (j = 1)

litAtNode[n] := l1
else

h := hash(op, (l1, . . . , lj))
if (litWithHash.hasKey(h))

litAtNode[n] := litWithHash[h]
else

v := Tseitin(op, (l1, . . . , lj))
litAtNode[n] := v
litWithHash[h] := v

C.add({litAtNode[Nodes.last()]})
return C

init()
C = (), litAtNode = {}, litWithHash = {}
v := |V|

simplify(op(c1, . . . , ck))
L = ()
for (c ∈ c1, . . . , ck)

if (litAtNode[c] = true)
if (op = OR) return (true)

else
L.add(litAtNode[c])

return L

Tseitin(op, (l1, . . . , lj))
Add clauses v ⇔ op(l1, . . . , lj) in C
v := v + 1
return v − 1

Fig. 4: Pseudo-code for projected model counting via counting models of CNF
encoding of projected DNNF.

The projected model count is 2 ((p, q) and (p,¬q)).

∨

~~ !!
∧

~~ ��

∧

��

��

x p ∨

~~ ��

¬x p

∧

~~ ��

q

¬q y ¬z

(a) d-DNNF

a4∨

�� ��a2∧

�� ��

a3∧

��

��

p
a1∨

�� ��

p

¬q q

(b) Projected d-DNNF

a1 ⇔ q ∨ ¬q
a2 ⇔ a1 ∧ p
a3 ⇔ p ∧ q
a4 ⇔ a2 ∨ a3
a4

(c) Formula from d2c

Fig. 5: Example of application of d2c

Figure 5 shows the initial d-DNNF (5a), the d-DNNF obtained by replacing
all non-priority literals by true and simplifying (5b) and the d2c translation of
the projected d-DNNF (5c). Notice that if we perform model counting naively
on the projected d-DNNF, we get a count of 3 since we double count the model
(p, q). The satisfaction probability is:

(
1

2
+

1

2
)× 1

2
+ (

1

2
× 1

2
) =

3

4

From satisfaction probability, we get the model count 22 × 3
4 = 3. However, if

we count the models of the translated formula in 5c, we get the correct count of
2. ut

5 Experiments

We compare the following solvers on various benchmarks: clasp in its projection
mode (clasp), our extension of clasp with cube minimization (#clasp), model
counting with searching on priority variables first (dSharp P), and counting
models of projected d-DNNF (d2c). In each row |P| is the number of priority
variables. T andD represent the execution time and number of decisions taken by
the solver. R is a parameter to gauge the quality of cubes computed by #clasp,
the higher it is, the better. It is equal to log2(#sols

#cubes). A value of 0 indicates that
all solution cubes computed have size 1, while the maximum value is equal to
the number of priority variables, which is the unique case when there is only
one cube and every assignments to priority variables is a solution. R essentially
quantifies the advantage over enumeration, the less constrained a problem is,
and the more general the cubes are, the higher the advantage. S is the size (in
bytes) of the CNF computed by d2c that is subsequently given to the solver
sharpSAT for model counting. The timeout for all experiments is 10 minutes.
All times are shown in seconds. The experiments were run on NICTA’s HPC
cluster. 1

5.1 Uniform random 3-SAT and Boolean circuits

Table 1 shows the results from uniform random 3-SAT and random Boolean
circuits. In this table, for each problem instance, we show how the solvers perform
as we increase the number of priority variables. A . . . after a row means that
every solver either ran out of time or memory for all subsequent number of
priority variables until the next one shown. For each instance, a row is added
that provides the following information about it: name, number of solutions as
reported by dSharp, number of variables and clauses and time and decisions
taken by dSharp. Note that this time should be added to the time of d2c in
order to get the actual time of d2c approach.

Let us look at the results form uniform random 3-SAT. All instances have 100
variables, and the number of clauses is varied. We try clause-to-variable ratios of
1, 1.5, 2, 3 and 4. Note that for model counting, the difficulty peaks at the ratio
of approximately 1.5 [8]. For the first 3 instances, #clasp is the clear winner
while clasp also does well, dSharp P lags behind both, and d2c does not even
work since the original instance cannot be solved by dSharp. For #clasp, as
we increase the number of clauses, the cube quality decreases due to the prob-
lem becoming more constrained and cube minimization becoming less effective.
For 300 clauses, we see a significant factor coming into play for dSharp P. The
original instance is solved by dSharp. As we increase the number of priority
variables until nearly the middle, the performance of dSharp P degrades, but
after 50 priority variables, it starts getting better. This is because the degrada-
tion due to searching on priority variables first becomes less significant and the

1 All benchmarks and solvers are available at: http://people.eng.unimelb.edu.au/
pstuckey/countexists

http://people.eng.unimelb.edu.au/pstuckey/countexists
http://people.eng.unimelb.edu.au/pstuckey/countexists

search starts working more naturally in its VSADS mode [13]. d2c also solves
two rows in this instance but is still largely crippled as compared to other solvers.
Finally, with 400 clauses, we are well past the peak difficulty and the number
of models is small enough to be enumerated efficiently by clasp. All solvers
finish all rows of this instance in less than .15 seconds. We tried the same ratios
for 200 and 300 variables. For 200 variables, we saw the same trend, although
the problem overall becomes harder and the number of solved rows decreases.
For 300 variables, the problem becomes significantly harder to be considered a
suitable benchmark.

The Boolean circuits are generated with n variables as follows: we keep a set
initialized with the n original variables, then as long as the set is not a singleton,
we randomly pick an operator o (AND, OR, NOT), remove random operands
V from the set, create a new variable v and post the constraints v ↔ o(V) and
put v back in the set. The process is repeated c times. In the table, we show
the results where n is 30, and c is 1,5,10. Note that a higher value of c means
that the problem is more constrained. Overall, for all instances, dSharp P is
the superior approach, followed by clasp; and d2c is better than #clasp in
c = 1 but the converse is true for higher values of c. All solvers find c = 5 to be
the most difficult instance. We saw similar trends for different values of n that
have appropriate hardness with same values of c.

clasp #clasp dSharp P d2c
|P| # T D T D R T D T D S

UF #=— |V |=100 |C|=100 T=— D=—
5 32 0 2271 0 291 3.00 .04 1150 — — —

10 1024 .01 71309 0 533 7.19 .99 35927 — — —
15 32768 .40 2023146 0 1888 10.30 7.92 370034 — — —
25 2.7e+07 345.57 1.4e+09 0 10584 17.36 — — — — —
35 1.8e+10 — — .02 62016 24.32 — — — — —
50 1.9e+14 — — 107.75 7.1e+07 27.04 — — — — —
. . .

UF #=— |V |=100 |C|=150 T=— D=—
5 32 0 1937 0 247 3.00 .03 1286 — — —

10 1024 .02 54077 .01 2933 4.19 .68 27142 — — —
15 32768 .42 1767073 0 2101 9.96 31.63 1057551 — — —
25 2.1e+07 270.91 8.7e+08 .34 393130 11.25 — — — — —
35 2.8e+09 — — 24.98 1.5e+07 12.84 — — — — —
. . .

UF #=— |V |=100 |C|=200 T=— D=—
5 32 0 1354 0 259 2.42 .04 1304 — — —

10 1024 .01 47771 0 1370 5.25 1.12 37596 — — —
15 30712 .43 1408296 0 4659 8.29 37.07 874826 — — —
25 1.8e+07 218.20 6.4e+08 1.69 1801261 8.54 — — — — —
. . .

UF #=2.603e+11 |V |=100 |C|=300 T=31.44 D=571163
5 32 0 986 0 646 0.75 .05 671 40.92 31 865K

10 970 .02 25441 .02 11450 1.20 2.07 14146 102.63 969 1.6M
15 12990 .22 290973 .11 61663 2.30 12.74 144211 — — 6.7M
25 226117 3.84 3432170 1.66 464908 3.21 57.57 808670 — — 15M
35 5126190 49.02 6.6e+07 15.65 3367386 4.67 161.67 2834211 — — 38M
50 — — — — — — — — — — 61M

65 1.6e+09 — — — — — 70.80 1552565 — — 89M
75 2.0e+10 — — — — — 70.74 1330586 — — 104M
85 2.9e+10 — — — — — 50.18 780597 — — 113M

100 2.6e+11 — — — — — 28.62 571163 — — 134M

UF #=45868 |V |=100 |C|=400 T=.05 D=244
5 7 0 1078 0 907 0.49 .08 219 .01 6 549

10 25 0 1308 0 1103 0.94 .14 322 .01 17 1.3K
15 32 0 1582 0 1242 1.09 .12 376 .01 21 3.1K
25 105 .01 2242 0 1290 2.32 .09 373 .01 34 3.4K
35 246 .01 3068 0 1338 2.52 .06 363 .01 107 8.6K
50 952 .01 6737 .01 2241 3.24 .05 361 .02 202 14K
65 3417 .01 16388 .01 2889 4.41 .05 262 .09 321 21K
75 7964 .04 26979 .02 2845 5.32 .05 250 .04 426 22K
85 13274 .04 36445 .02 3993 5.18 .05 237 .06 563 26K

100 45868 .11 46623 .03 4639 6.74 .04 244 .07 688 31K

n=30 c=1 #=9.657e+08 |V |=99 |C|=167 T=0 D=111
5 16 0 409 0 292 0.54 0 113 .01 4 1.1K
9 160 0 3418 0 1184 1.54 0 143 0 8 1.2K

14 552 0 9305 0 5030 1.00 0 82 .01 22 3.8K
24 248960 1.16 2718019 1.49 833682 2.07 0 130 .01 169 6.1K
34 1621760 6.13 1.2e+07 6.45 1999088 3.13 .01 111 .05 656 9.7K
49 3.9e+07 104.26 1.9e+08 353.25 1.4e+07 4.78 .01 162 .10 1393 14K
64 1.5e+08 394.21 4.6e+08 — — — 0 129 .18 2143 18K
74 4.4e+08 — — — — — .01 108 .21 2982 20K
84 7.2e+08 — — — — — 0 99 .20 2624 24K
99 9.7e+08 — — — — — .01 111 .20 2517 27K

n=30 c=5 #=9.426e+07 |V |=389 |C|=867 T=288.45 D=1036363
19 12192 .16 155331 .75 146058 0.00 16.48 120619 — — 5.8M
38 208716 2.57 1882991 15.23 1985136 0.00 95.37 834705 — — 47M
58 1.2e+07 93.69 3.7e+07 — — — — — — — 100M
97 3.3e+07 248.76 6.9e+07 — — — 427.85 1509308 — — 171M

136 6.1e+07 428.89 9.1e+07 — — — — — — — 252M
...

291 9.3e+07 — — — — — 300.78 985065 — — 574M
330 9.4e+07 — — — — — 299.02 1074927 — — 672M
389 9.4e+07 — — — — — 308.84 1036363 — — 783M

n=30 c=10 #=5066 |V |=766 |C|=1771 T=.32 D=1400
38 282 .01 1196 .03 1797 0.00 .31 1412 .08 256 36K
76 1618 .02 3479 .12 5434 0.00 .40 1600 .81 2046 137K

114 2581 .03 4984 .21 7953 0.00 .52 1787 1.69 3702 173K
191 4948 .05 5558 .52 12243 0.00 .54 1904 4.98 7519 330K
268 5066 .07 5458 .63 12235 0.00 .38 1784 6.69 10508 478K
383 5066 .09 5513 .85 12356 0.00 .69 1975 9.27 12528 698K
497 5066 .08 5253 1.47 12471 0.00 .39 1680 12.46 11818 1.1M
574 5066 .11 5211 1.68 12358 0.00 .52 1616 14.85 11911 1.1M
651 5066 .09 5500 1.21 12546 0.00 .36 1500 13.42 11807 1.4M
766 5066 .09 5072 2.06 12389 0.00 .33 1400 21.61 11644 1.6M

Table 1: Results from random uniform 3-SAT and Boolean circuits

5.2 Planning

Table 2 summarizes performance of different projected model counting algo-
rithms on checking robustness of partially ordered plans to initial conditions.

We take five planning benchmarks: depots, driver, rovers, logistics, and storage.
For each benchmark, we have two variants, one with the goal state fixed and
one where the goal is relaxed to be any viable goal (shown with a capital A in
the table representing any goal). For the two variants, the priority variables are
defined such that by doing projected model counting, we count the following.
For the first problem, we count the number of initial states the given plan can
achieve the given goal from. For the second problem, we count the number of
initial states plus all goal configurations that the given plan works for. Each row
in the table represents the summary of 10 instances. The first 3 columns show
the instance parameters. For each solver, Xshows how many instance the solver
was able to finish within time and memory limits. All other solver parameters
are averages over finished instances. Another difference from the previous table
is that we have added the execution time of dSharp in d2c and dSharp time
is shown in parenthesis. There was no case in which only dSharp finished and
the remaining steps of d2c did not finish.

Overall, dSharp P solves the most instances (42), followed by #clasp (41),
d2c (34), and finally clasp which solves only 4 instances from the storage
benchmark, and otherwise suffers due to the inability to detect cubes. dSharp P
and d2c only fail on all instances in 2 benchmarks while #clasp fails in 4, so
they are more robust in that sense. For d2c, the running time is largely taken
by producing the d-DNNF and the second round of model counting is relatively
cheaper. The cube quality of #clasp is quite significant for all instances that
it solves.

Instance clasp #clasp dSharp P d2c
Name |V| |C| |P| X T D X T D R X T D X T D S

depotsA 9402 211901 224 0 — — 0 — — — 1 24.82 92206 1 8.34 (6.98) 1813 154K
depots 9211 211796 111.8 0 — — 2 4.16 4.43e+6 31.54 1 24.74 91909 1 7.71 (6.67) 1642 149K
driverA 2068 12798 135 0 — — 0 — — — 5 36.01 27104.8 3 164.73 (161.42) 68.33 150.5K
driver 1999 12700 68 0 – — 10 0.31 1.23e+5 51.7 5 15.8 1.45e+4 3 118.67 (116.00) 29.3 109K

logisticsA 18972 324568 447 0 — — 0 — — — 0 — — 0 — — —
logistics 18702 324352 224 0 — — 6 33.52 1.81e6 165.09 0 — — 0 — — —
roversA 3988 27634 209 0 — — 0 — — — 5 69.92 51965 3 1.11 (1.06) 53.33 5.37K
rovers 3851 27535 104 0 — — 10 0.30 36769.7 88.16 5 76.26 52245.4 3 1.04 (1.01) 12.67 3.4K

storageA 915 3465 93 1 454.2 2.5e9 3 43.81 3.89e7 18.01 10 49.04 47112.50 9 103.35 (78.60) 1964.2 440.21K
storage 851 3420 47 3 15.05 7.87e7 10 0.05 30686 30.47 10 15.48 12444 9 57.1 (53.46) 625.67 254.58K

Table 2: Results from robustness of partially ordered plans to initial conditions.

6 Conclusion

Projected model counting is surprisingly, almost non-existent in the literature.
Since almost all model counting requires the use of additional variables to encode
the original problem in SAT, projected model counting seems very important.
Although standard translation of Boolean formulae, introducing Tseitin vari-
ables, does not require projected model counting since the new variables are

functionally defined by the variables of interest. But important questions for
model counting, such as robustness of solutions, require projected model count-
ing.

In this paper we compare three algorithms for projected model counting. We
see that each algorithm can be superior in appropriate circumstances:

– When the number of solutions is small then clasp [6] is usually the best.

– When the number of solution cubes is much smaller than solutions, and there
is not much scope for component caching, then #clasp is the best.

– When component caching and dynamic decomposition are useful then dSharp P
is the best.

– Although d2c is competitive, it rarely outperforms both #clasp and dSharp P.
Having said that, d2c approach has another important aspect besides pro-
jected model counting. It is a method to perform projection on a d-DNNF
without losing determinism. This can be done by computing the d-DNNF of
the CNF produced by the d2c procedure (instead of model counting), and
then simply forgetting the Tseitin variables (replacing with true). It can be
shown that this operation preserves determinism. Furthermore, our exper-
iments show that the last model counting step takes comparable time to
computing the first d-DNNF in most cases (and in many cases, takes sig-
nificantly less time), which means that the approach is an efficient way of
performing projection on a d-DNNF.

As the problem of projected model counting is not heavily explored there is sig-
nificant scope for improving algorithms for it. A simple improvement would be to
portfolio approach to solving the problem, combining all four of the algorithms,
to get the something close to the best of each of them.

References

1. Bacchus, F., Dalmao, S., Pitassi, T.: DPLL with Caching: A new algorithm for
#SAT and Bayesian Inference. Electronic Colloquium on Computational Com-
plexity (ECCC) 10(003) (2003)

2. Bacchus, F., Dalmao, S., Pitassi, T.: Solving #SAT and Bayesian Inference with
Backtracking Search. Journal of Artificial Intelligence Research (JAIR) 34, 391–442
(2009)

3. Darwiche, A.: Decomposable negation normal form. J. ACM 48(4), 608–647 (2001)

4. Darwiche, A., Marquis, P.: A knowledge compilation map. Journal of Artificial
Intelligence Research (JAIR) 17, 229–264 (2002)

5. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem proving.
Communications of the ACM 5(7), 394–397 (1962)

6. Gebser, M., Kaufmann, B., Schaub, T.: Solution enumeration for projected boolean
search problems. In: Integration of AI and OR Techniques in Constraint Pro-
gramming for Combinatorial Optimization Problems, 6th International Confer-
ence, CPAIOR 2009, Pittsburgh, PA, USA, May 27-31, 2009, Proceedings. pp.
71–86 (2009)

7. Ginsberg, M.L., Parkes, A.J., Roy, A.: Supermodels and robustness. In: Proceed-
ings of the Fifteenth National Conference on Artificial Intelligence and Tenth In-
novative Applications of Artificial Intelligence Conference, AAAI 98, IAAI 98, July
26-30, 1998, Madison, Wisconsin, USA. pp. 334–339 (1998)

8. Gomes, C.P., Sabharwal, A., Selman, B.: Model counting (2008)
9. Klebanov, V., Manthey, N., Muise, C.: Sat-based analysis and quantification of

information flow in programs. In: Proceedings of the 10th International Conference
on Quantitative Evaluation of Systems. pp. 177–192. QEST’13, Springer-Verlag,
Berlin, Heidelberg (2013)

10. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engi-
neering an Efficient SAT Solver. In: Proceedings of the 38th Design Automation
Conference. pp. 530–535. ACM (2001)

11. Palacios, H., Bonet, B., Darwiche, A., Geffner, H.: Pruning conformant plans by
counting models on compiled d-dnnf representations. In: Proceedings of the Fif-
teenth International Conference on Automated Planning and Scheduling (ICAPS
2005), June 5-10 2005, Monterey, California, USA. pp. 141–150 (2005)

12. Sang, T., Bacchus, F., Beame, P., Kautz, H.A., Pitassi, T.: Combining component
caching and clause learning for effective model counting. In: Proceedings of the
7th International Conference on Theory and Applications of Satisfiability Testing
(SAT-2004) (2004)

13. Sang, T., Beame, P., Kautz, H.A.: Heuristics for fast exact model counting. In:
Theory and Applications of Satisfiability Testing, 8th International Conference,
SAT 2005, St. Andrews, UK, June 19-23, 2005, Proceedings. pp. 226–240 (2005)

14. Thurley, M.: sharpSAT - Counting Models with Advanced Component Caching
and Implicit BCP. In: SAT. pp. 424–429 (2006)

	#SAT: Projected Model Counting

