
Constraint Propagation for Loose Constraint Graphs

Kathryn Francis,
Department of Computer Science and Software

Engineering
University of Melbourne, 3010, Australia

francis@students.csse.unimelb.edu.au

Peter J. Stuckey
NICTA Victoria Laboratory

Department of Computer Science and Software
Engineering

University of Melbourne, 3010, Australia

pjs@cs.mu.oz.au

ABSTRACT
In this paper we investigate how to improve propagation-
based finite domain constraint solving by making use of the
constraint graph to choose propagators to execute in a better
order. If the constraint graph is not too densely connected
we can build an underlying tree of bi-connected components,
and use this to order the choice of propagator. Our exper-
iments show that there exist problems where handling bi-
connected components can substantially improve the prop-
agation performance.

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Language Classfica-
tions—Constraint and logic langauges; D.3.3 [Programming
Languages]: Language Constructs and Features—Constraints

Keywords
Constraint propagation, constraint graph

1. INTRODUCTION
Finite domain constraint propagation tackles constrained

satisfaction and optimization by interleaving constraint prop-
agation, which removes impossible values from the domains
of variables, with search. The constraint propagation step
is a fixpoint computation, which continually applies propa-
gators until no further changes in domains result. In this
paper we investigate how to improve the calculation of this
fixpoint when the constraint graph is not highly connected.
A full version of the paper is available [1].

Example 1. Consider a system of constraints ei ≡ xi+1 =
xi + 1, 0 ≤ i < n, where the initial domain of each variable
xi is {0, . . . , 2n}. Using a FIFO based propagation queue
this requires O(n2) executions to reach a fixpoint. Similarly
for a LIFO based propagation queue. But if we propagate in
order e1, e2, . . . , en−1, en−1, . . . , e2, e1 we require only O(n)
steps to reach the same fixpoint.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’07 March 11-15, 2007, Seoul, Korea.
Copyright 2007 ACM 1-59593-480-4/07/0003 ...$5.00.

What is so special about the good order of propagation in
the above example? The reason is that the constraint graph
is a tree and the order corresponds to an in-order traversal of
the tree. In general though constraint graphs are not trees,
they are highly connected, so how can we take advantage
of this. The principal idea of this work is to decompose
the constraint graph into bi-connected components and then
apply the in-order propagation strategy on the tree of bi-
connected components.

2. OUR APPROACH
A constraint satisfaction problem (CSP) consists of a set

of variables v ∈ V , each with a domain of possible values
D(v), and a set of constraints c ∈ C, where vars(c) ⊆ V .
Constraint propagation solves constraint satisfaction prob-
lems by repeatedly executing propagators for each constraint
to remove values from the domains of its variables that can-
not take part in a solution (see e.g. [2]). In this paper we
investigate how to order the choice of which propagator to
execute next by taking into account the constraint graph.

Example 2. The SEND+MORE=MONEY problem en-
coded using carry variables is expressed as D(S) = S(M) =
[1 .. 9], D(E) = D(N) = D(D) = D(O) = D(R) = D(Y) =
[0 .. 9] D(C1) = D(C2) = D(C3) = D(C4) = [0 .. 1] e1 ≡
D + E = Y + 10 × C1, e2 ≡ C1 + N + R = E + 10 × C2,
e3 ≡ C2 +E+O = N +10×C3, e4 ≡ C3 +S+M = O+10×
C4, e5 ≡ C4 = M , and alldifferent([S,E,N,D,M,O,R,Y]).
Figure 1(a) shows the constraint graph for the linear con-
straints.

Clearly propagation only occurs through connectedness in
the constraint graph. A propagator for constraint c can only
update the domains of variables in vars(c), which can only
wake propagators for constraints involving these changed
variables. Hence the constraint graph gives us a basis for
selecting propagators.

The idea of our approach is to schedule the propagators
according to an in-order traversal of the tree of bi-connected
components of the constraint graph. We will compute a
fixpoint of the propagators in each BCC before continuing
with the next BCC in the traversal.

Given a graph G = (N, E), a subset S of the nodes N

is a bi-connected component (BCC) if S is a maximal set
of nodes that are connected in each graph G(n) = (N −
{n}, E − {(n, n′) | n′ ∈ N}) for each n ∈ N . A node n that
occurs in two bi-connected components is called a cut node.
Algorithms for determining bi-connected components [3] are

/.-,()*+D
FF

F
/.-,()*+E

xx
x FF

F

WWWWWWWWWWW /.-,()*+N
xx

x FF
F

/.-,()*+O
xx

x FF
F
/.-,()*+S /.-,()*+M

xx
x FF

F

e1 e2 e3 e4 e5

/.-,()*+Y

xxx /.-,()*+C1

FFF xxx /.-,()*+R /.-,()*+C2

FFF xxx /.-,()*+C3

FFF xxx /.-,()*+C4

FFF xxx

/.-,()*+b1
??

?
/.-,()*+b6

/.-,()*+b3 e3
/.-,()*+b5 e4

/.-,()*+b7

/.-,()*+b2

��� /.-,()*+b4

(a) (b)

Figure 1: (a) Constraint graph for linear constraints of SEND+MORE=MONEY, (b) tree decomposition of
bi-connected components.

based on a depth-first traversal of the graph G and require
O(|N | + |E|) time.

A graph G is a tree iff each node forms a unique bi-
connected component, or equivalently there are no cycles.
The bi-connected component tree B(G) of a graph G =
(NG, EG) is defined as follows. Let NS = {S | S is a
bi-connected component of G} the BCCs of G and NC =
{n | n ∈ S1 ∧ n ∈ S2 ∧ {S1, S2} ⊆ NS} the cut nodes. Then
the nodes of B(G) are NS ∪ NC , and the edges are E =
{(S1, S2) | ∃(n1, n2) ∈ EG, n1 ∈ S1 − NC , n2 ∈ S2 − NC} ∪
{(n, S) | ∃(n, n1) ∈ EG, n1 ∈ S − NC} ∪ {(n, S) | n ∈ S}.

Example 3. Consider the constraint graph G shown in
Figure 1(a). The bi-connected components of the graph are
b1 ≡ {D}, b2 ≡ {Y }, b3 ≡ {e1, E, C1, e2, C2, e3}, b4 ≡ {R}
b5 ≡ {e3, O, C3, e4}, b6 ≡ {S}, b7 ≡ {e4, M, C4, e5}. Note
how (cut) nodes, such as e3 and e4, can be in more than
one bi-connected component. The bi-connected components
form a tree B(G) as illustrated in Figure 1(b). The cut nodes

that are part of multiple bi-connected components are shown
as boxed nodes. A triple edge indicates a cut node is part
of the adjacent bi-connected component.

An in-order traversal of a tree G = (N, E) starting from
node n0 ∈ N is defined as a cycle P of ordered edges e0 =
(n0,), . . . , e2|E|−1 = (, n0) in E where ∃n.ei = (, n) ∧
ei+1 = (n,), 0 ≤ i < 2|E|−1 and whenever ei = (n, n′), ej =
(n′, n), 0 ≤ i < j ≤ 2|E|−1 then all other edges e adjacent to
n′ appear in {ei+1, . . . , ej−1}. We can assign visitation num-
bers P (n) to each node n ∈ N as follows: P (n) = {i | ei =
(n,)}. Note that |P (n)| is the degree of n. Note that the
traversal P is cyclic so the sequence [m mod 2|E| | m ≥ 0]
corresponds to an infinite cylic traversal of the tree.

Example 4. An in-order traversal P of the tree shown
in Figure 1(b) starting from b1 and traversing clockwise
(b1, b3), (b3, e3), (e3, b5), (b5, e4), (e4, b6), (b6, e4), (e4, b7),
(b7, e4), (e4, b5), (b5, e3), (e3, b3), (b3, b4), (b4, b3), (b3, b2),
(b2, b3), (b3, b1). The visitation numbers are P (b1) = {0},
P (b2) = {14}, P (b3) = {1, 11, 13, 15}, P (b4) = {12}, P (e3) =
{2, 10}, P (b5) = {3, 9}, P (b6) = {5}, P (e4) = {4, 6, 8}, and
P (b7) = {7}.

To support our approach we need to queue propagators so
they are executed in an in-order traversal. To do so we use a
min-heap of propagation queues, one for each BCC. Let t be
the traversal number assigned to the top queue in the heap.
When a propagator for a constraint is awoken it is placed in
the queue for its BCC b. If there is currently no queue for
the BCC b on the heap, an entry is added with heap weight
given by min{m | m > t ∧ (m mod 2|E|) ∈ P (b)}, that is
with the next traversal number for that BCC in the infinite
cycle traversal. If the constraint occurs in more than one
BCC, it is placed in the queue for the BCC b which returns
the least value using the above calculation.

Example 5. Consider the initial propagation for the
SEND+MORE=MONEY problem. We add each constraint
to an initially empty Q, so t = 0, obtaining a heap {e1, e2, e3}[1],
{e4}[3], {e5}[7] (showing in braces the traversal number of
each queue). Note how e3 is treated as part of b3, and e4

as part of b5 initially. Now t = 1, the top propagator e1 is
executed it makes no changes, similarly for e2 and e3. The
top queue is removed, we in effect move to traversal number
t = 3. We execute e4 and again nothing changes, we remove
the top queue and t = 7. We execute e5 and the domain
of M and C4 change so e4 is enqueued, this time with a
traversal number of 7 (as part of b7). It is executed modi-
fying the domain of S and O. We enque e3 once more, now
with a traversal number of 9 (as part of b5). e3 causes no
new propagation and we are done. Now the lower priority
alldifferent constraint would be executed.

This example above does not illustrate the cycling be-
haviour. When executing say e3 with traversal number 15
(part of b3) then if e4 were enqueued it would use traversal
number 19 (19 mod 16 = 3) as part of b5.

We compared performance of our approach to the usual
FIFO queuing approach on chain examples like Example 1,
and examples with star shaped constraint graphs with mul-
tiple arms from a single centre joining small BCCs at the
end and the center. The number of propagations required
to solve these problems reduces by 1 or two orders of magni-
tude. For sufficiently large examples the time savings caused
by less propagations easily pay for the costs of calculating
BCCs and traversal numbers (see [1] for details). Note our
approach uses O(log |NS |) time in the worst case to enque
and deque rather than O(1).

Obviously the benchmarks we use are quite artificial, but
there do exist classes of constraint problems with loosely
connected constraints graphs, for example in test genera-
tion. We need to investigate more practical classes of prob-
lem for our approach. The approach can be extended to
dynamically recalculate BCCs as the search progresses since
ground variables and redundant constraints effectively dis-
appear from the graph. We need to balance the overhead
of recalculation against the advantages of less propagations.
The dynamic version is potentially applicable to all CSPs.

3. REFERENCES
[1] K. Francis and P. Stuckey. Constraint propagation for

loose constraint graphs. Technical report, 2006.
www.cs.mu.oz.au/~/pjs/papers/loose.pdf.

[2] C. Schulte and P. Stuckey. Speeding up constraint
propagation. In Procs. of CP2004, volume 3258 of
LNCS, pages 619–633, 2004.

[3] R. Tarjan. Depth-first search and linear graph
algorithms. SIAM Journal on Computing, 1:146–160,
1972.

