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Abstract. We present a decision procedure for the problem of, given a
set of regular expressions R1, . . . , Rn, whether R = R1∩· · ·∩Rn is empty.
Our solver, revenant, finitely unrolls automata for R1, . . . , Rn, encod-
ing each as a set of propositional constraints. If a SAT solver determines
satisfiability then R is non-empty. Otherwise our solver uses unbounded
model checking techniques to extract an interpolant from the bounded
proof. This interpolant serves as an overapproximation of R. If the solver
reaches a fixed-point with the constraints remaining unsatisfiable, it has
proven R to be empty. Otherwise, it increases the unrolling depth and re-
peats. We compare revenant with other state-of-the-art string solvers.
Evaluation suggests that it behaves better for constraints that express
the intersection of sets of regular languages, a case of interest in the
context of verification.

1 Introduction

Strings are ubiquitous in software. Many web applications, for example, construct
database queries from user-provided strings. The rapid rise in the popularity of
these applications and the proliferation of vulnerabilities attacks such as SQL
injection and cross-site scripting can explain a renewed interest in developing
practical, efficient verification techniques for reasoning about strings.

Regular expressions are commonly used to define sanitization checks over
strings. For example, a regular expression can be used as a filter to exclude
strings that exhibit a particular attack pattern. Given a set of sanitization filters
F1, . . . , Fn and an attack pattern P , we wish to determine if F1 ∩ · · · ∩ Fn ∩ P
is empty. Although this problem is decidable, the implementation of practical
algorithms is still an open issue. Most state-of-the-art solutions (e.g., [23, 8, 10])
rely on the classical product algorithm for intersection of DFAs, but they differ in
how they tackle the two main performance bottlenecks: exponential blowup while
converting regular expressions to DFAs and how to handle the large state space
of the product automaton. These solvers, particularly lazy solvers [10], are very
efficient when the query is underconstrained because they can avoid building the
full product automaton. To prove unsatisfiability, however, they must enumerate
the complete set of reachable product states. This is not desirable in the context
of verification, where we may be testing the intersection of many languages



(with a potentially exponential product automaton), and unsatisfiable queries
are common.

In this paper, we develop an alternative approach for checking intersection
of a set of regular expressions using established SAT-based unbounded model-
checking techniques. We first translate the regular expressions R1, . . . , Rn into a
set of SFAs (symbolic finite-state automata) [22]. An SFA is a generalization of
a finite-state automaton where transitions are labelled with a symbolic encoding
of a set of values, rather than requiring a separate transition for each value.
Although the use of SFAs is not new it is worth mentioning that our method
does not require any determinization of the SFAs. Next, we unroll each SFA up
to a fixed depth k, encode each unrolled SFA as a set of propositional constraints,
and use a SAT solver to determine satisfiability. This encoding consists mainly of
the conjunction of the constraints originating from the initial states, transitions,
and final states of each unrolled SFA. If the constraints are satisfiable then
we return a string w that belongs to the intersection of the languages as a
witness. Otherwise, we have proven that the intersection is empty for strings up
to length k. However, this is not sufficient to prove that the intersection is empty
in the unbounded case. To overcome this, we apply McMillan induction [15]. The
idea is to use interpolation [4] to generalize a proof for the length-k case to one
that proves the intersection empty for any length. In summary:

– We address the unbounded model checking problem as applied to string solv-
ing; unlike other “unbounded” methods, we combine SAT solving with the
interpolation-based approach of McMillan [15], instantiating that framework
to the case of SFA unrolling.

– We describe revenant, a publicly available solver designed to handle the
intersection of sets (beyond pairs) of regular languages efficiently.

– We compare with the state-of-the-art solvers Rex [23], dprle [8], and Str-
Solve [10], using a standard benchmark set of regular expressions extracted
from real applications [22], together with intersection instances designed to
stress test solvers. revenant performs very well on instances in its target
domain, while remaining competitive across benchmarks.

2 Related Work

Methods for solving language constraints can loosely be divided into bounded
and unbounded methods.

Bounded methods (e.g., Hampi [13], Kudzu [20], and CFGAnalyzer [1])
unroll the constraints to a given length bound, encode the unrolled problem as
a set of propositional formulas, and use a SAT solver to determine satisfiability.
These methods can be quite efficient finding a satisfying assignment and often
can express a wider range of constraints than the unbounded methods. However,
if unsatisfiability results then no useful conclusions can be derived. Thus, these
tools are not suitable for verification which is the main motivation for us.

Existing unbounded methods instead build the classical decision procedures.
Wasserman et al . [24] build on ideas by Minamide [17] to overapproximate string
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variables with context-free grammars and model a potential SQL attack with a fi-
nite automaton. They build the product of a push-down automaton, constructed
from the context-free grammar, with the finite automaton that captures a po-
tential SQL attack, and check if the language of the resulting automaton is
empty. Rex [23] improves upon the classical FSA algorithms by introducing
symbolic finite-state automata (SFAs), where each edge is annotated with a set
(in the form of a one-place predicate), rather than a single symbol. Rex then
uses the SMT solver Z3 [5] to manipulate edge constraints during operations
such as intersection and determinization. Efficiency is achieved by keeping SFAs
“clean” (avoiding unsatisfiable formulas as edge labels on moves). Hooimeijer
et al . [8] present dprle which also relies on the classical algorithms for reg-
ular languages involving concatenation and subset constraints. dprle utilises
dependency analysis information to slice away product automaton states that
are irrelevant for the query. The same authors have later developed a lazy solver
called StrSolve [10] which outperforms previous approaches. StrSolve per-
forms a lazy search space enumeration by considering only those states from the
product automata needed for the query.

While our method falls in the “unbounded” class, we differ from previous
approaches in our use of McMillan induction. As mentioned, our work can be
seen as an application of McMillan’s interpolation-based framework [15].

3 Unbounded Model Checking with Interpolation

Consider an unsatisfiable set F of Boolean formulas which has been partitioned
into two sets A and B. An interpolant [4] of A and B is a formula P containing
only variables that are common between A and B, satisfying the properties

A |= P

P ∧B |= ⊥

It is well known that, given an unsatisfiability proof for A∧B, an interpolant P
can be generated in linear time [19, 16].

The use of interpolants for SAT-based model checking was pioneered by
McMillan [15]. SAT-based unbounded model-checking is formulated in terms
of a transition system T = (S, I, δ, F ), with a set of state variables S, initial
conditions I, transition relation δ and final conditions F . A propositional en-
coding is constructed for the given transition system unrolled to depth k, and
is tested for satisfiability. If the finite unrolling is satisfiable, we have produced
a concrete error trace. Otherwise, we can generate an interpolant in accordance
with the partitioning shown in Fig. 1. Note that A = I ∧ δ0 represents the set of
T states reachable in one step from the initial conditions. Since the interpolant
P is expressed in terms of state variables s1 (the only variables shared by A and
B), and satisfies the property I ∧ δ0 |= P , P is an overapproximation of states
reachable in one step from the initial state. Now, by replacing each variable from
s1 in P by the corresponding variable from s0, an over-approximation P [s0/s1]
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s0 s1 s2 s3

I δ0 δ1 δ2 F

A B

Fig. 1: The partitioning used for interpolant generation. Note that the only
variables shared between A and B are s1.

of the reachable states is obtained, according to which F is still unreachable. If
P [s0/s1] |= I, our initial conditions encompass all the reachable states; and since
F is still unreachable, it must remain so after unrolling to any depth. If not, we
can relax the initial condition to I ∨P [s0/s1] and repeat the process from there.
Eventually, either the relaxation will fail to weaken the initial condition , that it,
the condition reaches a fixed-point, in which case we have proven unsatisfiability
in the unbounded case, or the conjunction of constraints becomes satisfiable,
in which case we must perform a longer unroll. This process is guaranteed to
terminate [15].

4 Regular Language Representations

We now describe how regular languages are represented as symbolic finite-state
automata, and how we manipulate these. We consider a simple constraint lan-
guage given by the following grammar:

Constraint → Var ∈ RegExp
RegExp → Lit | RegExp + RegExp | RegExp RegExp | RegExp∗

The only possible constraints are membership queries. Lit is the set of string
literals. Intersection between regular expressions R1, . . . , Rn can be expressed
via the constraints x ∈ R1, . . . , x ∈ Rn. For convenience, our implementation
supports other standard constructions such as ranges, bounded repetitions, spe-
cial characters (\d, \w, and so on) which are made to conform with the grammar
in a preprocessing step.

4.1 Symbolic Finite State Automata

Formally, a finite-state automaton is defined by a tuple (Q,Σ, δ, q0, F ). The
automaton begins in state q0 ∈ Q; at each step, the state is updated according
to the transition relation δ. The automaton is said to accept if, at the end of
input, it is in a state qi ∈ F .

In a typical finite-state automaton, each edge is expressed as a triple (qs, α, qe),
with qs, qe ∈ Q and α ∈ Σ. A symbolic finite-state automaton [23] extends this
by encoding the edge as (qs, ψ, qe), where ψ ⊆ Σ encodes the set of input values
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permitted by the transition. A number of encodings have been proposed for these
sets of values, including hash-sets, range predicates and bit-vector constraints;
these are discussed in [7].

Given that we wish to construct a propositional encoding of the automa-
ton, we also require an encoding that can be conveniently transformed into a
propositional formula, in addition to providing efficient construction and a con-
cise encoding of value sets. Accordingly, we construct Boolean decision diagrams
over the bit-vector encoding of the characters.

4.2 Binary Decision Diagrams

Binary Decision Diagrams (BDDs) are often used to represent Boolean functions.
BDD expressions are defined inductively:

– F and T are BDD expressions.

– If x is a variable and e1 and e2 are BDD expressions then ite(x, e1, e2) is a
BDD expression.

The meaning of a BDD expression is defined:

[[F ]] = false
[[T ]] = true

[[ite(x, e1, e2)]] = (x ∧ [[e1]]) ∨ (¬x ∧ [[e2]])

T

x0

x1

x2

(a)

T

x0

x1

x2

x3

x4

(b)

T

x0

x1

x2 x2

x3

x4

(c)

Fig. 2: BDDs that represent the 5-
bit ranges (a) [0-3], (b) [8-12], and
(c) the disjunction of the two.

BDDs are the directed acyclic graphs
that result when sub-expressions are al-
lowed to be shared.

An ordered BDD assumes that vari-
ables are ordered by a linear order rela-
tion ≺. A BDD is an OBDD iff, whenever
it is of form ite(x, e1, e2), e1 and e2 are
OBDDs and each x′ occurring in e1 or e2
satisfies x ≺ x′. An OBDD e is reduced
(and is called an ROBDD) iff [[·]] is injec-
tive across e, that is, for all BDDs e1 and
e2 appearing in e, [[R1]] = [[e2]]⇒ e1 = e2.

While the size of BDDs may be ex-
ponential in the number of variables, dis-
junctions of character ranges can be con-
cisely represented, as illustrated in Fig. 2.
In these diagrams, ite(x, e1, e2) is cap-
tured by showing a solid arc from node
x to the root of e1 and a dashed arc from
x to the root of e2; except we omit the
sink F and all arcs leading to it.
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4.3 Tseitin Transformation

The Tseitin transformation [21] constructs a polynomial sized CNF encoding
of a propositional formula by introducing intermediate variables to represent
the value of each subformula. Eén and Sörensson [6] describe the process of
converting logical circuits into CNF.

Example 1. Consider constructing a CNF encoding for the formula (ϕ1∧ϕ2)∨ψ.
We can introduce a fresh variable ni to represent each subformula; we then
encode the formula:

(n2 ⇔ ϕ1 ∧ ϕ2) ∧ (n1 ⇔ n2 ∨ ψ)

If the formula is used only positively, we can omit part of this encoding [18]:

(n2 ⇒ ϕ1 ∧ ϕ2) ∧ (n1 ⇒ n2 ∨ ψ) ≡ (¬n2 ∨ ϕ1) ∧ (¬n2 ∨ ϕ2) ∧ (¬n1 ∨ n2 ∨ ψ)

4.4 SFA Reduction

The standard construction of an NFA from a regular expression often introduces
a considerable number of redundant and equivalent states. The approach taken
by Rex is to give symbolic equivalents to the classical ε-elimination, determiniza-
tion and DFA minimization algorithms.

Given that the size of a deterministic automaton is potentially exponential
relative to the corresponding NFA, we would prefer to reduce the size of the
non-deterministic SFA directly. While finding the minimum number of states for
an NFA is PSPACE-hard, approaches have been presented [12, 11] for reducing
the size of an NFA directly.

We first eliminate ε transitions, following the procedure used by Rex. We
then use a simple structural hashing approach to eliminate redundant states in-
troduced during automaton construction. All states are initially assumed to be
distinct, and we progressively merge pairs of states which have identical transi-
tion relations.

The pseudo-code for this is given in Fig. 3. ufind maintains the renaming of
equivalent states, and can be efficiently implemented using a union-find data-
structure. depend(qj) is the set of states that must be checked if state qj is
renamed; queue maintains the set of states that still need to be checked, and
shash is used to check state equivalences. This approach is strictly weaker than
the partition refinement of Ilie and Yu [12]; however, in the presence of symbolic
edges, it avoids the need to test the intersection of large numbers of transitions.

5 Model Checking Formulation

We consider the problem of, given a set of regular expressions R1, . . . , Rn, de-
termining whether the intersection R1 ∩ R2 ∩ · · · ∩ Rn is empty. By converting
each regular expression Ri into a SFA Ai, this can be reduced to determining
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sfa reduce((Q,Σ, δ, q0, F ))
depend := (q 7→ {q′ | (q′, ψ, q) ∈ δ, q′ 6= q})
foreach q ∈ Q do

ufind .make(q)
queue.insert(q)

shash := ∅
while(¬queue.empty())

q := queue.pop()
qm := ufind .find(q)
dests := {q 7→ ⊥ | q ∈ Q}
for (qs, ψ, qd) ∈ δ, such that qs = qm

dests(qd) := ψ ∨ dests(qd)
qt := shash(〈qm ∈ F, dests〉)
if( qt 6= NotFound)

if(qm 6= qt)
ufind .merge(qm, qt)
foreach q′ ∈ depend(qm)

queue.insert(ufind .find(q′))
depend(qt) := depend(qt) ∪ depend(qm)

else
shash(〈qm ∈ F, dests〉) := qm

Q′ := {q ∈ Q | ufind .find(q) = q}
q′0 := ufind .find(q0)
δ′ := {(q, α, ufind .find(q′)) | q ∈ Q′, (q, α, q′) ∈ δ}
F ′ := {q ∈ F | ufind .find(q) = q}
return (Q′, Σ, δ′, q′0, F

′)

Fig. 3: Pseudo-code for SFA reduction.

whether there is a sequence x ∈ Σ∗ = x1, . . . , xk of inputs that will leave every
automaton in an accept state.

We can reformulate this as a transition system with state space Q′ = Q1 ×
. . .×Qn, initial state q′0 = 〈q01 , . . . , q0n〉, accepting states F ′ = F1× . . .×Fn, and
transition relation

δ(〈s1, . . . , sn〉, x) = 〈δ1(s1, x), . . . , δn(sn, x)〉

where δi is the transition relation for Ai. We wish to determine if there is any
reachable state of the form

〈q1, . . . , qn〉 ∈ F ′ (i.e., ∀i∈{1,...,n} qi ∈ Fi)

We can then apply the unbounded model-checking procedure to this revised for-
mulation. The procedure is described in Fig. 4 and resembles the one described
by McMillan [15]. The main differences are in how we unroll the SFAs and define
the interpolation groups A and B in order to approximate the bounded proofs
generated by the SAT solver. Fig. 4 describes a high level description of the
method. The procedure Intersection takes as inputs a single transition system
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Intersection(T ≡ 〈Q′, Σ, δ, q′0, F
′〉, k)

R := I
A′ := unroll(0, 1, T )
B := unroll(1, k, T ) ∧ F
while (true)

A := R ∧A′

Run SAT solver on A ∧B
if A ∧B is satisfiable then

if R = I then
return Sat

else
return Inconclusive

else
P := genInterpolant(A,B)
if P [s1/s0]⇒ R then

return UnSat
else

R := P [s1/s0] ∨ P

Fig. 4: Pseudo-code for the procedure based on unbounded model checking with
interpolation for testing whether the intersection of multiple SFAs is empty.

that represents all the automata to be intersected and a value k that represents
the unrolling depth. The algorithm makes use of I, F , and the procedure unroll
which are explained in Sec. 5.1. For now, suffice it to say that I and F denote
the Boolean encoding of the initial states q′0 and accepting states F ′, respec-
tively. The procedure unroll unwinds the transition system up to depth k. For
convenience, unroll can be called to return the layers from 0 to 1 and 1 to k
separately, so as to simplify the formation of interpolation groups A and B.

If the procedure Intersection returns Inconclusive then we need to in-
crease the value of k. Although the process will eventually terminate, judicious
choice of the next k can speed up significantly the convergence of the fixed-point.
Experimentally we have observed that a good choice the first time we get in-
conclusive results is to increase k to the maximum of the shortest accepting run
from any state in a single automaton. After that, we increase k by doubling its
value.

5.1 Finite Unrolling

We introduce a Boolean variable 〈qki 〉 to represent the automaton being in state
qi at time k, and 〈eki,j〉 to represent the automaton transitioning from state i to j

during the kth step. We use ψki,jto denote the corresponding transition constraint
(we assume that all transitions between a pair of states are merged into a single
edge). pred(qj) denotes the set of states with an outgoing edge to qj .
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q1
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q4

q5

[ab]

[ab][ab]

[a
b]

c

(a)

q1 q2 q3 q4 q5

q1 q2 q3 q4 q5

q1 q2 q3 q4 q5

[a
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[a
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[a
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[a
b]

c

[a
b]

[a
b]

[a
b]

[a
b]

c

(b)

q1 q2 q3 q4 q5

q1 q2 q3 q4 q5

q1 q2 q3 q4 q5
[a
b]

[a
b]

[a
b]

[a
b]

c

$

c[a
b]

[a
b]

[a
b]

[a
b] $

(c)

Fig. 5: Transition relation for an automaton of (a) ([ab]{3})+ c, (b) unrolled
two steps, and (c) after adding transitions to allow for padding the end of string.
States and edges that can be safely eliminated are shown dashed.

We can use these variables to encode the transition relation at each layer:∧
(qi,ψ,qj)∈δ

(¬〈qki 〉 ⇒ ¬〈eki,j〉) ∧ (¬〈ψk〉 ⇒ ¬〈eki,j〉) ∧
∧

(qj∈Q)

(
∧

qi∈pred(qj)

¬〈eki,j〉)⇒ ¬〈qk+1
j 〉

∧
(qi,ψ,qj)∈δ

(〈qki 〉 ∧ 〈ψk〉 ⇒ 〈eki,j〉) ∧
∧

(qi,ψ,qj)∈δ

(〈eki,j〉 ⇒ 〈qk+1
j 〉) (?)

The formulas marked (?) are not necessary for correctness but can reduce the
state space of the problem.

However, directly encoding the final condition would require checking at ev-
ery step whether every automaton is in an accept state. To avoid this, we allow
the language accepted by each automaton to be padded with an additional termi-
nation character (denoted $ in Fig. 5). We then only need to test for acceptance
at the final step. Unlike a conventional automaton unrolling, where we unroll
only from the start state, we must introduce all state variables at the top layer;
otherwise we cannot correctly compute the relaxed initial conditions, and may
incorrectly conclude unsatisfiability.

In layers 2 to k, there may be states and edges which cannot reach an accept
state in layer k. These states cannot affect the satisfiability of the overall clauses,
and can be safely omitted.

Example 2. Consider the automaton shown in Fig. 5(a). The transition relation
for this is (b) unrolled two steps, and then (c) corrected allow for $-padding.
Consider the clauses generated for state q5 in the second layer. We introduce
〈e14,5〉 and 〈e15,5〉 for the incoming edges, and 〈q15〉 for the node, and the following
formulae:

9



(¬〈q14〉 ⇒ ¬〈e14,5〉) ∧ (¬〈x1 ∈ [ab]〉 ⇒ ¬〈e14,5〉)
(¬〈q15〉 ⇒ ¬〈e15,5〉) ∧ (¬〈x1 = $〉 ⇒ ¬〈e15,5〉)
¬〈e14,5〉 ∧ ¬〈e15,5〉 ⇒ ¬〈q25〉

After generating similar clauses for each edge and node in the unrolled graph,
we add the initial and final conditions requiring that the machine begins in the
start state, and ends in an accept state:

I = ¬〈q02〉 ∧ ¬〈q03〉 ∧ ¬〈q04〉 ∧ ¬〈q05〉 F = 〈q25〉

Notice the dotted states q21 to q24 . The truth value of state q25 is not dependent
on the value of these states; as such, they cannot cause unsatisfiability, or affect
the interpolant. In general, however, we require all variables for the first unrolled
state in order to generate correct interpolants.

At the first iteration, this conjunction of formulas is clearly unsatisfiable;
there is no path from q01 to q25 . We then compute the interpolant for the system
of constraints, yielding P = ¬〈q14〉 ∧ ¬〈q15〉. This is not a fixed-point, since there
is a solution satisfying P that doesn’t satisfy I. At the second iteration, we
compute the relaxed initial conditions I ′ = I ∨ P (which upon simplification
gives P ). As I ′ permits the machine to be in state q3, the system of constraints
is now satisfiable. So we cannot prove unsatisfiability at this depth; we must
unroll the automaton further.

q1 q2

q1 q2

q1 q2

a $

a $

r1 r2 r3

r1 r2 r3

r1 r2 r3

b a $

b a $

Fig. 6: Dotted state q11 is always false, as
it has no incoming edges. Still, it cannot
be eliminated from the encoding.

It may be tempting to also omit
states which are known to be false,
such as q11 shown in Fig. 6. How-
ever, if 〈q11〉 is omitted, a possible
interpolant that may be generated
is P = ¬〈q12〉 ∧ ¬〈r13〉. When this
is mapped back to the initial state,
the algorithm will incorrectly de-
tect satisfiability (with q01∧r02), and
unroll. The same interpolant will be
generated after any number of un-
rolling steps, so the solver will never
terminate.

5.2 Language Relaxation

Several of the languages tested in our first experiment in Section 6 generate
automata with large numbers of states owing to the use of bounded repetition.
The presence of these states can cause performance of the solver do degrade
substantially; we conjecture that this is due to MathSAT not performing sim-
plification of the generated interpolants, resulting in very large encodings of the
set of reachable states.
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However, in most of the cases we considered, the cause of unsatisfiability for
the intersection of a pair of languages was unrelated to repetition operators. As a
result, for regular expressions R1 to Rn which make use of bounded repetition, we
first check the satisfiability of U(R1)∩ · · ·∩U(Rn), where U eliminates bounded
repetition as follows:

U(e{0, 1}) = U(e)? U(e1 op e2) = U(e1) op U(e2)
U(e{0, j}) = U(e)∗ U(op(e)) = op(U(e1))
U(e{i, j}) = U(e)+

If the intersection of these overapproximated languages is empty, we can termi-
nate early without testing the full automata.

6 Experimental Results

To evaluate the method described in the previous sections, we have implemented
a prototype solver, revenant,1 in C++ using MathSAT [2] for SAT-solving
and interpolant generation. All experiments have been run on a single core of a
2.7GHz Core i7-26202M with 7.8Gb memory. We compare the performance of
revenant with Rex [23] 2 and dprle [8], and StrSolve [10]3 on a range of
common benchmarks (first and second experiments).

Previous papers have focussed on the intersection of only pairs of languages,
for which the product automaton has in the worst case O(n2) states. However,
a general solver for regular language constraints should be able to handle more
complex systems of constraints. To test the performance of these methods on
larger conjunctions of automata, we also present two classes of problems (third
and fourth experiments) which exhibit more challenging behaviour.

Intersection of multiple languages. We generate intersections of multiple
languages

⋂
i∈{2,...,5}Ri such that Ri is each of the ten regular expressions ex-

tracted from some real-world applications that appeared originally in [14]. Ta-
ble 1(a) shows the results of our evaluation running the different tools . Note
that previous works (e.g., [23, 8, 10]) used the same set of regular expressions
but regular set difference of pairs of languages was used instead of intersection.
The reason why we do not perform the same experiment here is that our current
implementation does not handle regular complement. Column T is the solving
time of each tool, column Tout denotes the number of times that a timeout of
60 seconds expired, and S/U is the number of satisfiable versus unsatisfiable
instances.

1 revenant is available at http://ww2.cs.mu.oz.au/~ggange/revenant/
2 We run Rex using the Mono framework 2.10.8.1
3 Note for reviewers: The available StrSolve version [9] only supports intersection

of pairs of languages. There is a recent version that supports arbitrary numbers of
languages, but it is not yet fully functioning at the time of writing.
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revenant rex dprle strsolve

T Tout S/U T Tout S/U T Tout S/U T Tout S/U

i = 2 4.48 0 22/23 38.78 0 22/23 2.08 0 22/23 0.32 0 22/23
i = 3 18.55 0 35/85 173.19 1 34/85 102.60 1 34/85 N/A N/A N/A
i = 4 130.88 1 35/174 401.22 4 31/175 613.71 7 28/175 N/A N/A N/A
i = 5 83.67 1 21/230 503.93 6 15/231 865.80 13 8/231 N/A N/A N/A

(a) Intersection of real-world regular expressions

50 100 150 200 250 300 350 400 450 500

revenant 0.15 0.54 1.18 2.12 3.42 5.08 7.39 9.78 13.15 17.42
rex 0.10 0.16 0.27 0.46 0.73 1.24 1.92 2.90 4.00 5.54

dprle 0.01 0.06 0.09 0.17 0.25 0.36 0.48 0.65 0.78 0.96
StrSolve 0.00 0.00 0.02 0.03 0.04 0.06 0.09 0.11 0.17 0.21

(b) Generation of long strings

2 4 6 8 10 12 14 16 18

revenant 0.01 0.02 0.04 0.06 0.06 0.05 0.09 0.08 0.14
rex 0.10 0.10 0.12 0.16 0.30 0.79 3.75 16.86 OutOfMemory

dprle 0.00 0.00 0.00 0.02 0.08 0.48 3.09 29.57 333.80

(c) Exponential branching

n = 2 n = 3 n = 4 n = 5 n = 6 n = 7

revenant 0.01 0.00 0.02 0.02 0.02 0.03
rex 0.10 0.10 0.18 3.27 OutOfMemory OutOfMemory

dprle 0.00 0.00 0.03 0.40 15.21 OutOfMemory

(d) Exponential cycles

Table 1: Comparison of revenant with existing string solvers, on several classes
of regular expressions. All times are in seconds.

Unsurprisingly, revenant does not outperform the existing solvers in the
case of pairs of automata, as it has the overhead of introducing O(|R|k) variables
and the corresponding clauses. However, as the number of languages increases,
this up-front cost is outweighed by the gain from not generating the complete
product automaton.

Generation of long strings. Our next experiment evaluates the performance
of each solver for generating long strings from underconstrained systems. For
this, we repeat an experiment from [23], probing the intersection of the regular
expressions [a−c]∗a[a−c]{n + 1} and [a−c]∗b[a−c]{n}. Table 1(b) shows, for
various n, the time spent by each tool to generate a single string that matches
both regular expressions. This is a worst-case scenario for our method since the
two regular expressions are trivially satisfiable and therefore, our full encoding
of the automata does not pay off.
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Exponential branching. Even if we restrict attention to finite languages, the
size of the product automaton may still be exponential in size. We construct a
family of languages of the form

Li = ([0−1]{i−1}0[0−1]{n−1}0[0−1]{n−i}ϕi)
| ([0−1]{i−1}1[0−1]{n−1}1[0−1]{n−i}ϕi)

such that ϕ1 ∩ · · · ∩ ϕn is empty. An example language in this class is

L1 = [0−1]{0}0[0−1]{3}0[0−1]{3}[bcd] | [0−1]{0}1[0−1]{3}1[0−1]{3}[bcd]
L2 = [0−1]{1}0[0−1]{3}0[0−1]{2}[acd] | [0−1]{1}1[0−1]{3}1[0−1]{2}[acd]
L3 = [0−1]{2}0[0−1]{3}0[0−1]{1}[abd] | [0−1]{2}1[0−1]{3}1[0−1]{1}[abd]
L4 = [0−1]{3}0[0−1]{3}0[0−1]{0}[abc] | [0−1]{3}1[0−1]{3}1[0−1]{0}[abc]

Table 1(c) shows the time for running the solvers for different values of n. For
this experiment, we run revenant without relaxation, as the relaxed languages
are trivially unsatisfiable. Clearly, this is an ideal case for revenant, as we can
immediately prove unsatisfiability, where other solvers must explore the entire
state space.

Exponential paths. Conjunctions of languages may also contain cycles of ex-
ponential length. Consider the set of languages

L1 = [a−c]∗([a−c]{3})+[bc]
L2 = [a−c]∗([a−c]{5})+[ac]
L3 = [a−c]∗([a−c]{7})+[ab]

The intersection of languages L1∩L2∩L3 is empty. However, as the cycle length
of each language is coprime, both the product construction and search-based
methods will generate all possible combinations of cycle-positions before the
automata are synchronized at the loop exit, and the intersection can be proven
empty. Table 1(d) shows the time spent for each tool to prove unsatisfiability. As
in the previous case, we run revenant without relaxation. As before, revenant
is substantially faster, as it can prove unsatisfiability without unrolling to the
synchronization point.

The last two experiments have illustrated extreme cases in which revenant
can significantly outperform the other existing tools. Similarly, we could con-
struct other examples where our tool has also a very poor performance. Consider
the following set of languages similar to the previous one

L1 = [a−c]+[bc]d[a−c]{3}+
L2 = [a−c]+[ac]d[a−c]{5}+
L3 = [a−c]+[ab]d[a−c]{7}+

In this case our SAT-based method, used without relaxation, detects unsatisfia-
bility due to the unsynchronized loop exits, rather than the ϕid choke-point. The
corresponding interpolant weakens the initial conditions too far, and the prob-
lem must be fully unrolled before unsatisfiability can be proven. With relaxation,
however, we prove unsatisfiability without unrolling.
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7 Conclusions and Further Work

We have described a new method for testing emptiness of the intersection of
multiple regular languages, based on unbounded model-checking techniques. We
have implemented a prototype solver, revenant, which uses this method; com-
bined with language relaxation, revenant is competitive with existing solvers
on realistic problem instances. We have also illustrated families of problems
where this method is exponentially faster than existing techniques.

The differences between solvers on various families of constraints suggests
that hybrid approaches should be studied, in particular for software verification.
While our prototype currently handles only language intersection constraints,
we intend to expand this to support concatenation constraints (x ◦ y ∈ L), as
well as negation and disjunction of constraints.

The relaxation described in Section 5.2 is essentially a crude approximation
of CEGAR [3]. It would be interesting to apply similar abstraction refinement
approaches to the problem of testing context-free language intersection, by itera-
tively refining regular overapproximations to the languages. Also, the described
relaxation is a simple syntactic transformation, which is only possible if the
bounded repetition is already specified as part of the input; if the language is
generated procedurally, or provided as an automaton, this is no longer viable.
Instead, it may be worthwhile to develop algorithms for examining an automaton
directly for relaxation opportunities.
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