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We give a dynamic programming solution to the problem of scheduling scenes to minimize the cost of the talent. Starting
from a basic dynamic program, we show a number of ways to improve the dynamic programming solution, by preprocess-
ing and restricting the search. We show how by considering a bounded version of the problem, and determining lower and
upper bounds, we can improve the search. We then show how ordering the scenes from both ends can drastically reduce
the search space. The final dynamic programming solution is, orders of magnitude faster than competing approaches, and
finds optimal solutions to larger problems than were considered previously.

Key words: dynamic programming; optimization; scheduling
History:

1. Introduction.
The talent scheduling problem (Cheng et al. 1993) can be described as follows. A film producer needs to
schedule the scenes of his/her movie on a given location. Each scene has a duration (the days it takes to
shoot it) and requires some subset of the cast to be on location. The cast are paid for each day they are
required to be on location from the day the first scene they are in is shot, to the day the last scene they are in
is shot, even though some of those days they might not be required by the scene currently being shot (i.e.,
they will be on location waiting for the next scene they are in to be shot). Each cast member has a different
daily salary. The aim of the film producer is to order the scenes in such a way as to minimize the salary cost
of the shooting.

We can formalize the problem as follows. Let S be a set of scenes, A a set of actors, and a(s) a function
that returns the set of actors involved in scene s ∈ S. Let d(s) be the duration in days of scene s ∈ S, and
c(a) be the cost per day for actor a∈A. We say that actor a∈A is on location at the time the scene placed
in position k, 1 ≤ k ≤ |S| in the schedule is being shot, if there is a scene requiring a scheduled before
or at position k, and also there is a scene requiring a scheduled at or after position k. In other words, a
is on location from the time the first scene a is in is shot, until the time the last scene a is in is shot. The
talent scheduling problem aims at finding a schedule for scenes S (i.e., a permutation of the scenes) that
minimizes the total salary cost.

The talent scheduling problem as described in the previous paragraph is certainly an idealised version
of the real problem. Real shooting schedules must contend with actor availability, setup costs for scenes,
and other constraints ignored in this paper. In addition, actors can be flown back from location mid shoot
to avoid paying their holding costs for extended periods. However, the talent cost, in real situations, is a
prominent feature of the movie budget (Cheng et al. 1993). Hence, concentrating on this core problem is
worthwhile. Furthermore, the underlying mathematical problem has many other uses, including archaeo-
logical site ordering, concert scheduling, VLSI design and graph layout. See Section 6 for more discussion
on this.
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s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 c(a)
a1 X . X . . X . X X X X X 20
a2 X X X X X . X . X . X . 5
a3 . X . . . . X X . . . . 4
a4 X X . . X X . . . . . . 10
a5 . . . X . . . X X . . . 4
a6 . . . . . . . . . X . . 7
d(s) 1 1 2 1 3 1 1 2 1 2 1 1

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 c(a)
a1 X – X – – X – X X X X X 20
a2 X X X X X – X – X – X . 5
a3 . X – – – – X X . . . . 4
a4 X X – – X X . . . . . . 10
a5 . . . X – – – X X . . . 4
a6 . . . . . . . . . X . . 7

cost 35 39 78 43 129 43 33 66 29 64 25 20 604
extra 0 20 28 34 84 13 24 10 0 10 0 0 223

Figure 1 (a) An Example a(s) Function: ai ∈ a(sj) if the Row for ai in Column sj has an X. (b) An Example
Schedule: ai is on location when scene sj is Scheduled if the Row for ai in Column sj has an X or
a –.

EXAMPLE 1. Consider the talent scheduling problem defined by the set of actors A =
{a1, a2, a3, a4, a5, a6}, the set of scenes S = {s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12}, and the a(s) func-
tion determined by the matrix M shown in Figure 1(a), where an X at position Mij indicates that actor ai
takes part in scene sj . The daily cost per actor c(a) is shown in the rightmost column, and the duration of
each scene d(s) is shown in the last row.

Consider the schedule obtained by shooting the scenes in order s1s2s3s4s5s6s7s8s9s10s11, s12.The con-
sequences of this schedule in terms of actor’s presence and cost are illustrated by the matrix M shown in
Figure 1(b), where actor ai is on location at the jth shot scene if the position Mij contains either an X (ai
is in the scene) or an – (ai is waiting). The cost of each scene is shown in the second last row, being the
sum of the daily costs of all actors on location multiplied by the duration of the scene. The total cost for
this schedule is 604. The extra cost for each scene is shown in the last row, being the sum of the daily costs
of only those actors waiting on location, multiplied by the duration of the scene. The extra cost for this
schedule is 223.

2

The scene scheduling problem was introduced by Cheng et al. (1993). In its original form each of the
scenes is actually a shooting day and, hence, the duration of each of the scenes is 1. A variation of the
problem, called concert scheduling (Adelson et al. 1976), considers the case where the cost for each player
is identical. The scene scheduling problem is known to be NP-hard (Cheng et al. 1993) even if each actor
appears in only two scenes, all actor costs are identical and all durations are identical.

The main contributions of this paper are:
• We define an effective dynamic programming solution to the problem
• We define and prove correct a number of optimizations for the dynamic programming solution, that

increase the size of problems we can feasibly tackle
• We show how using bounded dynamic programming can substantially improve the solving of these

problems
• We show how, by considering a more accurate notion of subproblem equivalence, we can substantially

improve the solving
The final code can find optimal solutions to problems larger than previous methods.
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In Section 2 we give our call-based best-first dynamic programming formulation for the talent scheduling
problem, and consider ways it can be improved by preprocessing and modifying the search. Section 3
examines how to solve a bounded version of the problem, which can substantially improve performance,
and how to compute upper and lower bounds for the problem. Section 4 investigates a better search strategy
where we schedule scenes from both ends of the search and Section 5 presents an experimental evaluation
of the different approaches. In Section 6 we discuss related work and in Section 7 we conclude.

2. Dynamic Programming Formulation
The talent scheduling problem is naturally expressible in a dynamic programming formulation. To do so we
extend the function a(s) which returns the set of actors in scene s∈ S, to handle a set of scenesQ⊆ S. That
is, we define a(Q) = ∪s∈Qa(s) as a function that returns the set of actors appearing in any scene Q ⊆ S.
Similarly, we extend the cost function c(a) to sets of actors G⊆A in the obvious way: c(G) =

∑
a∈G c(a).

Let l(s,Q) denote the set of actors on location at the time scene s is scheduled assuming that the set of
scenes Q⊂ (S−{s}) is scheduled after s, and the set S−Q−{s} is scheduled before s. Then

l(s,Q) = a(s)∪ (a(Q)∩ a(S−Q−{s})),

i.e., the on locations actors are those who appear in scene s, plus those who appear in both a scene scheduled
after s and one scheduled before s. The problem is amenable to dynamic programming because l(s,Q)
does not depend on any particular order of the scenes in Q or S −Q− {s}. Let Q ⊆ S denote the set of
scenes still to be scheduled, and let schedule(Q) be the minimum cost required to schedule the scenes in
Q. Dynamic programming can be used to define schedule(Q) as:

schedule(Q) =

{
0 Q= ∅
mins∈Q((d(s)× c(l(s,Q−{s}))) + schedule(Q−{s})), otherwise

which computes, for each scene s, the cost of scheduling the scene s first d(s) × c(l(s,Q − {s})) plus
the cost of scheduling the remaining scenes Q− {s}. Dynamic programming is effective for this problem
because it reduces the raw search space from |S|! to 2|S|, since we only need to investigate costs for each
subset of S (rather than for each permutation of S).

2.1 Basic Best-first Algorithm
The code in Figure 2 illustrates our best-first call-based dynamic programming algorithm, which improves
over a naı̈ve formulation by pruning children that cannot yield a smaller cost.

The algorithm starts by checking whether Q is empty, in which case the cost is 0. Otherwise, it checks
whether the minimum cost for Q has already been computed (and stored in scost[Q]), in which case it
returns the previously stored result (code shown in light gray). We assume the scost array is initialized
with zero. If not, the algorithm selects the next scene s to be scheduled (using a simple heuristic that will
be discussed later) and computes in sp the value cost(s,Q− {s}) + schedule(Q− {s}), where function
cost(s,B) returns the cost of scheduling scene s before any scene in B ⊂ S (and after any scene in S −
B−{s}), calculated as:

cost(s,B) = d(s)× c(l(s,B))

Note, however, that the algorithm avoids (thanks to the break) considering scenes whose lower bound is
greater than or equal to the current minimum min, since they cannot improve on the current solution. As a
result, the order in which the Q scenes are selected can significantly affect the amount of work performed.
In our algorithm, this order is determined by a simple heuristic that selects the scene s with the smallest
calculated lower bound if scheduled immediately cost(s,Q − {s}) + lower(Q − {s}), where function
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lower(B) returns a lower bound on the cost of scheduling the scenes in B ⊆ S, and it is simply calculated
as:

lower(B) =
∑
s∈B

d(s)× c(a(s))

which is the sum of the costs for actors that appear in each scene. The index construct index mins∈Q e(s)
returns the s in Q that causes the expression e(s) to take its minimum value.

A call to function schedule(S) returns the minimum cost required to schedule the scenes in S. Extracting
the optimal schedule found from the array of stored answers scost[] is straightforward, and standard for
dynamic programming.

EXAMPLE 2. Consider the problem of Example 1. An optimal solution is shown in Figure 3. The total
cost is 434, and the extra cost 53. 2

2.2 Preprocessing
We can simplify the problem in the following two ways:
• Eliminating single scene actors: Any actor a′ that appears only in one scene s can be removed from s

(i.e., we can redefine set a(s) as a(s)−{a′}) and add its fixed cost d(s)× c(a′) to the overall cost. This is
correct because the cost of a′ is the same independently of where s is scheduled (since a′ will never have to
wait while on location).
• Concatenating duplicate scenes: Any two scenes s1 and s2 such that a(s1) = a(s2) can be replaced

by a single scene s with duration d(s) = d(s1) + d(s2). This is correct because there is always an optimal
schedule in which s1 and s2 are scheduled together.

schedule(Q)
if (Q= ∅) return 0
if (scost[Q]) return scost[Q]

min := +∞
T := Q
while (T 6= ∅)
s := index min

s∈T
cost(s,Q−{s}) + lower(Q−{s})

T := T −{s}
if (cost(s,Q−{s}) + lower(Q−{s})≥min) break
sp := cost(s,Q−{s}) + schedule(Q−{s})
if (sp <min) min := sp

scost[Q] := min
return min

Figure 2 Pseudo-Code for Best-first Call-based Dynamic Programming Algorithm. schedule(Q) Returns the
Minimum Cost Required for Scheduling the Set of Scenes Q

s5 s2 s7 s1 s6 s8 s4 s9 s3 s11 s10 s12 c(a)
a1 . . . X X X – X X X X X 20
a2 X X X X – – X X X X . . 5
a3 . X X – – X . . . . . . 4
a4 X X – X X . . . . . . . 10
a5 . . . . . X X X . . . . 4
a6 . . . . . . . . . . X . 7

cost 45 19 19 39 39 66 29 29 50 25 54 20 434
extra 0 0 10 4 9 10 20 0 0 0 0 0 53

Figure 3 An Optimal Order for the Problem of Example 1
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Since each simplification can generate new candidates for the other kind of simplification, we need to
repeatedly apply them until no new simplification is possible.

The simplification that concatenates duplicate scenes has been applied before, but not formally proved to
be correct. For example, the real scene scheduling data from Cheng et al. (1993) was used in Smith (2005)
with this simplification applied.

LEMMA 1. If there exists s1 and s2 in S where a(s1) = a(s2), then there is an optimal order with s1 and
s2 scheduled together.

Proof. Let Π denote a possibly empty sequence of scenes. In an abuse of notation, and when clear
from context, we will sometimes use sequences as if they were sets. Without loss of generality, take
the order Π1s1Π2s

′Π3s2Π4 of the scenes in S, and consider the actors on location for scene s1 to be
l(s1,Π2s

′Π3s2Π4) = A1 and for scene s2 to be l(s2,Π4) = A2. Now, either c(A1) ≤ c(A2) (which,
since a(s1) = a(s2) means that the cost of the actors waiting in A1 is smaller or equal than that of the
actors waiting in A2) or c(A1) > c(A2). We will show how, in the first case, choosing the new order (a)
Π1s1s2Π2s

′Π3Π4 can only decrease the cost for each scene. It is symmetric to show that, in the second
case, choosing the new order (b) Π1Π2s

′Π3s1s2Π4 can only decrease the cost for each scene.
Let’s examine the costs of s1 and s2. The cost of s1 does not change from the original order to that of (a)

since the set of scenes before and after s1 remains unchanged (i.e., since by definition l(s1, s2Π2s
′Π3Π4) =

l(s1,Π2s
′Π3s2Π4)). The cost of s2 in (a) is the cost of the actors in

l(s2,Π2s
′Π3Π4) = a(s2)∪ (a(Π2s

′Π3Π4)∩ a(Π1s1))

By definition of l(s,Q)

= a(s1)∪ (a(Π2s
′Π3Π4)∩ a(Π1s1))

By hypothesis of a(s1) = a(s2)

= a(s1)∪ (a(Π2s
′Π3Π4)∩ a(Π1))

By definition of a(Q)

= a(s1)∪ (a(Π2s
′Π3s2Π4)∩ a(Π1))

By definition of a(Q)and by hypothesis of a(s1) = a(s2)

= l(s1,Π2s
′Π3s2Π4)

By definition of l(s,Q)

which is known to be A1. Hence, the cost of s2 can only decrease, since c(A1)≤ c(A2).
Let’s consider the other scenes. First, it is clear that the products in Π1 and Π4 have the same on location

actors since the set of scenes before and after remain unchanged. Second, let us consider the changes in
the on locations actors for s′, which can be seen as a general representative of scenes scheduled in between
s1 and s2 in the original order. While in the original order the set of on location actors at the time s′ is
scheduled is l(s′,Π3s2Π4) = a(s′) ∪ (a(Π1s1Π2) ∩ a(Π3s2Π4)), in the new order the set of on location
actors is l(s′,Π3Π4) = a(s′)∪ (a(Π1s1s2Π2)∩a(Π3Π4)). Clearly (a) a(Π3Π4)⊆ a(Π3s2Π4) and (b) since
a(s1) = a(s2), we have that a(Π1s1s2Π2) = a(Π1s1Π2). Hence, by (a) and (b) we have that l(s′,Π3Π4)⊆
l(s′,Π3s2Π4), which means the set of on location actors when s′ is scheduled can only decrease and, hence,
the cost of scheduling it does not increase. 2

EXAMPLE 3. Consider the scene scheduling problem from Example 1. Since actor a6 only appears in
one task, we can remove this actor and add a total of 2× 7 = 14 to the cost of the resulting problem to
get the cost of the original problem. We also have that a(s3) = a(s11) and, after the simplification above,
a(s10) = a(s12). Hence, we can replace these pairs by single new scenes of the combined duration. The
resulting preprocessed problem is show in Figure 4.2
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s1 s2 s′3 s4 s5 s6 s7 s8 s9 s′10 c(a)
a1 X . X . . X . X X X 20
a2 X X X X X . X . X . 5
a3 . X . . . . X X . . 4
a4 X X . . X X . . . . 10
a5 . . . X . . . X X . 4
a6 . . . . . . . . . . 7
d(s) 1 1 3 1 3 1 1 2 1 3

Figure 4 The Problem of Example 1 after Preprocessing.

2.3 Scheduling Actor Equivalent Scenes First
Let o(Q) = a(S−Q)∩ a(Q) be the set of on location actors just before an element of Q is scheduled, i.e.,
those for whom some of their scenes have already been scheduled (appear in S −Q), and some have not
(appear in Q). We can reduce the amount of search performed by the code shown in Figure 2 (and thus
improve its efficiency) by noticing that any scene whose actors are exactly the same as those on location
now can always be scheduled first without affecting the optimality of the solution. In other words, for every
s∈Q for which a(s) = o(Q), there must be an optimal solution to schedule(Q) that starts with s.

EXAMPLE 4. Consider the scene scheduling problem of Example 1. Let us assume that the set of scenes
Q= {s1, s2, s4, s7, s8, s9} is scheduled after those in S−Q= {s3, s5, s6, s10, s11, s12} have been scheduled.
Then, the set of on location actors after S−Q is scheduled is o(Q) = {a1, a2, a4} and an optimal schedule
can begin with s1 since a(s1) = o(Q). An optimal schedule of this form is shown in Figure 5.2

LEMMA 2. If there exists s ∈ Q where a(s) = o(Q), then there is an optimal order for schedule(Q)
beginning with s.

Proof. Let Π denote a possibly empty sequence of scenes. As before, we will sometimes use sequences
as if they were sets. Without loss of generality, take the order Π1Π2s

′Π3sΠ4 of the scenes in S where
Π2s

′Π3sΠ4 is the sequence of scenes in Q, and consider altering the order to Π1sΠ2s
′Π3Π4. We show that

the cost for each scene in Q can only decrease.
First, it is clear that the scenes in Π4 have the same on location actors since the set of scenes before and

after it remains unchanged. Second, let us consider the changes in the on locations actors for s′, which can be
seen as a general representative of scenes scheduled before s in the original order. While in the original order
the set of on location actors at the time s′ is scheduled is l(s′,Π3sΠ4) = a(s′)∪ (a(Π1Π2)∩ a(Π3sΠ4)), in
the new order the set of on location actors is l(s′,Π3Π4) = a(s′)∪ (a(Π1sΠ2)∩ a(Π3Π4)). Now, for every
set of scenes Q′′ ⊆Q′ we know that a(Q′′)⊆ a(Q′), i.e., increasing the number of scenes can only increase
the number of actors involved. Thus, we have that (a) a(Π3Π4)⊆ a(Π3sΠ4), and (b) since a(s) = o(Q) =
(a(Q)∩ a(Π1)) we have that a(s)⊆ a(Π1), and thus that a(Π1sΠ2) = a(Π1Π2). Hence, by (a) and (b) we
have that l(s′,Π3Π4)⊆ l(s′,Π3sΠ4), which means the set of on location actors for s′ in the altered schedule
can only decrease and, thus, its cost cannot increase. Finally, we also have to examine the cost for s. Since

s12 s10 s11 s3 s5 s6 o(Q) s1 s2 s9 s8 s7 s4 c(a)
a1 X X X X – X – X – X X . . 20
a2 . . X X X – – X X X – X X 5
a3 . . . . . . . . X – X X . 4
a4 . . . . X X – X X . . . . 10
a5 . . . . . . . . . X X – X 4
a6 . X . . . . . . . . . . . 7
d(s) 1 2 1 2 3 1 1 1 1 2 1 1

Figure 5 An Optimal Schedule for the scenes Q= {s1, s2, s4, s7, s8, s9} Assuming {s3, s5, s6, s10, s11, s12} Have
Already been Scheduled
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a(s) = o(Q) we have that l(s,Q−{s}) = a(s). That means there is no actor waiting if we schedule s now,
which is the cheapest possible way to schedule s. Hence, the costs of scheduling this scene here is no more
expensive than in the original position. 2
We can modify the pseudo code of Figure 2 to take advantage of Lemma 2 by adding the line

if (∃s∈Q.a(s) = o(Q)) return d(s)× c(l(s,Q−{s})) + schedule(Q−{s})

before the line min := +∞.

2.4 Pairwise Subsumption
When we have two scenes s1 and s2 where the actors in one scene (s1) are a subset of the actors in the other
(s2) and the extra actors a(s2)− a(s1) are already on location then we can guarantee a better schedule if
we always schedule s2 before s1. Intuitively, this is because if s1 is shot first the missing actors would be
waiting on location for scene s2 to be shot, while if s2 is shot first some of those missing actors might not
be needed on location anymore.

LEMMA 3. If there exists {s1, s2} ⊆Q, such that a(s1)⊆ a(s2), a(S−Q)∪ a(s1)⊇ a(s2), then for any
order of Q where s1 appears before s2, there is a permutation of that order where s2 appears before s1 with
equal or lower cost.

Proof. Let Π denote a possibly empty sequence of scenes. As before, we will sometimes use sequences
as if they were sets. Without loss of generality, take the order Π1Π2s1Π3s

′Π4s2Π5 of scenes in S where
Π2s1Π3s

′Π4s2Π5 is the sequence of scenes in Q, and consider the actors on location for scene s1 to be
l(s1,Π3s

′Π4s2Π5) =A1 and for s2 to be l(s2,Π5) =A2. Now either c(A1)≤ c(A2) or c(A1)> c(A2).
Case c(A1) ≤ c(A2): We show that choosing Π1Π2s2s1Π3s

′Π4Π5 as new order can only decrease the
cost for each scene. The cost of s1 in the original schedule is the cost of the actors in l(s1,Π3s

′Π4s2Π5)
which is computed as a(s1)∪ (a(Π3s

′Π4s2Π5)∩a(Π1Π2)), while for the second schedule is the cost of the
actors in l(s1,Π3s

′Π4Π5) which is computed as a(s1)∪ (a(Π3s
′Π4Π5)∩a(Π1Π2s2)). Since by hypothesis

a(Π1)∪ a(s1)⊇ a(s2) and by definition a(Π3s
′Π4Π5)⊆ a(Π3s

′Π4s2Π5), we have that l(s1,Π3s
′Π4Π5)⊆

l(s1,Π3s
′Π4s2Π5) and, hence, the cost of s1 can only decrease.

Regarding s2, the set of actors in the new order is

l(s2, s1Π3s
′Π4Π5) = a(s2)∪ (a(s1Π3s

′Π4Π5)∩ a(Π1Π2))
By definition of l(s,Q)

= (a(s2)∪ a(s1Π3s
′Π4Π5))∩ (a(s2)∪ a(Π1Π2))

Distributing∪ over∩
= (a(s1)∪ a(s2Π3s

′Π4Π5))∩ (a(s2)∪ a(Π1Π2))
By definition of a(Q)

⊆ (a(s1)∪ a(s2Π3s
′Π4Π5))∩ (a(s1)∪ a(Π1Π2))

By hypothesis of a(Π1)∪ a(s1)⊇ a(s2)
= l(s1,Π3s

′Π4s2Π5)
By definition of l(s,Q)

which is known to be A1. Hence, the cost of s2 can only decrease in the new schedule.
Let’s now consider the other scenes. First, it is clear that the products in Π1 Π2, and Π5 have the same

on location actors since the set of scenes before and after remain unchanged. Second, let us consider the
changes in the on locations actors for s′, which can be seen as a general representative of scenes scheduled
in between s1 and s2 in the original order. While in the original order the set of on location actors at the
time s′ is scheduled is l(s′,Π4s2Π5) = a(s′)∪ (a(Π1Π2s1Π3)∩ a(Π4s2Π5)), in the new order the set of on
location actors is l(s′,Π4Π5) = a(s′) ∪ (a(Π1Π2s2s1Π3) ∩ a(Π4Π5)), Clearly (a) a(Π4Π5) ⊆ a(Π4s2Π5)
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and (b) since by hypothesis a(Π1)∪ a(s1)⊇ a(s2), we have that a(Π1Π2s2s1Π3)⊆ a(Π1Π2s1Π3). Hence,
by (a) and (b) we have that l(s′,Π4Π5)⊆ l(s′,Π4s2Π5) and, hence, the cost of scheduling it cannot increase.

Case c(A1)> c(A2):
We show that choosing Π1Π2Π3s

′Π4s2s1Π5 as new order can only decrease the cost for each scene.
Regarding s1, the set of actors in the new order is

l(s1,Π5) = a(s1)∪ (a(Π5)∩ a(Π1Π2Π3s
′Π4s2))

By definition of l(s,Q)
= (a(s1)∪ a(Π5))∩ (a(s1)∪ a(Π1Π2Π3s

′Π4s2))
Distributing∪ over∩

= (a(s1)∪ a(Π5))∩ (a(s2)∪ a(Π1Π2s1Π3s
′Π4))

By definition of a(Q)
⊆ (a(s2)∪ a(Π5))∩ (a(s2)∪ a(Π1Π2s1Π3s

′Π4))
By hypothesis of a(s1)⊆ a(s2)

= l(s2,Π5)
By definition of l(s,Q)

which is known to be A2. Hence, the cost of s1 can only decrease in the new schedule.
Now since a(s1)⊆ a(s2) we have that a(s2s1Π5) = a(s2Π5) and, since adding scenes can only increase

cost, we have that a(Π1Π2Π3s
′Π4)⊆ a(Π1s1Π2Π3s

′Π4). Thus, l(s2, s1Π5)⊆ l(s2,Π5), which means the
cost of s2 can only decrease.

Let’s consider the other scenes. As before, it is clear that the products in Π1 Π2, and Π5 have the same on
location actors since the set of scenes before and after remain unchanged. Let us then consider the changes in
the on locations actors for s′, which can be seen as a general representative of scenes scheduled in between
s1 and s2 in the original order. While in the original order the set of on location actors at the time s′ is
scheduled is l(s′,Π4s2Π5) = a(s′)∪ (a(Π1Π2s1Π3)∩ a(Π4s2Π5)), in the new order the set of on location
actors is l(s′,Π4s2s1Π5) = a(s′)∪ (a(Π1Π2Π3)∩a(Π4s2s1Π5)), Clearly (a) by definition a(Π1Π2s1Π3)⊇
a(Π1Π2Π3) and (b) by hypothesis of a(s1)⊆ a(s2) we have that a(Π4s2s1Π5) = a(Π4s2Π5). Hence, by (a)
and (b) we have that l(s′,Π4s2s1Π5)⊆ l(s′,Π4s2Π5), which means the set of on location actors when s′ is
scheduled can only decrease and, hence, the cost of scheduling cannot increase. 2

EXAMPLE 5. Consider the scene scheduling problem of Example 1. Let us assume that the set of scenes
Q= S −{s5} is scheduled after s5. Then, the on location actors after {s5} are o(Q) = {a2, a4}. Consider
s1 and s6. Since a(s6)⊆ a(s1) and o(Q)∪a(s6)⊇ a(s1), s1 should be scheduled before s6. This means we
should never consider scheduling s6 next! 2
We can modify the pseudo code of Figure 2 to take advantage of Lemma 3 by adding the line

forall (s1 ∈ T )
if (∃s2 ∈ T.a(s1)⊆ a(s2)∧ a(S−Q)∪ a(s1)⊇ a(s2)) T := T −{s1}

after the line T := Q and before the while loop. However, this is too expensive in practice. To make this
efficient enough we need to precalculate the pairs P of the form (s, s′) where a(s)⊆ a(s′) and just check
that s′ ∈ T , s∈ T and a(S−Q)∪ a(s)⊇ a(s′) for each pair in P .

Pairwise subsumption, was first used in the solution of Smith (2005, 2003), although restricted to cases
where the difference in the sets is one or two elements. Although no formal proof is given, there is an
extensive example in Smith (2003) explaining the reasoning for the case where the scenes differ by one
element.

2.5 Optimizing Extra Cost
The base cost of a scene scheduling problem is given by

∑
s∈S d(s) × c(a(s)). This is the cost for just

paying for the time of the actors of the scenes they actually appear in. Instead of minimizing the total cost,
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we can minimize the extra cost which is the total cost minus the base cost (i.e., the cost of paying for actors
that are waiting, rather than playing). We can recover the minimal cost by simply adding the base cost to
the minimal extra cost.

To do so we simply need to change the cost and lower functions used in Figure 2 as follows:

cost(s,Q) = d(s)× c(l(s,Q)− a(s))

lower(Q) = 0.

The main benefit of this optimization is simply that the cost of computing the lower bounds becomes free.

3. Bounded Dynamic Programming
We can modify our problem to be a bounded problem. Let bnd schedule(Q,U) be the minimal cost
required to schedule scenes Q if this is less than or equal to the bound U , and otherwise some number k
where U < k ≤ schedule(Q). We can change the dynamic program to take into account upper bounds U
on a solution of interest. The recurrence equation becomes

bnd schedule(Q,U) =

 0 Q= ∅∨U < 0
mins∈Q d(s)× c(a(s,Q−{s}))+

bnd schedule(Q−{s},U − d(s)× c(a(s,Q−{s}))), otherwise

The only complexity here is that the upper bound is reduced in the recursive relation to take into account
the cost of scene s.

Using bounding can have two effects, one positive and one negative. On the positive side, we may be
able to determine without much search that a subproblem cannot provide a better solution for the original
problem, thus restricting the search. On the negative side, it may increase the search space since we have
now multiplied the potential number of subproblems by the upper bound U .

3.1 Bounded Best-first Algorithm
Some of the potential subproblem explosion of adding bounds can be ameliorated since if schedule(Q)≤
U then bnd schedule(Q,U) = schedule(Q) and, otherwise, bnd schedule(Q,U) ≤ schedule(Q) (i.e.,
bnd schedule(Q,U) is a lower bound for schedule(Q)). Therefore, we only need to store one answer in
the hash table for problemQ (rather than one per U ): either the valueOPT (v) indicating we have computed
the optimal answer v, or the value LB(v) indicating we have determined a lower bound v on the answer.
We assume the hash table is initialized with entries NONE indicating no result has been stored. The only
time we have to reevaluate a subproblem Q is if the stored lower bound v is less than or equal than the
current U .

The code for the bounded dynamic program is shown in Figure 6. Note that the hash table handling is
slightly more complex, since we can immediately return a lower bound v > U if that is stored in the hash
table already. The key advantage w.r.t. efficiency is that the break in the while loop uses the value U rather
than min, since clearly no schedule beginning with s will be able to give a schedule costing less than U in
this case. This requires us to update the bound U if we find a new minimum. When the search completes
we have either discovered the optimal (if it is less than U ), in which case we store it as optimal, or we have
discovered a lower bound (>U ) which we store in the hash table.

This means we can prune more subproblems. Note that this kind of addition of bounds can be auto-
mated (Puchinger and Stuckey 2008).
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bnd schedule(Q,U)
if (Q= ∅) return 0
if (scost[Q] =OPT (v)) return v

if (scost[Q] =LB(v)∧ v >U ) return v
min := +∞
T := Q
while (T 6= ∅)
s := index min

s∈T
cost(s,Q−{s}) + lower(Q−{s})

T := T −{s}
if (cost(s,Q−{s}) + lower(Q−{s})≥U ) break
sp := cost(s,Q−{s}) + bnd schedule(Q−{s},U − cost(s,Q−{s}))
if (sp <min) min := sp
if (min≤U ) U := min

if (min≤U ) scost[Q] := OPT (min)

else scost[Q] := LB(min)

return min
Figure 6 Pseudo-Code for bounded Best-first Call-based Dynamic Programming Algorithm.

bnd schedule(Q,U) Returns the Minimum Cost Required for Scheduling the Set of Scenes Q if it
is Less than or Equal to U , Otherwise it Returns a Lower Bound on the Minimal Cost

3.2 Upper Bounds
Now that we are running a bounded dynamic program, we need an initial upper bound for the original
problem. A trivial upper bound is the maximum possible cost, i.e., if all actors are on location at all times:

(
∑
s∈S

d(s))× (
∑
a∈A

c(a))

To generate a better upper bound, we use a heuristic based on the idea that keeping expensive actors
waiting around is bad. Thus, it prioritises expensive actors by attempting to keep their scenes together as
much as possible (i.e., as long as this does not imply separating scenes of more expensive actors). To do
this, the algorithm maintains a sequence of disjoint sets of scenes (each set corresponding to the scenes
kept together for some actors) which provides a partial schedule, i.e, the scenes in a set are known to be
scheduled after the scenes in any set to the left and before the scenes in any set to the right. The idea is to
(a) only partition sets into smaller sets when this benefits the next actor to be processed, and (b) never to
insert new scenes into the middle of the schedule (i.e., scenes are never added to an already formed set, and
sets are only added at the beginning or the end of the partial schedule).

Initially the schedule is empty. And the remaining actors are R=A. Then, we select the remaining actor
a ∈ R with greatest fixed cost c(a) × (

∑
s∈S,a∈a(s) d(s)), and we determine the first and last sets in the

schedule involving a. If the actor is currently not involved in any set, then we simply add a new set at the
end of the schedule with all the scenes in which a appears. If all the scenes involving a in are in a single set,
we break the set into those involving a and those not, arbitrary placing the second set afterwards. If all the
scenes involving a are already scheduled, we split the first set that involves the actor into two: first those not
involving the actor, and then those involving the actor. We do the same for the last set involving the actor,
except that the set involving the actor goes first. This ensures that the scenes involving a are placed as close
as possible without disturbing the scheduling of the previous actors.

If not all the scenes involving a are already scheduled, we first need to decide whether to put the set
of remaining scenes at the beginning or the end of the current schedule. To do this we calculate the total
duration for which actor a will be on location if the scenes were scheduled before or after, and place their
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s10 s12 s8 s3 s9 s11 s1 s6 s2 s5 s7 s4 c(a)
a1 X X X X X X X X . . . . 20
a2 . . . X X X X – X X X X 5
a3 . . X – – – – – X – X . 4
a4 . . . . . . X X X X . . 10
a5 . . X – X – – – – – – X 4
a6 X . . . . . . . . . . . 7
d(s) 2 1 2 2 1 1 1 1 1 3 1 1

Figure 7 The Schedule Defined by the Heuristic Upper Bound Algorithm.

remaining scenes wherever it leads to the smallest duration. Then, if we place the scenes afterwards, we
split the group where the actor a first appears into two: first those not involving the actor, and then those
involving the actor. Similarly, if the remaining scenes are scheduled at the beginning we split the last group
where a appears into two: first those involving the actor, and those not involving the actor.

This process continues until all actors are considered. We may have some groups which are still not
singletons after this process. We order them in any way, since it cannot make a difference to the cost.

Note that this algorithm ensures that the two most expensive actors will never be waiting.
EXAMPLE 6. Consider the scene scheduling problem from Example 1. The fixed cost of the actors

a1, a2, a3, a4, a5, a6 are respectively 220,55,16,60,16,14. Thus, we first schedule all scenes involving a1
in one group {s1, s3, s6, s8, s9, s10, s11, s12}. We next consider a4, which has some scenes scheduled (s1 and
s6) and some not (s2 and s5). Thus, we first need to decide whether to place the set {s2, s5} after or before
the current schedule. Since the duration for which a4 will be waiting on location is 0 in both cases, we
follow the default (place it after) and split the already scheduled group into those not involving a4 and those
involving a4, resulting in partial schedule {s3, s8, s9, s10, s11, s12} {s1, s6} {s2, s5}. The total durations of
the groups are 9, 2, and 4 respectively

We next consider a2, whose scenes {s4, s7} are not scheduled. The total duration for a2 placing
these at the beginning is 2 + 9 + 2 + 4 = 17, while placing them at the end is 4 + 2 + 4 + 2
= 10. Thus, again we place them at the end, and split the first group, obtaining the partial schedule
{s8, s10, s12} {s3, s9, s11} {s1, s6} {s2, s5} {s4, s7}.

We next consider a3, whose scenes are all scheduled and some appear in the first and the last group.
We thus split these two groups to obtain {s10, s12} {s8} {s3, s9, s11} {s1, s6} {s2, s5} {s7} {s4}. Then we
consider a5, whose scenes are also all scheduled and appear first in the second group and last in the last
group. Splitting these groups has no effect since a5 appears in all scenes in the group so the partial schedule
is unchanged. Similarly a6 only appears in one group (the first) so this is split into those containing a6 and
those not to obtain {s10} {s12} {s8} {s3, s9, s11} {s1, s6} {s2, s5} {s7} {s4}. The final resulting schedule
is shown in Figure 7.2

Note that we can easily improve a heuristic solution of a scene scheduling problem by considering swap-
ping the positions of any two pairs of scenes, and making the swap if it lowers the total cost. This heuristic
method is explored in Cheng et al. (1993). We also tried a heuristic that attempted to build the schedule
from the middle by first choosing the most expensive scene and then choosing the next scene that minimizes
cost to left or right. However, our experiments indicate that the upper bounds provided by any heuristic
have very little effect on the overall computation of the optimal order, probably because the bnd schedule
function overwrites the upper bound as soon as it finds a better solution. Hence, we did not explore many
options for better heuristic solutions. Instead, we focused on devising better search strategies.

3.3 Looking Ahead
We can further reduce the search performed in bnd schedule (and schedule) by looking ahead. That is, we
examine each of the subproblems we are about to visit, and if we have already calculated an optimal value
or correct bound for them, we can use this to get a better estimate of the lower bound cost. Furthermore, we
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can use this opportunity to change the lower bound function so that it memos any lower bound calculated
in the hash table scost. The only modification required is to change the definition of the lower function to:

lower(Q)
if (scost[Q] =OPT (v)) return v
if (scost[Q] =LB(v)) return v
lb :=

∑
s∈Q d(s)× c(a(s)) %% if we are using normal costs

lb := 0 %% if we are using extra costs
scost[Q] := LB(lb)
return lb

This has the effect of giving a much better lower bound estimate and, hence, reducing search. Lookahead
is somewhat related to the lower bounding technique used in Russian Doll Search (Verfaillie et al. 1996),
but in that case all smaller problems are forced to be solved before the larger problem is tackled, while
lookahead is opportunistic, just using results that are already there.

3.4 Better Lower Bounds
If we are storing the lower bound computations, as described in the previous subsection, it may be worth-
while spending more time to derive a better lower bound. Here we describe a rather complex lower bound
which is strong enough to reduce the number of subproblems examined by 1-2 orders of magnitude. We use
the following straightforward result

LEMMA 4. Let ai, bi, i = 1, . . . , n be positive real numbers. Let π be a permutation of the indices.
Define f(π) =

∑n

i=1[aπ(i) ∗
∑i

j=1 bπ(j)]. The permutation π which minimizes f(π) satisfies bπ(1)/aπ(1) ≤
bπ(2)/aπ(2) ≤ . . .≤ bπ(n)/aπ(n). 2

This lemma allows us to solve certain special cases of the Talent Scheduling Problem with a simple sort.
Consider the following special case. We have a set of actors a1, ..., an already on location, and a set of
scenes s1, . . . , sn where si only involves the actor ai for each i. Then given a schedule sπ(1)sπ(2) . . . sπ(n)
where π is some permutation, the cost is given by f(π) =

∑n

i=1 c(aπ(i)) ∗
∑i

j=1 d(sπ(j)). This is of the
form required for Lemma 4, and we can find the optimal scene permutation πopt simply by sorting the
numbers d(si)/c(ai) in ascending order. The minimum cost can then be calculated by a simple summation.
Unfortunately, in general, the subproblems for which we wish to calculate lower bounds do not fall under
the special case, as scenes generally involve multiple actors. To take advantage of the lemma then, we need
to do much more work.

THEOREM 1. Let Q be a set of scenes remaining to be scheduled. Let A′ = o(Q), the actors currently
on location. Without loss of generality, let A′ = {a1, . . . , an}. Let Q′ ⊆Q be the set of unscheduled scenes
that involve at least one actor from A′. Let sc(s) =

∑
a∈A′∩a(s) c(a). Let x(a, s) = 1 if a ∈ a(s), and 0

otherwise. Let w(a, s) = x(a, s)∗ c(a)/sc(s). Let e(a) =
∑

s∈Q′ w(a, s)∗d(s). Let f(π) =
∑n

k=1 c(aπ(k))∗∑k

i=1 e(aπ(i)). A correct lower bound on the extra cost for actors A′ for scenes Q′ is given by f(πopt)−∑
s∈Q′ d(s) ∗ [sc(s) +

∑
a∈A′∩a(s) c(a)2/sc(s)]/2, where πopt is the permutation of the indices given by

sorting r(ai) = e(ai)/c(ai) in ascending order.

Proof: First we describe what each of the defined quantities mean. sc(s) gives the sum of the cost of the
actors for scene s, but only counting the actors which are currently on location. w(a, s) is a measure of how
much actor a is contributing to the cost of scene s. We have 0≤ w(a, s)≤ 1, and

∑
a∈A′∩a(s)w(a, s) = 1.

e(a) is a weighted sum of the duration of the scenes that a is involved in, weighted by w(a, s). f(π) is
constructed so that it follows the form required for Lemma 4 to apply, which we will take advantage of. The
actual lower bound is given by the minimum value of f(π), minus a certain constant.

Given any complete schedule that extends the current partial schedule, there is an order in which the on
location actors a1, . . . , an may finish. Without loss of generality, label the actors so that they finish in the
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order a1, a2, ..., an (break ties randomly). We have the following inequalities for the cost of the remaining
schedule t(a) for each of these actors:

t(ak) ≥ c(ak) ∗
∑
{s∈Q′|∃i,i≤k,ai∈a(s)}

d(s)

≥ c(ak) ∗ [
∑k

i=1 e(ai) +
∑
{s∈Q′|ak∈a(s)}

[d(s) ∗ (1−
∑k

i=1w(ai, s))]]

These inequalities hold for the following reasons. Consider ak. Any scene which involves any of
a1, . . . , ak must be scheduled before ak can leave, since by definition a1, . . . , ak−1 leave no later than ak. So
for such scenes s, we must pay c(ak) ∗ d(s) for actor ak, which gives rise to the first inequality. Now, in the
second line, the scene durations from the first line are split up and summed together in a different way, with
some terms thrown away. The second line consists of two sums within the outer set of square brackets. A
scene which does not involve any of a1, . . . , ak will not be counted in any e(a) in the first sum, and is not
counted by the second sum which only counts scenes involving ak. So as required, such durations do not
appear in the second line. A scene which involves some of a1, . . . , ak will have part of its duration counted
in the first sum. To be exact, a proportion

∑k

i=1w(ai, s) ≤ 1 of it is counted in the first sum. The second
sum counts the bits that were not counted in the first sum for scenes that involve ak. Since the second line
never counts more than d(s) for any scene appearing in the first line, the inequality is valid.

Now, we split the last line of the inequality into its two parts and sum over the actors. Define U and V as
follows:

U =
∑n

k=1 c(ak) ∗
∑k

i=1 e(ai)

V =
∑n

k=1 c(ak) ∗
∑
{s∈Q′|ak∈a(s)}

[d(s) ∗ (1−
∑k

i=1w(ai, s))]

Then U + V is a lower bound on the cost for the actor finish order a1, . . . , an. As can be seen, U cor-
responds to f(π) in the theorem. Different permutations of actor finish order π will give rise to different
values of U equal to f(π). By applying Lemma 4, we can quickly find a lower bound on U over all pos-
sible actor finish orders. That is, for each actor a, we calculate r(a) = e(a)/c(a). We then sort the actors
based on r(a) from smallest to largest and label them from a′1 to a′n. We then calculate U using finish order
a′1, . . . , a

′
n, which will give us a lower bound on U over all possible actor finish orders.

V on the other hand, although it looks like it depends on the actor finish order, actually evaluates to a
constant.

V =
∑n

k=1 c(ak) ∗
∑
{s∈Q′|ak∈a(s)}

[d(s) ∗ (1−
∑k

i=1w(ai, s))]

=
∑n

k=1

∑
{s∈Q′|ak∈a(s)}

c(ak) ∗ [d(s) ∗ (1−
∑k

i=1w(ai, s))]

=
∑

s∈Q′
∑n

k=1,ak∈a(s)
c(ak) ∗ [d(s) ∗ (1−

∑k

i=1w(ai, s))]

=
∑

s∈Q′
∑n

k=1,ak∈a(s)
c(ak) ∗ d(s)−

∑
s∈Q′

∑n

k=1,ak∈a(s)
c(ak) ∗ d(s) ∗

∑k

i=1w(ai, s)

=
∑

s∈Q′
∑n

k=1,ak∈a(s)
c(ak) ∗ d(s)−

∑
s∈Q′

∑n

k=1,ak∈a(s)
c(ak) ∗ d(s) ∗

∑k

i=1,ai∈a(s)
c(ai)/sc(s)

=
∑

s∈Q′
∑n

k=1,ak∈a(s)
c(ak) ∗ d(s)−

∑
s∈Q′ d(s)/sc(s) ∗

∑n

k=1,ak∈a(s)
∑k

i=1,ai∈a(s)
c(ak) ∗ c(ai)

The first double sum is simply the base cost needed to pay each actor for each scene they appear in, and
is clearly a constant. Of the second term, only the innermost double sum may be dependent on the actor
finish order. Let W (s) =

∑n

k=1,ak∈a(s)
∑k

i=1,ai∈a(s)
c(ak) ∗ c(ai).

2 ∗W (s) = 2 ∗
∑n

k=1,ak∈a(s)
∑k

i=1,ai∈a(s)
c(ak) ∗ c(ai)

=
∑n

k=1,ak∈a(s)
∑k

i=1,ai∈a(s)
c(ak) ∗ c(ai) +

∑n

i=1,ai∈a(s)
∑n

k=i,ak∈a(s)
c(ak) ∗ c(ai)

=
∑n

k=1,ak∈a(s)
∑k

i=1,ai∈a(s)
c(ak) ∗ c(ai) +

∑n

k=1,ak∈a(s)
∑n

i=k,ai∈a(s)
c(ai) ∗ c(ak)

=
∑n

k=1,ak∈a(s)
∑n

i=1,ai∈a(s)
c(ak) ∗ c(ai) +

∑n

k=1,ak∈a(s)
c(ak) ∗ c(ak)

= sc(s)2 +
∑n

k=1,ak∈a(s)
c(ak)

2

W (s) = [sc(s)2 +
∑n

k=1,ak∈a(s)
c(ak)

2]/2
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s1 s2 s3 s4 s5 s6 s7
a1 X . . . X . X 1
a2 . X . . X X . 1
a3 . . X . . X X 1
a4 . . . X . . X 1

1 1 1 1 1 1 1
Figure 8 An Original Set of Remaining Scenes, Assuming a1, a2, a3, a4 are on Location.

Which is constant. Now, U + V gives a lower bound for the total cost. A lower bound for the extra cost
is simply U + V minus the base cost of the actors A′ for the scenes Q′. Luckily, this term already appears
as the first term in V . Thus the lower bound for the extra cost is f(πopt)−

∑
s∈Q′ d(s)/sc(s) ∗W (s) =

f(πopt)−
∑

s∈Q′ d(s) ∗ [sc(s) +
∑

a∈A′∩a(s) c(a)2/sc(s)]/2 as claimed. 2
EXAMPLE 7. Consider the scenes shown in Figure 8, where the cost/duration of each actor/scene is 1

for simplicity. To calculate f(πopt), we need to calculate r(a) and sort them. Since the costs are all 1, we
have r(a1) = e(a1) = 11/6, r(a2) = e(a2) = 2, r(a3) = e(a3) = 11/6, r(a4) = e(a4) = 4/3. So we reorder
the actors as a′1 = a4, a

′
2 = a1, a

′
3 = a3, a

′
4 = a2 and calculate f(π) using finish order a′1, . . . , a

′
4, which

gives f(πopt) = 1 ∗ 4/3 + 1 ∗ (4/3 + 11/6) + 1 ∗ (4/3 + 11/6 + 11/6) + 1 ∗ (4/3 + 11/6 + 11/6 + 2) =
16.5, which is a lower bound on U over all actor finish orders. Next, we calculate

∑
s∈Q d(s) ∗ [sc(s) +∑

a∈A′∩a(s) c(a)2/sc(s)]/2 = 1 + 1 + 1 + 1 + 3/2 + 3/2 + 2 = 9. Thus the lower bound for the extra cost at
this node is 16.5− 9 = 7.5. 2

If we are optimizing the extra cost (Section 2.5), then to implement this lower bound, we simply need to
add the following code into the code for lower before the saving of the lower bound in scost.

A′ := o(Q)
for (a∈A′)
r[a] := 0

for (s∈Q′)
a′(s) = a(s)∩A′
total cost :=

∑
i∈a′(s) c(i)

total cost sq :=
∑

i∈a′(s) c(i)
2

for (a∈ a′(s))
r[a] = r[a] + d(s)/total cost
lb= lb− d(s) ∗ (total cost+ total cost sq/total cost)/2

Sort A′ based on r[a] in ascending order
c :=

∑
i∈A′ c(i)

for (a∈A′)
lb= lb+ c ∗ r[a] ∗ c(a)
c= c− c(a)

Clearly this is quite an expensive calculation

4. Double Ended Search
We will say an actor is fixed if we know the first and last scene where the actor appears. Knowing that an
actor is fixed is useful, because the cost for that actor is fixed (thus the name) regardless of the schedule of the
remaining intervening scenes, if any. For this reason it is beneficial to search for a solution by alternatively
placing the next scene in the first remaining unfilled slot and the last remaining unfilled slot, since this will
increase the number of fixed actors. Let B denote the set of scenes scheduled at the beginning, and E the
set of scenes scheduled at the end. We know the cost of any actor appearing both in scenes of B and scenes



Garcia de la Banda, Stuckey, and Chu: Solving Talent Scheduling with Dynamic Programming
INFORMS Journal on Computing 00(0), pp. 000–000, c© 0000 INFORMS 15

bnd de schedule(B,E,U)
Q := S−B−E
if (a(Q)⊆ a(B)∩ a(E)) return 0
hv := hash lookup(B,E)

if (hv=OPT (v)) return v

if (hv=LB(v)∧ v >U ) return v
min := +∞
T := Q
while (T 6= ∅)
s := index min

s∈T
cost(s,B,E) + lower(B ∪{s},E)

T := T −{s}
if (cost(s,B,E) + lower(B ∪{s},E)≥U ) break
sp := cost(s,B,E) + bnd de schedule(E,B ∪{s},U − cost(s,B,E))
if (sp <min) min := sp
if (min≤U ) U := min

if (min≤U ) hash set(B,E,OPT (min))

else hash set(B,E,LB(min))
return min

Figure 9 Pseudo-Code for bounded Best-first Call-based Dynamic Programming Algorithm.
bnd de schedule(Q,B,E) Returns the Minimum Cost Required for Scheduling the Set of Scenes
Q if it is Less than or Equal to U , Otherwise it Returns a Lower Bound on the Minimal Cost

of E, since we know the duration of the remaining set of scenes Q= S −B −E. This strategy was used
in the branch-and-bound solution of Cheng et al. (1993). A priori this might appear to be a bad strategy
since the search space has increased: there are more subproblems of the form “schedule remaining scenes
Q given scenes in B are scheduled before and scenes in E are scheduled after (where B ∪Q ∪E = S)”,
than there are “schedule remaining scenes Q given scenes in S−Q are scheduled before”. However, as we
will see in the experiments, this is compensated by the fact that we will get much more accurate estimates
on the cost of the remaining schedule.

The change in search strategy causes considerable changes to the algorithm. The sub problems are now
defined byB the set of scenes scheduled at the beginning, andE the set of scenes scheduled at the end. The
search tries to schedule each remaining scene s at the beginning of the remaining scenes, just after B, and
then swaps the role of B and E to continue building the schedule. We can thus modify the cost function to
ignore the cost of actors already fixed by B and E (i.e., those in a(B)∩ a(E)), and take only into account
the cost of actors newly fixed by the scene. This can be done as follows:

cost(s,B,E) = d(s)× c(l(s,S−B−E−{s})− (a(B)∩ a(E)))
+
∑

a∈((a(s)−a(B))∩a(E)) d(S−B−E−{s})× c(a)

where the first part adds the cost for scheduling scene s excluding the fixed actors (a(B)∩ a(E)), and the
second part adds the cost of each actor a which is newly scheduled by s (appears in (a(s)− a(B))) and
already scheduled at the end (appears in a(E)).

The lower bound cost function also has to change to ignore the actors fixed by B and E:

lower(B,E) =
∑

s∈S−B−E

d(s)× c(a(s)− (a(B)∩ a(E)))

The code for the new algorithm is shown in Figure 9. The algorithm first tests whether there are
any remaining actors to be scheduled: If a(Q) ⊆ a(B) ∩ a(E) then all actors playing in scenes of Q
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are fixed (must be on location for the entire period regardless of Q schedule), and we simply return 0
(since their cost has already been taken into account). Otherwise, the algorithm checks the hash table to
find whether the subproblem has been examined before. Note that we replaced the array of subproblems
scost[Q] by two functions hash lookup(B,E), which returns the value stored for subproblem B, E, and
hash lookup(B,E,ov), which sets the stored value to ov. The remainder of the code is effectively identical
to bnd schedule using the new definitions of cost and lower. The only important thing to note is that the
recursive call swaps the positions of beginning and end sets, thus forcing the next scene to be scheduled at
the other end.

Note that any solution to the scene scheduling problem has an equivalent solution where the order of the
scenes is reversed (a fact that has been noticed by many authors). We are implicitly using this fact in the
definition of bnd de schedule when we reverse the order of the B and E arguments to make the search
double ended, since we treat the problem starting with B and ending in E as equivalent to the problem
starting with E and ending in B. We can also take advantage of this symmetry when detecting equivalent
subproblems (i.e. when looking up whether we have seen the problem before). A simple way of achieving
this is to store and lookup problems assuming that B ≤E (that is, in lexicographic order).

hash lookup(B,E) = if (B ≤E) scost[B,E] else scost[E,B]
hash set(B,E,ov) = if (B ≤E) scost[B,E] := ov else scost[E,B] := ov

4.1 Better Equivalent Subproblem Detection
While taking into account symmetries helps, we can further help the detection of equivalent subproblems
by noticing that the cost of scheduling the scenes in Q = S − B − E does not really depend on B and
E. Rather, it depends on o(B) and o(E), i.e., on the set of actors that will always be on location at the
beginning and at the end of Q, respectively.

EXAMPLE 8. Consider the partial schedule of the problem of Example 1 where B = {s1, s9, s12} and
E = {s3, s5, s6, s11}. The remaining scenes to schedule areQ= {s2, s4, s7, s8, s9, s10}. An optimal schedule
of Q (given B and E) is shown at the top of in Figure 10. The total cost ignoring the fixed actors a1, a2 and
a4 is 16 + 8 + 14 = 48.

Consider the subproblem where B′ = {s3, s11, s5, s1} and E′ = {s9, s6, s12}. The remaining scenes to
schedule are still Q= {s2, s4, s7, s8, s9, s10}. Now o(B′) = o(E) and o(E′) = o(B) and hence any optimal
order for the first subproblem can provide an optimal schedule for this subproblem, by reversing the order
of the schedule. This is illustrated at the bottom of Figure 10. 2

We can modify the hash function to take advantage of these subproblem equivalences. We will store the
subproblem value on o(B), o(E), and Q under the assumption that o(B)≤ o(E).

hash lookup(B,E)
Q := S−B−E
if (o(E)< o(B)) return scost[o(E), o(B),Q]
return scost[o(B), o(E),Q]

hash set(B,E,ov)
Q := S−B−E
if (o(E)< o(B)) scost[o(E), o(B),Q] := ov
else scost[o(B), o(E),Q] := ov

In order to prove the correctness of the equivalence we need the following intermediate result.

LEMMA 5. For every Q,Q′ ⊆ S such that Q ∩Q′ = ∅ (which is the same as saying Q′ ⊆ S −Q), we
have that a(Q)∩ a(Q′) = o(Q)∩ a(Q′) = a(Q′)∩ o(Q′) = o(Q)∩ o(Q′).
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s12 s1 s9 o(B) s4 s8 s2 s7 s10 o(E) s5 s6 s11 s3 c(a)
a1 X X X – – X – – X – – X X X 20
a2 . X X – X – X X – – X – X X 5
a3 . . . . . X X X . . . . . . 4
a4 . X – – – – X – – – X X . . 10
a5 . . X – X X . . . . . . . . 4
a6 . . . . . . . . X . . . . . 7
d(s) 1 1 1 1 2 1 1 2 3 1 1 2

s3 s11 s5 s1 o(B′) s10 s7 s2 s8 s4 o(E′) s9 s6 s12 c(a)
a1 X X – X – X – – X – – X X X 20
a2 X X X X – – X X – X – X . . 5
a3 . . . . . . X X X . . . . . 4
a4 . . X X – – – X – – – – X . 10
a5 . . . . . . . . X X – X . . 4
a6 . . . . . X . . . . . . . . 7
d(s) 2 1 3 1 2 1 1 2 1 1 1 1

Figure 10 Two Equivalent Subproblems.

Proof: Let us first prove that o(Q)∩ a(Q′) = a(Q)∩ a(Q′). We have that:

o(Q)∩ a(Q′) = (a(Q)∩ a(S−Q))∩ a(Q′)
By definition of o(Q)

= a(Q)∩ (a(S−Q)∩ a(Q′))
By associativity of ∩

= a(Q)∩ a(Q′)
By hypothesis of Q′ ⊆ S−Q

A symmetric reasoning can be done to prove that a(Q) ∩ o(Q′) = a(Q) ∩ a(Q′). To prove that o(Q) ∩
o(Q′) = a(Q)∩ a(Q′) we follow a similar reasoning:

o(Q)∩ o(Q′) = (a(Q)∩ a(S−Q))∩ (a(Q′)∩ a(S−Q′)
By definition of o(Q)

= (a(Q)∩ a(S−Q′))∩ (a(S−Q)∩ a(Q′))
By associativity of ∩

= a(Q)∩ a(Q′)
By hypothesis of Q′ ⊆ S−Q and Q⊆ S−Q′

2

Given the above result, one could decide to hash on a(B) and a(E) (rather than on o(B) and o(E)). This
is also correct but it would miss some equivalences since: while o(B)∩ o(E) = a(B)∩ a(E), a(B) might
contain more actors than o(B), those who start and finish withinB and will thus never be on location during
the scenes in Q. Therefore, these actors are not relevant for Q. The same can be said for a(E) and o(E).

THEOREM 2. Let Π1Π2Π3 and Π4Π2Π5 be two permutations of S such that o(Π4) = o(Π1), o(Π5) =
o(Π3). Then, the cost of every scene of Π2 is the same in Π1Π2Π3 as in Π4Π2Π5.

Proof: Without loss of generality, let Π2 be of the form Π′2sΠ
′′
2 . We will show that for the cost of s is the

same in Π1Π2Π3 and Π4Π2Π5. Now

l(s,Π′′2Π3) = a(s)∪ (a(Π′′2Π3)∩ a(Π1Π
′
2))

By definition of l(s,Q)
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= a(s)∪ ((a(Π′′2)∪ a(Π3))∩ (a(Π1)∪ a(Π′2)))
By definition of a(Q)

= a(s)∪ ((a(Π′′2)∩ a(Π1))∪ (a(Π′′2)∩ a(Π′2))∪ (a(Π3)∩ a(Π1))∪ (a(Π3)∪ a(Π′2)))
Distributing∩ over∪

= a(s)∪ ((a(Π′′2)∩ o(Π1))∪ (a(Π′′2)∩ a(Π′2))∪ (o(Π3)∩ o(Π1))∪ (o(Π3)∪ a(Π′2)))
by the Lemma 5

= a(s)∪ ((a(Π′′2)∩ o(Π4))∪ (a(Π′′2)∩ a(Π′2))∪ (o(Π5)∩ o(Π4))∪ (o(Π5)∪ a(Π′2)))
Since o(Π4) = o(Π1) and o(Π5) = o(Π3)

= a(s)∪ ((a(Π′′2)∩ a(Π4))∪ (a(Π′′2)∩ a(Π′2))∪ (a(Π5)∩ a(Π4))∪ (a(Π5)∪ a(Π′2)))
= a(s)∪ ((a(Π′′2)∪ a(Π5))∩ (a(Π4)∪ a(Π′2)))
= l(s,Π′′2Π5)

4.2 Revisiting the Previous Optimizations
Once we are performing double ended search, we introduce fixed actors which are no longer of any impor-
tance to the remaining subproblem since their cost is fixed. We may be able to improve the previous opti-
mizations by ignoring fixed actors whenever performing a double ended search.

4.2.1 Preprocessing The second preprocessing step (concatenating duplicate scenes) can now be
applied during search. This is because, given fixed actors F = a(B) ∩ a(E), we can apply Lemma 1 if
a(s1) ∪ F = a(s2) ∪ F , since the cost of the fixed actors is irrelevant. This means we should concate-
nate any scenes in Q = S −B −E where a(s1) ∪ F = a(s2) ∪ F . We can modify the search strategy in
bnd de schedule to break the scenes in Q into equivalent classes Q1, . . .Qn where ∀s1, s2 ∈Qi.a(s1)∪
F = a(s2)∪ F , and then consider scheduling each equivalence class. In many cases the equivalence class
will be of size one!

4.2.2 Scheduling Actor Equivalent Scenes First Lemma 2 can be extended so that we can always
schedule a scene s first where o(B) = a(s)∪F since the on location actors will include the fixed actors and
the extra cost for them will be payed for scene s wherever it is scheduled.

4.2.3 Pairwise Subsumption The extension of Lemma 3 also holds if a(s1) ∪ F ⊆ a(s2) ∪ F and
a(B) ∪ a(s1) ⊇ a(s2) (since F ⊆ a(B)). But this means we need to do a full pairwise comparison of all
scenes in Q= S−B−E, for each subproblem considered. We did implement this, and although it did cut
down search substantially, the overhead of the extra comparison did not pay off. This is the only optimisation
not used in the experimental evaluation.

4.2.4 Optimizing Extra Cost This is clearly applicable in the doubled ended case, but it complicates
the computation of cost(s,B,E) since we now have to determine exactly which scenes a newly fixed actor
occurs in, rather than just adding the cost of the actor for the entire duration of the remaining scenes.

4.2.5 Looking Ahead This is applicable as before. Note that lower takes the same arguments (B,E)
(excluding the upper bound) as bnd de schedule. We have to modify the definition of lower(B,E) to
make use of hash lookup and hash set.

4.2.6 Better Lower Bounds The same reasoning on better lower bounds can be applied to the set of
actors o(B)−F , since the actors in F will always be on location in the remaining subproblem. Indeed, we
sum the results of the better lower bounds calculated from both ends for o(B)−F and o(E)−F , since the
actors in these sets cannot overlap (by the definition of F ).

4.2.7 Better Equivalent Subproblem Detection We could improve equivalent subproblem detection
by noticing that the fixed actors play no part in determining the schedule of the remaining scenes Q =
S−B−E. We could thus build a hash function based on the form of the remaining scenes after eliminating
the fixed actors F = a(B)∩a(E). But the cost of determining this reduced form seems substantial since, in
effect, we have to generate new scenes and hash on sets of them. We have not attempted to implement this
approach.
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Table 1 Arithmetic Mean Solving Time (ms) for Structured Problems of
Size n, and Relative Slowdown if the Optimization is Turned Off

n Time (ms) 2.3 2.4 3.3 4.2.1 3.2 3.4 2.5 4.1 4 3

18 78 1.09 1.29 1.24 1.04 1.01 2.75 1.21 0.98 0.44 31.94
19 157 1.15 1.32 1.23 1.04 0.99 3.06 1.20 1.05 0.53 33.18
20 190 1.12 1.39 1.18 1.03 0.99 3.29 1.19 1.02 0.45 47.05
21 317 1.17 1.35 1.17 1.04 1.02 4.13 1.21 1.06 0.51 61.12
22 702 1.18 1.37 1.24 1.06 0.99 3.75 1.19 1.14 0.69 52.16
23 870 1.19 1.48 1.23 1.05 1.01 4.30 1.20 1.09 0.63 —
24 1269 1.23 1.47 1.23 1.11 1.02 5.08 1.19 1.16 0.74 —
25 1701 1.26 1.55 1.25 1.08 1.00 5.32 1.20 1.20 0.86 —
26 2934 1.29 1.63 1.33 1.12 1.01 6.15 1.22 1.25 0.98 —
27 3699 1.31 1.79 1.36 1.14 1.02 7.12 1.23 1.25 1.07 —
28 5172 1.35 1.92 1.38 1.15 1.00 7.83 1.24 1.26 1.17 —

Table 2 Arithmetic Mean Subproblems Solved for Structured Problems of
Size n, and Relative Increase if the Optimization is Turned Off

n Subproblems 2.3 2.4 3.3 4.2.1 3.2 3.4 2.5 4.1 4 3

18 5091 1.08 1.18 1.02 1.06 1.06 10.21 1.00 1.07 0.93 73.29
19 9699 1.12 1.22 1.03 1.09 1.01 11.18 0.99 1.11 1.43 75.43
20 10467 1.11 1.26 1.02 1.07 1.01 12.36 1.00 1.09 0.95 114.63
21 16154 1.15 1.21 1.02 1.07 1.03 15.88 1.00 1.14 1.24 152.42
22 36531 1.17 1.23 1.03 1.12 1.00 13.38 0.99 1.21 1.97 121.31
23 42224 1.17 1.32 1.03 1.10 1.02 15.73 1.00 1.13 1.52 —
24 59349 1.22 1.33 1.02 1.21 1.03 18.50 0.98 1.16 1.98 —
25 77766 1.25 1.37 1.03 1.17 1.00 19.00 0.98 1.19 2.08 —
26 136778 1.28 1.40 1.03 1.23 1.01 20.49 1.00 1.20 2.51 —
27 167232 1.28 1.50 1.03 1.25 1.04 23.63 0.99 1.19 2.70 —
28 233328 1.31 1.56 1.03 1.27 1.01 25.04 0.99 1.19 2.88 —

5. Experimental Results
We tested our approach on the two sets of problem instances detailed below. All experiments were run on
Xeon Pro 2.4GHz processors with 2GB RAM running Red Hat Linux 5.2. The dynamic programming code
is written in C, with no great tuning or clever data structures, and many runtime flags to allow us to compare
the different versions easily. The dynamic programming software was compiled with gcc 4.1.2 using -O3.
Timings are calculated as the sum of user and system time given by getrusage, since it accords well with
wall-clock times for these CPU-intensive programs. For the problems that take significant time we observed
around 10% variation in timings across different runs of the same benchmark.

5.1 Structured Benchmarks
The first set of benchmarks are structured problems based on the realistic talent scheduling of Mob Story
first used in Cheng et al. (1993). We use these problems to illustrate the effectiveness of the different
optimizations.

We first extended the benchmarks film103, film105, film114, film116, film118, film119 used in Smith
(2005), adding three new actors to each problem to bring it to 11, and bringing the number of scenes to 28
(the original problems each involve 8 actors and either 18 or 19 scenes). This gave us 6 base problems of
size 11×28. These base problems were constructed in such a way that preprocessing did not simplify them
(so that the number of “important” actors and scenes was known).

Then, from each base problem we generated smaller problems by removing in turn newly added scenes.
In particular, for each base problem we obtained 10 problems ranging from 11× 27 to 8× 18, where each
problem in the sequence is a subproblem of the larger ones, and the original problem from Smith (2005)
was included.
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From each base problem we also generated smaller problems by randomly removing k scenes where k
varied from 1 to 10. In particular, for each base problem we obtained 10 problems ranging from 11× 27 to
11× 18, where the sets of removed scenes in differently sized problem are unrelated (as opposed to have a
subset/superset relationship).

In total this created 126 core problems.
From each core problem we generated three new variants: equal duration where all durations are set to

1, equal cost where the cost of all actors are set to 1, and equal cost and duration where all durations
and costs are set to 1.

We compared the executions of running the dynamic program with all optimizations enabled, and indi-
vidually turning off each optimization. The optimizations are: scheduling actor equivalent scenes first
(Section 2.3), pairwise subsumption (Section 2.4), looking ahead (Section 3.3), concatenating duplicate
scenes (Section 4.2.1), upper bounds (Section 3.2), better lower bounds (Section 3.4), optimizing extra cost
(Section 2.5), better equivalent subproblem detection (Section 4.1), double-ended search (Section 4), and
bounded dynamic programming (Section 3). The average times in milliseconds obtained by running the
dynamic program with all optimizations enabled for each size n, are shown in the second column of Table 1.
The remaining columns show the relative average time when each of the optimizations is individually turned
off. For the last column without bounding, only the problems up to size 22 are shown. Table 2 shows the
same results in terms of the number of subproblems solved (that is, the number of pairs (B,E) appearing
in calls to bnd de schedule or Q in earlier variants).

The tables clearly show that bounded dynamic programming (Section 3) is indispensable for solving
these problems. Better lower bounding is clearly the next most important optimization, massively reducing
the number of subproblems visited. Doubled-ended search (Section 4) is also very important except for the
fact that better lower bounding (Section 3.4) improves the single-ended search much more than it does the
double-ended search, so only on the larger examples does it begin to win. Without better lower bounding it
completely dominates single-ended search. The next most effective optimization is pairwise subsumption
(Section 2.4). Looking ahead (Section 3.3) and scheduling actor equivalent scenes first (Section 2.3) are
quite beneficial, as are optimizing extra cost (Section 2.5) and better equivalent subproblem detection (Sec-
tion 4.1). The upper bounds optimization (Section 3.2) is clearly unimportant, only reducing the number
of problems slightly. Note that while some optimizations given more or less constant improvements with
increasing size, most are better as size increases.

If we look at the different variants individually (in results not shown) we find that the equal duration
variants are slightly (around 7-10%) harder than the core problems, while the equal cost and equal cost
and duration variants are 3–4 times harder than the core problems, indicating that cost is very important
for pruning.

5.2 Random Benchmarks
The second set of benchmarks is composed of randomly generated benchmarks. We use these problems to
show the effect of number of actors and number of scenes on problem difficulty.

The problems were generated in a manner almost identical to that used in Cheng et al. (1993): for a given
combination of m actors and n scenes we generate for each actor i ∈ 1..m (a) a random number1 ni ∈ 2..n
indicating the number of scenes actor i is in, (b) ni different random numbers between 1 and n indicating
the set of scenes actor i is in, and (c) a random number between 1 and 100 indicating the cost of actor
i. For each combination of actors m ∈ {8,10,12,14,16,18,20,22} and scenes n ∈ {16..64}, we generate
100 problems. Note that, given the above method, a scene might contain no actors while an actor must be
involved in at least two scenes (and at most all). We ensured preprocessing could not simplify any instance.

We ran the instances with a memory bound of 2Gb. Table 3 shows the average time in milliseconds
obtained for finding an optimal schedule for all random instances of each size which did not run out of

1 In Cheng et al. (1993) they generate a number from 1..n but actors appearing in only 1 scene are uninteresting (see Section 2.2).
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Table 3 Arithmetic Mean Solving Time (ms) for Random Problems with m Actors and n Scenes.
Number of Scenes n

m 16 18 20 22 24 26 28 30 32 34 36 38 40
8 7 20 39 94 141 323 362 685 1403 2291 2977 2408 7101

10 11 33 85 165 441 650 1981 2531 3179 8901 10690 13426 20907
12 21 47 149 319 829 2056 3830 6674 10082 13155 20903 — —
14 25 75 255 759 1519 3700 8862 12705 17602 — — — —
16 41 129 357 1012 2602 6284 14130 23270 — — — — —
18 53 221 533 1463 3708 11546 18797 — — — — — —
20 87 248 757 2745 6680 15414 21194 — — — — — —
22 119 338 997 2855 11090 18672 — — — — — — —

m 42 44 46 48 50 52 54 56 58 60 62 64
8 7697 15669 19004 21703 23939 25891 49547 42433 49406 61351 62089 —

10 25903 — — — — — — — — — — —

Table 4 Arithmetic Mean Subproblems Solved for Random Problems with m Actors and n Scenes.
Number of Scenes n

m 16 18 20 22 24 26 28 30 32 34 36 38 40
8 569 1477 2431 5440 6905 17825 20020 37803 81388 124579 153515 113402 296798

10 784 2377 5408 8747 23898 33692 108048 128041 149676 387515 420769 484846 663511
12 1780 3032 9261 15757 41955 113971 184998 309110 410699 510775 668273 — —
14 1846 4880 15388 43122 74523 194726 403624 521340 626265 — — — —
16 3071 8153 20366 50527 128969 301001 623235 889799 — — — — —
18 3218 16317 29785 71885 175373 510349 742264 — — — — — —
20 4911 14612 41608 153560 340470 668144 768588 — — — — — —
22 4929 17559 52531 138078 547756 782389 — — — — — — —

m 42 44 46 48 50 52 54 56 58 60 62 64
8 312200 575387 610651 501283 585939 578558 747825 788145 832748 924486 869846 —

10 736360 — — — — — — — — — — —

memory, while Table 4 shows the average number of subproblems solved. The entries — show where less
than 80 of the 100 instances solved without running out of memory. The schedules were computed using
all optimizations. The results show that while the number of scenes is clearly the most important factor
in the difficulty of the problem, if the number of actors is small then the problem difficulty is limited.
While increasing the number of actors increases difficulty, as it grows larger than the number of scenes,
the incremental difficulty decreases. Note also that the random problems are significantly easier than the
structured problems.

While we should be careful when reading these tables, since the difficulty of each 100 random bench-
marks considered in each cell can vary remarkably (the standard deviation is usually larger than the average
shown), the trend is clear enough.

6. Related Work
The talent scheduling problem (which appears as prob039 in CSPLIB (CSPLib 2008) where it is called the
rehearsal problem) was introduced by Cheng et al. (1993). They consider the problem in terms of shooting
days instead of scenes so, in effect, all scenes have the same duration. Note, however, that once we make use
of Lemma 1 the requirement for different durations arises in any case. They give one example of a real scene
scheduling problem, arising from the film Mob Story, containing 8 actors and 28 scenes. They show that the
problem is NP-hard even in the very restricted case of each actor appearing in exactly two scenes and all
costs and durations being one, by reduction to the optimal linear arrangement (OLA) problem (Garey et al.
1976)

In their paper they consider two methods to solve the scene scheduling problem. The first method is
a branch and bound search, where they search for a schedule by filling in scenes from both ends in an
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25 26 24 27 22 23 19 20 21 5 28 8 11 9 6 7 9 2 16 17 18 3 15 13 14 1 12 3
Luce . . . . . . . . . . . . . X X X X X – – – X X X X X X X 10
Tom . . . . . X X X X – X X – X – – – X – X X X – X X X X . 4

Mindy . . . . . . X X X X – X – X – – – X – X X X . . . . . . 5
Maria . . . . . . . . . . . . . . . . . . X X X – X X X . . . 5
Gianni . X X X – – X – – – X X – X – – – X X . . . . . . . . . 5
Dolores . . X X X X X X X . . . . . . . . . . . . . . . . . . . 40
Lance . . . . . . . X X X – X – X . . . . . . . . . . . . . . 4
Sam . . . . . . . . . . . X X X X X X . . . . . . . . . . . 20
d(s) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 11 An Optimal Schedule for the Film “Mob Story”

alternating fashion (double ended search). They optimize on extra cost, and the lower bounds they use are
simply the result of fixed costs (so equivalent to the definition of lower in Section 4 minus the fixed costs).
They do not store equivalent solutions and, hence, are very limited in the size of the problem they can tackle.
Their experiments go up to 14 scenes and 14 actors.

The second method is a simple greedy hill climbing search. Given a starting schedule they consider
all possible swaps of pairs of scenes, and move to the schedule after a swap if the resulting cost is less.
They continue doing this until they reach a local minimum. On their randomly generated problems the
heuristic approach gives answers around 10-12% off optimal regardless of size. They use this algorithm
to re-schedule Mob Story with an extra cost of $16,100 as opposed to the hand solution of $36,400. This
solution required 1.05 second on their AMDAHL mainframe. In comparison, our best algorithm finds an
optimal answer with extra cost $14,600 in 0.1 seconds on a Xeon Pro 2.4GHz processor (which is admit-
tedly very much more powerful). The search only considers 6,605 different subproblems. Note that after
preprocessing, it only involves 20 scenes. The optimal solution found is shown in Figure 11 (costs are
divided by 100).

Adelson et al. (1976) define a restricted version of the talent scheduling problem for rehearsal scheduling
where the costs of all actors are uniform, and also note how it can be used for an application in archeology.
They give a dynamic programming formulation as a recurrence relation, more or less identical to that shown
at the beginning of Section 2. They report solving an instance (from a real archaeological problem) with
26 “actors” and 16 “scenes” in 84 seconds on a CDC 7600 computer. We were not able to locate this
benchmark.

Smith (2005, 2003) uses the talent scheduling problem as an example of a permutation problem. These
papers solved the problem using constraint programming search with caching of search states, which is very
similar to dynamic programming with bounds. The paper considers both scheduling from one end, or from
both ends. This paper was the first to use a form of pairwise subsumption, restricted to the case where the
scenes differ by at most 2 actors. It also used the preprocessing of merging identical scenes (without proof).
This was the first approach (we are aware of) to calculate the optimal solution to the Mob Story problem.

A comparison of the approaches is shown in Table 5. The table shows the sizes (after preprocessing).
Note that the timing results for Smith (2005) are for a 1.7GHz Pentium M PC running ILOG Solver 6.0,
whereas our results are for Xeon Pro 2.4GHz processors running gcc on Red Hat Linux. However, note also
that there is around 3 orders of magnitude difference between our times and those of Smith (2005). Also
the number of cached states in the approach of Smith (2005) is around two orders of magnitude bigger than
the number of subproblems (which is the equivalent measure). This is probably a combination of our better
lower bounds, better detection of equivalent states and better search strategy. A web page with the problems
and solutions can be found at www.csse.unimelb.edu.au/˜pjs/talent/.

The talent scheduling problem is a generalization of the Optimal Linear Arrangement (OLA) problem
(see Cheng et al. (1993)). This is a very well investigated graph problem, with applications including VLSI
design (Hur and Lillis 1999), computational biology (Karp 1993), and linear algebra (Rose 1970). The
OLA is known to be very hard to solve, it has no polynomial time approximation scheme unless NP-
complete problems can be solved in randomized sub-exponential time (Ambühl et al. 2007). Unfortunately,
the problem size in this domain is in the thousands, which means methods that find exact linear arrangements
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Table 5 Comparison with the Approach of Smith (2005) on the
Examples from that Paper.

Size Smith this paper
Problem Actors Scenes Time Cached states Time Subproblems
MobStory 8 20 64.71s 136,765 108ms 6,605
film105 8 18 16.07s 40,511 20ms 1,108
film116 8 19 125.8s 225,314 156ms 13,576
film119 8 18 70.80s 144,226 84ms 7,105
film118 8 19 93.10s 205,190 40ms 1,980
film114 8 19 127.0s 267,526 84ms 4,957
film103 8 19 76.69s 180,133 64ms 4,103
film117 8 19 76.86s 174,100 96ms 7,227

(as dynamic programming does), cannot be applied. Interestingly, there are heuristic methods (Koren and
Harel 2002) that use exact methods as part of the entire process, and our algorithm could potentially be
applied here.

The talent scheduling problem is highly related to the problem of minimizing the maximum number of
open stacks. In this problem there are no durations, or costs and the aim is to minimize the maximum num-
ber of actors on location at any time. The problem has applications in cutting, packing and VLSI design
problems. Compared to the talent scheduling problem, the open stacks problem has been well studied (see
e.g.Yuen (1991, 1995), Yuen and Richardson (1995), Yannasse (1997), Faggioli and Bentivoglio (1998),
Becceneri et al. (2004)). The best current solution is our dynamic programming approach (Chu and Stuckey
2009), but surprisingly almost none of the methods used there to improve the base dynamic programming
approach are applicable to the talent scheduling problem. In the end the solutions are quite different, proba-
bly because the open stacks problem, while also NP-hard, is fixed parameter tractable (Yuen and Richardson
1995), as opposed to the talent scheduling problem.

7. Conclusion
The talent scheduling problem is a very challenging combinatorial problem, because it is very hard to
compute accurate bounds estimates from partial schedules. In this paper we have shown how to construct
an efficient dynamic programming solution by carefully reasoning about the problem to reduce search, as
well as adding bounding and searching in the right manner. The resulting algorithm is orders of magnitude
faster than other complete algorithms for this problem, and solves significantly larger problems than other
methods.

There is still scope to improve the dynamic programming solution, by determining better heuristic orders
in which to try scheduling scenes, and possibly determining better dynamic lower bounds by reasoning on
the graph of actors that share scenes. One very surprising thing for us, was how much harder the talent
scheduling problem is than the highly related problem of minimizing the maximum number of open stacks.
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