
Propagating Dense Systems of Integer Linear Equations

Thibaut Feydy and Peter J. Stuckey
NICTA Victoria Laboratory

Department of Computer Science & Software Engineering
University of Melbourne, Australia

{tfeydy,pjs}@cs.mu.oz.au

ABSTRACT
In interval propagation approaches to solving non-linear con-
straints over reals it is common to build stronger propaga-
tors from systems of linear equations. This, as far as we
are aware, is not pursued for integer finite domain propaga-
tion. In this paper we show how we can add preconditioning
Gauss-Seidel based propagators to an integer propagation
solver. The Gauss-Seidel based propagators make use of in-
terval arithmetic which is substantially slower than integer
arithmetic. We show how we can build new integer propaga-
tors from the result of preconditioning that no longer require
interval arithmetic to be performed. Although the resulting
propagators may be slightly weaker than the original Gauss-
Seidel propagation, they are substantially faster. We show
on standard integer benchmarks how these new propaga-
tors can substantially improve propagation performance, in
terms of strength of propagation and speed.

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Language Classifica-
tions—Constraint and logic languages; D.3.3 [Programming
Languages]: Language Constructs and Features—Constraints

General Terms
Algorithms

Keywords
Linear equations, Gaussian elimination, constraint program-
ming, constraint Propagation

1. INTRODUCTION
Linear equations are one of the most important constraints

in any integer finite domain propagation system. Efficient
bounds propagation of individual linear equations is well
understood [4] and available in all constraint programming
systems. But in other solving approaches systems of linear

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’07March 11-15, 2007, Seoul, Korea.
Copyright 2007 ACM 1-59593-480-4/07/0003 ...$5.00.

equations (and inequalities) are not treated individually but
together as a system.

Example 1. Consider the linear equations x1 + x3 − x4 =
3 ∧ x1 + x2 + 2x3 − x4 = 4 with initial domains [0, 4] then
individually no propagation is possible, but the equivalent
system x1+x3−x4 = 3∧x2+x3 = 1 can reduce the domains
of all variables. Clearly if we can treat the system together
there is more scope for propagation

In linear programming the real relaxation of all integer lin-
ear equations and inequalities is treated together by the lin-
ear programming algorithm. Even though linear program-
ming based propagators [9] are available in constraint pro-
gramming toolkits (for example OPL [8] and ECLiPSe [2]),
the linear programming propagator does not provide new
bounds information for the integer variables involved, rather
it is used to bound the objective function (and possibly do
reduced cost variable fixing).

Alternatively one can also use linear programming to build
propagators that take into account all linear constraints si-
multaneously by minimizing and maximizing every variable
in turn, and rounding the resulting bounds to integers [10].
Unfortunately this requires repeatedly performing 2n LP op-
timizations, where n is the number of variables, to propagate
the linear constraints. This is very expensive compared to
the cost of treating the constraints as integer linear propa-
gators.

In non-linear interval solvers, systems of linear equations
are treated together as propagators using Gauss-Seidel it-
eration. Typically they are first preconditioned by Gaus-
sian elimination in order to speed up convergence. While it
is possible to define Gaussian elimination over integer lin-
ear equations, in practice the integer coefficients typically
quickly explode making it impractical.

In this paper we explore using a real interval hybrid ap-
proach to propagate systems of integer linear equations.
Preconditioning of the linear equations is performed using
interval arithmetic, and the resulting interval arithmetic prop-
agator is applied to variables (taking into account their in-
tegrality). This requires a hybrid interval and integer finite
domain solver.

Example 2. Consider the following constraints which are
almost collinear to those of Example 1: 100x1 + 99x3 −
101x4 = 301 ∧ 101x1 + 99x2 + 199x3 − 100x4 = 399, and
initial domains [0,4]. Again no propagation is possible. The
integer Gaussian elimination yields 100×99x2+(100×199−
101×99)x3−(100×100−101×101)x4 = 100×399−101×301,

illustrating the increase in coefficients. The interval version

of the elimination yields x2 + 9901
9900

x3 − 201
9900

x3 = 9499
9900

where
a represents a “tight” floating point interval around a. Both
the integer and interval propagators resulting from Gaussian
elimination detect that there is no solution.

We then show that we can remove the requirement for the
hybrid solver altogether by weakening the resulting interval
linear equations to integer linear inequalities.

Example 3. The floating point interval equation resulting
in Example 2 can be weakened to the integer inequalities
9899x2 + 9900x3 − 202x4 ≤ 9500 and 9901x2 + 9902x3 −
200x4 ≥ 9498. This is at least strong enough to reduce the
domains of x2 and x3 to [0,1], and with the original equation
x1 obtains [1,4] and x4 obtains [0,2].

Note that x4 is almost irrelevant in these equations since
its coefficient is much smaller than the other coefficients. We
can remove it altogether, using its bounds, to simplify the
inequalities without losing much propagation. We obtain
9899x2 + 9900x3 ≤ 10308 and 9901x2 + 9902x3 ≥ 9498. We
lose no initial propagation with this simplification.

This paper examines the use of Gauss-Seidel methods with
preconditioning for integer linear equations. We show how
to achieve this using a hybrid interval and integer propaga-
tion solver, and how to map the problem back entirely to
integer propagation. Our experiments on standard bench-
marks show that the technique can lead to substantial im-
provements in propagation efficiency.

2. INTERVAL GAUSSIAN ELIMINATION

2.1 Interval Arithmetic
Let R be the set of real numbers, and let R∞ be R ∪
{+∞,−∞}. Let F be the subset of R of the representable
floating-point numbers in a given format, and let F∞ be
F∪ {+∞,−∞}. Given two numbers a ∈ F∪ {+∞} and b ∈
F ∪ {−∞}, the interval [a, b] is the set {x ∈ R | a ≤ x ≤ b}.
We will use I to represent the set of intervals, which is closed
under intersection.

Given an interval I we will define bIc (resp. dIe) as the
smallest (resp. largest) element of I.

Given an interval I = [a, b], let ceil(I) (respectively floor(I))
be the smallest (resp. largest) integer such that ceil(I) ≥ b
(resp. floor(I) ≤ a).

Given an interval I = [a, b], let mid(I) be the approxi-
mated midpoint of I:

∀y ∈ F,

„
a + b

2
−mid(I)

«2

≤
„

a + b

2
− y

«2

Interval arithmetic [6] was designed to tackle two prob-
lems of numerical analysis: uncertainty of data and roundoff
error. It has the advantage of being a sound approximation
of problems over R, and interval analysis methods, based on
iterative contraction of intervals, are easily implemented in
a constraint programming framework.

Given two intervals Dx and Dy, the interval operator �
associated to the real operator � is defined by:

Dx�Dy =
\

I

{Dz | ∀x ∈ Dx,∀y ∈ Dy, x � y ∈ Dz}

As an example, the multiplication operator is defined by:

[a, b]× [c, d] = [↓ min(ac, ad, bc, bd), ↑ max(ac, ad, bc, bd)]

where ↓ (r) and ↑ (r) are respectively the downward and
upward roundings to F of a real number r.

An interval extension of a function f : Rn → R is a
mapping F : In → I such that:
∀(D1, . . . , Dn) ∈ In, ∀(x1, . . . , xn) ∈ (D1, . . . , Dn)
f(x1, . . . , xn) ∈ F (D1, . . . , Dn)

The following standard result give the basis of interval
arithmetic.

Definition 1. Given an arithmetic real function f , the
mapping obtained by replacing the real vector x by the in-
terval vector Dx, each constant r by the interval [brc, dre]
and each operator by the associated interval operator is an
interval extension of f , called its natural extension.

2.2 Gauss-Seidel
Given a system Ax = b, where A is a Fn×n matrix, b

is a Fn vector, and given an initial box D(0), Gauss-Seidel
will compute iteratively smaller boxes containing the real
solutions of the system contained in D(0).

An iteration k of the Gauss-Seidel algorithm consists of
computing n projections in sequence. The computation of
the i-th projection is given by the formula:

D
(k)
i = D

(k−1)
i ∩

bi −

P
j<i aijD

(k)
j −

P
l>i ailD

(k−1)
l

aii

!
where Di is the interval for the i-th variable in x.

The hull of the solution set of a system of linear equations
is the tightest intervals that encloses the solutions of the
system. The mignitude of an interval I = [a, b] is defined
as mig(I) = min(|a|, |b|) while its magnitude is defined as
mag(I) = max(|a|, |b|). A matrix A = (aij) is diagonally
dominant if:

∀i ∈ 1 . . . n, mig(aii) >
X
k 6=i

mag(aik)

The power of interval Gauss-Seidel is captured by the fol-
lowing result:

Theorem 1. [7] The Interval Gauss-Seidel method ap-
plied to a system Ax = b where A is diagonally dominant is
guaranteed to converge to the hull of the solution set of the
system.

2.3 Preconditioning
The Interval Gauss-Seidel method is not guaranteed to

converge in a general system. In order to obtain tighter
bounds and to accelerate the convergence of the algorithm,
a transformation is usually applied to the system before us-
ing Gauss-Seidel. This is generally done by multiplying the
original system Ax = b by a suitable matrix, or precondi-
tioner, P . A preconditioner widely used and often consid-
ered optimal is the midpoint inverse of A:

Ã−1 = (mid(aij))
−1

Ã−1 can be computed approximatively using floating-point
inversion algorithms, such as Gaussian Elimination or LU
decomposition. Preconditioning involves O(n3) interval mul-
tiplications, thus the resulting system will have a wider

hull than the original one. An inconsistent system of equa-
tion may become consistent after preconditioning, however
soundness is guaranteed (Definition 1).

The coefficient matrix resulting from this preconditioning
is a matrix whose diagonal elements are centered around
one, while non-diagonal elements are centered around zero.
When the initial coefficient matrix A is a floating-point ma-
trix, the width of the coefficients after preconditioning result
from rounding during computations. We may then expect
these intervals to be tight and we will refer to them as quasi-
zeros for non-diagonal coefficients and quasi-ones for diag-
onal coefficients. We will refer to the resulting matrix as a
quasi-identity matrix.

Example 4. Consider the variables x1, x2, x3, with the
domains [−10, 10], and the following linear constraints:

C1 :

24 5 3 4
−1 2 −2

1 −1 2

3524 x1

x2

x3

35 =

24 0
7
−2

35
None of these constraints perform any pruning. Applying
the midpoint inverse preconditioner yields the system:

C′1 :

24 1 0 0
0 1 0
0 0 1

3524 x1

x2

x3

35 =

24 −7
5
5

35
In double precision floating-point arithmetic, each interval
of this system have a width smaller than 10−10. Given any
reasonable domains, these constraints fix the values of x1,
x2 and x3 during the first iteration.

2.4 Rectangular matrix preconditioning
Many constraint programming problems contain linear

equalities, however the number of linear constraints may
be less than the number of variables involved in these con-
straints. In this case only a partial Gaussian elimination [1]
is performed, which may still lead to better propagation.

Given an m×n matrix A, with m the number of equations
and n > m the number of variables, the result of the pre-
conditioning of a system Ax = b is a system (Im A′) x = b′,
where Im is a quasi-identity matrix. Since the coefficient
matrix is not diagonally dominant (A′ is a general matrix,
not a quasi-zeros matrix), Gauss-Seidel applied to the result-
ing system is not guaranteed to converge to the hull of the
system anymore. For that reason a general linear constraint
is posted for each linear equality, rather than one Gauss-
Seidel projection. Another approach is to apply a modified
Gauss-Seidel procedure which computes (n−m)+1 projec-
tions, one for each non-zero coefficient. We will see later in
this paper a method similar to a modified Gauss-Seidel pro-
cedure which is implemented using the usual linear equality
constraint.

Example 5. Consider the last two equations of the con-
straint C1:

C2 :

»
−1 2 −2

1 −1 2

–24 x1

x2

x3

35 =

»
7
−2

–
A partial Gaussian elimination yields the constraint:

C′2 :

»
1 0 0.5
0 1 0

–24 x3

x2

x1

35 =

»
1.5

5

–

The original constraints will again not perform any pruning
whereas the redundant constraints introduced by C′2 will
reduce the domain of x1 to [−9, 9], the domain of x3 to
[−3, 6], and x2 will be fixed to 5. x1 and x3 are also strongly
connected by a binary constraint.

However, partial Gaussian elimination can result in costly
propagators providing weak information if applied to a sparse
matrix when n >> m: in the worst case, performing a par-
tial Gaussian elimination on a system of m equations and n
variables will result in a system of m equations, each with
(n − m) + 1 non quasi-zero coefficients. If n >> m and
if the original equations only involved a few variables each,
it is unlikely that we will gain stronger information from
preconditioning, while each resulting propagator will have a
execution cost in O(n−m).

Example 6. Consider the system x1 + x2 + x3 = 0 ∧ x1 +
x4 + x5 = 0∧x5 + x6 + x7 = 0. Preconditioning this system
results in the system x1 + x2 + x3 = 0∧ x4 + x5− x2− x3 =
0 ∧ x6 + x7 − x4 + x2 + x3 = 0. No information is gained
from the resulting, more expensive, propagators.

3. PROPAGATING SYSTEMS OF INTEGER
LINEAR CONSTRAINTS

3.1 Systems of linear equalities
Clearly we can transport the interval Gauss-Seidel method

with pre-conditioning unchanged to an integer finite domain
propagation system. In order to do so we simply build an
appropriate hybrid propagator. Note that the interval sys-
tem is vital for performing the preconditioning steps (using
doubles) rather than using integers which quickly leads to
overflows (or highly expensive computation if using infinite
precision integers). Examples 4 and 5 illustrate the bene-
fits over standard integer linear propagation. Note that we
always execute the original integer linear equation propaga-
tors as well to maintain inconsistency detection.

This hybrid provides us with capabilities not available in
any other solver, since we can use Gauss-Seidel with pre-
conditioning, available in interval solvers, and alldifferent

propagators, available in integer propagation solvers.

3.2 Handling linear inequalities
Linear inequalities can be used during Gaussian elimina-

tion, since a linear inequality can be written as an equality
constraint by adding a slack variable. However, this is usu-
ally less efficient as an inequality constraint can be satisfied
(and thrown away) before its variables are ground, which
is not true for an equality constraint. Furthermore, using
an inequality for pivoting makes the slack variable of this
inequality appear in other constraints, which will likely pro-
vide very weak propagation.

However, it is still possible to efficiently apply Gaussian
elimination to a system with linear equalities and inequali-
ties as long as inequalities are not chosen for pivoting.

Let us consider a system Ax = b ∧ Cx ≤ d of mA equal-
ities and mC inequalities. We can rewrite this system by
introducing mC slack variables:„

ImC C
0 A

«
x =

„
d
b

«
where ImC is the mC×mC identity matrix. This system has
the form of a general system of equations after mC pivoting

step, and we can start variable elimination at the mC + 1
row. The result of the next mA elimination is:„

ImC Q0 C′

0 QI mA A′

«
x =

„
d′

b′

«
where QImA is a quasi-identity matrix and Q0 is a matrix of
quasi-zeros. We can then go back to a reduced system with
both equalities and inequalities:
(Q0 C′) x ≤ d′ ∧ (QImA A′) x = b′.

Example 7. Consider the system C3 = C2 ∧ 5x1 + 3x2 +
4x3 ≤ 0. We can transform this system into a system of
linear equalities by adding a slack variable s:

C4 :

24 1 5 3 4
0 −1 2 −2
0 1 −1 2

35
2664

s
x1

x2

x3

3775 =

24 0
7
−2

35
A partial elimination performed on C4 gives us the system

C′4 :

24 1 0 0 3
0 1 0 0.5
0 0 1 0

35
2664

s
x3

x2

x1

3775 =

24 −21
3
5

35
And since s is a non-negative slack variable, we replace
the first equality by an inequality, leading to the constraint
C′′4 = C′2 ∧ 3x1 ≤ −21. Again this gives strong information,
with the domain of x1 reduced to [−9,−7], the domain of
x3 reduced to [5, 6] and x2 fixed to 5.

3.3 Quasi-zeros elimination
The result of Gaussian Elimination on a system of equa-

tions Ax = b with m equations and n > m variables is a
system (QI A′) x = b′ where QI is a m ×m quasi-identity
matrix. In the case of a floating-point matrix A ∈ Fn×n,
we may expect the quasi-zeros of QI to be very tight inter-
vals, as they are the result of outward roundings performed
during Gaussian Elimination.

Given an interval equation
P

i=1...n αixi = α0, let Q be
the subset of {1, . . . , n} such that {αi | i ∈ Q} are quasi-
zeros. The propagator of this equality on the variable xi

(i 6∈ Q) of domain Di is:

Di ← Di ∩

α0 −

P
j 6∈Q,j 6=i αjDj −

P
k∈Q αkDk

αi

!
Given the assumption that the quasi-zeros are tight and

that we have reasonable initial bounds for each variable:

v =

P
k∈Q αkDk

αi
<< 1

So we replace this expression by its initial value v in the
propagator above (hence the variables with quasi-zero coef-
ficients are eliminated). The elimination of x4 in Example 3
illustrates the approach.

3.4 Getting rid of interval constraints
Using an external interval solver may be an issue for FD

solvers, for efficiency or portability considerations. Obvi-
ously, interval constraints need to be available, at least for
linear equality constraints. One also needs a way to chan-
nel information between the finite domain and the inter-
val solvers. Secondly, whereas it is easy to write portable

rounding functions for the arithmetic operators used for the
Gaussian elimination, this is not true for other mathematical
functions, making interval solvers more hardware dependent
than most FD solvers. And finally, integers operations and
constraints are still faster than their floating-point or inter-
val counter-part. That is why we present in this paper a way
to use Gaussian elimination as a preprocessing step posting
redundant integer constraints.

Given an interval linear constraint c :
P

αixi = α0,
where the variables xi are n integers taking values in the
box D = D1× · · · ×Dn, and given 2n integers {a1, . . . , an}
and {b1, . . . , bn}, the constraint

P
aixi ≤ a0 ∧

P
bixi ≥ b0

where a0 = ceil(α0 +
P

(ai − αi)Di) and b0 = floor(α0 −P
(bi − αi)Di) is a safe approximation of c. Indeed ∀x ∈ D,P
aixi − a0 ≤

P
αixi − α0 ≤

P
bixi − b0.

In order to get a tight approximation for the left inequal-
ity, the values {a1 × · · · × an} are chosen so that the dif-
ference dl(x) =

P
αixi − α0 − (

P
aixi − a0) is small over

D.

dl(x) =
X

(αi − ai)xi − α0 + ceil(α0 +
X

(ai − αi)Di)

≈ dα0e − α0 +
X

((αi − ai)xi − d(αi − ai)Die)

This last expression is minimised over D by choosing each
ai as mink(mag((k − αi)Di − d(k − αi)Die)), which is an
integer value between bαic and dαie. A similar reasoning is
applied to choose the coefficents of the right inequality.

In order to avoid overflow when going back to integers, we
may need to multiply the original equation

P
αixi = α0 by

a suitable value β:X
α′ixi = α′0 where α′i = βαi, i ∈ 0, . . . , n

However, we choose the largest β which does not cause
overflow, if possible β >> 1, to lose as little information as
possible when rounding to integers values, as illustrated by
the following example.

Example 8. Consider the preconditioned system C′2 of ex-
ample 5, with the initials domains [−10, 10]:

C′2 :

»
1 0 0.5
0 1 0

–24 x3

x2

x1

35 =

»
1.5

5

–
The equation 0.5x1 +1x3 = 1.5 rounded to integers provides
the inequalities x1 + x3 ≥ −4 and x1 + x3 ≤ 7, which do
not prune the domains of x1 and x3. If we first multiply the
equality terms by, for example, 100, we get the new equality
50x1 + 100x3 = 150. This equality provides the inequal-
ities 50x1 + 100x3 ≥ 149 and 50x1 + 100x3 ≤ 151. This
information is strong enough to get the same pruning as the
original equation: at fix point the domain of x1 is reduced to
[−9, 9] while the domain of x3 is reduced to [−3, 6]. In the
same way, for the second equation we get x2 ≥ 4 ∧ x2 ≤ 6
with the original equation and 100x2 ≥ 499 ∧ 100x2 ≤ 501
(i.e. x2 = 5) if we multiply the original equation by 100.

4. EXPERIMENTAL RESULTS
The finite domain solver and the interval solver used for

the experiments are implemented in Mercury [5]. The inter-
val solver uses the Gaol [3] interval library. The tests have
been executed on a Pentium 4 1.60GHz running Linux(Sarge).

Times(ms)
Problem fd ic ic-qz ii ii-qz

eq10 23 10 9 14 11
alpha 277 34 18 15 14
alpha-rev +∞ 79790 28600 5650 5500
ineq-alpha-rev +∞ 79320 29050 6020 5900
ineq-alpha-rev2 +∞ 7110 3390 450 430
overlap-a 2470 540 290 270 270
partial-overlap-a 2470 95 55 48 44
crypta 2 6 5 4.4 4
crypta-magic-sqr 78 4 4 2 3
crypta-magic-sqr2 39 4 4 4 4
magic-square-5 408 7250 930 440 450

Table 1: Comparative execution times

Failures
Problem fd ic ic-qz ii ii-qz

eq10 5 0 0 0 0
alpha 1286 0 0 0 0
alpha-rev +∞ 11779 12512 12472 12472
ineq-alpha-rev +∞ 11643 12444 12335 12335
ineq-alpha-rev2 +∞ 499 1025 499 499
overlap-a 11393 0 0 0 0
partial-overlap-a 11393 0 0 0 0
crypta 15 14 14 14 14
crypta-magic-sqr 570 1 1 1 1
crypta-magic-sqr2 304 0 0 0 0
magic-square-5 1704 1075 1704 1704 1704

Table 2: Comparative numbers of failures

eq10 is a well known FD benchmark, involving 7 vari-
ables and 10 linear equalities. magic-square-n is a scal-
able arithmetic puzzle involving 2n + 2 linear equalities, n2

variables and an alldifferent constraint. alpha, crypta,
crypta-magic-sqr, and crypta-magic-sqr2 are cryptarith-
metic puzzles instances involving an alldifferent constraint
and respectively 20, 3, 7, and 8 linear equalities and 26, 10,
10, and 11 variables. overlap-a is a problem consist-
ing of 3 copies of alpha sharing few variables. The prob-
lem is handled as a whole system of equations whereas in
partial-overlap-a each alpha copy is pre-processed sep-
arately. alpha-rev is the same as alpha but the label-
ing order of the variables is the inverse of the original one.
ineq-alpha-rev is the same problem as alpha-rev with 3
redundant linear inequalities involving many of the variables
(9,9 and 8) added. In ineq-alpha-rev Gaussian elimination
is only performed on equalities whereas it is also performed
on inequalities for ineq-alpha-rev2.

We compare finite domain propagation fd, preconditioned
Gauss-Seidel interval propagation without, ic, and with,
ic-qz, quasi-zero elimination, and transforming ic interval
constraints to integer inequalities ii (and with quasi-zero
elimination ii-qz). Table 1 and Table 2 shows the compar-
ative times (including all preconditioning and transforma-
tion times) and the number of failures for finding the first
solution for each of the various methods. We use a fixed
labeling order to ensure that the searches are only modified
by better pruning. The entry +∞ indicates no solution in
15 minutes.

One can see that the time is substantially reduced as soon
as we use preconditioned Gauss-Seidel, and quasi-zero elim-
ination can also give dramatic improvements. The move
to integer inequalities is always worthwhile, except for the
smallest example eq10 where the overhead of three prop-
agators for one original constraint is not repaid. Note the
mapping to integer inequalities reduces the benefits of quasi-
zeros elimination. ineq-alpha-rev2 shows that applying
the approach to inequalities is also beneficial. partial-over-
lap-a illustrates that handling dense subsystems indepen-
dently can be worthwile.

Our approach is advantageous when the system after pre-
conditioning has not too many more non-(quasi-)zero coef-
ficients than the original system. Then the better pruning
can substantially reduce search. In the case of non-dense
systems such as magic-square-n, the resulting systems have
many more non-zero coefficients, and create weak propaga-
tors that gain no benefit and may cost significantly.

5. CONCLUSION
In summary, our approach offers substantial benefits when

propagating dense systems of integer linear equations. Us-
ing the mapping to integer inequalities we do not need to use
interval propagation, though it is still required for building
the inequalities, and lose little pruning. Quasi-zero elimi-
nation is also effective in speeding up propagation without
losing much pruning, although less so in the integer case.
We need to investigate further exactly when the approach
should be applied, and how it should be applied (to what
subsystems).

6. REFERENCES
[1] C. K. Chiu and J. H. M. Lee. Interval linear constraint

solving using the preconditioned interval gauss-seidel
method. In Twelfth International Conference on Logic
Programming, pages 17–31. MIT Press, 1995.

[2] ECLiPSe.
http://eclipse.crosscoreop.com/eclipse/.

[3] F. Goualard. Gaol reference manual.
http://sourceforge.net/projects/gaol/.

[4] W. Harvey and P. Stuckey. Improving linear
constraint propagation by changing constraint
representation. Constraints, 8(2):173–207, 2003.

[5] F. Henderson et al. The mercury language reference
manual. http://www.mercury.cs.mu.oz.au.

[6] R. Moore. Interval Arithmetic. Prentice-Hall,
Englewood Cliffs (NJ), USA, 1966.

[7] A. Neumaier. Interval Methods for Systems of
Equations, volume 37 of Encyclopedia of Mathematics
and its Applications. Cambridge University Press,
Cambridge, UK, 1990.

[8] OPL Studio. www.ilog.com/products/oplstudio/.

[9] K. Shen and J. Schimpf. Eplex: Harnessing
mathematical programming solvers for constraint logic
programming. In Proceedings of Principles and
Practice of Constraint Programming, number 3709 in
LNCS, pages 622–636. Springer Verlag, 2005.

[10] C. Solnon. Cooperation of LP solvers for solving
MILPs. In Proceedings International Conference on
Tools for Artificial Intelligence, pages 240–247. IEEE
Press, 1997.

