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Abstract

Often, when analyzing the behaviour of systems modelled as context-free languages, we wish to know if two
languages overlap. To this end, we present a class of semi-decision procedures for regular separability of
context-free languages, based on counter-example guided abstraction refinement. We propose two effective
instances of this approach, one that is complete but relatively expensive, and one that is inexpensive and
sound, but for which we do not have a completeness proof. The complete method will prove disjointness
whenever the input languages are regularly separable. Both methods will terminate whenever the input
languages overlap. We provide an experimental evaluation of these procedures, and demonstrate their
practicality on a range of verification and language-theoretic instances.
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1. Introduction

We address the problem of checking whether two given context-free languages L1 and L2 are disjoint.
This is a fundamental language-theoretical problem. It is of interest in many practical tasks that call for some
kind of automated reasoning about programs. This can be because program behaviour is modelled using
context-free languages, as in software verification approaches that try to capture a program’s control flow
as a (pushdown-system) path language. Or it can be because we wish to reason about string-manipulating
programs, as is the case in software vulnerability detection problems, where various kinds of injection attack
have to be modelled.

The problem of context-free disjointness is of course undecidable, but semi-decision procedures exist for
non-disjointness. For example, one can systematically generate strings w over the intersection Σ1 ∩ Σ2,
where Σ1 is the alphabet of L1 and Σ2 is that of L2. If some w belongs to both L1 and L2, answer “yes, the
languages overlap.” It follows that no semi-decision procedure exists for disjointness. However, semi-decision
procedures exist for the stronger property of being separable by a regular language. For example, one can
systematically generate (representations of) regular languages over Σ1 ∪ Σ2, and, if some such language R
is found to satisfy L1 ⊆ R ∧ L2 ⊆ R, answer “yes, the languages L1 and L2 are disjoint”.

A radically different approach, which we will follow here, uses so-called counter-example guided abstrac-
tion refinement (CEGAR) [6] of regular over-approximations. The scheme is based on repeated approxima-
tion refinement, as follows:

1. Abstraction: Compute regular approximations R1 and R2 such that L1 ⊆ R1 and L2 ⊆ R2. (Here R1

and R2 are regular languages, represented using regular expressions or finite-state automata.)
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2. Verification: Check whether the intersection of R1 and R2 is empty using a decision procedure for
regular languages. If R1 ∩ R2 = ∅ then L1 ∩ L2 = ∅, so answer “the languages are disjoint.” If
w ∈ (R1 ∩R2), w ∈ L1, and w ∈ L2 then L1 ∩L2 6= ∅, so answer “the languages overlap” and provide
w as a witness. Otherwise, go to step 3.

3. Refinement: Produce new regular approximations R′
1 and R′

2 such that L1 ⊆ R′
1 ⊆ R1, L2 ⊆ R′

2 ⊆
R2, and R′

i ⊂ Ri for some i ∈ {1, 2}. Tighten the approximations by performing the assignments
R1, R2 ← R′

1, R
′
2; then go to step 2.

For the abstraction step, note that regular approximations exist, trivially. For the verification step, we
could also take advantage of the fact that the class of context-free languages is closed under intersection
with regular languages; however, this does not eliminate the need for a refinement procedure. For the
refinement step, note that there is no indication of how the tightening of approximations should be done;
indeed that is the focus of this paper. The step is clearly well-defined since, if L ⊂ R, where R is regular,
there is always a regular language R′ ⊂ R such that L ⊆ R′.

For a given language L there may well be an infinite chain R1 ⊃ R2 ⊃ · · · ⊃ L of regular approximations.
This is a source of possible non-termination of a CEGAR scheme. An interesting question therefore is: Are
there refinement techniques that can guarantee termination at least when L1 and L2 are regularly separable
context-free languages, that is, when there exists a regular language R such that L1 ⊆ R and L2 ⊆ R?

In this paper we answer this question in the affirmative. We propose a refinement procedure which
can ensure termination of the CEGAR-based loop assuming the context-free languages involved are regu-
larly separable. In this sense we provide a refinement procedure which is complete for regularly separable
context-free languages. Of course the question of regular separability of context-free languages is itself
undecidable [16]. The method we propose will also successfully terminate whenever the given languages
overlap.

The method has been implemented in the form of a tool called covenant [10]. This tool is publicly avail-
able at https://github.com/sav-tools/covenant and is, as far as we know, the only publicly available
implementation tackling the problem of (soundly) proving separation of context-free grammars.

Contribution. The paper rests on regular approximation ideas by Nederhof [23] and we utilise the efficient
pre∗ algorithm [9] for intersecting (the language of) a context-free grammar with (that of) a finite-state
automaton. We propose various ways to systematically “inflate” a word w in the context of a language
L, that is, to enlarge {w} to a (preferably infinite) superset without overlapping L. Based on such infla-
tion techniques, we propose a novel refinement procedure for a CEGAR-like method to determine whether
context-free languages are disjoint, and we prove the procedure complete for determining regular separa-
bility. In the context of regular approximation, where languages must be over-approximated using regular
languages, separability is equivalent to regular separability, so the completeness means that the refinement
procedure is optimal. On the practical side, the method has important applications in software verification
and security analysis. We demonstrate its feasibility through an experimental evaluation of covenant.

Outline. Section 2 introduces concepts, notation and terminology used in the paper. It also recapitulates
relevant results about regular separability and language representations. Section 3 describes a CEGAR-
based refinement procedure for separating context-free languages by inflating counterexamples into regular
languages. Section 4 then describes a number of strategies for word inflation. Section 5 provides an example.
In Section 6, we construct a proof that the procedure will terminate for any pair of regularly separable or
intersecting languages. In Section 7 we place our method in context, comparing with previously proposed
refinement techniques. In Section 8 we evaluate the method empirically, comparing covenant with the
most closely related tool. Section 9 discusses more broadly related work, and Section 10 concludes. An
appendix contains a description of the test cases used in the experimental evaluation.

2. Preliminaries

In this section we recall the some basics, including the notion of regular separability. Table 1 gives a
glossary of notation used in the paper.
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Symbol types

a, b, c Literal symbols from alphabet Σ
R,S Regular languages
r Regular expressions
e, f Union-free regular expressions
E,F Sets of regular expressions
M Finite-state automata

C,L Context-free languages
G Context-free grammars
L(x) Language denoted by x
X# Approximation of a language X
X Complement of set X
P(Y ) Powerset of Y

◦, ·,⊙ Concatenation of regular languages, regular expressions and finite-state automata, resp.

Notation Description §

Regular expressions
RegΣ The set of regular expressions over alphabet Σ 2.1
ExpΣ The set of union-free regular expressions over alphabet Σ 2.1
X ∩L Y The set of languages denoted by regular expressions in both X and Y 2.1

Equivalent to {L(x) | x ∈ X} ∩ {L(y) | y ∈ Y }
Refinement; star- and epsilon-inflations

A(L) (Initial) regular approximation of L 3
I(w), I(w,L) Inflation of w (wrt. language L) 3
SI(w) The set of star inflations of a word w: a set of regular expressions 4.1
SIL(w) The elements of SI(w) which denote subsets of language L 4.1
M(w) The DFA recognizing word w 4.2
EI(M) The set of epsilon-inflations of an automaton M : a set of finite-state automata 4.2
EIL(M) The elements of EI(M) which denote subsets of language L 4.2
Agg(I)(w) Aggregate inflation of a word w over some class of inflations I 4.3

The union of all languages denoted by elements of I(w)
Language dissection

decomp(R) The canonical union-free decomposition of a regular language R 6.1
D(e) The dissection of a regular expression 6.2
DL(R) The dissection of a regular language:

⋃
{D(e) | e ∈ decomp(R)} 6.2

Table 1: Quick reference to notations used in this paper, and the sections where they are introduced.

2.1. Regular and Context-Free Languages

We first recall some basic formal-language concepts. These are assumed to be well understood—the only
purpose here is to fix our terminology and notation. We shall be developing algorithms that, conceptually,
manipulate formal languages, that is, sets of symbol strings. However, the algorithms in fact manipulate
representations of languages, such as regular expressions or grammars, or language recognisers, such as
finite-state automata. Hence we will be careful to distinguish objects such as automata or grammars, on
the one hand, from their denotations. We shall use the function symbol L for the function that, applied to
some object X , gives the language denoted/generated/recognised by X . In the case of regular expressions
we occasionally break this principle, as is common practice, relying on the context to help distinguish sense
from reference. That is, we will allow ourselves to talk about both “the regular expression a∗” and “the
language a∗” (rather than “the language L(a∗)”); the context makes it clear that, in the first use, a∗ stands
for itself, while in the second, it denotes something (a language).

Given an alphabet Σ, Σ∗ denotes the set of all finite strings of symbols from Σ. The string y is a substring
of the finite string w iff w = xyz for some (possibly empty) strings x and z. We let ε denote the empty
string (of length 0).

The regular expressions over an alphabet Σ = {a1, . . . , an} are ∅, ε, a1, . . . an, together with expressions
of form r1 | r2, r1 · r2, and r∗, where r, r1 and r2 are regular expressions. Here | denotes union, · denotes
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language concatenation, and ∗ is the Kleene star operation. More precisely,1

L(x) = {x} for x ∈ Σ
L(∅) = ∅
L(ε) = {ε}
L(r1 | r2) = L(r1) ∪ L(r2)
L(r1 · r2) = L(r1) ◦ L(r2)
L(r∗) = L(r)∗

where
L1 ◦ L2 = {w1 · w2 | w1 ∈ L1 ∧ w2 ∈ L2}
L∗ = {w1 · w2 · · ·wk | k ≥ 0, each wi ∈ L}

We shall also use r? as a synonym for the regular expression ε | r, and r+ as a synonym for r · r∗. Our
notation for sets and set operations (including complements and powersets) is standard, see Table 1. We
define the size of a regular expression to be the number of alphabet and operator symbols occurring in the
expression.

As is common, we will often omit ·, so that juxtaposition of r1 and r2 denotes concatenation of the
corresponding languages. Given a finite set E = {r1, . . . , rk} of regular expressions, we let

f
E stand for the

regular expression r1| · · · |rk (in particular,
f
∅ = ∅). We let RegΣ denote the set of regular expressions over

alphabet Σ.
A regular expression is union-free iff it does not use the union operation. We let ExpΣ denote the set

of union-free regular expressions over alphabet Σ. Union-free regular expressions will play a central role in
Sections 6’s proof of completeness.

A (non-deterministic) finite-state automaton is a quintuple 〈Q,Σ, δ, q0, F 〉 where Q is the set of states,
Σ is the alphabet, δ is the transition relation, q0 is the start state, and F is the set of accept states. The
presence of (q, x, q′) in δ ⊆ Q×Σ×Q indicates that, on reading symbol x while in state q, the automaton may
proceed to state q′. If the relation δ is a total function, that is, if for all q ∈ Q, x ∈ Σ, |{q′ | (q, x, q′) ∈ δ}| = 1,
then the automaton is deterministic.

A language which can be expressed as a regular expression (or equivalently, has a finite-state automaton
that recognises it) is regular. It is union-free if it can be expressed as a union-free regular expression.
Union-free regular languages are also known as star-dot regular languages [4].

The language recognised by automaton M is L(M). We shall sometimes need to reason about the
underlying languages denoted by sets of regular expressions/automata. Let E1 and E2 be sets of regular
expressions. We use E1 ∩L E2 to denote the set of languages L for which both E1 and E2 contain some
expression denoting L. That is,

E1 ∩L E2 = {L(r1) | r1 ∈ E1, r2 ∈ E2,L(r1) = L(r2)}

A context-free grammar, or CFG, is a quadruple G = 〈V,Σ, P, S〉, where V is the set of variables (non-
terminals), S is the start symbol, and P is the set of productions (or rules). Each production is of form
X → α with X ∈ V and α ∈ (V ∪ Σ)∗. If X → α is a production in P then, for all β, γ ∈ (V ∪ Σ)∗, we say
that βXγ yields βαγ, written βXγ ⇒ βαγ. The language generated by G is L(G) = {w ∈ Σ∗ | S ⇒∗ w},
where ⇒∗ is the reflexive transitive closure of ⇒. A set of strings is a context-free language (CFL) iff it is
generated by some CFG.

In algorithms, we usually represent regular languages using finite-state automata, and CFLs using CFGs.

2.2. Regular Separability

As our approach uses regular approximations, we cannot hope to prove separation for arbitrary disjoint
pairs of context-free languages. Instead we focus on pairs of regularly separable languages.

1Note that ∅ and ε are overloaded; both are regular expressions, but the former is also a language, while the latter is also a
string.
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Definition 1 (Regularly separable). Two context-free languages L1 and L2 are regularly separable iff there
exists a regular language R such that L1 ⊆ R and L2 ⊆ R where R is the complement of R.

It will be useful to have a slightly different view of separability:

Definition 2 (Separating pair). Given a pair (L1, L2) of context-free languages, a pair (R1, R2) of regular
languages form a separating pair for (L1, L2) iff L1 ⊆ R1, L2 ⊆ R2, and R1 ∩R2 = ∅.

Proposition 1. Context-free languages L1 and L2 are regularly separable iff there exists some separating
pair (R1, R2) for (L1, L2).

Proof. If (R1, R2) is a separating pair then L1 ⊆ R1, and L2 ⊆ R2 ⊆ R1, so L1 and L2 are regularly
separable. Conversely, if the regular language R separates L1 and L2 then we have L1 ⊆ R, L2 ⊆ R, and
R ∩R = ∅. So (R,R) is a separating pair.

To see that there are disjoint context-free languages that are not regularly separable, consider L =
{anbn | n ≥ 0}. Both L and L are non-regular context-free languages, and therefore not regularly separable.
The problem of checking whether a pair of context-free languages is regularly separable is undecidable [16].

3. Refining Regular Abstractions

We now describe the main idea behind the refinement phase. We are interested in the intersection of a
finite set of languages, but without loss of generality, we consider the intersection of just two context-free
languages L1 and L2. We assume these languages are provided as context-free grammars.

We furthermore assume a decision procedure that returns “no” if L(M1)∩L(M2) = ∅ or returns a witness
w if w ∈ L(M1) ∩ L(M2) 6= ∅, where M1 and M2 are finite-state automata recognising regular languages
R1 and R2, respectively (that is, L(M1) = R1 and L(M2) = R2). Moreover, our refinement procedure will
require the solving of constraints of the form M = M1 \M2 where M , M1 and M2 are finite-state automata.
The interpretation of the constraint is that L(M) = L(M1) ∩ L(M2).

Assume that at some point we have regular approximations R1 ⊇ L1 and R2 ⊇ L2, and we have found
some witness w such that w ∈ R1 ∩R2, but w /∈ L1 ∩ L2. There are three cases to consider:

1. w /∈ L1 ∧ w ∈ L2

2. w ∈ L1 ∧ w /∈ L2

3. w /∈ L1 ∧ w /∈ L2

For cases (1) and (2) we should refine R1 and R2, respectively. For case (3) we could choose to refine either
R1 or R2, or both. In our implementation, we always refine all the regular approximations.

If w /∈ Li then a straightforward refinement is to produce a new abstraction Ri \ {w} in place of Ri.
However, this refinement process will rarely converge, as we can exclude only finitely many strings in finite
time. Instead we seek a refinement procedure that is able to generalize, or “inflate”, a counterexample to
an infinite set of words.

The overall flow of the refinement step is illustrated in Figure 1. Part (a) shows two context-free languages
L1 and L2, together with their initial regular approximations R1 and R2, respectively. (We depict regular
languages as rectilinear polygons, to suggest their more limited expressiveness.) In part (b), a counter-
example w ∈ R1 ∩R2 (the darkly shaded area) has been identified. Since w /∈ L2, we build a generalization
Rw such that {w} ⊆ Rw ⊆ L2. This generalization is another regular language. Part (c) shows L2’s new
approximationR′

2 = R2\Rw. The thick contours indicate the extent of this improved regular approximation.
After this, refinement is repeated. Figure 2 gives the overall algorithm for performing an intersection

test by repeated refinement. The procedure is parameterized, allowing for different ways of constructing the
initial approximations and, via some inflation strategy, producing successively tighter approximations.

Figure 2 does not make any assumptions about the choice of witness. Nevertheless, it will be useful to
require choose to be somehow well-behaved.
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Figure 1: Refining a regular approximation

separate(A, I)(L1, L2)
1: R1 := A(L1); R2 := A(L2)
2: while(R1 ∩R2 6= 0)
3: w := choose(R1 ∩R2)
4: if w ∈ L1 ∧ w ∈ L2

5: return non-empty(w)
6: if w /∈ L1

7: R1 := R1 \ I(w,L1)
8: if w /∈ L2

9: R2 := R2 \ I(w,L2)
10: return empty(R1, R2)

Figure 2: CEGAR-based refinement procedure for testing intersection of languages L1 and L2, given initial approximation
strategy A and inflation strategy I. A call I(w,L) inflates w into some language Rw such that w ∈ Rw, and Rw ⊆ L. A call
choose(R) (where R 6= ∅) returns some word w from R.

Definition 3 (Fair selection). Let choose : P(Σ∗) → Σ∗ be a selection strategy and let R0 ⊃ R1 ⊃ · · ·
be a (possibly infinite) strictly decreasing sequence of regular languages, with the property that, for each i,
Ri = ∅∨ choose(Ri) 6∈ Ri+1. The strategy choose is fair iff, for every word w ∈ R0, we have choose(Ri) = w
for some i.

Requiring our witness selection to be fair prevents the algorithm from showing certain bias, such as
continuously ignoring b, given the language a∗ | b. Since Σ∗ is enumerable, fairness is easy to achieve.

4. Strategies for Inflation

We now discuss techniques for inflation. It will be useful to consider different classes of inflation. An
inflation of a word w is some formal object X denoting a language containing w. A class of inflations I is
a mapping from words to finite sets of inflations.

Figure 1 is intended to give the idea of inflating some word w as far as possible, while staying within
a given co-context-free language (in Figure 1, L2 is that language). Alternatively, think of the inflation as
“pushing up” against some context-free language (here L2) without encroaching on it.
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Definition 4 (Confined inflation). Given some class of inflations I, the L-confined inflations of w (denoted
IL(w)) is the set of inflations of w which denote subsets of L. Formally,

IL(w) = {r ∈ I(w) | L(r) ⊆ L}

An inflation X ∈ I(w) is maximal if there is no X ′ ∈ I(w) such that L(X) ⊂ L(X ′).

The first class of inflations we describe, “star-inflations”, are easy to understand and will play a role in
completeness proofs. The second class, “epsilon-inflations”, are what covenant actually implements.

4.1. Star-Inflation

The refinement procedure that we introduce in this section operates by taking the regular expression
w for the single counterexample w, and progressively augmenting it with ∗ operators while ensuring the
inflated counterexample remains within the boundary language L.

Definition 5 (Star-inflation). The set of star-inflations of a word w is SI(w), where SI : Σ∗ → P(ExpΣ ),
is defined

SI(ε) = {ε}

SI(x1 . . . xn) = {x1 . . . xn, (x1 . . . xn)
∗} ∪






e1e2, (e1e2)

∗

∣
∣
∣
∣
∣
∣

e1 ∈ SI(x1 . . . xi),
e2 ∈ SI(xi+1 . . . xn),

i ∈ [1, n− 1]






(n ≥ 0)

Note that, for x ∈ Σ, we have SI(x) = {x, x∗}. Informally, a star-inflation of w is a union-free regular
language which can be constructed by adding (nested) unbounded repetition of intervals in w.

We shall represent a star-inflation as a pair 〈w, S〉 consisting of a word w = x1 . . . xn and a set S of
ranges within w covered by ∗-operators. A range is represented by a pair (i, j), with 0 ≤ i < j ≤ n. The
range (i, j) identifies the substring xi+1 . . . xj of w. The set S must satisfy

∀(i, j), (i′, j′) ∈ S . j ≤ i′ ∨ j′ ≤ i ∨ (i ≤ i′ ⊕ j ≤ j′) (1)

That is, two ranges must either be disjoint, or else one contains the other (⊕ is the “exclusive or” operation).
This ensures the set of ∗-enclosed ranges correspond to properly nested expressions. We also refer to this
kind of range as a star-augmentation. We shall use L(〈w, S〉) to denote the language that results from the
inflation 〈w, S〉.

The set of L-confined star-inflations of w is denoted SIL(w). SIL(w) may contain several maximal
elements. Consider inflating ab confined to (a∗b | ab∗)—both a∗b and ab∗ are maximal inflations, and they
are incomparable.

A greedy procedure for constructing a star-inflation is given in Figure 3(a). The algorithm takes as
input a witness w ∈ R1 ∩ R2 and a co-context-free language L such that w ∈ L. It produces a regular
over-approximation of {w}, confined within L. The procedure begins with a trivial star-inflation consisting
of just w. The inflation is captured by the set S. The set P holds those (i, j) pairs where a ∗-operation may
be introduced without causing the inflation to be malformed. At each step, we add one of the candidate
operations to the inflation, then remove any pairs from P which are no longer feasible (because they violate
the nestedness requirement). According to (1), this is the set of pairs (i′, j′) such that i < i′ < j < j′ ∨ i′ <
i < j′ < j. Note that L(〈w, S′〉) ⊆ L (line 8) is decidable, since L(〈w, S′〉) is regular and L is co-context-free.

It is worth pointing out that the refinement procedure is an anytime method: If for some reason it would
seem necessary or advantageous, one can, without compromising correctness, interrupt the while loop having
considered only a subset of the possible star-augmentations, thereby settling for a smaller inflation.

Example 1. Let L = {aibi+1 | i ≥ 0} be approximated (currently) by a∗b∗, and let the witness w ∈ L
be aab. To refine the regular approximation, inflateSI(w,L) begins with the trivial star-inflation 〈w, ∅〉.
It greedily augments the counterexample with ∗-operations, in this case following lexicographic order, as
follows (we describe the accumulated language using regular expressions):
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inflateSI(w,L)
1: let w be x1 · x2 · · ·xn

2: S := ∅
3: P := {(i, j) | i, j ∈ [0, n], i < j}
4: while P 6= ∅
5: choose (i, j) ∈ P
6: S′ := S ∪ {(i, j)}
7: P := P \ {(i, j)}
8: if L(〈w,S′〉) ⊆ L
9: S := S′

10: P :=

{

(i′, j′) ∈ P

∣

∣

∣

∣

(j ≤ i′ ∨ j′ ≤ j) ∧
(j′ ≤ i ∨ j ≤ j′)

}

11: return L(〈w,S〉)

inflateEI(w,L)
12: let w be x1 · x2 · · ·xn

13: 〈Q,Σ, δ, q0, F 〉 := M(w)
14: T := {(qi, ε, qj) | i, j ∈ [0, n], i < j}

∪ {(qj−1, xj , qi) | i, j ∈ [0, n], i < j}
15: while T 6= ∅
16: choose t ∈ T
17: δ′ := δ ∪ {t}
18: T := T \ {t}
19: if L(〈Q,Σ, δ′, q0, F 〉) ⊆ L
20: δ := δ′

21: return L(〈Q,Σ, δ, q0, F 〉)

(a) (b)

Figure 3: Algorithm to greedily construct a maximal element of (a) SIL(w), and (b) EIL(w)

star-inflation (i, j) S L(〈w, S′〉) decision result
∅ aab

(0, 1) ∅ a∗ab include, obtaining a∗ab

(1, 2) {(0, 1)} a∗a∗b exclude, as b ∈ L
(2, 3) {(0, 1)} a∗a(b)∗ exclude, as abb ∈ L
(0, 2) {(0, 1)} (a∗a)∗b exclude, as b ∈ L
(1, 3) {(0, 1)} a∗(ab)∗ include, obtaining a∗(ab)∗

(0, 3) {(0, 1), (1, 3)} (a∗(ab)∗)∗ include, obtaining (a∗(ab)∗)∗

{(0, 1), (1, 3), (0, 3)}

The resulting language is (a∗(ab)∗)∗ and its complement is (a∗ab)∗b(a | b)∗. The latter can now be inter-
sected with the initial approximation a∗b∗, yielding bb∗ | aa∗bbb∗ as a new, improved, regular approximation
of L. By construction, the new approximation does not contain aab, but more importantly, along with aab,
an infinite number of other strings have been discarded from the previous approximation a∗b∗, for example,
all the strings that start with a and fail to have two consecutive bs.

Refinement (Figure 2) using Figure 3(a)’s inflation procedure has these properties:

1. It is sound : L1 ⊆ (R1 \ inflateSI(w,L1)) ⊆ R1 and L2 ⊆ (R2 \ inflateSI(w,L2)) ⊆ R2.

2. It terminates : the while loop in inflateSI(w,L) will be executed at most n(n+1)
2 times, where n = |w|.

3. It is progressive: the same witness w cannot be produced again upon successive calls to inflateSI.

4.2. Epsilon-Inflation

The notion of star-inflation, while useful for reasoning, does not integrate well into existing automaton
algorithms—difference and intersection of regular expressions is somewhat inconvenient, and existing incre-
mental algorithms for testing intersection with context-free languages are expressed in terms of automata.
In this section, we introduce an alternative form of inflation that is better suited to the representation using
automata.

Let M(w) denote the unique ε-free automaton that accepts w = x1 · · ·xn and rejects all other words.
That is, M(x1 · · ·xn) = 〈Q,Σ, δ, q0, {qn}〉, with Q = {q0, . . . , qn} and δ = {(qi−1, xi, qi) | i ∈ [1, n]}.

Definition 6 (Epsilon-inflation). An epsilon-inflation of w is any language obtained by augmenting the
transition relation of M(w) with additional edges E ∪ P , given by:

E ⊆ {(qi, ε, qj) | i < j} (2)

P ⊆ {(qj−1, xj , qi) | i < j} (3)

8



0 1

23
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a
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23

a
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b

ε ε

ε

ε

0 1

23

a

ε ε

a a

ab

ε

b

ε
a

b

(a) (b) (c)

Figure 4: Construction of EIL(w), where w = aab and L = (a | b)∗ \ {aibi+1 | i ≥ 0}: (a) Initial automaton for w; (b) the
automaton after adding forward ε-transitions; these are the edges E from (2); (c) the final automaton after adding non-ε
edges; these are the edges P from (3).

That is, we may only introduce epsilon-transitions forwards; backwards transitions always consume the
same input character as the original outgoing transition from the source state. The role of the symbol-
consuming backwards transition (qj−1, xj , qi) is to emulate the behaviour of a non-transitive ε-transition
from (qj , ε, qi); that is, the automaton cannot traverse a chain of ε-transitions.

These non-transitive ε-transitions allow us to express more languages without introducing additional
states; we cannot reconstruct an automaton for a∗b∗ from M(ab) using conventional ε-transitions, because
we cannot keep the a∗ and b∗ cycles separate.2

We let EI(w) denote the set of epsilon-inflations of w. Note that where SI(w) is a set of (union-free)
regular expressions, EI(w) is a set of automata. Similarly, EIL(w) denotes the set of L-confined epsilon-
inflations. Note that, to simplify concatenation, we do not allow backwards transitions from the accept state
qn.

We can incrementally construct an epsilon-inflation confined within some co-context-free language L by
adapting algorithms for the intersection of context-free languages and finite automata, such as the pre∗

algorithm described by Esparza, Rossmanith and Schwoon [8, 9]. See Figure 3(b). In the implementation
of covenant, essentially, we maintain a table τ ⊆ Q × P × Q such that (qi, p, qj) ∈ τ iff the context-free
production p can be generated by some sub-word matched along a path from qi to qj . Whenever a new
transition is added to the inflation, we update τ with any newly feasible productions; if L’s start production
p0 is ever generated on a path from q0 to qn, the inflation has ceased to be valid—in which case we revert
the table and discard the most recent augmentation. The pre∗ algorithm has O(|P ||Q|3) worst-case time
complexity. In the worst case, where every generalization step fails after the maximum number of steps, this
gives the generalization procedure a worst-case complexity of O(|P ||Q|5).

Example 2. In Example 1 we were seeking a regular approximation of the language L = {aibi+1 | i ≥ 0}.
Recall the star-inflation of aab described in that example. If we are instead constructing an epsilon-inflation,
we start with the automaton M(w), recognizing {w}, shown in Figure 4(a). We then add, in some order,
forwards and backwards transitions as defined by (2) and (3). Here let us first add the forwards (epsilon)
transitions greedily:

2Using conventional ε-transitions yields a sound inflation strategy which we would expect to display similar asymptotic
behaviour, but makes establishing a correspondence between star and epsilon-inflations much more involved (this correspondence
will be used in Section 6’s completeness proof).
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(qi, ε, qj) S L(〈w, S′〉) decision result
∅ aab

(0, ε, 1) ∅ a?ab include, obtaining a?ab
(1, ε, 2) {(0, 1)} a?a?b exclude, as b ∈ L
(2, ε, 3) {(0, 1)} a?ab? include, obtaining a?ab?
(0, ε, 2) {(0, 1), (2, 3)} (a?a)?b? exclude, as b ∈ L
(1, ε, 3) {(0, 1), (2, 3)} a?(ab?)? include, obtaining a?(ab?)?
(0, ε, 3) {(0, 1), (2, 3), (1, 3)} (a?(ab?)?)? include, obtaining (a?(ab?)?)?

{(0, 1), (2, 3), (1, 3), (0, 3)}

This yields the automaton shown in Figure 4(b), corresponding to the language {ε, a, aa, ab, aab}. We then
progressively introduce backwards transitions as follows:

(qj−1, xj , qi) S L(〈w, S′〉) decision result
∅ (a?(ab?)?)?

(0, a, 0) ∅ a∗(a?(ab?)?)? include, obtaining a∗(a?(ab?)?)?
(1, a, 1) {(0, a, 0)} a∗(a∗(ab?)?)? include, obtaining a∗(a∗(ab?)?)?
(2, b, 2) {(0, a, 0), (1, a, 1)} a∗(a∗(ab∗)?)? exclude, as abb ∈ L
(1, a, 0) {(0, a, 0), (1, a, 1)} a∗(ab∗)? include, obtaining a∗(ab∗)?
(2, b, 1) {(0, a, 0), (1, a, 1), (1, a, 0)} a∗(a∗ab)∗(ab)? include, obtaining a∗(a∗ab)∗b?
(2, b, 0) {(0, a, 0), (1, a, 1), (1, a, 0), (2, b, 1)} a∗(a∗ab)∗(ab)? include, obtaining a∗(a∗ab)∗(ab)?

{(0, a, 0), (1, a, 1), (1, a, 0)
(2, b, 1), (2, b, 0)}

Note that the listed regular expressions recognize the same language as, but do not necessarily directly
correspond to, the current automaton. In several cases, the augmentations do not add any words to the
language recognized by the automaton (for example, the ε-transition (0, 3), and the backward transition
(2, b, 0)). The process terminates with the automaton shown in Figure 4(c). The language recognized by
this automaton is (a∗ab)∗a∗, which is also the language obtained with the star-inflation in Example 1.

4.3. Aggregate Inflation

The procedures described in the two previous sub-sections construct some maximal element of SIL(w)
(or EIL(w)). They are, however, undirected; the inflation is chosen blindly from the set of possible maximal
inflations.

Even if the input languages are regularly separable, it is possible that the refinement step may choose
an infinite sequence of inflations which, though maximal, cannot separate the languages.3

We can instead construct a language which covers all possible inflations of w confined within L.

Definition 7 (Aggregate inflation). The aggregate inflation Agg(I)(w) over some class of inflations I is the
union of all languages denoted by members of I. Agg(I)(w) is defined as follows:

Agg(I)(w) =
⋃

{L(e) | e ∈ I(w)}

We let inflateAgg(I) denote the function which takes language L and word w, and returns Agg(IL)(w).

Of particular interest will be the aggregate star- and epsilon-inflations confined within some co-context-
free language L (that is, Agg(SIL)(w) and Agg(EIL)(w)). A possible (though inefficient) method for com-
puting Agg(SIL)(w) is given in Figure 5(a).

The procedure aggregate SI uses S, a partial generalization, and P , the set of candidate star-augmentations.
At each stage, an augmentation e is selected from P , and we recursively compute the set of valid further
inflations of 〈w, S〉 both including and excluding e, finally taking the union of the sub-languages.

An analogous procedure for computing Agg(EIL)(w) is given in Figure 5(b).

3Actually the existence of such a sequence remains an open question—we return to this at the end of Section 6.
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inflateAgg(SI)(L,w)
1: let w be x1 · x2 · · ·xn

2: S := ∅
3: P := {(i, j) | i, j ∈ [0, n], i < j}
4: return aggregate SI(L, 〈w,S〉, P )

aggregate SI(L, 〈w,S〉, ∅)
5: return L(〈w,S〉)

aggregate SI(L, 〈w,S〉, {(i, j)} ∪ P )
6: Rf := aggregate SI(L, 〈w,S〉, P )
7: S′ := S ∪ {(i, j)}
8: if (L(〈w,S′〉) ⊆ L)

9: P ′ :=

{

(i′, j′) ∈ P

∣

∣

∣

∣

(j ≤ i′ ∨ j′ ≤ j) ∧
(j′ ≤ i ∨ j ≤ j′)

}

10: Rf := Rf ∪ aggregate SI(L, 〈w,S′〉, P ′)
11: return Rf

inflateAgg(EI)(L,w)
12: let w be x1 · x2 · · ·xn

13: E := {(qi, ε, qj) | i, j ∈ [0, n], i < j}
14: B := {(qj−1, xj , qi) | i, j ∈ [0, n], i < j}
15: return aggregate EI(L,M(w), E ∪B)

aggregate EI(L,M = 〈Q,Σ, δ, q0, F 〉, ∅)
16: return L(M)

aggregate EI(L,M = 〈Q,Σ, δ, q0, F 〉, {t} ∪ P )
17: Rf := aggregate EI(L,M,P )
18: M ′ := 〈Q,Σ, δ ∪ {t}, q0, F 〉
19: if (L(M ′) ⊆ L)
20: Rf := Rf ∪ aggregate EI(L,M ′, P ′)
21: return Rf

(a) (b)

Figure 5: Computing the aggregate star-inflation (Agg(SIL)(w)) and epsilon-inflation (Agg(EIL)(w)) of w, confined to language
L.

5. A Worked Example

In this section we work through an example of refinement to prove separability of two context-free
languages. We use the greedy epsilon-inflation approach.

Consider the two context-free grammarsG1 = 〈{S1, A1, B1},Σ, P1, S1〉 andG2 = 〈{S2, A2, B2},Σ, P2, S2〉
where Σ = {a, b} and P1 and P2 are, respectively,

S1 → T1U1

T1 → aa | bb | aT1a | bT1b

U1 → baU1 | ba

S2 → T2U2

T2 → aa | bb | aT2a | bT2b

U2 → abU2 | ab

Note that L(G1) = {wwR(ba)+ | w ∈ Σ+} and L(G2) = {wwR(ab)+ | w ∈ Σ+}. Let us call them L1 and
L2, respectively.

The first step of our method is to approximate G1 and G2 with finite-state automata A1 and A2.
The only requirement is that L1 ⊆ L(A1) and L2 ⊆ L(A2). As a crude starting point, we assume that
L(A1) = L(A2) = Σ∗.

Next, we check if L(A1) ∩ L(A2) 6= ∅. In this case, the intersection is trivially non-empty. Furthermore,
our regular solver provides the witness w = ε. This cannot be generalized, so we eliminate ε from both
approximations, leaving us with (a | b)+ as the approximation of both L1 and L2.

Next, our regular solver provides w = b as a witness. We assume the use of greedy epsilon-inflation,
this time adding backwards transitions before forwards (ε) transitions. We first generalize the witness by
calling inflateEI(w,L1) and inflateEI(w,L2) to produce new approximations L(A′

1) = L(A1) \ inflateEI(w,L1)
and L(A′

2) = L(A2)\ inflateEI(w,L2), respectively. We show the automata obtained from inflateEI(b, G1) and
inflateEI(b, G2) in row (ii) of Figure 6. In both cases, we obtain the language b∗. For both L1 and L2 we
then obtain the improved regular approximation (a | b)∗a(a | b)∗.

Figure 7 shows the successively tighter approximations generated. After row (ii) we have the same
approximation for both L1 and L2, given by the automaton shown in row (II) of Figure 7.

The next witness produced is w = a. Again, for both L1 and L2, the witness is generalized identically,
to a∗ shown in row (iii) of Figure 6. Subtracting this language from the current approximations yields the
improved approximation for both L1 and L2, represented by the automaton in row (III) of Figure 7. The
language is (a+b | b+a)(a | b)∗.
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M(w) (from witness w) refineε(G1, w) refineε(G2, w)

(i) q0 q0 q0

(ii) q0 q1
b q0 q1

b, ε

b

q0 q1
b, ε

b

(iii) q0 q1
a q0 q1

a, ε

a

q0 q1
a, ε

a

(iv) q0 q1 q2
a b

q0 q1 q2
b

a b

b

a, ε

q0 q1 q2
b, ε

b

b

a

ε

(v) q0 q1 q2
b a

q0 q1 q2

a

a

b a, ε

ε

q0 q1 q2
a

b a

a

b, ε

Figure 6: Witnesses and inflations obtained by greedy epsilon-inflation.

The next witness produced is w = ab—see row (iv) of Figure 6. This time ε-inflation produces different
results for the two context-free languages. The inflated witness for G1 is the language (a | b)∗b, and for G2

it is ε | a(b+a)∗b∗. Their inverse languages are (b∗a)∗ and (b | a(ba)∗a)(a | b)∗, respectively. Intersecting
these with the current approximation (a+b | b+a)(a | b)∗ (for both G1 and G2) produces the languages
whose DFAs are shown in row (IV) of Figure 7. Note that the approximation to L1 has been tightened to
(a∗b)+a+.

At this point we can verify that L2 ∩ (a∗b)+a+ = ∅, that is, (a∗b)+a+ is a separating language. Alter-
natively we can continue the refinement process until the approximations themselves are disjoint, that is,
A1 ∩A2 = ∅.

If we do continue, and the next witness is w = ba, then we get the ε-inflations shown in row (v) of
Figure 6. For G1 the language is ε | b(a+b)∗a∗, whose inverse is (a | b(ab)∗b)(a | b)∗. For G2 the language
is (a | b)∗a, whose inverse is (a∗b)∗. Intersecting these with the current approximations for L1 and L2 (row
(IV) of Figure 7) produces the DFAs shown in row (V). It is easy to see that no word is accepted by both:
one requires an input word to end in a, while the other insists that it ends in b. In this case we have proven
separation without ever intersecting a regular language with a context-free language.
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Approximation A1 Approximation A2

(I) q0 a, b q0 a, b

(II)
q0 q1 q2

b

a, b
b a

a

q0 q1 q2

b

a, b
b a

a

(III)

q0 q1

q2 q3

a

b b

a

a

b a, b

q0 q1

q2 q3

a

b b

a

a

b a, b

(IV)
q0 q1 q2

b a

b

a b

a

q0 q1 q2

q3 q4 q5

q6

a

b a

a
b

a

b

ab

b

b a

a, b

(V)

q0 q1 q2

q3 q4 q5

b

a b

b

a

b

a

b

a

a b

a

q0 q1 q2

q3 q4 q5

a

b a

a

b

a

b

a

b

b a

b

Figure 7: The successive approximations of L1 and L2
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6. Separating Power of the Refinement

We now discuss some formal properties of the refinement-based separation process. These are then used
to establish the completeness of the refinement-based separation procedure defined in Section 3, assuming
one of the “aggregate” variants of inflation is used.

The proof of completeness over regularly-separable languages will proceed in several stages. First, we
recapitulate the concept of union-free regular decomposition. We show that every regular language has a
canonical finite union-free decomposition.

Next, in Section 6.2, we introduce the notion of the dissection of a union-free regular language into a
finite set of sub-languages; this dissection is needed to establish a well-founded ordering over refinement
steps.

We then show that any word in a language R can be star- or epsilon- inflated to cover exactly some
element of its dissection.

While each word can be inflated to some member of the dissection, we cannot know which of the feasible
inflations is needed. To ensure completeness, we refine using the union of all feasible inflations. We then
prove that each refinement step eliminates at least one element of the dissection, establishing termination
of the refinement process.

6.1. Union-Free Regular Languages and Decomposability

In Section 2.1 we defined union-free regular expressions. It is well-known that a regular language can be
expressed as a finite union of union-free expressions.

Definition 8 (Union-free decomposition). A union-free decomposition of a regular language R is a finite
collection of union-free regular languages R1, . . . , Rn such that R = R1 ∪ · · · ∪Rn.

Proposition 2 (Nagy [22]). Every regular language R admits a finite union-free decomposition.

Proposition 2 is not surprising; it utilises the well-known equivalence (r1 | r2)∗ = (r∗1r
∗
2)

∗.
A regular language potentially admits many union-free decompositions, and a union-free language may

be represented by many union-free regular expressions. However, it will be convenient to associate a regular
language with a particular decomposition.

Let Σexp = Σ∪ {∗, (, )}, so that Σ∗
exp is a superset of the well-formed union-free regular expressions. We

equip Σexp with some linear order < (it will make no difference exactly how the symbols are ordered). For
non-empty words xs and yt, with x, y ∈ Σexp and s, t ∈ Σ∗

exp, we define xs <lex yt iff x < y∨(x = y∧s <lex t).
We then obtain a linear ordering <exp on Σ∗

exp by defining s <exp t iff |s| < |t| ∨ (|s| = |t| ∧ s <lex t). That
is, we order the elements of Σ∗

exp first by increasing length, then lexicographically.4 Note that <exp gives
a well-founded linear ordering of the set of well-formed union-free expressions. That is, every union-free
regular language has a unique smallest union-free expression under <exp .

Given two finite non-empty sequences eE and fF of union-free regular expressions, each sequence sorted
in increasing order using <exp , we define5

eE ≺lex fF iff e <exp f ∨ (e = f ∧ E ≺lex F )

Finally, for sets E and F of union-free regular languages we define

E ≺ F iff |E| < |F | ∨ (|E| = |F | ∧E′ ≺lex F ′)

where E′ is the result of sorting E into increasing order, according to <exp, and similarly for F ′. That
is, we order finite sequences of union-free expressions first by cardinality, then lexicographically (having
first sorted the sequences). Again, the ordering ≺ provides a well-founded linear ordering, so each regular
language R has a unique least union-free decomposition. We let decomp(R) denote this canonical union-free
decomposition.

4The complexity of the definition is necessary. For example, if we were to use simply lexicographic ordering of Σ∗

exp, we would
obtain infinite descending chains consisting of increasingly longer, but equivalent expressions, such as a∗b, a∗a∗b, a∗a∗a∗b, . . ..

5We could add as a “base case” that E ≺lex F holds when E is the empty sequence and F is not, but it will make no
difference, as ≺lex will only be applied to sequences of identical lengths.
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6.2. Dissection

The following concept is central to the completeness proof. For a given regular language, given by a
union-free regular expression, it will be convenient to isolate certain sub-languages. The dissection of the
union-free regular expression e is the set of regular expressions obtained by replacing subsets of ∗-enclosed
subterms of e with ε.

Definition 9 (Dissection). The function D : ExpΣ → P(RegΣ ) is defined as follows:

D(x) = {x} for x ∈ Σ
D(∅) = ∅
D(ε) = {ε}

D(e1 · e2) = {r1 · r2 | r1 ∈ D(e1) ∧ r2 ∈ D(e2)}
D(e∗) = {(

f
E)∗ | E ⊆ D(e)}

Example 3. Consider the union-free regular expression ab∗c∗. First note that D(a) = {a},D(b∗) = {ε, b∗},
and D(c∗) = {ε, c∗}. Hence the dissection D(ab∗c∗) = {a, ab∗, ac∗, ab∗c∗}.

For expressions with nested ∗ operators, the dissection allows distinct portions of an inner ∗-expression’s
subterms to occur when the outer ∗ operation is processed:

Example 4. Continuing from the previous example, consider the union-free regular expression e = (ab∗c∗)∗.
We saw that the dissection of the parenthesised expression is {a, ab∗, ac∗, ab∗c∗}. The dissection of e (after
elimination of equivalent languages6) is then:

D(e) = {ε, a∗, (ab∗)∗, (ac∗)∗, (ab∗ | ac∗)∗, (ab∗c∗)∗}

Note how the elements r ∈ D(e) with r 6= e make particular subsets of L(e) explicit. For example, a∗ is
the subset that makes no use of b or c, whereas (ab∗ | ac∗)∗ is the set of words in which b and c are not
adjacent.

We will later refer to DL(R), the dissection of a regular language R. This is the union of dissections of
its canonical decomposition:

DL(R) =
⋃

{D(e) | e ∈ decomp(R)}

DL has a number of properties that we will use in the following:

Proposition 3. For every regular language R,

1. DL(R) is a finite set of regular expressions.
2. For every regular expression r ∈ DL(R), L(r) ⊆ R.
3.

⋃

r∈DL(R) L(r) = R.

Proof.

1. Let e be a union-free regular expression, with e ∈ decomp(R). The syntax-directed nature of D’s
definition ensures that, to find D(e), we only need to apply D finitely often. It follows that D(e) is
finite, hence DL(R) is finite.

2. Let e be a union-free regular expression, with e ∈ decomp(R). Consider some r ∈ D(e). We show,
by structural induction on e, that L(r) ⊆ L(e). For the base cases (e = ∅, e = ε, and e = a), this
is immediate. Consider the case e = e1 · e2. By definition, r ∈ D(e1 · e2) means r is of form r1 · r2,
with r1 ∈ D(e1) and r2 ∈ D(e2). By the induction hypothesis, L(r1) ⊆ L(e1) and L(r2) ⊆ L(e2).
But ◦ is monotone in both its arguments, so L(r1 · r2) = L(r1) ◦ L(r2) ⊆ L(e1) ◦ L(e2) = L(e1 · e2).
That is, L(r) ⊆ L(e). Finally consider the case e = f∗. By definition, r ∈ D(f∗) means r is of form
(r1 | r2 | · · · | rk)∗, with each ri ∈ D(f). By the induction hypothesis, L(ri) ⊆ L(f). But then
L(r1 | r2 | · · · | rk) ⊆ L(f)∗. It follows that L((r1 | r2 | · · · | rk)∗) ⊆ L(f)∗, as ∗ is monotone and
(L∗)∗ = L∗ for all languages L. That is, L(r) = L((r1 | r2 | · · · | rk)∗) ⊆ L(f∗) = L(e).

6The elimination is not needed for this section’s proofs; we use it merely to keep examples simpler.
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3. We first show that
⋃

r∈DL(R) L(r) ⊆ R. Let w ∈
⋃

r∈DL(R) L(r). Then there is some r ∈ DL(R) such

that w ∈ L(r), and by (2) above, L(r) ⊆ R, so w ∈ R.
Conversely, let w ∈ R. By the definition of decomposition, there is some e ∈ decomp(R) for which
w ∈ L(e). We want to show that w ∈ L(r) for some r ∈ D(e), from which the assertion will follow. To
do this we proceed by structural induction on e. If e = x for x ∈ Σ then r = x and w = x, so indeed
w ∈ L(r). If e = ε then r = ε and w = ε, so indeed w ∈ L(r).
Now consider the case e = e1 · e2. A word w ∈ L(e) can be written as w = w1 · w2 with w1 ∈ L(e1)
and w2 ∈ L(e2). By the induction hypothesis, w1 ∈ L(r1) and w2 ∈ L(r2) for some r1 ∈ D(e1) and
r2 ∈ D(e2). By definition of dissection, r = r1 · r2 ∈ D(e1 · e2) = D(e). So indeed there is some
r ∈ D(e) for which w ∈ L(r).
Finally consider the case e = f∗. A word w ∈ L(e) can be written as w = w1w2 · · ·wk (k ≥ 0) with
wi ∈ L(f) for all i ∈ {1..k}. By the induction hypothesis, wi ∈ L(ri) for some ri ∈ D(f). Hence
{r1, r2, . . . , rk} ⊆ D(f). By definition of dissection, it follows that (r1 | r2 | · · · | rk)∗ ∈ D(f∗) = D(e).
So indeed there is some r ∈ D(e) for which w ∈ L(r), namely, w = w1w2 · · ·wk ∈ (r1 | r2 | · · · | rk)∗.

6.3. Completeness Results

We now show that the inflation procedures Agg(SI) and Agg(EI) are sufficiently powerful to prove
separability for any pair of regularly separable languages.

The following lemma establishes an important relationship between D and SI. Namely, given a regular
language R, the star-inflation of any word w ∈ R remains contained in some regular expression resulting
from R’s dissection. Note that the lemma is concerned with intersecting sets of languages, rather than the
languages themselves.

Lemma 1. Let e be a union-free regular expression. If w ∈ L(e) then D(e) ∩L SI(w) 6= ∅.

Proof. The proof proceeds by structural induction on e.
Assume e = x, with x ∈ Σ ∪ {ε}. Then w = x. From definitions, x ∈ D(e), and x ∈ SI(w).
Assume e = e1 ·e2, and that the induction hypothesis holds on e1 and e2. Consider a word w ∈ L(e). We

can partition w into w1 ·w2, such that w1 ∈ L(e1), w2 ∈ L(e2). By the induction hypothesis, D(e1)∩LSI(w1)
and D(e2) ∩L SI(w2) are non-empty sets of regular expressions. In other words, there is some f1 ∈ SI(w1)
and some r1 ∈ D(e1) such that L(f1) = L(r1) ∈ D(e1) ∩L SI(w1); and similarly there is some f2 ∈ SI(w2)
and some r2 ∈ D(e2) such that L(f2) = L(r2) ∈ D(e2) ∩L SI(w2). By Definition 5, f1 · f2 ∈ SI(w). And by
Definition 9, r1 · r2 ∈ D(e). Hence L(f1 · f2) = L(r1 · r2) ∈ SI(w) ∩L D(e).

Assume e = (e′)∗, for some e′ satisfying the induction hypothesis. Consider some word w ∈ L(e). We can
partition w into w1 · · ·wk, with each wi ∈ e′. By the induction hypothesis, each wi admits some star-inflation
fi such that L(fi) ∈ D(e′) ∩L SI(wi). Consider the inflation f given by f = (f∗

1 . . . f∗
k )

∗. By Definition 5,
f ∈ SI(w). Moreover, f is equivalent to (f1 | · · · | fk)∗, which is in D(e). Hence L(f) ∈ SI(w) ∩L D(e).

The following theorem then establishes that we can inflate any word w ∈ R into some member of DL(R).

Proposition 4. Let R be a regular language. If w ∈ R then DL(R) ∩L SI(w) 6= ∅.

Proof. As noted in Section 6.2, the dissection of a regular language R is computed based on the canonical
union-free decomposition E = {e1, . . . , en} of R. Consider w ∈ R. Since R = L(

f
E), there is some e ∈ E

such that w ∈ L(e). By Lemma 1, D(e) ∩L SI(w) 6= ∅. From the definition of DL, we have D(e) ⊆ DL(R),
as e ∈ E = decomp(R). As D(e) ⊆ DL(R) and D(e) ∩L SI(w) 6= ∅, we have DL(R) ∩L SI(w) 6= ∅.

We now wish to establish that every star-inflation admits a corresponding epsilon-inflation. First we
describe how to “concatenate” automata.

Definition 10. Let M1 = 〈Q1,Σ, δ1, q10, {q1n}〉 and M2 = 〈Q2,Σ, δ2, q20, {q2n}〉 be (nondeterministic)
finite-state automata such that q1n has no outgoing edges. The concatenation automaton

M1 ⊙M2 = 〈(Q1 ∪Q2) \ {q1n},Σ, δ1 ∪ δ2[q1n 7→ q20], q10, {q2n}〉.
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The formulation of ⊙ given here differs slightly from standard constructions (e.g., [25]), which forbid
ε-transitions or make no use of overlapping states in the concatenation.7 We include the following (straight-
forward) proposition for completeness.

Proposition 5. Let M1 = 〈Q1,Σ, δ1, q10, {q1n}〉 and M2 = 〈Q2,Σ, δ2, q20, {q2n}〉 be (nondeterministic)
finite-state automata such that q1n has no outgoing edges. The automaton M1⊙M2 recognizes the language
L(M1) ◦ L(M2).

Proof. LetM = M1◦M2. Assume w ∈ L(M1)◦L(M2). Then w = w1·w2, for some w1 ∈ L(M1), w2 ∈ L(M2).
So there is some path from q10 to q20 matching w1 in M1 ◦M2, and a path from q20 to q2n matching w2.
Therefore w is accepted by M .

Assume w is accepted by M . There are no transitions from states in Q1 to states in Q2 except q20;
therefore, any path from q10 to q2n in M must pass through q20. There are no transitions from states in Q2

to states in Q1 (as q1n had no outgoing edges). Therefore, once reaching a state in Q2, a path through M
must remain in Q2.

Hence we can divide the path throughM into a prefix, following transitions exclusively inM1 and reaching
q20, and a suffix from q20 to q2n following transitions exclusively in M2. Therefore, w ∈ L(M1) ◦L(M2).

The next theorem says that for every star-inflation of a word there is an equivalent epsilon-inflation.

Theorem 1. For every word w and e ∈ SI(w), there is some M ∈ EI(w) such that L(e) = L(M).

Proof. Consider e ∈ SI(w). The proof proceeds by induction on the size k of the expression e.
For k ≤ 1 we have e = x, x ∈ Σ ∪ {ε}. Here, by definition, M(x) ∈ EI(w), and L(M(x)) = L(e). Also

note that the accept state of M(x) has no outgoing transitions.
For the induction step, assume that for all expressions e′ of size at most k, if e′ ∈ SI(w) there is some

M ∈ EI(w) such that L(M) = L(e′), and the accept state of M has no outgoing transitions. Consider some
star-inflation e ∈ SI(w) of size k + 1.

Assume e = e1 · e2, so that e1 · e2 ∈ SI(w). Then, by Definition 5, there is some partition of w into words
w1 and w2 (that is, w = w1w2) such that e1 ∈ SI(w1) and e2 ∈ SI(w2). As e1 and e2 have size at most k,
the induction hypothesis provides automata M1 ∈ EI(w1) and M2 ∈ EI(w2). But then the concatenation
automaton M = M1 ⊙M2 is a valid epsilon-inflation. So M ∈ EI(w). By Proposition 5, M = M1 ⊙M2

recognizes L(M1) ◦ L(M2) = L(e1) ◦ L(e2). Therefore, L(M) = L(e). As the accept state of M2 had no
outgoing transitions, and we have not added any outgoing transitions from it, the accept state of M has no
outgoing transitions.

Assume e = f∗ for some inflation f ∈ SI(w). As e has size k + 1, f is of size k. By the induction
hypothesis there is some automaton M = 〈Q,Σ, δ, q0, {qn}〉 ∈ EI(w), with Q = {x0, x1, . . . , xn}, such that
L(M) = L(f). We construct a new automaton M ′ with the following transition relation δ′ (assuming
w = x1 · · ·xn):

δ′ = δ ∪ {q0
ε
−→ qn} ∪ {(qj−1

xj

−→ q0) | j > 0 ∧ (qj
ε∗

−→ qn) ∈ δ}

(Here qj
ε∗

−→ qn says that qn is in the epsilon-closure of {qj}.) Note that the added transitions are of the form
permitted by Definition 6. Since M is an epsilon-inflation of w, M ′ is also a valid epsilon-inflation. As the
accept state of M had no outgoing transitions, and we have not added any transitions beginning at qn, the
accept state of M ′ also has no outgoing transitions. Now consider the language recognized by M ′. Assume
some word u is in L(f∗). Then either u = ε, or u = u1 · · ·um such that ui ∈ L(f) \ {ε}. If u = ε, then u

is accepted by M ′ (since q0
ε
−→ qn). Otherwise, each ui is accepted along some path pi from q0 to qk in M ,

such that qn is reachable from qk by ε-transitions. Let qk′ be the second-last state in pi. By construction,
there must be some alternate transition from qk′ to q0 in M ′; then there must be some path, along which
ui is matched, from q0 to q0 in M ′. Therefore, u is accepted by M ′. Now assume there is some word u 6= ε

7As ε-transitions are transitive, we run into trouble constructing M1 ⊙M2 when there is an ε-transition out of the accept
state of M1, and into the start state of M2.
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recognized by M ′. We can partition u into sub-words u1 . . . um such that the path of each ui with i < m
starts at q0, makes its final transition via an introduced edge, and uses no other introduced edges. As the
path corresponding to ui finishes with an introduced edge, there must be some corresponding path from q0
to qn in M . So ui ∈ L(f) for i < m. And as the path corresponding to um starts at q0 and does not use
any introduced edges, um ∈ L(f). Therefore, u ∈ L(f∗) = L(e). It follows that L(M ′) = L(f∗) = L(e).

Since we can construct epsilon-inflations for trivial star inflations (size k = 1), and epsilon-inflations for
a star-inflation of size k can be constructed from the epsilon-inflations of its proper subterms, every element
of SI(w) must correspond to an equivalent element of EI(w).

Corollary 1. For any word w and language L, Agg(SIL)(w) ⊆ Agg(EIL)(w).

Proof. Let w′ ∈ Agg(SIL)(w). From Definition 7, there is some e ∈ SIL(w) such that w′ ∈ L(e). From
Definition 4, we have e ∈ SI(w), and L(e) ⊆ L. By Theorem 1, there is some M ∈ EI(w) with L(M) =
L(e) ⊆ L. As L(M) ⊆ L, M ∈ EIL(w) (by Definition 4). As M ∈ EIL(w), we have L(M) ⊆ Agg(EIL)(w).
Since w′ ∈ L(e) = L(M), and L(M) ⊆ Agg(EIL)(w), we have w′ ∈ Agg(EIL)(w).

Thus, any word in Agg(SIL)(w) is also in Agg(EIL)(w), so Agg(SIL)(w) ⊆ Agg(EIL)(w).

In preparation for the completeness proof, we establish a critical relation between the dissection of a
regular language and the inflation of single words from the language (confined within some co-context-free
language).

Lemma 2. Consider a co-context-free language L, and regular language R with R ⊆ L. For each word
w ∈ R, there is some r ∈ DL(R) such that L(r) ⊆ Agg(SIL)(w).

Proof. By Proposition 4, there is some e ∈ SI(w) such that L(e) ∈ SI(w) ∩L DL(R). Hence there must be
some element r ∈ DL(R) with L(r) = L(e). As r ∈ DL(R), we have L(r) = L(e) ⊆ R.

Recall that SIL(w) contains the members of SI(w) that denote subsets of L. Since L(e) ⊆ R ⊆ L, e
denotes a subset of L and so must be in SIL(w).

By Definition 7, Agg(SIL)(w) is the union of all languages denoted by members of SIL(w). The union-free
expression e is in SIL(w), so L(r) = L(e) ⊆ Agg(SIL)(w).

We are now ready to establish two main results. First, with the use of the aggregate star- or epsilon-
inflation, our CEGAR-based approach will terminate for all pairs of regularly separable context-free lan-
guages. Second, under an assumption of fair witness selection, it will also terminate for all pairs of overlap-
ping context-free languages, irrespective of the inflation strategy used.

Theorem 2. Given a pair of regularly separable context-free languages (L,L′) and initial regular approx-
imation strategy A, the algorithms separate(A, inflateAgg(SI))(L1, L2) and separate(A, inflateAgg(EI))(L1, L2)
will construct a separating pair (SL, SL′) in a finite number of steps.

Proof. Consider some (unknown) regular language S separating L and L′. Let i be the current iteration of
the refinement procedure and let Di denote the elements of DL(S) ∪DL(S) that denote languages having
non-empty intersections with the current approximation Ri

L ∩ Ri
L′ . DL(S) and DL(S) are both finite by

construction, so every Di is finite.
Now consider some step i at which Ri

L ∩ Ri
L′ is non-empty. Consider some word w ∈ Ri

L ∩ Ri
L′ .

This word must be in exactly one of S and S; we can assume, without loss of generality, that w is in
S. Then, by Lemma 2 there must be some r ∈ DL(S) such that L(r) ⊆ Agg(SIL′)(w). By Corollary 1,
Agg(SIL′)(w) ⊆ Agg(EIL′)(w), so L(r) ⊆ Agg(EIL′)(w). As w ∈ Ri

L∩R
i
L′ and w ∈ L(r), L(r)∩Ri

L∩R
i
L′ 6= ∅.

It follows that r ∈ Di.
Now, Ri+1

L′ = Ri
L′ \ I, where I ∈ {inflateAgg(SI)(L′, w), inflateAgg(EI)(L′, w)}. By the definition of

inflateAgg(I), I ∈ {Agg(SIL′)(w),Agg(EIL′)(w)}. We have L(r) ⊆ Agg(SIL′)(w) ⊆ Agg(EIL′)(w), so

Ri+1
L′ ∩ L(r) = ∅. Thus L(r) ∩Ri

L ∩Ri
L′ = ∅, so r /∈ Di+1.

We conclude that Di+1 ⊂ Di. As D1, D2, . . . is a strictly decreasing sequence, and every Di is finite, the
refinement process terminates after finitely many steps.
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Theorem 3. Let L1 and L2 be context-free languages with non-empty intersection L. Given any initial
regular approximation scheme A, inflation scheme I and fair witness selector choose, separate(A, I)(L1, L2)
will eventually terminate with some witness w ∈ L.

Proof. The proof is by contradiction. Assume separate(A, I)(L1, L2) does not terminate. Then the sequence
of values of R1 ∩ R2 form an infinite descending chain S0, S1, . . .. Let w′ be some word in L = L1 ∩ L2.
L1 ⊆ R1 and L2 ⊆ R2, so w′ ∈ R1 ∩R2 = S0. The refinement steps at Figure 2’s lines 7 and 9 remove only
words that are in either L1 or L2; hence w′ ∈ Si for all i.

As w′ ∈ L1 ∩ L2, the algorithm would terminate if choose(Si) = w′. Hence the assumption of non-
termination means that choose(Si) 6= w′ for each i. But choose is fair, so no such descending sequence can
exist (by the definition of fairness).

It follows that separate(A, I)(L1, L2) must terminate. As L is non-empty, separate cannot prove empti-
ness, so it must return some word w ∈ L1 ∩ L2 (not necessarily w′).

While these theorems establish termination of separate under aggregate star and epsilon-inflations, we
have neither established nor disproven corresponding results for the greedy use of inflateSI and inflateEI. The
following questions remain open:

Question 1. Is there some pair (L1, L2) of regularly separable languages such that one of separate(A, inflateSI)
and separate(A, inflateEI)(L1, L2) does not terminate?

Question 2. Is there some deterministic, polynomial-time inflation strategy I such that, for all pairs (L1, L2)
of regularly separable context-free languages separate(A, I)(L1, L2) terminates?

7. Previous Refinement Techniques

Several CEGAR-based approaches have been proposed for testing intersection of context-free languages.
In this section, we attempt to characterise the expressiveness of existing refinement methods. For these
comparisons we do not consider the effect of initial regular approximations, as they do not affect the expres-
siveness of the refinement method. For any fixed finite set of regularly-separable languages, there is always
some approximation which allows the languages to be trivially proven separate; however it is impossible to
define such an approximation in general.

The idea of using CEGAR to check the intersection of CFGs was pioneered by Bouajjani et al . [3] for
the context of verifying concurrent programs with recursive procedures. Bouajjani et al . rely on a concept
of refinable finite-chain abstraction consisting of computing the series (αi)i≥1 which over-approximates
the language of a CFG L (that is, L ⊆ αi(L)) such that α1(L) ⊃ α2(L) ⊃ · · · ⊇ L. The method is
parameterized by the refinable abstraction. Bouajjani et al . [3] describe several possible abstractions but no
experimental evaluation is provided. Chaki et al . [5] extend [3] by, among other contributions, implementing
and evaluating the method. The experimental evaluation of Chaki et al . uses both the ith-prefix and ith-
suffix abstractions. Given language L, the ith-prefix abstraction αi(L) is the set of words of L of length
less than i, together with the set of prefixes of length i of L. The ith-suffix abstraction can be defined
analogously.

We next provide a theorem about the expressiveness of these abstractions.

Theorem 4. There exist regularly separable languages that can be shown separate neither by the ith-prefix,
nor by the ith-suffix, abstraction.

Proof. Consider the languages R1 = a∗ba∗ and R2 = a∗ca∗. R1 ∩R2 is empty. However, for a given length
i, the string ai forms a prefix to words in both R1 and R2. It follows that the intersection of the two
abstractions will always be non-empty, so the refinement method cannot prove the languages separate. A
similar argument proves the case for suffix abstraction.

The lcegar method described by Long et al . [18] is based on a similar refinement framework, but

the approach differs radically. They maintain a pair of context-free grammars G#
1 , G

#
2 over-approximating
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the intersection of the original languages. At each refinement step, an elementary bounded language Bi is
generated from each grammarG#

i . An elementary bounded language is a language of the formB = w∗
1 · · ·w

∗
k,

where each wi is a (finite) word in Σ∗. The refinement ensures Bi ∩G
#
i 6= ∅, but Bi is not necessarily either

an over- or under-approximation of G#
i . They then check whether I = Bi ∩L1 ∩L2 is empty. This problem

is decidable [12], albeit NP-complete [7]. If I is non-empty, L1 ∩ L2 must also be non-empty. If I is empty,
then the approximations can safely be refined by subtracting the Bi.

We now wish to characterise the set of languages for which lcegar can prove separation. Note that
we do not consider the initial approximation; for any fixed pair of regularly-separable languages, there
necessarily exists some approximation method which immediately proves separation without refinement.

Theorem 5. There exist non-regularly-separable languages which can be proven separate by lcegar.

Proof. Consider the languages L and L, where L = {anbn | n ≥ 0}. These are not regularly separable.

Nevertheless, lcegar may establish that they do not overlap. Assume initial approximations G#
1 = L

and G#
2 = L. At the first iteration, lcegar may choose bounded approximation B = a∗b∗. It will find

B ∩ L ∩ L = ∅, then update G#
1 = G#

1 \B = ∅. As G#
1 = ∅, the refinement process has successfully proven

separation.

Lemma 3. Let B = w∗
1 · · ·w

∗
k be a bounded regular language over alphabet Σ. There is a word p ∈ Σ∗ which

is not a substring of any word in B.

Proof. For each word wi, we pick some symbol xi which differs from the last character of wi. We then
construct p = p1 · · · pk, such that:

pi = xi . . . xi
︸ ︷︷ ︸

|wi|

Assume there is some word t = up1 . . . pkv ∈ B. The word t must consist of some number of occurrences of
w1 through wk, in order. Since p1 differs from the last character of w1, up1 cannot consist only of occurrences
of w1; therefore, p2 · · · pk must be made up of occurrences of w2 through wk.

Similarly, no occurrence of w2 may end in p2, so p3 · · · pk must consist only of w3 through wk. By
induction, pk must be an occurrence of wk. However, no occurrence of wk may occur in pk. Therefore, there
can be no word t ∈ B such that t ∈ Σ∗pΣ∗.

Corollary 2. For every finite set {B1, . . . , Bn} (over alphabet Σ) of bounded regular languages, there is a
word p ∈ Σ∗ which is not a substring of any word in B1 ∪ · · · ∪Bn.

Proof. By Lemma 3, we can find p1, . . . , pn such that pi is not a substring in Bi. Then p = p1 · · · pn cannot
occur as a substring in any word from B1 ∪ · · · ∪Bn.

Theorem 6. There exist regularly separable languages for which the lcegar refinement method cannot
prove separability.

Proof. Consider an lcegar process with L1 = G#
1 = (a | b)∗a, and L2 = G#

2 = (a | b)∗b. These
languages are disjoint and regularly separable. After some finite number of steps, the approximations have
been refined with bounded languages {B1, . . . , Bn}. By Corollary 2, there is some substring p such that
Σ∗pΣ∗ ⊆ (B1 ∩ · · · ∩ Bn). The updated approximation A′

1 is non-empty, as it contains pa. Similarly, the
approximation A′

2 is non-empty, as it contains pb.
It follows that, after any finite sequence of refinement steps, neither A′

1 nor A′
2 will be empty. Hence the

refinement process will never prove the separation of L1 and L2.

From Theorems 2, 5 and 6, we conclude that the classes of languages which can be proven separate by
lcegar and covenant are incomparable.
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8. Experimental Evaluation

We have implemented the method proposed in this paper in a prototype tool called covenant.8 The tool
is implemented in C++ and parameterized by the initial approximation and the refinement procedure. For
initial CFL approximation covenant uses the method described by Nederhof [23], as well as the coarsest
abstraction Σ∗ for comparison purposes. For refinement, the tool implements both the greedy epsilon-
inflation inflateEI and aggregate epsilon-inflation inflateAggEI (described in Sections 4.2 and 4.3, respectively).
covenant currently implements only the classical product construction for solving the intersection of regular
languages but other regular solvers (for example, [11, 15]) can be easily integrated.9

To assess the effectiveness of our tool, we have conducted two experiments. First, we used covenant

to prove safety properties in recursive multi-threaded programs. Second, we crafted pairs of challenging
context-free grammars and intersected them using covenant. The motivation for this second experiment
was to exercise features of covenant that were not required during the first experiment. All experiments
were run on a single core of a 2.4GHz Core i5-M520 with 7.8Gb memory.

8.1. Safety Verification of Recursive Multi-Threaded Programs

Pioneering work by Bouajjani et al . [3] has shown that the safety verification problem of recursive multi-
threaded programs can be reduced to testing the intersection of context-free languages for emptiness. Since
then, several encodings have been described [3, 5, 18]. As a result, we can use covenant to prove certain
safety properties in recursive multi-threaded programs, assuming the programs have been translated accord-
ingly. We briefly exemplify the translation of a concurrent program to context-free grammars, following the
approach of Long et al . [18].

We assume a concurrency model in which communication is based on shared memory. Shared memory
is modelled via a set of global variables. We assume that each statement is executed atomically. We will
consider only Boolean programs. Any program P can be translated into a Boolean program B(P ) using
techniques such as predicate abstraction [13]. A key property is that B(P ) is an over-approximation of P
preserving the control flow of P , but the only type available in B(P ) is Boolean. Therefore, if B(P ) is correct
then P must be correct but, of course, if B(P ) is unsafe, P may still be safe.

Each (possibly recursive) procedure in B(P ) is modelled as a context-free grammar as well as each shared
variable specifying the possible values that the variable can take. In addition, extra production rules are
added to specify the synchronization points.

The top part of the left-most column of Figure 8 shows a small program SharedMem [18]. It consists of two
symmetric, recursive procedures p1 and p2 which are executed by two different threads. The communication
between the threads is done through the global variables x and y which are initially set to 0. Note that the
program is already Boolean since x and y can only take values 0 and 1. We would like to prove that after
p1 and p2 terminate, x and y cannot be 1 simultaneously.

The rest of Figure 8 describes the corresponding translation to context-free grammars. The four resulting
grammars, which we explain shortly, are

CFG1 : 〈{N0, N1, N2, N3, Jx = not yK, JxK, Sp2
},Σ, P1, N0〉

CFG2 : 〈{M0,M1,M2,M3, Jy = not xK, JyK, Sp1
},Σ, P2,M0〉

CFG3 : 〈{X0, X1, Sx},Σ, P3, X0〉
CFG4 : 〈{Y0, Y1, Sy},Σ, P4, Y0〉

where Σ = {x is 0, x is 1, y is 0, y is 1, set x 0, set x 1, set y 0, set y 1} and P1, P2, P3, and P4 are
the respective sets of productions, as shown in Figure 8.

Procedures p1 and p2 are translated into CFG1 and CFG2, respectively. First, we need to encode the
control flow of the procedures. For instance, “p1 reaches location n0 and it executes the statement x = not y”

8Publicly available at https://github.com/sav-tools/covenant together with all the benchmarks used in this section.
9In fact, an initial implementation of covenant was tested using Revenant [11], an efficient regular solver based on bounded

model checking with interpolation, though the released version does not incorporate it.
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x = 0; y = 0;

p1() {
n0: x = not y ;
n1: if(∗) p1();
n2: x = not y ;
n3: }

p2() {
m0: y = not x ;
m1: if(∗) p2();
m2: y = not x ;
m3: }

if (x and y)
error();

Common

//sequences of read operations

R → x is 0 R
| x is 1 R
| y is 0 R
| y is 1 R
| ε

CFG1

// Control flow of thread p1

N0 → Jx = not yK N1

N1 → N0 N2 | N2

N2 → Jx = not yK N3

N3 → JxK
//encoding of instructions for p1

Jx = not yK→ Sp2
y is 0 set x 1 Sp2

| Sp2
y is 1 set x 0 Sp2

JxK → R x is 1 R
//synchronization with p2’s actions

Sp2
→ x is 0 Sp2

| x is 1 Sp2

| set y 0 Sp2

| set y 1 Sp2
| ε

CFG2

//Control flow of thread p2

M0 → Jy = not xK M1

M1 → M0 M2 | M2

M2 → Jy = not xK M3

M3 → JyK
//Encoding of instructions for p2

Jy = not xK→ Sp1
x is 0 set y 1 Sp1

| Sp1
x is 1 set y 0 Sp1

JyK → R y is 1 R
//Synchronization with p1’s actions

Sp1
→ y is 0 Sp1

| y is 1 Sp1

| set x 0 Sp1

| set x 1 Sp1
| ε

CFG3

//Modelling variable x

X0→ x is 0 X0

| set x 0 X0

| set x 1 X1

| Sy X0 | ε
X1→ x is 1 X1

| set x 1 X1

| set x 0 X0

| Sy X1 | ε
//Synchronization with y

Sy → y is 0 Sy

| set y 0 Sy

| y is 1 Sy

| set y 1 Sy | ε

CFG4

//Modelling variable y

Y0 → y is 0 Y0

| set y 0 Y0

| set y 1 Y1

| Sx Y0 | ε
Y1 → y is 1 Y1

| set y 1 Y1

| set y 0 Y0

| Sx Y1 | ε
//Synchronization with x

Sx→ x is 0 Sx

| set x 0 Sx

| x is 1 Sx

| set x 1 Sx | ε

Figure 8: A concurrent Boolean program (SharedMem) and its translation to CFGs.

is translated into the grammar production N0 → Jx = not yK N1, where N1 represents the next program
location n1. We use the notation JsK ∈ V to refer to the corresponding translation of statement s.

A function call such as “p1 calls itself recursively after location n1 is executed” is translated through the
production N1 → N0N2 where N0 is the entry location of the callee function and N2 is the continuation of
the caller after the callee returns.

The non-terminal symbol Jx = not yK models the execution of negating y and storing its result in x. We
create a terminal symbol for each possible action on x (and analogously for y): x is 0 (the value of x is 0),
x is 1 (the value of x is 1), set x 0 (x is updated to 0), and set x 1 (x is updated to 1). For instance, the
grammar production Jx = not yK → Sp2

y is 0 set x 1 Sp2
represents that if we read 0 as the value of y

then it must be followed by writing 1 to x. The rest of the logical operations are encoded similarly.
Note that whenever a global variable is read or written we need to consider the synchronization between

threads. To this end we define the non-terminal symbol Sp2
(Sp1

) which loops zero or more times with all
possible actions of p2 (p1): value of x is 0 (value of y is 0), value of x is 1 (value of y is 1), y is updated to
0 (x is updated to 0), and y is updated to 1 (x is updated to 1).

Next, we need to model which are the possible values that x and y can take. For this we use CFG3 and
CFG4, respectively. Ignoring synchronization, the set of values that x and y can take are indeed expressed
by finite-state automata:
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X0 X1

x is 0

set x 0

set x 1
x is 1

set x 1
set x 0

Y0 Y1

y is 0

set y 0

set y 1
y is 1

set y 1
set y 0

Finally, we need to synchronize x and y by allowing them to loop zero or more times while new values
from the other variable can be generated. We use non-terminal symbols (and their productions) Sx and Sy

for that.
Once we have obtained the CFGs described in Figure 8 we are ready to ask reachability questions. For

this example, we would like to prove that when threads start at n0 and m0, respectively, error cannot be
reachable simultaneously by both threads. This question can be answered by checking if the intersection
of the above CFGs is empty. Indeed covenant finds that the intersection is empty for this case. If
the intersection was not empty then covenant would return a witness w ∈ Σ∗ containing a sequence of
reads and writes that would lead to the error state being reached. In general, in the absence of a witness,
covenant will return either “yes” (that is, the program is safe) if the languages of the CFGs are regularly
separable or run until resources are exhausted.

We have tested covenant with the programs used in [18] and compared with lcegar [18]. There are
two classes of programs: textbook Erlang programs and several variants of a real Bluetooth driver. The
Bluetooth variants labelled W/ Heuri are encoded with an unsound heuristic that permits context switches
only at basic block boundaries. We refer readers to Appendix A for a detailed description of the programs
as well as the safety properties.

Table 2(a) and Table 2(b) show the times in seconds for both solvers when proving the Erlang programs
and the Bluetooth drivers. The symbol ∞ indicates that the solver failed to terminate after 2 hours. We
ran lcegar using the settings suggested by the authors and tried with the two available initial abstractions:
pseudo-downward closure (PDC) and cycle breaking (CB). For our implementation, we used the greedy
epsilon inflation (inflateEI) refinement described in Section 4.2, and as the initial abstraction the one that is
described by Nederhof [23]. We also tried Σ∗ as an initial approximation, but in this case, covenant did
not converge for any of the programs in a reasonable amount of time.

It is somewhat surprising that all properties were successfully proven by lcegar using the initial reg-
ular approximation, including Bluetooth instances. The same is true for covenant, except for Version 1
which required 12 refinements using the greedy strategy. Nevertheless, these programs show cases in which
covenant can significantly outperform lcegar. Since almost no refinements were required by any of the
tools, it also suggests that the approximation of all CFGs at once and the use of a regular solver may be a
more efficient choice than relying on computing intersection of CFLs and regular languages as lcegar does.

8.2. Some Other Interesting Context-Free Languages

The verification instances [18] are in fact all solved with no use of refinement by lcegar (and by
covenant, except for one instance). To explore more interesting cases that exercise the refinement pro-
cedures, we have added experiments involving the following languages (Σ = {a, b}∗; note that C5 is L(G1)
from Section 5 and C6 is L(G2)):

C1 : {wwR | w ∈ Σ∗}
C2 : {wcwR | w ∈ Σ∗}
C3 : {ancan | n > 0}
C4 : {ancbn | n > 0}
C5 : {wwR(ab)+ | w ∈ Σ∗}
C6 : {wwR(ba)+ | w ∈ Σ∗}
C7 : {w ∈ Σ∗ | w has equal numbers of as and bs}
C8 : {ww′ | |w| = |w′|, w 6= w′}
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Program covenant lcegar

inflateEI, [23] PDC CB

SharedMem safe 0.01 14.37 24.75
Mutex safe 0.04 6.12 0.14
RA safe 0.01 ∞ 0.39
Modified RA safe 0.03 ∞ 27.90
TNA unsafe 0.01 0.02 0.25
Banking unsafe 0.01 ∞ 3.36

(a) Verification of multi-thread Erlang programs

Program covenant lcegar

inflateEI, [23] PDC CB

Version 1 unsafe 0.84 19.74 21.04
Version 2 unsafe 0.25 5560.00 4852.00
Version 2 w/ Heuri unsafe 0.11 44.68 38.89
Version 3 (1A2S) unsafe 0.12 217.74 217.27
Version 3 (1A2S) w/ Heuri unsafe 0.05 6.68 11.37
Version 3 (2A1S) safe 0.27 4185.00 3981.00

(b) Verification of multi-thread Bluetooth drivers

covenant lcegar

Σ∗ [23] PDC CB
inflateEI inflateAgg(EI) inflateEI inflateAgg(EI)

C1 ∩ C7 sat 0.01 (8) 2.81 (8) 0.01 (5) 4.50 (7) ∞ –
C7 ∩ C1 0.13 (0) 0.32 (0)
C1 ∩ C8 sat 0.01 (8) 0.80 (10) 0.01 (7) 0.65 (9) 20.28 (0) –
C8 ∩ C1 ∞ ∞
C2 ∩ C3 sat 0.01 (10) 0.02 (6) 0.01 (2) 0.01 (2) 0.03 (0) 0.01 (0)
C3 ∩ C2 0.03 (0) 0.01 (0)
C2 ∩ C4 unsat 0.02 (15) ∞ 0.01 (3) 0.01 (2) 0.01 (1) 0.01 (0)
C4 ∩ C2 ∞ 0.01 (0)
C3 ∩ C4 unsat 0.01 (11) ∞ 0.01 (2) 0.02 (2) 0.01 (0) 0.01 (0)
C4 ∩ C3 0.01 (0) 0.01 (0)
C5 ∩ C6 unsat 0.01 (6) ∞ 0.01 (5) ∞ ∞ 0.01 (0)
C6 ∩ C5 ∞ 0.01 (0)
C5 ∩ C7 sat 0.04 (14) ∞ 0.02 (11) ∞ ∞ –
C7 ∩ C5 0.33 (0) ∞
C5 ∩ C8 sat 0.01 (7) 0.13 (6) 0.01 (5) 1.25 (5) ∞ –
C8 ∩ C5 0.04 (0) ∞
C6 ∩ C7 sat 0.04 (14) ∞ 0.02 (11) ∞ ∞ –
C7 ∩ C6 0.10 (0) ∞
C6 ∩ C8 sat 0.01 (8) 0.12 (6) 0.01 (5) 1.35 (5) 1.21 (0) –
C8 ∩ C6 ∞ ∞
C7 ∩ C8 sat 0.01 (4) 0.01 (4) 0.01 (3) 0.01 (3) 0.70 (0) –
C8 ∩ C7 ∞ –

(c) Interesting/challenging grammars (∞ indicates time-out at 60 sec and “-” a raised exception.)

Table 2: Comparison of covenant with lcegar, on several classes of context-free grammars; times in seconds. (Equal) best
times are in bold.
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Table 2(c) shows the pairs of languages whose disjointness can be proven or a counterexample can be found
requiring at least one refinement for covenant. We ignore pairs of languages which are disjoint but not
regularly separable.

We ran covenant using two initial abstractions: Σ∗ and the more precise one described by Nederhof [23].
From each initial abstraction, we tested disjointness using both the greedy and aggregate epsilon inflations
(inflateEI and inflateAgg(EI)). We compared again with lcegar using its two abstractions PDC and CB. The
implementation of lcegar differs slightly from the published algorithm, in that it maintains only a single
context-free approximation of L1 ∩ L2 with initial approximation G# = L1 ∩ α(L2).

10 The choice of main
language can have a substantial performance impact. As such, for each pair we evaluate lcegar on both
Ci ∩ Cj and Cj ∩ Ci. In covenant the order is irrelevant. We use the format T(R) to indicate that the
tool needed R refinements to prove disjointness or to find a counterexample, in T seconds. We set a timeout
(∞) of 60 seconds.

Table 2(c) indicates that, generally, the more precise the initial abstraction, the fewer refinements are
necessary. This claim was also made in [18] although we were not able to fully confirm it because lcegar

raised an exception with many of the instances while using CB (denoted by the symbol –). Interestingly,
inflateEI performs quite well, terminating for all instances. This suggests that inflateEI might be a good
practical choice in cases where the aggregate inflation spends too much time computing the inflations of
witnesses.

In all but one instance (C2∩C4) lcegar either terminates without refinement or reaches the timeout. It
is worth noticing that even if both tools use the same initial abstraction lcegar can prove more languages
separate without refinement, as it maintains an exact representation of one language. This does however
make lcegar somewhat volatile, as its behaviour may vary wildly due to language ordering (for example,
C2 ∩C4 versus C4 ∩ C2).

9. Related Work

9.1. Intersections between Context-Free and Regular Languages

It is a well known result that testing the intersection of a context-free language and a regular language
is decidable in polynomial time. This has been applied to the static detection of SQL injection and cross
site scripting attacks [19, 26, 27]. These methods construct a set of regular attack patterns {R1, . . . , Rn}
representing common dangerous inputs. One then computes a context-free approximation G for each user-
supplied input to a vulnerable system (usually a database), and tests whether L(G) ∩ L(Ri) is non-empty.

9.2. Intersections between Context-Free and Visibly Pushdown Languages

In the context of HTML/XML validation (for example, [20, 21]), the main idea is to check whether a
CFG derived from a string variable is well-formed with respect to a Document Type Definition (DTD).
For well-formedness, it is important to guarantee certain tag matching, or balance conditions, and because
of this, regular languages cannot be used. Visibly pushdown languages, or VPLs [1], constitute a suitable
intermediate class of languages between regular and deterministic context-free languages. For this reason,
VPLs have attracted much attention over the last decade. Nested word automata act as recognisers for
VPLs.

While VPLs are more expressive than regular languages, they more or less maintain the tractability and
robustness of that class. In particular, the class of visibly pushdown languages is closed under intersection,
union, complement, concatenation and Kleene star. The subset problem, while undecidable for deterministic
context-free languages, is Exptime complete for VPLs. Importantly, the intersection of a CFL and a VPL
is decidable.

The method proposed in this paper is incomparable with methods (such as Minamide and Tozawa’s [20])
that rely on the intersection between a CFL and a VPL. There are language pairs (for example {anbn | n ∈ N}

10Note that Theorems 5 and 6 still hold on this modified algorithm.
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and {anbn+1 | n ∈ N}) that are visibly pushdown but at the same time are not regularly separable. On
the other hand, our method can reason about nondeterministic context-free languages while VPL-based
methods cannot. Neither of the languages L1 and L2 that were separated in Section 5 is a VPL and of the
languages C1–C8 in Section 8, only C4 is a VPL.

9.3. Intersections between Context-Free Languages

Axelsson et al . [2] describe a method to check the intersection of bounded CFGs by unrolling the non-
terminals of each CFG up to some fixed depth k, using an incremental SAT solver. Each unrolled CFG is
symbolically encoded in propositional logic such that the formula is unsatisfiable iff the intersection of the
bounded CFGs is empty. If satisfiable then the intersection of the unbounded CFGs is not empty. The main
difference with our method is that this method cannot prove emptiness if the formula is unsatisfiable.

9.4. Interpolant Automata

Our refinement procedure can be seen as a generator of interpolant automata. To the best of our knowl-
edge, this term was coined by Heizmann et al . [14] in the context of computing interpolants for interproce-
dural verification. An interpolant automaton as used by Heizmann et al . [14] is a nested word automaton
generated through an inductive sequence of interpolants from nested words (extracted from an error trace).
Thus, the method is not applicable to context-free grammars. Similar to what we do, Heizmann et al . [14]
generalize the interpolant automaton representing a single counterexample to multiple counterexamples by
adding backward transitions. However, they add those transitions only between automaton states that
represent the same program location.

10. Conclusions and Future Work

We have presented a CEGAR-based semi-decision procedure for regular separability of context-free lan-
guages. We have described two refinement strategies; an inexpensive greedy approach, and a more expensive
exhaustive strategy. We have implemented these approaches in a prototype solver, covenant. The method
outperforms existing methods on a range of verification and language-theoretic instances. The greedy ap-
proach often requires more refinement steps, but tends to quickly find witnesses in cases with non-empty
intersections; the exhaustive method performs substantially more expensive refinement steps, but can prove
separation of some instances not solved by other methods.

The aggregate ε-inflation algorithm can become extremely expensive for large witnesses. It could be
worthwhile considering whether one can find a cheaper inflation scheme which still ensures completeness.
Similarly, it may be possible to develop a specialized intersection algorithm for computing ε-inflations,
rather than relying on the standard regular/context-free intersection algorithm. It would be interesting also
to explore algorithms for approximation by visibly pushdown languages. Finally, there is considerable work
to be done on the practical side, to hone the methods in applications in software verification, including the
context of cross site scripting attacks.
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[13] Susanne Graf and Hassen Säıdi. Construction of abstract state graphs with PVS. In O. Grumberg, editor, Computer

Aided Verification, volume 1254 of LNCS, pages 72–83. Springer, 1997.
[14] Matthias Heizmann, Jochen Hoenicke, and Andreas Podelski. Nested interpolants. In Proceedings of the 37th Annual

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 471–482. ACM Publ., 2010.
[15] Pieter Hooimeijer and Westley Weimer. StrSolve: Solving string constraints lazily. Automated Software Engineering,

19(4):531–559, 2012.
[16] H. B. Hunt, III. On the decidability of grammar problems. Journal of the ACM, 29(2):429–447, 1982.
[17] Nicholas Kidd. Bluetooth protocol. http://pages.cs.wisc.edu/~kidd/bluetooth.
[18] Zhenyue Long, Georgel Calin, Rupak Majumdar, and Roland Meyer. Language-theoretic abstraction refinement. In

J. de Lara and A. Zisman, editors, Fundamental Approaches to Software Engineering, volume 7212 of LNCS, pages
362–376, 2012.

[19] Yasuhiko Minamide. Static approximation of dynamically generated web pages. In Proceedings of the 14th International

Conference on World Wide Web, pages 432–441. ACM Publ., 2005.
[20] Yasuhiko Minamide and Akihiko Tozawa. XML validation for context-free grammars. In N. Kobayashi, editor, Program-

ming Languages and Systems, volume 4279 of LNCS, pages 357–373. Springer, 2006.
[21] Anders Møller and Mathias Schwarz. HTML validation of context-free languages. In M. Hofmann, editor, Foundations of

Software Science and Computational Structures, volume 6604 of LNCS, pages 426–440. Springer, 2011.
[22] Benedek Nagy. A normal form for regular expressions. In Supplemental Papers for the Eighth International Conference

on Developments in Language Technology, CDMTCS Research Report Series, pages 53–62. CDMTCS, 2004.
[23] Mark-Jan Nederhof. Regular approximation of CFLs: A grammatical view. In H. Bunt and A. Nijholt, editors, Advances

in Probabilistic and Other Parsing Technologies, volume 16 of Text, Speech and Language Technology, pages 221–241.
Springer, 2000.

[24] Shaz Qadeer and Dinghao Wu. KISS: Keep it simple and sequential. In Proceedings of the ACM SIGPLAN 2004

Conference on Programming Language Design and Implementation, pages 14–24. ACM Publ., 2004.
[25] Michael Sipser. Introduction to the Theory of Computation. Thomson Course Technology, third edition, 2012.
[26] Gary Wassermann and Zhendong Su. Sound and precise analysis of web applications for injection vulnerabilities. In

Proceedings of the ACM SIGPLAN 2007 Conference on Programming Language Design and Implementation, pages 32–
41. ACM Publ., 2007.

[27] Gary Wassermann and Zhendong Su. Static detection of cross-site scripting vulnerabilities. In Proceedings of the 30th

International Conference on Software Engineering, pages 171–180. IEEE Comp. Soc., 2008.

27



Appendix A. Recursive Multithreaded Programs

Detailed descriptions of the programs used in Section 8’s experimental evaluation, as well as their safety
properties, can be found in [18, 5, 24]. This appendix is intended as a self-contained short description.

There are two classes of programs: Erlang programs extracted from textbook algorithms and several
variants of a real Bluetooth driver implementation. Table A.3 shows the sizes of the programs after each
context-free grammar has been normalized, so that all productions are of form A → B C, A→ B, A→ a,
or A→ ε.

• #CFGs: the number of context-free grammars

• |Σ| number of terminal symbols

• |N |: total number of nonterminal symbols

• |P |: total number of grammar productions

Program #CFGs |Σ| |N | |P | Program #CFGs |Σ| |N | |P |

SharedMem 4 8 138 234 Version 1 7 17 471 804
Mutex 4 22 297 512 Version 2 9 26 1055 1847
RA 2 20 127 205 Version 2 w/ Heuri 9 26 807 1351
Modified RA 5 22 323 530 Version 3 (1A2S) 9 22 746 1292
TNA 3 17 134 204 Version 3 (1A2S) w/ Heuri 8 22 569 938
Banking 3 13 144 244 Version 3 (2A1S) 9 25 1053 1052

Table A.3: Sizes of the programs shown in Table 2(a-b)

Erlang programs. SharedMem is the shared memory program shown in detail in Figure 8. Mutex is an
implementation of the Peterson mutual exclusion protocol where two processes try to acquire a lock. The
checked property is that at most one process can be in the critical section at any one time. RA is a resource
allocator manager that handles “allocate” and “free” requests. We check that the manager cannot allocate
more resources to clients than there are currently free resources in the system. Modified RA adds some new
functionality to the logic of the resource allocator manager. We check the same property used in RA. TNA
is a telephone number analyzer that serves “lookup” and “add number” requests. The property to check is
that certain programming errors cannot happen. Finally, Banking is a toy banking application where users
can check a balance as well as deposit and withdraw money. We check that deposits and withdrawals of
money are done atomically.

Bluetooth driver [17]. This is a simplified implementation of a Windows NT Bluetooth driver and
several variants discussed originally by Qadeer and Wu [24]. The driver keeps track of how many threads
are executing in the driver. The driver increments (decrements) atomically a counter whenever a thread
enters (exits) the driver. Any thread can try to stop the driver at any time, and after that, new threads are
not supposed to enter the driver. When the driver checks that no threads are currently executing the driver,
a flag is set to true to establish that the driver has been stopped. Other threads must assert that this flag
is false before they start their work in the driver. There are two dispatch functions that can be executed by
the operating system: one that performs I/O in the driver and another to stop the driver. Assuming threads
can asynchronously execute both dispatch functions, we check the following race condition: no thread can
enter the driver after the driver has been stopped. Version 1 and Version 2 [24] are two buggy versions of
the driver implementation. Version 2 w/ Heuri is an alternative encoding of Version 2 [18] to limit context
switches only at basic block boundaries. This makes the verification task easier but it is, in general, unsound
as it does not cover all possible behaviours of the driver. Version 3 (2A1S) [5] is a safe version after blocking
the counterexample found in Version 2 where one stopper and two adder processes are considered, Version 3
(1A2S) is a buggy version with one adder and two stopper processes, and finally, Version 3 (1A2S) w/ Heuri
is an alternative encoding with the unsound heuristics used in Version 2 w/ Heuri.
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