
CSP-104: Constraint Propagation for Loose Constraint
Graphs

ABSTRACT
In this paper we investigate whether we can improve propagation-
based finite domain constraint solving by making use of the
constraint graph to choose propagators to execute in a better
order. If the constraint graph is not too densely connected
we can build an underlying tree of bi-connected components,
and use this to order the choice of propagator. As search pro-
gresses forward, the constraint graph becomes less and less
strongly connected, so if we can determine the bi-connected
components of the dynamically shrinking constraint graph
we have more scope of making use of the technique. Our ex-
periments show that there exist problems where handling bi-
connected components can substantially improve the prop-
agation performance.

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Language Classfica-
tions—Constraint and logic langauges; D.3.3 [Programming
Languages]: Language Constructs and Features—Constraints

General Terms
Algorithms

Keywords
Constraint propagation, constraint graph

1. INTRODUCTION
Finite domain constraint propagation tackles constrained

satisfaction and optimization by interleaving constraint prop-
agation, which removes impossible values from the domains
of variables, with search. The constraint propagation step
is a fixpoint computation, which continually applies propa-
gators until no further changes in domains result. In this
paper we investigate how to improve the calculation of this
fixpoint when the constraint graph is not highly connected.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’07 Seoul, Korea
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

We begin with an example to motivate why it may be
worthwhile taking account of the constraint graph during
the fixpoint calculation.

Example 1. Consider a system of constraints xi+1 = xi +
1, 0 ≤ i < n, where the initial domain D(xi) of each variable
xi is [0 .. 2n]. Consider a LIFO based propagation queue.
Initially all propagators are on the stack. We take the top
x1 = x0 + 1, we revise the domains D(x1) = [1 .. 2n],
D(x0) = [0 .. 2n− 1]. Since the domain of x1 and x0 are
changed we add all other propagators for constraints men-
tioning x1 back onto the stack (x2 = x1 + 1 is the only
one and its already in). Next we pop x2 = x1 + 1 and re-
vise the domains D(x2) = [2 .. 2n], D(x1) = [1 .. 2n− 1].
This pushes x1 = x0 + 1 back on the stack which is then
selected obtaining D(x0) = [0 .. 2n− 2] but no other con-
straints mention x0. Next we pop x3 = x2 + 1 obtain-
ing D(x3) = [3 .. 2n], D(x2) = [2 .. 2n− 1], which pushes
x2 = x1 + 1, which is then popped obtaining D(x1) =
[1 .. 2n− 2]. This pushes x1 = x0 + 1 which is popped ob-
taining D(x1) = [1 .. 2n− 3]. The process continues pop-
ping x4 = x3 + 1. This pattern of execution requires O(n2)
propagator executions to reach fixpoint.

Consider a FIFO based propagation queue. We evalu-
ate each of xi+1 = xi + 1 in order for 0 ≤ i < n, ob-
taining final domains D(xi) = [i .. 2n− 1] , 0 ≤ i < n,
and each contraint except xn = xn−1 + 1 is added to the
queue. We then evaluate each of these in turn obtaining
D(xi) = [i .. 2n− 2] , 0 ≤ i < n − 1, ans each constraint
except the last two is back on the queue. Again the pattern
of execution requires O(n2) propagator executions to reach
fixpoint.

Consider the same system where we propagate x1 = x0+1,
then x2 = x1 + 1, . . . , xn = xn−1 + 1 and then reverse
xn−1 = xn−2 + 1, . . . , x2 = x1 + 1, x1 = x0 + 1. This gives
the same fixpoint with O(n) propagator executions.

What is so special about the good order of propagation in
the above example. The reason is that the constraint graph
is a tree and the order corresponds to an in-order traversal of
the tree. In general though constraint graphs are not trees,
they are highly connected, so how can we take advantage
of this. The principal idea of this work is to decompose
the constraint graph into bi-connected components and then
apply the in-order propagation strategy on the tree of bi-
connected components.

Often a constraint graph will consist of only one bi-connected
component since a non-bi-connected component means fairly
independent parts of the constraint graph, so the question

is how often is this useful. We claim there are a number of
circumstances when the approach is useful:

• In some applications such as test data generation we
have to solve very simple constraint problems very
many times. In these cases the constraint graph is
often loosely connected.

• Even when the constraint graph is totally bi-connected,
it may be only made so by propagators at low prior-
ity. We can apply the technique to the high priority
propagators since they need to reach fixpoint before
the low priority propagators are executed.

• As propagation continues variables are fixed and there
nodes are removed from the constraint graph, hence
the graph will become more an more loosely connected
as search progresses. If we can efficiently dynamically
calculate bi-connected components we can make use of
the approach.

In this paper we define an efficient queuing mechanism
for selecting propagators in an in-order traversal of the bi-
connected components of the constraint graph. We show
that for certain classes of problem this is can improve prop-
agation speed substantially. The remainder of the paper is
organized as follows. In the next section we introduce our
notation for constraints and propagation, as well as con-
straint graphs, bi-connectedness and tree traversal. Then
in Section 3 after briefly introducing the fixpoint algorithm
for constraint propagation we define a priority queue to se-
lect the propagators in the appropriate order, without undue
overhead. In Section 4 we give some preliminary results of
using the method. In Section 5 we talk about related work
and conclude.

2. PRELIMINARIES
This section defines terminology and the basic compo-

nents of a constraint propagation engine. In this paper we
restrict ourselves to integer constraint solving.

2.1 Valuations and Constraints
An integer valuation θ is a mapping of variables to integer

values, written {x1 7→ d1, . . . , xn 7→ dn}. We extend the
valuation θ to map expressions and constraints involving
the variables in the natural way.

Let vars be the function that returns the set of vari-
ables appearing in a valuation. A constraint c over vari-
ables x1, . . . , xn is a set of valuations θ such that vars(θ) =
{x1, . . . , xn}. We also define vars(c) = {x1, . . . , xn}.

The constraint graph G = (N, E) for a conjunction of
constraints c1 ∧ · · · ∧ cm is a bipartite (undirected) graph
with nodes N = NC ∪NV where the constraint nodes NC =
{c1, . . . , cm} and the variable nodes NV = ∪ ∪m

i=1 vars(ci),
and the edges are E = {(ci, xj) | xj ∈ vars(ci)}.

2.2 Domains
We shall use range notation [l .. u] to define the set of

integers {d | l ≤ d ≤ u}. A domain D is a complete mapping
from a fixed (countable) set of variables V to finite sets of
integers. A domain D1 is stronger than a domain D2,
written D1 v D2, if D1(x) ⊆ D2(x) for all x ∈ V.

A (constraint satisfaction) problem is a conjunction of
constraints C where vars(C) ⊆ V with an initial domain
D.

Example 2. The SEND+MORE=MONEY problem en-
coded using carry variables is expressed as D(S) = S(M) =
[1 .. 9], D(E) = D(N) = D(D) = D(O) = D(R) = D(Y) =
[0 .. 9] D(C1) = D(C2) = D(C3) = D(C4) = [0 .. 1] e1 ≡
D + E = Y + 10 × C1, e2 ≡ C1 + N + R = E + 10 × C2,
e3 ≡ C2+E+O = N+10×C3, e4 ≡ C3+S+M = O+10×C4,
e5 ≡ C4 = M , and alldifferent([S,E,N,D,M,O,R,Y]). The
constraint graph for the linear constraints is shown in Fig-
ure 1.

2.3 Propagators
We will implement a constraint c by a set of propagators

prop(c) which map domains to domains. We extend the
vars function so that vars(f) = vars(c) for f ∈ prop(c).
A propagator f is a monotonically decreasing function from
domains to domains: f(D) v D, and f(D1) v f(D2) when-
ever D1 v D2. A propagator f is correct for a constraint c
iff for all domains D {θ ∈ c | ∀x ∈ vars(c).θ(x) ∈ D(x)} =
{θ ∈ c | ∀x ∈ vars(c).θ(x) ∈ f(D)(x)}, that is it does not
remove solutions of c. This is a very weak restriction, for
example the identity propagator is correct for all constraints
c.

A propagator f is idempotent if f(D) = f(f(D)) for all
domains D. That is, applying f to any domain D yields a
fixpoint of f . We will assume all propagators are idempotent
for simplicity.

2.4 Bi-connectedness and in-order traversal
Given a graph G = (N, E), a subset S of the nodes N is

a bi-connected component (BCC) if S is a maximal set of
nodes that are connected in each graph G(e) = (N, E−{e})
where e ∈ E. A node n that occurs in two bi-connected
components are called cut nodes. Algorithms for determin-
ing bi-connected components [7] are based on a depth-first
traversal of the graph G and require O(|N |+ |E|) time.

A graph G is a tree iff each node forms a unique bi-
connected component, or equivalently there are no cycles.
The bi-connected component tree B(G) of a graph G =
(NG, EG) is defined as follows. Let NS = {S | S is a
bi-connected component of G} the BCCs of G and NC =
{n | n ∈ S1 ∧ n ∈ S2 ∧ {S1, S2} ⊆ NS} the cut nodes. Then
the nodes of B(G) are NS ∪ NC , and the edges are E =
{(S1, S2) | ∃(n1, n2) ∈ EG, n1 ∈ S1 −NC , n2 ∈ S2 −NC} ∪
{(n, S) | ∃(n, n1) ∈ EG, n1 ∈ S −NC} ∪ {(n, S) | n ∈ S}.

Example 3. Consider the constraint graph G shown in
Figure 1(a). The bi-connected components of the graph are
b1 ≡ {D}, b2 ≡ {Y }, b3 ≡ {e1, E, C1, e2, C2, e3}, b4 ≡ {R}
b5 ≡ {e3, O, C3, e4}, b6 ≡ {S}, b7 ≡ {e4, M, C4, e5}. Note
how (cut) nodes, such as e3 and e4, can be in more than
one bi-connected component. The bi-connected components
form a tree B(G) as illustrated in Figure 1(b). The cut nodes
that are part of multiple bi-connected components are shown
as boxed nodes. A triple edge indicates a cut node is part
of the adjacent bi-connected component (the third class of
edge above).

An in-order traversal of a tree G = (N, E) starting from
node n0 ∈ N is defined as a cycle P of ordered edges e0 =
(n0,), . . . , e2|E|−1 = (, n0) in E where ∃n.ei = (, n) ∧
ei+1 = (n,), 0 ≤ i < 2|E|−1 and whenever ei = (n, n′), ej =
(n′, n), 0 ≤ i < j ≤ 2|E|−1 then all other edges e adjacent to
n′ appear in {ei+1, . . . , ej−1}. We can assign visitation num-
bers P (n) to each node n ∈ N as follows: P (n) = {i | ei =

/.-,()*+D FFF
/.-,()*+E

xxx FFF
WWWWWWWWWWW /.-,()*+N

xxx FFF
/.-,()*+O

xxx FFF
/.-,()*+S /.-,()*+M

xxx FFF

e1 e2 e3 e4 e5

/.-,()*+Y
xxx /.-,()*+C1

FFF xxx /.-,()*+R /.-,()*+C2

FFF xxx /.-,()*+C3

FFF xxx /.-,()*+C4

FFF xxx

/.-,()*+b1
???

/.-,()*+b6

/.-,()*+b3 e3 /.-,()*+b5 e4 /.-,()*+b7

/.-,()*+b2

��� /.-,()*+b4

/.-,()*+b1
???

/.-,()*+b6

/.-,()*+b8
???
/.-,()*+b′3 e3 /.-,()*+b5 e4 /.-,()*+b7

/.-,()*+b2

��� /.-,()*+b9

��� /.-,()*+b4

(a) (b) (c)

Figure 1: (a) Constraint graph for linear constraints of SEND+MORE=MONEY, (b) tree decomposition of
bi-connected components, and (c) tree decomposition after removing E.

(n,)}. Note that |P (n)| is the degree of n. Note that the
traversal P is cyclic so the sequence [m mod 2|E| | m ≥ 0]
corresponds to an infinite cylic traversal of the tree.

Example 4. An in-order traversal P of the tree shown
in Figure 1(b) starting from b1 is (b1, b3), (b3, e3), (e3, b5),
(b5, e4), (e4, b6), (b6, e4), (e4, b7), (b7, e4), (e4, b5), (b5, e3),
(e3, b3), (b3, b2), (b2, b3), (b3, b4), (b4, b3), (b3, b1). The vis-
itation numbers are P (b1) = {0}, P (b2) = {12}, P (b3) =
{1, 11, 13, 15}, P (b4) = {14}, P (e3) = {2, 10}, P (b5) =
{3, 9}, P (b6) = {5}, P (e4) = {4, 6, 8}, and P (b7) = {7}.

3. CONSTRAINT PROPAGATION
A constraint propagation system determines the mutual

fixpoints of propagators F during search. For that reason
we often know that we are fixpoint for some propagators in
F , since nothing has changed with respect to them since the
last fixpoint calculation. This motivates the need for an in-
cremental propagation solver isolv(Fo, Fn, D) which assumes
that D is a fixpoint for the propagators in Fo (the “old”
propagators) but not necessarily for Fn (the “new” propa-
gators). The basic incremental propagation solver algorithm
is as follows:

isolv(Fo, Fn, D)
F := Fo ∪ Fn; Q := enque(Fn,initq)
while (¬empty(Q))

f := top(Q); D′ := f(D)
Q := enque({f ′ ∈ F | ∃x ∈ vars(f).D(x) 6= D′(x)}, Q)
Q := deque(f, Q); D := D′

return D

The algorithm uses a priority queue Q of propagators to ap-
ply. Q is initialised to contain the “new” propagators. Each
time the while loop is executed, the top propagator f in the
priority queue is applied, and then all propagators that may
no longer be at a fixpoint at the new domain D′ are added
to the priority queue. The propagator f is then removed
from the priority queue (since we assume it is idempotent).
An invariant of the algorithm is that at the while statement
f(D) = D for all f ∈ F −Q. In this paper we will examine
the implementation of Q.

3.1 Tree based propagator selection
Clearly propagation only occurs through connectedness in

the constraint graph. A propagator f for constraint c will
only update the domains of variables in vars(f) = vars(c).
Hence the constraint graph gives us a basis for selecting
propagators.

The idea of our approach is to schedule the propagators
according to an in-order traversal of the tree of bi-connected
components of the constraint graph. We will compute a

fixpoint of the propagators in each BCC before continuing
with the next BCC in the traversal. Note that on the mo-
tivating example (Example 1) this gives exactly the desired
behaviour.

In order to so we need to assign visitation numbers to indi-
vidual propagators. We extend the notion of visitation num-
bers of a traversal P of B(G) to give visitation numbers for
the propagators of the problem as follows. For f ∈ prop(c)
we have Pf (f) = ∪{P (b) | c ∈ b}. That is a propagator has
visitation numbers given by the union of the visition num-
bers of the BCCs in which it appears. Note that variable
BCC and cut node visitation numbers are not used.

Example 5. Consider the traversal P of Example 4. The
propagator visitation numbers are: Pf (e1) = {1, 11, 13, 15},
Pf (e2) = {1, 11, 13, 15}, Pf (e3) = {1, 3, 9, 11, 13, 15}, Pf (e4) =
{3, 7, 9}, and Pf (e5) = {7}.

We reach a fixpoint for each bi-connected component of
B(G) before considering another bi-connected component.
This requires a two level priority queue Q: made up of a heap
of simple queues of propagators. Each queue q ∈ Q is associ-
ated with a traversal number tn[q], and the heap is ordered
by traversal numbers (smallest at the top). Traversal num-
bers represent the repeated in-order traversal of the B(G)
using some in-order traversal P . Let M be one than the
largest visitation number, i.e., M = 1+max(∪n∈B(G)P (n)).
Then k = tn[q] mod M means that the queue q stores prop-
agators for visitation number k in P .

We choose the first propagator of the topmost queue in
the heap. So top(Q) = q top(h top(Q)).1 The interesting
part is the enqueing and dequeing operations.

enque(F ,Q)
if (h empty(Q)) then t := 0 else t := tn[h top(Q)]
foreach f ∈ F

let t′ = min{k | m ∈ Pf (f) ∧ k mod M = m ∧ k ≥ t}
if exists q ∈ Q where tn[q] = t′ then

q := q put(f ,q)
else

q := q put(f ,q init); tn[q] := t′

Q := h put(q,Q)
return Q

Enqueing proceeds by finding the traversal number t of
the queue on top of the heap. Each propagator is added to
the queue with traversal number t′ given by the least number
≥ t which is equal mod M to one of the visitation numbers
of the BCC of the propagator. In other words we place the

1We use prefix q for standard heap operations and h for
standard heap operations.

propagator in the queue with traversal number correspond-
ing to the next visit of the BCC of that propagator in an
in-order traversal P of B(G). If such a queue doesnt exists
we create it an add it to the heap. Clearly in the implemen-
tation we have data structures supporting direct access to q
where tn[q] = t′.

deque(f ,Q)
q := h top(Q); q := q delete(f ,q)
if q empty(q) then Q := h remove top(Q)
return Q

Dequeing is only from the top queue in the heap. The only
complication is that if the top queue in the heap becomes
empty we need to remove it and find a new heap top.

Example 6. Consider the initial propagation for the
SEND+MORE=MONEY problem. We add each constraint
to an initially empty Q, so t = 0, obtaining a heap {e1, e2, e3}[1],
{e4}[3], {e5}[7] (showing in braces the traversal number of
each queue). Note how e3 is treated as part of b3, and e4

as part of b5 initially. Now t = 1, the top propagator e1 is
executed it makes no changes, similarly for e2 and e3. The
top queue is removed, we in effect move to traversal number
t = 3. We execute e4 and again nothing changes, we remove
the top queue and t = 7. We execute e5 and the domain of
M and C4 change so e4 is enqueued, this time with a traver-
sal number of 7 (as part of b7). It is executed modifying the
domain of S and O. We enque e3 once more, now with a
traversal number of 9. e3 causes no new propagation and we
are done. Now the lower priority alldifferent constraint
would be executed.

This example above does not illustrate the cycling be-
haviour. When executing say e3 with traversal number 15
(part of b3) then if e4 were enqueued it would use traversal
number 19 (19 mod 16 = 3) as part of b5.

In a constraint propagation engine the overhead of queu-
ing is a key factor. Any complexity of queuing operations if
important since each propagator typically has low complex-
ity. The priority queue we describe has worst case complex-
ity O(log n) for enqueing and dequeing a propagator, where
n is the number of propagators in the queue. This arises
from the heap operations h remove min and h put. This may
seem too expensive, but the worst case costs are not paid
too often since they only occur on waking a propagator in
another BCC, and finishing the propagation in the current
BCC. The calculation of the traversal number t′ can be made
constant time by recording information with edges in B(G).

3.2 Dynamic BCC calculation
After variables are fixed or constraints become redundant

they can be removed from the constraint graph, hence exist-
ing BCCs can break into pieces. There are algorithms [8] for
incrementally calculating BCCs under changes to a graph,
but they do not necessarily make it easy to compute the
new BCC component tree. At present we have not imple-
mented an efficient incremental BCC calculation, we naively
apply the BCC algorithm to BCCs where nodes have been
removed. This is too expensive in practice but lets us see
the possibly benefits of dynamically maintaining BCCs in
terms of the resulting number of propagations.

New problems arise: we wish to only split a BCC into
parts leaving the remaining BCCs untouched, but (a) we

need space for new visitation numbers, and (b) the in-order
traversal may have to change! To fix these problems we
need to (a) keep space for new visitation numbers and (b)
evaluate visitation numbers by deltas rather than absolute
values to allow reordering of the traversal.

Example 7. Fixing E breaks b3 into b8 ≡ {e1}, b9 ≡ {C1},
b′3 ≡ {e2, N, C2, e3} as shown in Figure 1(c). No in-order
traversal can be obtained from P by replacing edges involv-
ing only b3 since it visits b1 then e3 then b4 then b2 traversing
b8 and b9 four times! To overcome this we use differences in
visitation numbers rather than absolute values. We first in-
crease the deltas on arcs from +1, to +|b| for arc (b, b′) so we
have enough space to split b. For the original graph we get
(absolute) visitation numbers: P (b1) = {0}, P (b2) = {31},
P (b3) = {1, 25, 32, 39}, P (b4) = {38}, P (e3) = {7, 24},
P (b5) = {8, 20}, P (b6) = {13}, P (e4) = {12, 14, 19}, and
P (b7) = {15}. We record for each leaving arc the delta in
numbers: e.g. visiting the tree rooted by e3 from b3 requires
delta 25 − 7 = +18, while visiting each other neighbour is
+1. When we reorder the visitations we can quickly cal-
culate the deltas from the current BCC to its neighbours.
When we break b3 into parts the deltas of new BCCs need
to be calculated but not for the other parts of the tree.

Note that the density of the visitation numbers is irrel-
evant to the algorithm, only their order, gaps in visitation
numbers makes no difference.

4. RESULTS
The experiments were performed on a 2400MHz Pentium

IV running Debian 3.1 “Sarge”, using the Mercury [6] finite
domain propagation library. We show time and total num-
ber of propagation to find first solutions, including all BCC
calculations.

The starn,l benchmarks have constraint graphs in the
shape of a star. The center of the star consists of two lin-
ear constraints between three variables. Each benchmark
has n arms leading out from this center, where each arm
consists of a chain of l equals constraints ending with an-
other BCC of three variables constrained by two linear con-
straints. This arrangement results in information flow in
both directions along the arms. The sendmoney bench-
mark is the SEND+MORE=MONEY problem from Exam-
ple 2. For this problem the low priority alldifferent con-
straint is ignored for the purpose of building the tree of
BCCs. The nplus1l benchmarks are as described in Exam-
ple 1, where l indicates the number of variables. The chainl

benchmarks consist of l links where each link i involves three
variables with a constraint between them Ai = Bi + Ci.
These links are then joined in a chain using constraints
Bi + Ci = Ai+1 + Bi+1. Note that this results in a chain of
BCCs connected through propagator cut points.

Clearly the inorder BCC traversal is almost always ben-
eficial in terms of number of propagations on these bench-
marks. As the size of the problems grow the cost of building
the BCC tree, and the overheads in using the heap are re-
paid in time. The sendmoney program does not benefit
from using inorder BCC traversal since the problem is just
too small. The chain examples show the benefit of allowing
propagators to exist in multiple BCCs. If we do not allow
this, then the whole benchmark is forced to be a single BCC,
and results are as for FIFO.

Test FIFO Inorder BCC
time (ms) props. time (ms) props.

star1,1 10.8 10050 19.4 4405
star1,5 13.9 17882 19.8 4513
star1,10 18.2 27672 20.1 4648
star2,1 15.4 17887 29.3 4293
star2,5 26.3 38451 29.7 4413
star2,10 38.0 64156 30.5 4563
star3,1 21.0 23292 33.0 4347
star3,5 33.4 51312 33.4 4507
star3,10 49.3 86337 34.9 4677
star4,1 26.1 31533 41.2 4366
star4,5 44.8 72653 42.2 4538
star4,10 69.7 124053 42.9 4723
star5,1 29.9 36958 44.7 4443
star5,5 52.0 85538 45.3 4631
star5,10 81.2 146263 46.5 4836
sendmoney 1.6 53 1.9 55
nplus120 1.9 247 2.0 112
nplus150 2.9 1372 2.6 292
nplus1100 6.1 5247 3.7 592
nplus1150 11.5 11622 4.9 892
chain6 8.9 6038 10.8 4424
chain8 56.5 38405 63.0 24830
chain10 339.8 226892 335.5 132888
chain12 1928.9 1278137 1750.5 688725

Table 1: Comparative results of BCC tree based
scheduling versus the usual FIFO scheduling.

Another set of benchmarks, wheeln,l, show the benefit of
updating the BCC tree dynamically in terms of number of
propagations. These benchmarks are the same as the starn,l
benchmarks, except that the end of each arm is connected
(through two not equal constraints and an extra variable)
to those on either side. This results in a constraint graph
which is initially a single BCC, but gradually becomes a star
as the extra variables are labelled first.

Clearly a more efficient method of maintaining the BCC
tree is required to show a benefit in terms of time, but the
improved propagation behaviour is clear.

5. CONCLUSION AND RELATED WORK
There has been considerable work in making use of tree de-

composition to solve constraint satisfaction problems. Since
tree constraint graphs can be solved efficiently [2], it makes
sense to break the problem into tree parts. This has been
used to give bounds on backtrack search [3]. The drive of
the work on tree decomposition has been to define tractable
(polynomial) classes of constraint satisfaction problem. Most
of this work concentrates on the dynamic case where the
order of variable labelling is used to break the constraint
graph into components effectively; approaches like psuedo
tree-search [4] and join-tree clustering [1] can then be used.

In this work we simply concentrate on using the constraint
graph to efficiently calculate a fixpoint of propagators, in-
dependent of what particular search is taking place. We are
unaware of earlier work examining how to effectively sched-
ule propagation so that the biconnected tree decomposition
of the constraint graph is effectively used. Previous work
also does not consider separating BCCs with constraint cut
nodes. Since we are in a propagation framework we can ben-

Test Static Dynamic
time (ms) props. time (ms) props.

wheel2,1 49.2 16894 92.3 4088
wheel2,5 83.4 36358 116.0 4224
wheel2,10 125.4 60688 148.0 4394
wheel2,15 168.4 85018 180.9 4564
wheel3,1 61.8 21985 121.0 4134
wheel3,5 107.4 48585 157.0 4308
wheel3,10 164.6 81835 209.3 4498
wheel3,15 220.1 115085 261.3 4688
wheel4,1 82.5 29699 153.4 4164
wheel4,5 151.1 68603 205.7 4362
wheel4,10 236.8 117233 276.3 4582
wheel4,15 323.3 165863 352.6 4802
wheel5,1 94.6 34843 183.9 4243
wheel5,5 174.8 80895 250.0 4461
wheel5,10 274.0 138460 344.2 4706
wheel5,15 375.1 196025 451.2 4951

Table 2: Comparative results of dynamic BCC cal-
culation versus the static method.

efit from the priority system, the full constraint graph for the
SEND+MORE=MONEY problem is one biconnected com-
ponent because of the alldifferent constraint, but since it
is at a lower priority we can use the biconnected approach
to order the higher priority propagators.

Our approach has some similarity of spirit with the ap-
proach of [5], which dynamically determines which propaga-
tors are causing a tight cycle of propagation, and schedules
them to reach fixpoint before scheduling other constraints.
We calculate statically using the constraint graph, rather
than using the evolving propagation behaviour.

Obviously the benchmarks we use here are quite artificial,
but there do exist classes of constraint problems with loosely
connected constraints graphs, for example in test generation.
There remains substantial future work in determining when
it is worth applying this scheduling approach, and how to
most efficiently make use of dynamic BCCs which arise in
all applications.

6. REFERENCES
[1] R. Dechter. Constraint Processing. Morgan-Kaufmann,

2003.

[2] E. Freuder. A sufficient condition for backtrack-free
search. JACM, 29(1):24–32, 1982.

[3] E. Freuder. A sufficient condition for
backtrack-bounded search. JACM, 32(4):755–761, 1985.

[4] E. Freuder and M. Quinn. Taking advantage of stable
sets of variables in constraint satisfaction problems. In
Proceedings of IJCAI-85, 1076–1078, 1985.

[5] O. Lhomme, A. Gotlieb, M. Rueher, and P. Taillibert.
Boosting the interval narrowing algorithm. In
Proceedings of JICSLP, 378–392. MIT Press, 1996.

[6] Mercury. www.cs.mu.oz.au/mercury.

[7] R. Tarjan. Depth-first search and linear graph
algorithms. SIAM Journal on Computing, 1:146–160,
1972.

[8] J. Westbrook and R. E. Tarjan. Maintaining
bridge-connected and biconnected components on-line.
Algorithmica, 7:433–464, 1992.

