
Under consideration for publication in Theory and Practice of Logic Programming 1

The Refined Operational Semantics of
Constraint Handling Rules∗
GREGORY J. DUCK, PETER J. STUCKEY

NICTA Victoria Laboratory

Department of Computer Science & Software Engineering, University of Melbourne, Australia
(e-mail: {gjd,pjs}@cs.mu.oz.au)

MARIA GARCIA DE LA BANDA
School of Computer Science & Software Engineering, Monash University, Australia

(e-mail: mbanda@csse.monash.edu.au)

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

Constraint Handling Rules (CHRs) are a high-level rule-based programming language
commonly used to write constraint solvers. The theoretical operational semantics for CHRs
is highly non-deterministic and relies on writing confluent programs to have a meaningful
behaviour. Implementations of CHRs use an operational semantics which is considerably
finer than the theoretical operational semantics, but is still non-deterministic (from the
user’s perspective). This paper formally defines this refined operational semantics and
proves it implements the theoretical operational semantics. It also shows how to create a
(partial) confluence checker capable of detecting programs which are confluent under this
semantics, but not under the theoretical operational semantics. This supports the use of
new idioms in CHR programs.

KEYWORDS: Constraint handling rules, operational semantics, confluence

1 Introduction

Constraint Handling Rules (CHRs) are a rule-based programming language orig-
inally designed to write constraint solvers in a high-level and declarative way.
Increasingly CHRs are being used as a general purpose programming language,
and several complex algorithms/programs have been implemented in CHRs, e.g.
union-find algorithms (Schrijvers and Frühwirth 2006), ray tracing, Dijkstra’s algo-
rithm (Sneyers et al. 2006) and many more. The high-level nature of CHRs means
that complex interactions may be expressed in just a few rules.

Operationally, CHRs exhaustively apply a set of rules to an initial set of con-
straints until a fixed point is reached. We refer to these operational semantics as
theoretical, because they describe how CHRs are allowed to behave in theory. The

∗ A preliminary version of this paper appeared in the International Conference on Logic Pro-
gramming (ICLP2004), St Malo, France, 2004.

2 G. Duck et al.

theoretical semantics is highly nondeterministic, and this is sometimes inconvenient
from a programming language point of view. For example, the theoretical semantics
do not specify which rule to apply if more than one possibility exists, and the final
answer may depend on such a choice.

This paper defines the refined operational semantics for CHRs: a more determin-
istic operational semantics which has been implicitly described in (Holzbaur and
Frühwirth 1999; Holzbaur and Frühwirth 2000), and is used by almost all modern
implementations of CHRs we know of. Some choices are still left open in the refined
operational semantics, however both the order in which constraints are executed
and the order which rules are applied, is decided. Unsurprisingly, the decisions
follow Prolog style and maximise efficiency of execution.

It is clear that CHR programmers take the refined operational semantics into
account when programming. For example, some of the standard CHR examples are
non-terminating under the theoretical operational semantics.

Example 1 Consider the following simple program that calculates the greatest com-
mon divisor (gcd) between two integers using Euclid’s algorithm:

gcd1 @ gcd(0) <=> true.

gcd2 @ gcd(N) \ gcd(M) <=> M >= N | gcd(M-N).

Rule gcd1 is a simplification rule. It states that a fact gcd(0) in the store can be
replaced by true. Rule gcd2 is a simpagation rule, it states that if there are two
facts in the store gcd(n) and gcd(m) where m ≥ n, we can replace the part after
the slash gcd(m) by the right hand side gcd(m− n).1 The idea of this program is
to reduce an initial store of gcd(A), gcd(B) to a single constraint gcd(C) where C

will be the gcd of A and B.
This program, which appears on the CHR webpage (Schrijvers 2005), is nonter-

minating under the theoretical operational semantics. Consider the constraint store
gcd(3), gcd(0). If the first rule fires, we are left with gcd(3) and the program
terminates. If, instead, the second rule fires (which is perfectly possible in the the-
oretical semantics), gcd(3) will be replaced with gcd(3-0) = gcd(3), thus essen-
tially leaving the constraint store unchanged. If the second rule is applied indefinitely
(assuming unfair rule application), we obtain an infinite loop.

In the above example, trivial non-termination can be avoided by using a fair rule
application (i.e. one in which every rule that could fire, eventually does). Indeed, the
theoretical operational semantics given in (Frühwirth 1998) explicitly states that
rule application should be fair. Interestingly, although the refined operational se-
mantics is not fair (it uses rule ordering to determine rule application), its unfairness
ensures termination in the gcd example above. Of course, it could also have worked
against it, since swapping the order of the rules would lead to nontermination.

The refined operational semantics allows us to use more programming idioms,
since we can now treat the constraint store as a queryable data structure.

1 Unlike Prolog, we assume the function call “m − n” is evaluated as an integer subtraction.

The Refined Operational Semantics of CHRs 3

make @ make(A) <=> root(A).

union @ union(A,B) <=> find(A,X), find(B,Y), link(X,Y).

findNode @ arrow(A,B) \ find(A,X) <=> find(B,X).

findRoot @ root(A) \ find(A,X) <=> X = A.

linkEq @ link(A,A) <=> true.

link @ link(A,B), root(A), root(B) <=> arrow(B,A), root(A).

Fig. 1. Naive union find algorithm impelemented in CHRs

Example 2 Consider the naive union find algorithm implemented in CHRs (Schri-
jvers and Frühwirth 2006) and shown in Figure 1.

We can classify the constraints in this program into two types: (1) those that
represent the datastructure (the graph) and (2) those that are operations that either
manipulate or query the datastructure. The constraints root/1 and arrow/2 belong
to the former, make/1, union/2, link/2 and find/2 belong to the later.

This program is clearly non-confluent under the theoretical semantics, since the
relative order of find/2 operation (which queries the arrows in the graph) and
link/2 operation (which adds a new arrow to the graph) matters (Frühwirth 2005).
Under the theoretical semantics the order of these operations is not necessarily
preserved, however it is preserved under the refined semantics

The refined operational semantics also allows us to create more efficient programs
and/or have a better idea regarding their time complexity.

Example 3 Consider the following implementation of Fibonacci numbers, fib(N,F),
which holds if F is the N th Fibonacci number:

f1 @ fib(N,F) <=> 1 >= N | F = 1.

f2 @ fib(N,F0) \ fib(N,F) <=> N >= 2 | F = F0.

f3 @ fib(N,F) ==> N >= 2 | fib(N-2, F1), fib(N-1,F2), F = F1 + F2.

The program is confluent in the theoretical operational semantics which, as we will
see later, means it is also confluent in the refined operational semantics. Under the
refined operational semantics it has linear complexity, while swapping rules f2 and
f3 leads to exponential complexity. Since in the theoretical operational semantics
both versions are equivalent, worst case complexity is at best exponential.

We believe that CHRs under the refined operational semantics provide a power-
ful and elegant language suitable for general purpose computing. However, to make
use of this language, authors need support to ensure their code is confluent within
this context. In order to do this, we first provide a formal definition of the refined
operational semantics of CHRs as implemented in logic programming systems. Es-
sentially, these results ensure that if a program is confluent and terminating under
the theoretical semantics, it is also confluent and terminating under the refined
semantics. We then provide theoretical results linking the refined and theoretical

4 G. Duck et al.

operational semantics. We also discuss the consequences of the remaining choices
left open in the refined semantics. Then, we provide a practical (partial) confluence
test capable of detecting CHR programs which are confluent for the refined opera-
tional semantics, even though they are not confluent for the theoretical operational
semantics. Finally, we study the accuracy of the confluence test over a collection of
CHR programs.

The remainder of the article is organized as follows. In the next section we define
the theoretical operational semantics ωt for CHRs. Then in Section 3 we define
the refined operational semantics ωr. Then in Section 4 we define the relationship
between the two operational semantics. We investigate how to define a confluence
test for the refined operational semantics in Section 5. In Section 6 we give details
about the practical construction of the confluence checker, and show the results
on 4 benchmark programs. Finally in Section 7 we discuss related work, before
concluding in Section 8.

2 The Theoretical Operational Semantics ωt

We begin by defining constraints, rules and CHR programs. For our purposes, a
constraint is simply defined as an atom p(t1, ..., tn) where p is some predicate symbol
of arity n ≥ 0 and (t1, ..., tn) is an n-tuple of terms. A term is defined as either a
variable X, or as f(t1, ..., tn) where f is a function symbol of arity n and t1, ..., tn
are terms. Let vars(A) return the variables occurring in any syntactic object A.
We use ∃AF to denote the formula ∃X1 · · · ∃XnF where {X1, . . . Xn} = vars(A).
Similarly, we use ∃̄AF to denote the formula ∃X1 · · · ∃XnF where {X1, . . . Xn} =
vars(F)− vars(A). We define ∀AF and ∀̄AF similarly.

We use [H|T] to denote the first H and remaining elements T of a sequence, ++
for sequence concatenation, [] for empty sequences, and] for multiset union. We
shall sometimes treat multisets as sequences, in which case we nondeterministically
choose an order for the objects in the multiset. We use the notation p(s1, . . . , sn) =
p(t1, . . . , tn) as shorthand for the constraint s1 = t1 ∧ · · · ∧ sn = tn, and similarly
S = T where S and T are equal length sequences S ≡ s1 · · · sn and T = t1 · · · tn
as shorthand for s1 = t1 ∧ · · · ∧ sn = tn.

Constraints can be divided into either CHR constraints or built-in constraints
in some constraint domain D. Decisions about rule matchings will rely on the un-
derlying solver proving that the current constraint store for the underlying solver
entails a guard (a conjunction of built-in constraints). We will assume the solver
supports (at least) equality.

There are three types of rules: simplification, propagation and simpagation, which
have the respective syntax:

r @ H ⇐⇒ g | B Simplification

r @ H =⇒ g | B Propagation

r @ H1 \ H2 ⇐⇒ g | B Simpagation

where r is the rule name, H, H1 and H2 are non-empty sequences of CHR con-
straints, g is a sequence of built-in constraints, and B is a sequence of constraints.

The Refined Operational Semantics of CHRs 5

For simplicity, we consider both simplification and propagation rules as special cases
of generalised simpagation rules, where H2 = [] is a propagation rule and H1 = []
is a simplification rule. At least one of H1 and H2 must be non-empty. Finally, a
CHR program P is a sequence of rules.

Given a CHR program P , we will be interested in numbering the occurrences
of each CHR constraint predicate p appearing in the head of the rule. We number
the occurrences following the top-down rule order and right-to-left constraint order.
The latter is aimed at ordering first the constraints after the backslash (\) and then
those before it, since this is more efficient in general.

Example 4 The following shows the gcd CHR program of Example 1, written using
simpagation rules and all occurrences numbered:

gcd1 @ [] \ gcd(0)1 <=> true | true.

gcd2 @ gcd(N)3 \ gcd(M)2 <=> M ≥ N | gcd(M-N).

2.1 The ωt Semantics

Several versions of the theoretical operational semantics have already appeared in
the literature, e.g. (Abdennadher 1997; Frühwirth 1998), essentially as a multiset
rewriting semantics. This section presents our variation,2 which subsumes previous
versions, and is close enough to our refined operational semantics to make proofs
simple.

Firstly we define numbered constraints.

Definition 1 (Numbered Constraints) A numbered constraint is a constraint
c paired with an integer i. We write c#i to indicate a numbered constraint.

Sometimes we refer to i as the identifier (or simply ID) of the numbered constraint.
This numbering serves to differentiate among copies of the same constraint.

Now we define an execution state, as follows.

Definition 2 (Execution State) An execution state is a tuple of the form 〈G, S,B, T 〉Vn
where G is a multiset (repeats are allowed) of constraints, S is a set of numbered
constraints, B is a conjunction of built-in constraints, T is a set of sequences of
integers, V is the set of variables and n is an integer. Throughout this paper we use
symbol ‘σ’ to represent an execution state.

We call G the goal, which contains all constraints to be executed. The CHR con-
straint store S is the set3 of numbered CHR constraints that can be matched with
rules in the program P . For convenience we introduce functions chr(c#i) = c and

2 A brief comparison between this and previous formalisations of the semantics can be found later
in Section 7.

3 Sometimes we treat the store as a multiset.

6 G. Duck et al.

id(c#i) = i, and extend them to sequences and sets of numbered CHR constraints
in the obvious manner.

The built-in constraint store B contains any built-in constraint that has been
passed to the built-in solver. Since we will usually have no information about the
internal representation of B, we treat it as a conjunction of constraints. The prop-
agation history T is a set of sequences, each recording the identities of the CHR
constraints which fired a rule, and the name of the rule itself (which may be rep-
resented as a unique integer, but typically we just use the name of the rule itself).
This is necessary to prevent trivial nontermination for propagation rules: a propa-
gation rule is allowed to fire on a set of constraints only if the constraints have not
been used to fire the rule before. The set V contains all variables that appeared in
the initial goal. Throughout this paper we will usually omit V unless we require it
to be explicitly shown. Finally, the counter n represents the next free integer which
can be used to number a CHR constraint.

We define an initial state as follows.

Definition 3 (Initial State) Given a goal G, which is a multiset of constraints,
the initial state with respect to G is 〈G, ∅, true, ∅〉vars(G)

1 .

The theoretical operational semantics ωt is based on the following three transi-
tions which map execution states to execution states:

Definition 4 (Theoretical Operational Semantics)
1. Solve

〈{c}]G, S,B, T 〉Vn � 〈G, S, c ∧B, T 〉Vn
where c is a built-in constraint.
2. Introduce

〈{c}]G, S,B, T 〉Vn � 〈G, {c#n}] S, B, T 〉V(n+1)

where c is a CHR constraint.
3. Apply

〈G, H1]H2] S, B, T 〉Vn � 〈C]G, H1] S, B ∧ θ, T ′〉Vn

where there exists a (renamed apart) rule in P of the form

r @ H ′
1 \ H ′

2 ⇐⇒ g | C

and θ ≡ chr(H1) = H ′
1 ∧ chr(H2) = H ′

2 such that{
D |= B → ∃r(θ ∧ g)
id(H1) ++ id(H2) ++ [r] 6∈ T

In the result T ′ = T ∪ {id(H1) ++ id(H2) ++ [r]}.4

4 Note in practice we only need to keep track of tuples where H2 is empty, since otherwise these
CHR constraints are being deleted and the firing can not reoccur.

The Refined Operational Semantics of CHRs 7

〈{gcd(6), gcd(9)}, ∅〉1 (1)
�introduce 〈{gcd(9)}, {gcd(6)#1}〉2 (2)
�introduce 〈∅, {gcd(6)#1, gcd(9)#2}〉3 (3)

(gcd2 N = 6 ∧ M = 9) �apply 〈{gcd(3)}, {gcd(6)#1}〉3 (4)
�introduce 〈∅, {gcd(6)#1, gcd(3)#3}〉4 (5)

(gcd2 N = 3 ∧ M = 6) �apply 〈{gcd(3)}, {gcd(3)#3}〉4 (6)
�introduce 〈∅, {gcd(3)#3, gcd(3)#4}〉5 (7)

(gcd2 N = 3 ∧ M = 3) �apply 〈{gcd(0)}, {gcd(3)#3}〉5 (8)
�introduce 〈∅, {gcd(3)#3, gcd(0)#5}〉6 (9)

(gcd1) �apply 〈∅, {gcd(3)#3}〉6 (10)

Fig. 2. ωt derivation for gcd.

The Solve transition adds a new built-in constraint from goal G to the built-in
store B. The Introduce transition adds a new numbered CHR constraint to the
CHR store S. The Apply transition chooses a rule from the program such that
matching constraints exist in the CHR store S, and the guard is entailed by the
built-in store B, and fires it. For readability, we usually treat θ as a substitution
and apply it to all relevant fields in the execution state, i.e. G, S and B. This does
not affect the meaning of the execution state, or its transition applicability, but it
helps remove the build-up of too many variables and constraints.

The theoretical operational semantics states that given a goal G, we nondeter-
ministically apply the transitions from Definition 4 until a final state is reached.
We define a final state as follows.

Definition 5 (Final States) An execution state σ = 〈G, S,B, T 〉n is a final state
if either no transition defined in Definition 4 is applicable to σ, or D |= ¬∃̄∅B holds
(often we simply use false to represent such a state).

The sequence of execution states generated by continuously applying transition
steps is called a derivation, which is formally defined as follows.

Definition 6 (Derivation) A derivation D is a non-empty (but possibly infinite)
sequence of execution states D = [σ0, σ1, σ2, ...] such that σi+1 is the result of ap-
plying a transition from Definition 4 to execution state σi for all consecutive states
σi and σi+1 in D.

Usually we write σ0 � σ1 � σ2 � ... instead of [σ0, σ1, σ2, ...] to denote a deriva-
tion, and the length of the derivation is the length of the sequence less one. Some-
times we use the notation D = D0 ++ D1 to represent a partition of derivation
D.

Example 5 Figure 2 is a (terminating) derivation under ωt for the query gcd(6),

gcd(9) executed on the gcd program in Example 4. For brevity, B, T and V have
been removed from each tuple, and we apply the substitutions θ throughout. No more
transitions on state 〈∅, {gcd(3)#3}〉6 are possible, so this is the final state.

8 G. Duck et al.

3 The Refined Operational Semantics ωr

The refined operational semantics establishes an order for the constraints in G. As
a result, we are no longer free to pick any constraint from G to either Solve or
Introduce into the store. It also treats CHR constraints as procedure calls: each
newly added CHR constraint searches for possible matching rules in order, until
all matching rules have been executed or the constraint is deleted from the store.
As with a procedure, when a matching rule fires other CHR constraints might be
executed and, when they finish, the execution returns to finding rules for the current
constraint. Not surprisingly, this approach is used exactly because it corresponds
closely to that of the language we compile to.

Formally, the execution state of the refined semantics is the tuple

〈A,S,B, T 〉Vn

where S, B, T , V and n, representing the CHR store, built-in store, propagation his-
tory, initial variables and next free identity number respectively, are exactly as with
Definition 2. The execution stack A is a sequence of constraints, numbered CHR
constraints and active CHR constraints, with a strict ordering in which only the
top-most constraint is considered for execution.5 We now define active constraints,
which represent a specific call to a CHR constraint.

Definition 7 (Active Constraints) An active constraint c#i : j is a numbered
CHR constraint c#i associated with an integer j which represents the occurrence
of predicate c in P the constraint c#i is allowed to match with.

Unlike in the theoretical operational semantics, a numbered constraint may simul-
taneously appear in both the execution stack A and the store S.

Given initial goal G, the initial state is as before, i.e. of the form

〈G, ∅, true, ∅〉vars(G)
1

except this time G is an ordered sequence, rather than a constraint multiset. Just
as with the theoretical operational semantics, execution proceeds by exhaustively
applying transitions to the initial execution state until the built-in solver state is
unsatisfiable or no transitions are applicable.

The refined operational semantics treats CHR constraints with only fixed vari-
ables as a special case. We formally define fixed variable as follows.

Definition 8 (Fixed) Let B be a built-in store, then v ∈ fixed(B) if

D |= ∀v∀ρ(v)(∃̄v(B) ∧ ∃̄ρ(v)ρ(B) → v = ρ(v))

for arbitrary renaming ρ.

Informally, a variable which can only take one value to satisfy B is fixed. We say a
constraint c is fixed if vars(c) ⊆ fixed(B).

5 The execution stack is analogous to a call-stack in other programming languages.

The Refined Operational Semantics of CHRs 9

When a built-in constraint is added to the built-in store, the refined semantics
wakes up a subset of the CHR store to be reconsidered for execution. The exact
subset is left open, however it must satisfy the conditions of a wakeup policy, which
is defined as follows.

Definition 9 (Wakeup Policy) Let S be a CHR store, c a built-in constraint and
B a built-in store, then a wakeup policy is a function wakeup policy(S, c, B) = S1

where S1 is a finite multiset such that for all s ∈ S1 we have that s ∈ S, and S1

satisfies the following further conditions:

1. lower bound: For all M = H1 ++ H2 ⊆ S such that there exists a (renamed apart)
rule

r @ H ′
1 \ H ′

2 ⇐⇒ g | C

and θ ≡ chr(H1) = H ′
1 ∧ chr(H2) = H ′

2 such that{
D 6|= (B → ∃r(θ ∧ g))
D |= (B ∧ c → ∃r(θ ∧ g))

then M ∩ S1 6= ∅
2. upper bound: If m ∈ S1 then vars(m) 6⊆ fixed(B).

Each implementation of the refined semantics provides its own wakeup policy. The
lower bound ensures that S1 is (at least) the minimum subset of the store that actu-
ally needs to be reconsidered thanks to the addition of c. The upper bound ensures
that S1 contains no fixed constraints. This will ensure that fixed constraints have
a more deterministic behaviour, which is essential for confluence (see Section 5).
Note that the definition of a wakeup policy also allows the set S1 to contain multiple
(redundant) copies of constraints in S.6

We can now define the refined operational semantics of CHRs.

Definition 10 (Refined Operational Semantics)
1. Solve

〈[c|A], S,B, T 〉Vn � 〈wakeup policy(S, c, B) ++ A,S, c ∧B, T 〉Vn

where c is a built-in constraint.
2. Activate

〈[c|A], S,B, T 〉Vn � 〈[c#n : 1|A], {c#n}] S, B, T 〉V(n+1)

where c is a CHR constraint (which has never been active).
3. Reactivate

〈[c#i|A], S,B, T 〉Vn � 〈[c#i : 1|A], S,B, T 〉Vn

6 This models the behaviour of a CHR constraint waking up more than once when a built-in
constraint is added to the store, which may happen in practice.

10 G. Duck et al.

where c is a CHR constraint (re-added to A by Solve but not yet active).
4. Drop

〈[c#i : j|A], S,B, T 〉Vn � 〈A,S,B, T 〉Vn
where c#i : j is an active constraint and there is no such occurrence j in P (all
existing ones have already been tried thanks to transition 7).
5. Simplify

〈[c#i : j|A], {c#i}]H1]H2]H3] S, θ ∧B, T 〉Vn � 〈C ++ A,H1] S, B ∧ θ, T ′〉Vn

where the jth occurrence of the CHR predicate of c in a (renamed apart) rule in P

is

r @ H ′
1 \ H ′

2, dj ,H
′
3 ⇐⇒ g | C

and θ ≡ chr(H1) = H ′
1 ∧ chr(H2) = H ′

2 ∧ c = dj ∧ chr(H3) = H ′
3 such that{

D |= B → ∃r(θ ∧ g)
id(H1) ++ id(H2) ++ [i] ++ id(H3) ++ [r] 6∈ T

In the result T ′ = T ∪ {id(H1) ++ id(H2) ++ [i] ++ id(H3) ++ [r]}.7
6. Propagate

〈[c#i : j|A], {c#i}]H1]H2]H3] S, B, T 〉Vn �
〈C ++ [c#i : j|A], {c#i}]H1]H2] S, B ∧ θ, T ′〉Vn

where the jth occurrence of the CHR predicate of c in a (renamed apart) rule in P

is

r @ H ′
1, dj ,H

′
2 \ H ′

3 ⇐⇒ g | C

and θ ≡ chr(H1) = H ′
1 ∧ c = dj ∧ chr(H2) = H ′

2 ∧ chr(H3) = H ′
3 such that{

D |= B → ∃r(θ ∧ g)
id(H1) ++ [i] ++ id(H2) ++ id(H3) ++ [r] 6∈ T

In the result T ′ = T ∪ {id(H1) ++ [i] ++ id(H2) ++ id(H3) ++ [r]}.
The role of the propagation histories T and T ′ is exactly the same as with the

theoretical operational semantics, ωt.
7. Default

〈[c#i : j|A], S,B, T 〉Vn � 〈[c#i : j + 1|A], S,B, T 〉Vn

if the current state cannot fire any other transition.

Some of the transitions for the refined operational semantics are analogous to
transitions under the theoretical semantics. For example, the refined Solve tran-
sition corresponds to the theoretical Solve transition, as they both introduce a
new built-in constraint into store B. Likewise, Activate corresponds to Intro-
duce (add a new CHR constraint to the store), and Simplify and Propagate

7 As with the theoretical semantics, it is not necessary to check the history if H2 is not empty.
We include the check anyway to simplify our proofs later in this paper.

The Refined Operational Semantics of CHRs 11

correspond to Apply (fires a rule on some constraints in the store). This corre-
spondence is not accidental, and later in this paper we formally define a mapping
between the semantics.

The main difference between the refined and theoretical semantics is the presence
(and behaviour) of active constraints. A rule r can only fire (via Simplify or
Propagate) if the occurrence number of the current active constraint (on top of
the execution stack) appears in the head of rule r. An active constraint is only
allowed to match against the constraint in the head of r that shares the same
occurrence number.

Example 6 For example, an active constraint gcd(3)#4 : 2 (with occurrence num-
ber 2) is only allowed to match against gcd(M)2 (also with occurrence number 2)
in the following rule.

gcd2 @ gcd(N)3 \ gcd(M)2 <=> M ≥ N | gcd(M-N).

This is very different to the theoretical semantics, where a rule is free to fire on any
subset of the current CHR store.

If the current active constraint cannot match against the associated rule, e.g. if all
matchings have already been tried, then the active constraint “moves” to the next
occurrence via the Default transition. This ensures that, assuming termination, all
occurrences will eventually be tried. When there are no more occurrences to check,
i.e. the occurrence number associated to an active constraint does not appear in P ,
then we can apply Drop. This pops off the current active constraint, but does not
remove anything from the store.

Initially there are no active constraints in the goal, but we can turn a non-active
constraint into an active constraint via the Activate transition. The Activate
transition associates the first occurrence (defined as occurrence number 1) with the
constraint, and adds a copy of the constraint to the CHR constraint store (just like
Introduce under the theoretical semantics).

The Solve transition is also handled differently. After applying Solve, a subset
of the CHR store (defined by the wakeup policy) is appended to the front of the ex-
ecution stack. The intention is that these constraints will eventually become active
again (via the Reactivate transition), and will reconsider all rules in the program
P . These active constraints may fire against more rules than before, because the
addition of the new built-in constraint c may mean the underlying solver can prove
more guards hold than before.

Example 7 Consider the following (canonical example) CHR program defining a
less-than-or-equal-to relation leq.

reflexivity @ leq(X,X)1 <=> true.

antisymmetry @ leq(X,Y)3, leq(Y,X)2 <=> X = Y.

idempotence @ leq(X,Y)5 \ leq(X,Y)4 <=> true.

transitivity @ leq(X,Y)7, leq(Y,Z)6 ==> leq(X,Z).

12 G. Duck et al.

〈[gcd(6), gcd(9)], ∅〉1 (1)
�activate 〈[gcd(6)#1 : 1, gcd(9)], {gcd(6)#1}〉2 (2)
�×3

default 〈[gcd(6)#1 : 4, gcd(9)], {gcd(6)#1}〉2 (2)

�drop 〈[gcd(9)], {gcd(6)#1}〉2 (2)
�activate�default 〈[gcd(9)#2 : 2], {gcd(9)#2, gcd(6)#1}〉3 (3)
�simplify 〈[gcd(3)], {gcd(6)#1}〉3 (4)
�activate�×2

default 〈[gcd(3)#3 : 3], {gcd(3)#3, gcd(6)#1}〉3 (5)

�propagate 〈[gcd(3), gcd(3)#3 : 3], {gcd(3)#3}〉4 (6)
�activate�default 〈[gcd(3)#4 : 2, gcd(3)#3 : 3], {gcd(3)#4, gcd(3)#3}〉5 (7)
�simplify 〈[gcd(0), gcd(3)#3 : 3], {gcd(3)#3}〉5 (8)
�activate 〈[gcd(0)#5 : 1, gcd(3)#3 : 3], {gcd(0)#5, gcd(3)#3}〉6 (9)
�simplify 〈[gcd(3)#3 : 3], {gcd(3)#3}〉6 (10)
�default�drop 〈[], {gcd(3)#3}〉6 (10)

Fig. 3. ωr derivation for gcd.

Assume the built-in store B is empty (i.e. B = true), then a constraint leq(J,K)
where J and K are distinct variables cannot fire the first rule because D |= true →
∃X((J = X ∧K = X) ∧ true) does not hold. However, if a new constraint J = K

were to be added into the built-in store via a Solve transition, then D |= (J =
K) → ∃X(((J = X ∧K = X) ∧ true) holds, thus the rule can now fire.

Under the refined semantics, the constraint leq(J,K) will be copied to the exe-
cution stack during the Solve transition. Therefore eventually (assuming termina-
tion), the constraint will be Reactivated, and fire the rule.

The refined operational semantics constrains the values a wakeup policy is allowed
to return. At the very minimum, a wakeup policy must contain a CHR constraint
from every new matching that is possible thanks to the addition of c into the built-in
store (the lower bound condition). At most, a wakeup policy returns all non-ground
constraints currently in the CHR store (the upper bound condition). The exact
behaviour of the wakeup policy is left to the implementation.

We now present an example derivation under the refined operational semantics.

Example 8 Figure 3 shows the derivation under ωr semantics for the gcd program
in Example 4 and the goal gcd(6),gcd(9). For brevity B, T and V have been
eliminated, and we apply the substitutions θ throughout.

4 The relationship between ωt and ωr

Once both semantics are established, we can define an abstraction function α which
maps execution states of ωr to ωt. Later, we use this abstraction function to prove
correctness of the refined semantics ωr with respect to the theoretical semantics ωt.

Definition 11 (Correspondence of States) The abstraction function α is de-
fined as

α(〈A,S,B, T 〉Vn) = 〈no id(A), S,B, T 〉Vn
where no id(A) = {c | c ∈ A is not of the form c#i or c#i : j}.

The Refined Operational Semantics of CHRs 13

The abstraction function removes all numbered constraints from the execution
stack, and turns the stack into an unordered multiset.

Example 9 Consider the following ωr state from the gcd example.

〈[gcd(0), gcd(3)#3 : 3], {gcd(3)#3}〉5

After applying α we get

〈{gcd(0)}, {gcd(3)#3}〉5
We have simply removed the active constraint gcd(3)#3 : 3 from the stack, as it
was identified with number 3, and turned the stack (which is a sequence) into a
multiset. The rest of the state is unaffected.

We now extend α to map a derivation D under ωr to the corresponding deriva-
tion α(D) under ωt, by mapping each state appropriately and eliminating adjacent
equivalent states.

Definition 12 (Correspondence of derivations) Function α is extended to deriva-
tions in ωr as follows

α(σ1 � D) =
α(D) if (D = σ2 � D′ or D = σ2) and α(σ1) = α(σ2)
α(σ1)� α(D) otherwise

Note that this definition is just syntactic, and we do not know if the result of apply
function α to a ωr derivation gives a valid ωt derivation. We rely on the following
theorem to show this.

Theorem 1 (Correspondence) For all ωr derivations D, α(D) is a ωt deriva-
tion.

Proof
By induction. We use Di to represent a derivation of length i, we also let σj be the
jth state in Di, so Di = σ0 � σ1 � ...� σi. Derivations of length i + 1 must be
constructed from derivations of length i.
Base case: Derivations of zero length. Then α(D0) = α(σ0) is a ωt derivation of
zero length for all D0.
Induction Step: Assume that for all derivations Di of length i, α(Di) is a ωt deriva-
tion. Let Di+1 be a ωr derivation of length i + 1 constructed from a derivation Di

by applying a ωr transition to σi (the last state in Di). We show that α(Di+1) is a
ωt derivation.

Let σi+1 be the last state in Di+1, we factor out two possible relationships be-
tween α(σi) and α(σi+1) and show that these imply α(Di+1) is also a ωt derivation.

• Case 1: α(σi+1) = α(σi), then

α(Di+1) =
α(Di � σi+1) =
α(Di)

14 G. Duck et al.

Hence α(Di+1) is also a ωt derivation; or
• Case 2: α(σi)�ωt α(σi+1) holds for some ωt transition�ωt , then

α(Di+1) =
α(Di �ωr σi+1) =
α(Di)�ωt

α(σi+1)

This means α(Di+1) is constructed from ωt derivation α(Di) by applying a ωt

transition to the last state α(σi), hence α(σi+1) is a ωt derivation by definition.

It remains to be shown that if σi � σi+1 under ωr, then either Case 1 or Case 2
holds for α(σi) and α(σi+1). For this we consider all possibilities for the ωr transition
from σi to σi+1.
CASE Solve: σi � σi+1 is of the form

〈[c|A], S,B, T 〉n �solve 〈wakeup policy(S, c, B) ++ A,S, c ∧B, T 〉n

Where c is some built-in constraint. Then α(σi) = 〈{c}] no id(A), S,B, T 〉n. We
can apply the ωt version of Solve to α(σi).

〈{c}] no id(A), S,B, T 〉n �solve 〈no id(A), S, c ∧B, T 〉n

Now 〈no id(A), S, c∧B, T 〉n = α(σi+1), so α(σi)�ωt
α(σi+1) where the transition

is ωt Solve. Hence Case 2 above is satisfied.
CASE Activate: σi � σi+1 is of the form

〈[c|A], S,B, T 〉n �activate 〈[c#n : 1|A], {c#n}] S, B, T 〉(n+1)

Where c is some CHR constraint (not yet numbered). Then α(σi) = 〈{c}]no id(A), S,B, T 〉n.
We can apply the ωt Introduce to α(σi).

〈{c}] no id(A), S,B, T 〉n �introduce 〈no id(A), {c#n}] S, B, T 〉(n+1)

Now 〈no id(A), {c#n}]S, B, T 〉(n+1) = α(σi+1), so α(σi)�introduce α(σi+1) where
the ωt transition is Introduce. Hence Case 2 above is satisfied.
CASE Reactivate: σi � σi+1 is of the form

〈[c#i|A], S,B, T 〉n �reactivate 〈[c#i : 1|A], S,B, T 〉n

Then α(σi) = α(σi+1) = 〈no id(A), S,B, T 〉n. Hence Case 1 above is satisfied.
CASE Drop: σi � σi+1 is of the form

〈[c#i : j|A], S,B, T 〉n �drop 〈A,S,B, T 〉n

Then α(σi) = α(σi+1) = 〈no id(A), S,B, T 〉n. Hence Case 1 above is satisfied.
CASE Simplify: σi � σi+1 is of the form

〈[c#i : j|A], {c#i}]H1]H2]H3] S, B, T 〉n �simplify

〈C ++ A,H1] S, θ ∧B, T ′〉n

where the jth occurrence of the CHR predicate of c in a (renamed apart) rule in P

is

r @ H ′
1 \ H ′

2, dj ,H
′
3 ⇐⇒ g | C

The Refined Operational Semantics of CHRs 15

and θ is θ ≡ chr(H1) = H ′
1 ∧ chr(H2) = H ′

2 ∧ c = dj ∧ chr(H3) = H ′
3, and the tuple

id(H1) ++ id(H2) ++ [i] ++ id(H3) ++ [r] 6∈ T .
Then α(σi) = 〈no id(A), {c#i}]H1]H2]H3]S, B, T 〉n. We show that the ωt

Apply transition is applicable to α(σi), namely

• There exists a (renamed apart) rule in P of the form

r′′ @ H ′′
1 \ H ′′

2 ⇐⇒ g′′ | C ′′

This is satisfied by r = r′′, H ′′
1 = H ′

1, H ′′
2 = (H ′

2, dj ,H
′
3), g′′ = g and C ′′ = C. In

other words, the same rule as above.
• There exists a θ′′ such that θ′′ ≡ chr(H1) = H ′′

1 ∧ chr(H2, c, H3) = H ′′
2 . This is

satisfied by θ′′ = θ from above.
• The guard g′′ is satisfied, i.e. D |= B → ∃r′′(θ′′ ∧ g′′). This is satisfied because
D |= B → ∃̄r(θ ∧ g) holds, and r′′ = r, θ′′ = θ and g′′ = g.

• The tuple id(H1) ++ id(H2) ++ [i] ++ id(H3) ++ [r] 6∈ T . This is directly satisfied
from above.

Hence

〈no id(A), {c#i}]H1]H2]H3]S, B, T 〉n �apply 〈C]no id(A),H1]S, θ∧B, T ′〉n

Now 〈C] no id(A),H1] S, θ ∧ B, T ′〉n = α(σi+1), so α(σi)�apply α(σi+1) where
the ωt transition is Apply. Hence Case 2 above is satisfied.
CASE Propagate: σi � σi+1 is of the form

〈[c#i : j|A], {c#i}]H1]H2]H3] S, B, T 〉n �propagate

〈θ(C) ++ [c#i : j|A], {c#i}]H1]H3] S, B, T ′〉n

where the jth occurrence of the CHR predicate of c in a (renamed apart) rule in P

is

r @ H ′
1, dj ,H

′
2 \ H ′

3 ⇐⇒ g | C

and θ is θ ≡ chr(H1) = H ′
1 ∧ c = dj ∧ chr(H2) = H ′

2 ∧ chr(H3) = H ′
3, and

D |= B → ∃r(θ ∧ g), and the tuple id(H1) ++ [i] ++ id(H2) ++ id(H3) ++ [r] 6∈ T .
Then α(σi) = 〈no id(A), {c#i}]H1]H2]H3]S, B, T 〉n. We show that the ωt

Apply transition is applicable to α(σi), namely

• There exists a (renamed apart) rule in P of the form

r′′ @ H ′′
1 \ H ′′

2 ⇐⇒ g′′ | C ′′

This is satisfied by r = r′′, H ′′
1 = (H ′

1, dj ,H
′
2), H ′′

2 = H ′
3, g′′ = g and C ′′ = C. In

other words, the same rule as above.
• There exists a θ′′ such that θ′′ ≡ chr(H1, c, H2) = H ′′

1 ∧ chr(H3) = H ′′
2 . This is

satisfied by θ′′ = θ from above.
• The guard g′′ is satisfied, i.e. D |= B → ∃r′′(θ′′ ∧ g′′). This is satisfied because
D |= B → ∃r(θ ∧ g) holds, and r′′ = r, θ′′ = θ and g′′ = g.

• The tuple id(H1) ++ [i] ++ id(H2) ++ id(H3) ++ [r] 6∈ T . This is directly satisfied
from above.

16 G. Duck et al.

Hence

〈no id(A), {c#i}]H1]H2]H3] S, B, T 〉n �apply

〈C] no id(A), {c#i}]H1]H2] S, θ ∧B, T ′〉n

Now 〈C] no id(A), {c#i}] H1] H2] S, θ ∧ B, T ′〉n = α(σi+1), so α(σi) �apply

α(σi+1) where the ωt transition is Apply. Hence Case 2 above is satisfied.
CASE Default: σi � σi+1 is of the form

〈[c#i : j|A], S,B, T 〉n �default 〈[c#i : j + 1|A], S,B, T 〉n

Then α(σi) = α(σi+1) = 〈no id(A), S,B, T 〉n. Hence Case 1 above is satisfied.
Therefore, for all ωr derivations D, α(D) is a ωt derivation.

We have shown that every ωr derivation has a corresponding ωt derivation given
by function α. But in order to show the correspondence of the semantics we also
need to show that the terminating ωr derivations map to terminating ωt derivations.
First we need to define what subset of all ωr execution states need to be considered.

Definition 13 (Reachability) An execution state σ (of either semantics) is reach-
able if there exists an initial state σ0 = 〈G, ∅, true, ∅〉1 such that there exists a
derivation σ0 �∗ σ.

Not all states are reachable.

Example 10 The following execution state is not reachable with respect to the gcd

program from Example 1.

〈[], {gcd(0)#1}〉2
If a gcd(0) constraint is present in the store, then at some stage in the derivation
that constraint must have been active. When it was active the first rule must have
fired, hence the constraint must have been deleted. Therefore the above program state
is not reachable.

Reachability is generally undecidable for programming languages and this certainly
applies to CHRs.

Before we state the main theorem we need to prove two lemmas related to reacha-
bility of ωr states, i.e. given a state of a specified form, together with some additional
assumptions, can we find a future state in the derivation that matches some other
specified form.

The first lemma says that if we have some prefix of constraints on the top of
the execution stack, then eventually those constraints will be removed assuming
termination and non-failure.

Lemma 1 (Intermediate States 1) Let D be a finite ωr derivation from an ex-
ecution state σ of the form 〈Ap ++ As, S,B, T 〉n (for non-empty As) to some non-
false final state. Then there exists an intermediate state σk of the form 〈As, Sk, Bk, Tk〉nk

(the same As) in D.

The Refined Operational Semantics of CHRs 17

Proof
Direct proof. We define an abstraction function β which takes a suffix A′

s and a
state 〈A′

p ++ A′
s, S

′, B′, T ′〉n′ where the execution stack ends with the suffix A′
s,

and returns the length of the prefix A′
p.

β(A′
s, 〈A′

p ++ A′
s, S

′, B′, T ′〉n′) = len(A′
p)

Where function len returns the length of a sequence defined in the standard way.
The function β(A′

s, σ
′) is undefined if the execution stack of σ′ does not end with

A′
s.
The function β(As, σ) is well-defined for suffix As and initial state σ from above.

Let σf be the final state in derivation D. Since σf is non-false, it must be of the
form 〈[], Sf , Bf , Tf 〉nf

. As As is non-empty by assumption, function β(As, σf) is
undefined for σf . Therefore there must exist two consecutive states σi and σi+1 in
D such that β(As, σi) is defined but β(As, σi+1) is not.

We consider the possible transitions between σi and σi+1.
CASE Activate, Reactivate and Default: If β(As, σi) is defined then β(As, σi+1) =
β(As, σi) is also defined. Hence we can exclude these cases.
CASE Drop: If β(As, σi) is defined then β(As, σi+1) = β(As, σi) − 1 is defined if
β(As, σi) ≥ 1, otherwise β(As, σi+1) is undefined.
CASE Solve: If β(As, σi) is defined then β(As, σi+1) = β(As, σi) + len(S1) − 1
(where S1 represents that constraints woken up by the wakeup policy) is defined if
len(S1) ≥ 1 or β(As, σi) ≥ 1, otherwise β(As, σi+1) is undefined.
CASE Simplify: If β(As, σi) is defined then β(As, σi+1) = β(As, σi) + len(C)− 1
(where C is the body of the rule that fired) is always defined since len(C) ≥ 1 (the
body of a rule must be at least of length 1). Hence we can exclude this case.
CASE Propagate: If β(As, σi) is defined then β(As, σi+1) = β(As, σi) + len(C)
(where C is the body of the rule that fired) is always defined. Hence we can exclude
this case.

Hence the only possible transitions between σi and σi+1 are

1. Drop when β(As, σi) = 0; and
2. Solve when β(As, σi) = 0 and len(S1) = 0.

In either case, β(As, σi) = 0 holds iff σi is of the form 〈As, Si, Bi, Ti〉ni , hence
σk = σi directly satisfies our hypothesis.

The second lemma says that if we have a newly activated constraint (with oc-
currence number 1), and some occurrence k in the program for that constraint,
then the active constraint will eventually reach occurrence k assuming termination,
non-failure and the active constraint is never deleted.

Lemma 2 (Intermediate States 2) Let σ = 〈[c#i : 0|A], {c#i}] S, B, T 〉n be
an ωr execution state and D a derivation from σ to some non-false final state σf

such that c#i ∈ Sf . Then for all programs P and occurrences k of predicate c in P ,
there exists an intermediate state σk of the form 〈[c#i : k|A], {c#i}]Sk, Bk, Tk〉nk

in D.

18 G. Duck et al.

Proof
By induction.
Base case: k = 1. Then σk = σ is of the appropriate form.
Induction Step: Assume that for all programs P and occurrences k of predicate c

in P , there exists an intermediate state σk of the form σk = 〈[c#i : k|A], {c#i}]
Sk, Bk, Tk〉n. We show how to find state σk+1 = 〈[c#i : k+1|A], {c#i}]Sk+1, Bk+1, Tk+1〉nk+1 .

Note that because derivation D is finite, there can only be a finite number of
states of the form σk, so w.l.o.g assume σk is the last state in D of the required
form.

We consider all possible ωl transitions applicable to σk.
CASE Solve, Activate and Reactivate: None of these are applicable to a state
of the form σk;
CASE Drop: Not applicable since this means occurrence k does not exist, which
violates the induction hypothesis;
CASE Simplify: This will delete the active constraint which violates our assump-
tion that c#i is never deleted throughout derivation D.
CASE Propagate: Then

〈[c#i : k|A], {c#i}]Sk, Bk, Tk〉n �propagate 〈C ++ [c#i : k|A], {c#i}]S′k, B′
k, T ′

k〉n

We can now apply Lemma 1 to find a future state σ′k in derivation D of the form

〈[c#i : k|A], {c#i}] S′′k , B′′
k , T ′′

k 〉n′′

But σ′k is in the same form as σk, which contradicts our assumption that σk was
the last state in the derivation of that form.

Thus the only transitions applicable to σk is Default.

〈[c#i : k|A], {c#i}] Sk, Bk, Tk〉n �default 〈[c#i : k + 1|A], {c#i}] Sk, Bk, Tk〉n

The new state is of the required form for k + 1.
Therefore for all programs P and occurrences k of predicate c in P , there exists an

intermediate state σk of the form 〈[c#i : k|A], {c#i}]Sk, Bk, Tk〉nk
in D, provided

D starts with state a state of the form 〈[c#i : 1|A], {c#i}]S, B, T 〉n, and does not
delete c#i.

We can now show that reachable final ωr states map to reachable8 final states
under ωt.

Theorem 2 (Final States) Let σ be a reachable final state under ωr, then α(σ)
is a reachable final state under ωt.

Proof
By contradiction. Assume that α(σ) is not a final state, i.e. α(σ) can fire at least
one ωt transition.

Because σ is a reachable final state, these exists an initial state σ0 such that

8 Reachability is obviously preserved thanks to Theorem 1

The Refined Operational Semantics of CHRs 19

σ0 �∗
D σ for some ωr derivation D. For convenience, we rename σ = σf and

name every state in the derivation σi = 〈Ai, Si, Bi, Ti〉ni for some i such that
D = σ0 � σ1 � ... � σf . By Theorem 1, α(D) is a ωt derivation from α(σ0) to
α(σf).

Execution state σn is a final state, therefore σn = 〈[], Sf , Bf , Tf 〉mf
(i.e. the

execution stack Af is empty). The other possibility is σn = false, but then α(σn) =
false which is also a final state. Hence α(σn) = 〈∅, Sf , Bf , Tf 〉mf

, and only the
Apply transition is applicable to such a ωt state (the goal field is empty).

Let H1] H2 ⊆ Sf , and let (r @ H ′
1 \ H ′

2 ⇐⇒ g | C) be the instance of the
rule that matches with θ ≡ chr(H1) = H ′

1 ∧ chr(H2) = H ′
2. We also know that

D |= Bf → ∃r(θ ∧ g), and id(H1) ++ id(H2) ++ [r] 6∈ Tf otherwise Apply is not
applicable.

Consider the derivation D. The built-in store is monotonically increasing through-
out the derivation, i.e. for all built-in stores Bi and Bj from states σi, σj ∈ D, if
i < j then Bi ⊆ Bj (by treating Bi and Bj as multisets). This is easily verified by
observing none of the ωr derivations delete constraints from the built-in store. If
for some σi in D we have that D |= Bi → ∃r(θ ∧ g), then for all j > i we have that
D |= Bj → ∃r(θ ∧ g).

For final state σf , the guard holds, i.e. D |= Bf → ∃r(θ ∧ g). Therefore there
must exist a first state σb ∈ D such that the guard holds, i.e. D |= Bb → ∃r(θ ∧ g),
but not for σj where j < b, i.e. D 6|= Bj → ∃r(θ∧g). Note the index ‘b’ in σb stands
for “built-in” – the first state where the built-in store entails the guard g.

Let σs be the first execution state in D where H1] H2 ⊆ Ss where Ss is the
CHR store of σs. Such a state must exist because H1]H2 ⊆ Sf , where Sf is the
CHR store of final state σf . Here the ‘s’ stands for “CHR store” – the first state
where all constraints H1]H2 are in the CHR store.

We know that in derivation D, the states σb and σs must be present. There are
two cases we need to consider, namely b ≤ s and b > s.
CASE b ≤ s: Let c#i ∈ H1]H2 be the CHR constraint such that c#i ∈ Ss (the
store for σs) but c#i 6∈ Ss−1 (the store for σs−1), i.e. c#i is the last constraint in
H1]H2 to be added to the store. The ωr transition between σs−1 and σs must be
Activate, since this is the only transition that will add a CHR constraint into the
store. Activate also activates the topmost constraint, so for some A′

s and S′s we
have σs = 〈[c#i : 1|A′

s], {c#i}] S′s, Bs, Ts〉ns
.

Let k be the occurrence of predicate c in rule r (from above) that matched with c

when we applied the Apply transition to α(Sf). By Lemma 2 there exists at least
one future state σt of the form 〈[c#i : k|A′

t], {c#i}]S′t, Bt, Tt〉nt . Since D is finite,
there must be a last state in the form σt, so w.l.o.g. assume that σt is the last state
in D of the above form. The only possible applicable transition that doesn’t violate
one of our assumptions is Propagate, because:

1. Solve, Activate, Reactivate and Drop are directly not applicable to a state in
the form of σt;

2. Default is not applicable, since we know this state could potentially fire the Prop-
agate transition on rule r because H1]H2 ⊆ St matches against the head of rule

20 G. Duck et al.

r with θ (where θ is exactly the same as the one from above). We know that D |=
Bt → ∃r(θ ∧ g) because of the assumption b ≤ s and id(H1) ++ id(H2) ++ [r] 6∈ Tt

because no such entry appears in the final state;
3. Simplify is not applicable since it will delete the active c#i constraint, violating

our assumption that c#i appears in the final store of σf .

So the transition applied to σt in D must be Propagate (on a different matching).

〈[c#i : k|A′
t], {c#i}] S′t, Bt, Tt〉nt

�propagate

〈C ++ [c#i : k|A′
t], {c#i}] S′t, B

′
t, T

′
t 〉nt

We can now apply Lemma 1 to find a future state σu in derivation D of the form
〈[c#i : k|A′

t], {c#i}] S′u, Bu, Tu〉nu
. But σu is in the same form as σt which con-

tradicts our assumption that σt was the last such state.
CASE b > s:

Consider the state σb−1, i.e. the state just before the built-in store satisfies the
guard g.

The transitions that modify the built-in constraint store are Solve, Simplify
and Propagate. We can exclude both Simplify and Propagate, since these only
introduce equations on fresh variables (i.e. the θ) which does not change the meaning
of the store. Hence Solve must be the transition between σb−1 and σb. By the lower
bound condition of a wakeup policy used by Solve, there must be a constraint c#i ∈
H1] H2 such that c#i is an element of the constraints woken up by the wakeup
policy. Therefore σb must be of the form 〈Ap ++ [c#i|As], {c#i}] S′b, Bb, Tb〉nb

.
In other words, after applying Solve on σb−1, the constraint c#i must appear
somewhere on the execution stack.

We can now apply Lemma 1 to derive a future state σ′b of the form 〈[c#i|As], {c#i}]
S′′b , B′

b, T
′
b〉n′b . The only transition applicable to such a state is Reactivate, hence

〈[c#i|As], {c#i}] S′′b , B′
b, T

′
b〉n′b �reactivate 〈[c#i : 1|As], {c#i}] S′′b , B′

b, T
′
b〉n′b

Now this new state is in the same form as σs from the b ≤ s case (see above), hence
we can apply the same argument as before to derive the same contradiction.

Theorem 1 and Theorem 2 show that the refined operational semantics correctly
implement the theoretical operational semantics.

4.1 Termination

Termination of CHR programs is obviously a desirable property. Thanks to Theo-
rems 1 and 2, termination of ωt programs ensures termination of ωr.

Firstly we need to show that all ωr derivations consisting only of Reactivate,
Drop and Default transitions are finite. Notice that these are the transitions that
disappear after function α has been applied to a ωr derivation (see the proof of
Theorem 1).

Lemma 3 Let σ be an ωr execution state, then there is no infinite ωr derivation
σ�∞ consisting of only Reactivate, Drop and Default transitions.

The Refined Operational Semantics of CHRs 21

Proof
By constructing a well founded order over such derivations. Firstly define a ranking
(abstraction) function rank that maps ωr execution states and a CHR program P

to a triple of non-negative integers.

rank(〈A,S,B, T 〉i, P) = (len(A), len(nums(A)), total(P)− occ(A))

Where function len maps a sequence to the length of that sequence, defined in
the standard way. Function nums maps a sequence of constraints to a sequence of
numbered constraints by filtering out all non-numbered and active constraints.

nums([]) = []
nums([c|A]) = nums(A)
nums([c#i|A]) = [c#i] ++ nums(A)
nums([c#i : j|A]) = nums(A)

Function occ maps a sequence of constraints A to the occurrence number of the
top-most active constraint if it exists; or 0 otherwise.

occ([]) = 0
occ([c|A]) = 0
occ([c#i|A]) = 0
occ([c#i : j|A]) = j

Finally function total maps a program P to the total number of constraints in the
heads of every rule plus one.

total([]) = 1
total([(r @ H1 \ H2 ⇐⇒ g | C)|P]) = len(H1) + len(H2) + total(P)

Let ≺ be the standard lexicographical tuple ordering. For all reachable execu-
tion states σ and programs P , rank(σ, P) � (0, 0, 0). This directly follows from
the fact that len(A) ≥ 0 for all sequences A, and total(P) ≥ occ(A) for all se-
quences of constraints A and programs P . Thus ordering over the ranks of execution
states is well-founded, i.e. no infinite decreasing chains of execution state rankings
rank(σ0, P) � rank(σ1, P) �

Next we show that for all execution states σ and σ′ such that σ� σ′ by transition
Reactivate, Drop or Default, then rank(σ′, P) ≺ rank(σ, P).
CASE Drop: σ� σ′ is of the form

〈[c#i : j|A], S,B, T 〉n �drop 〈A,S,B, T 〉n
If rank(σ, P) = (x1, x2, x3), then rank(σ′, P) = (x1 − 1, x2, x

′
3) for some x′3. Hence

rank(σ′, P) ≺ rank(σ, P).
CASE Reactivate: σ� σ′ is of the form

〈[c#i|A], S,B, T 〉n �reactivate 〈[c#i : 1|A], S,B, T 〉n
If rank(σ, P) = (x1, x2, x3), then rank(σ′, P) = (x1, x2 − 1, x′3) for some x′3. Hence
rank(σ′, P) ≺ rank(σ, P).
CASE Default: σ� σ′ is of the form

〈[c#i : j|A], S,B, T 〉n �default 〈[c#i : j + 1|A], S,B, T 〉n

22 G. Duck et al.

If rank(σ, P) = (x1, x2, x3), then rank(σ′, P) = (x1, x2, x3−1). Hence rank(σ′, P) ≺
rank(σ, P).

Thus we have established a termination order, thus proving derivations consisting
of only Reactivate, Drop and Default must be finite.

We can now state the main termination result.

Lemma 4 Let σ0 be an ωr execution state. If every derivation for α(σ0) terminates
under ωt, then every derivation for σ0 also terminates under ωr.

Proof
By contradiction. Assume α(σ0) terminates under ωt, but not for σ0 with respect
to ωr. Then there exists an infinite ωr derivation D starting from σ0. By Theorem 1
there must be a corresponding derivation α(D) from initial state α(σ0) with respect
to ωt. By assumption, α(D) must be finite.

We partition derivation D into infinitely many subderivations D0 ++ D1 ++
D2 ++ ... as follows. Each Di is a finite sub-derivation of D starting from the
last state in Di−1 for i > 0 (or σ0 otherwise) to a state σi such that the transition
between the state proceeding σi and σi in D is either Solve, Activate, Simplify or
Propagate. All other transitions in Di must be Reactivate, Drop and Default.
In other words, Di = D′

i �i σi where D′
i is a (possibly trivial) subderivation of D

consisting only of Reactivate, Drop and Default transitions, and transition�i

to state σi is either Solve, Activate, Simplify or Propagate.
Note that it is always possible to partition D in this way. Otherwise suppose

that D = D0 ++ D1 ++ D2 ++ ... ++ Dn ++ D′ where it is not possible to
further partition D′, then D′ must not contain a Solve, Activate, Simplify or
Propagate transition. Then Lemma 3 implies D′ is finite, thus D is finite, which
directly contradicts our initial assumption that D is infinite. So D = D0 ++ D1 ++
D2 ++ ... for infinitely many Di.

Now α(D) = α(D0 ++ D1 ++ D2 ++ ...) = α(D0) ++ α(D1) ++ α(D2) ++
Each Di contains one Solve, Activate, Simplify or Propagate transition, hence
each α(Di) has non-zero length (see the proof of Theorem 1). As the length of α(D)
is the sum of the (non-zero) lengths of every α(Di), and there are infinitely many
α(Di), then α(D) has infinite length which is a contradiction.

The converse is clearly not true, as shown in Example 1.
In practice, proving termination for CHR programs under the theoretical opera-

tional semantics is quite difficult (see (Frühwirth 1999) for examples and discussion).
It is somewhat simpler for the refined operational semantics but, just as with other
programming languages, this is simply left to the programmer.

4.2 Confluence

Both operational semantics for CHRs are nondeterministic, therefore the property
of confluence (which guarantees the same result no matter the order transitions are

The Refined Operational Semantics of CHRs 23

applied) is essential from a programmer’s point of view. Without it the programmer
cannot anticipate the answer that will arise from a goal.

There are two main sources of nondeterminism from the refined semantics. The
first is from the Solve transition, where the order (and number of repeats) of the
woken up constraints are (re)added to the execution stack is unspecified. The second
is from the Simplify and Propagate transitions, where there may be more than
one choice for choosing matching partner constraints.

Example 11 Consider a CHR implementation of a simple database:

l1 @ entry(Key,Val)1 \ lookup(Key,ValOut)1 <=> ValOut = Val.

l2 @ lookup(,)2 <=> fail.

where the constraint lookup represents the basic database operations of key lookup,
and entry represents a piece of data currently in the database (an entry in the
database). Rule l1 looks for the matching entry to a lookup query and returns in
ValOut the stored value. Rule l2 causes a lookup to fail if there is no matching
entry.

Consider the following (simplified) execution state with two database entries for
the same key, and an active lookup constraint on the stack.

〈[lookup(key, V)#3 : 1], {lookup(key, V)#3,

entry(key, cat)#2, entry(key, dog)#1}, true〉4

Now the active lookup constraint is at occurrence 1 from rule l1 above, so Simplify

is applicable matching against either entry(key, cat) or entry(key, dog) from the
store. Depending on what matching is chosen (both are equally valid), the resulting
state after Simplify is

〈[], {entry(key, cat)#2, entry(key, dog)#1}, V = cat〉4

or

〈[], {entry(key, cat)#2, entry(key, dog)#1}, V = dog〉4
Since these are both final states are not the same result, it follows that the database

program is non-confluent.

In order to properly formalise the property of confluence first we need to define
what it means to get the “same result”. Unfortunately, a straightforward syntactic
comparison is too strong in general, since we do not care about constraint number-
ing and similar things. We do however care about propagation histories, because
“equivalent” states should be similarly applicable to the same set of rules. We define
a mapping which extracts the part of a propagation history that we care about as
follows.

Definition 14 (Live History) Function alive is a bijective mapping from a CHR

24 G. Duck et al.

store S and a propagation history to a propagation history defined as follows.

alive(S, ∅) = ∅
alive(S, {t}] T) = alive(S, t)] alive(S, T)
alive(S, t ++ []) = ∅ if ∃i ∈ t such that ∀c(c#i 6∈ S)
alive(, t) = {t} otherwise

In other words, alive(S, T) is propagation history T where all entries with numbers
for deleted (i.e. not alive) constraints have been removed. Note that alive(S, T) can
only have entries on propagation rules (otherwise one of the numbers in the entry
must be dead).

We can now formally define variance between two states.

Definition 15 (Variants) Two states

σ1 = 〈A1, S1, B1, T1〉Vi1 and σ2 = 〈A2, S2, B2, T2〉Vi2
(from either semantics) are variants if there exists a renaming ρ on variables not
in V and a mapping % on constraint numbers such that

1. ρ ◦ %(A1) = A2 (sequence equality for ωr, multiset equality for ωt);
2. ρ ◦ %(S1) = S2;
3. D |= (∃̄Vρ(B1) ↔ ∃̄VB2); and
4. % ◦ alive(S1, T1) = alive(S2, T2).

Otherwise the two states are variants if D |= ¬∃̄∅B1 and D |= ¬∃̄∅B2 (i.e. both
states are false).

In other words, we consider two (non-false) states σ1 and σ2 to be variants (i.e.
the “same result”) if the two goals (or execution stacks) and CHR stores are the
same, the built-in solver can prove that the built-in stores are logically equivalent,
and the “live” parts of the propagation histories are the same, all modulo variables
not appearing in V and constraint numbering.

We can now define joinability, which is the property that two execution states
reduce to the same answer.

Definition 16 (Joinable) Two states σ1 and σ2 are joinable if there exists states
σ′1 and σ′2 such that σ1 �∗ σ′1 and σ2 �∗ σ′2 and σ′1 and σ′2 are variants.

Now we can formally define confluence as follows.

Definition 17 (Confluence) A CHR program P is confluent with respect to op-
erational semantics ω if the following holds for all states σ0, σ1 and σ2 where σ0

is a reachable state: If σ0 �∗
ω σ1 and σ0 �∗

ω σ2 then σ1 and σ2 are joinable with
respect to σ0.

This definition is slightly stronger than the classical definition in (Abdennadher
1997) since we require σ0 to be a reachable state. This is important, since the pro-
grammer generally only cares about reachable states. Our definition is stronger, so
confluence under the classical definition implies confluence under our new definition.

The Refined Operational Semantics of CHRs 25

Example 12 The gcd program from Example 1 is confluent under both operational
semantics (although it may not terminate under the theoretical semantics). This is
because any final state derived from the initial goal gcd(i1), ..., gcd(in) must contain
only the constraint gcd(gcd(i1, ..., in)) in the store. The built-in stores must also be
equivalent once all temporary variables (created by matching constraints against
rules) are renamed. Hence the gcd program is confluent.

Confluence of the theoretical operational semantics of CHR programs has been
extensively studied (Frühwirth 1998; Abdennadher 1997; Abdennadher et al. 1999).
Abdennadher (1997) provides a decidable confluence test for the theoretical seman-
tics of terminating CHR programs. Essentially, it relies on computing critical pairs
where two rules can possibly be used, and showing that each of the two resulting
states lead to variant states.

Just as with termination, confluence under ωt implies confluence under ωr pro-
vided the program also terminates under ωr.

Corollary 1 If CHR program P is terminating under ωr, and confluent under ωt,
then it is also confluent under ωr.

Proof
By contradiction. Assume that P is confluent under ωt, but not confluent with
respect to ωr. Then there exists a reachable ωr state σ0 such that σ0 �∗ σ′1 and
σ0 � σ′2 where σ′1 and σ′2 are not joinable. Let σ1 and σ2 be final states derived
from σ′1 and σ′2 respectively, i.e.

σ′1 �
∗ σ1 = 〈A1, S1, B1, T1〉Vi1

σ′2 �
∗ σ2 = 〈A2, S2, B2, T2〉Vi2

Where A1 = A2 = [] or both σ1 and σ2 are false. Note that it always possible to
find σ1 and σ2 because of the assumption of termination under ωr. As σ′1 and σ′2
are not joinable both σ1 and σ2 cannot be variants. Note also that by construction
σ0 �∗ σ1 and σ0 �∗ σ2.

By Theorem 1, there exists two derivations under ωt:

α(σ0)�∗ α(σ1) = 〈no id(A1), S1, B1, T1〉Vi1
α(σ0)�∗ α(σ2) = 〈no id(A2), S2, B2, T2〉Vi2

By assumption P is confluent under the theoretical operational semantics, therefore
both α(σ1) and α(σ1) must be joinable. By Theorem 2 both α(σ1) and α(σ2) are
final states, therefore to be joinable they must be variants.

There are two cases to consider.
CASE 1: D |= ¬∃̄∅B1 and D |= ¬∃̄∅B2:
(I.e. both states are false). Then σ1 and σ2 must be variants since the built-in
store is unaffected by abstraction function α.
CASE 2: There exists a renaming ρ on variables not in σ0 and a mapping % on
constraint numbers such that ρ ◦ %(S1) = S2, D |= (∃̄Vρ(B1) ↔ ∃̄VB2) and % ◦
alive(S1, T1) = alive(S2, T2). Note that because σ1 and σ2 are final states, their

26 G. Duck et al.

execution stacks are empty, i.e. A1 = A2 = []. Therefore σ1 and σ2 are variants by
definition.

Both cases directly contradict our assumption that σ1 and σ2 are not variants.
Therefore if program P which is terminating under ωr is confluent under ωt, then
it is also confluent under ωr.

Example 13 Both the gcd and leq programs (from Example 1 and Example 7)
are terminating under ωr, and are confluent under ωt. Therefore, by Corollary 1,
confluence under ωr immediately follows.

The converse of Corollary 1 is not true, as shown by the following simple example.

Example 14 The following program is confluent under ωr (since an active p con-
straint always fires rule r1).

r1 @ p <=> true.

r2 @ p <=> false.

However the program is not confluent under ωt (since p can fire either r1 or r2

resulting in non-joinable states).

This shows that the set of confluent programs under ωr is larger than the same set
under ωt.

5 Practical Confluence Test

It is common for programmers to write CHR programs that are confluent under the
refined semantics, but are not confluent under the theoretical semantics. Corollary 1
is not useful for such programs. In this section we discuss a more practical confluence
test purely for the refined semantics.

There are two sources of nondeterminism under the refined operational semantics.
The first arises from the Solve transition, where the order in which the woken up
constraints are (re)added to the execution stack is left open.

Example 15 Consider the following state for the leq program.

〈[C = B], {leq(C,A)#2, leq(A,B)#1}, true〉5

Assume that the wakeup policy includes all non-fixed CHR constraints. Solve re-
quires constraints leq(C,A) and leq(A,B) to be (re)added to execution stack. The
order is arbitrary, hence

〈[leq(C,A)#2, leq(A,C)#1], {leq(C,A)#2, leq(A,B)#1}, C = B〉5

or

〈[leq(A,C)#1, leq(C,A)#2], {leq(C,A)#2, leq(A,B)#1}, C = B〉5

are equally valid states after applying Solve.

The Refined Operational Semantics of CHRs 27

In this example the choice of the states after Solve is inconsequential, because the
leq program is confluent under the refined semantics.

The other source of nondeterminism arises the Simplify and Propagate tran-
sitions, which do not specify which partner constraints (i.e. H1,H2 and H3 from
Definition 10) should be chosen for the transition (if more than one possibility ex-
ists). Example 11 shows how this choice can result in two non-variant final states.

Both sources of nondeterminism could be removed by further “refining” the op-
erational semantics. For example, we could impose an order on matchings for Sim-
plify and Propagate, or an order on the constraints woken up after Solve. The
advantage is that all programs are trivially confluent under a deterministic opera-
tional semantics.

There are two main reasons against this idea. The first is that different CHR
implementations use different data structures to (efficiently) represent the store,
and this usually affects the order partner constraints are matched against the head
of a rule. By imposing an artificial order on partner constraints may have an adverse
effect on efficiency, since we have restricted or complicated the data structures that
can be used. The second reason is that it not clear how further refining the semantics
benefits the programmer. Many CHR programs have already been implemented
using the refined operational semantics without any additional assumptions about
orderings, etc. Therefore if a program is not confluent under the refined semantics
then this generally indicates a bug, and ideally the compiler should detect this if
possible.

We provided a theoretical result in Section 4.1 which ensures that terminat-
ing (under ωr) and confluent (under ωt) programs are confluent under the refined
semantics. Sometimes this is useful, e.g. with the leq program, but in general pro-
grams under the refined semantics are not confluent under the theoretical semantics.
This directly follows from the fact that the refined semantics is more deterministic.
In this section we look at testing for confluence under the refined semantics alone.
We propose several static analyses designed to detect non-confluent programs. A
confluence checker has been implemented as part of the new Mercury CHR com-
piler,9 and we test it on several “large” CHR programs.

5.1 Nondeterminism in the Solve transition

The first source of nondeterminism under the refined semantics occurs when decid-
ing the order on the the set of woken up constraints during a Solve transition. To
avoid this nondeterminism we will require this set to be empty.10 This is a very
common case, as it occurs when the all CHR constraints are fixed/ground at run-
time. We will generalise this slightly by imposing conditions on the wakeup policy
used by the implementation.

9 The Mercury CHR compiler is the successor of the old HAL CHR compiler (Holzbaur et al.
2001) which is no longer maintained.

10 Another possibility is to require this set to be singleton.

28 G. Duck et al.

To formalise this we define the trivial wakeup policy that does not wakeup any
CHR constraint on a Solve transition.

Definition 18 (Trivial Wakeup Policy) Given a CHR store S, built-in con-
straint c and built-in store B, we define the trivial wakeup policy as

trivial(S, c, B) = ∅

For trivial(S, c, B) to satisfy the definition of a wakeup policy (see Definition 9),
the constraints in S must always be fixed.11 The Mercury CHR compiler determines
this information from mode declarations, i.e. a constraint will always be fixed if each
argument has the declared mode of ‘in’.

For programs that really do interact with a built-in constraint solver (e.g. the
leq solver from Example 7), we currently have no better test other than relying on
the confluence test of the theoretical operational semantics. In this case it is very
hard to see how the programmer can control execution sufficiently.

5.2 Nondeterminism in the Simplify and Propagate Transitions

The second source of nondeterminism occurs when there is more than one set of
partner constraints in the CHR store that can be matched against when applying
the Simplify or Propagate transitions.

We formalise this as follows. A matching is a sequence of numbered constraints
from the CHR store that match with the head of a rule when applying Simplify
or Propagate.

Definition 19 (Matching) A matching M of occurrence j with active CHR con-
straint c in state 〈[c#i : j|A], S,B, T 〉n is a named tuple of numbered constraints
from S that match against the head of rule r of occurrence j. These are

M = prop(H1, c#i,H2,H3) for Propagate
M = simp(H1,H2, c#i,H3) for Simplify

where H1, H2 and H3 are the matching constraints as defined by Definition 10 (the
refined semantics).

Note that the order of the constraints in a matching M exactly corresponds with
the order of the constraints in the rule that matched with it.

Most of the time we will treat matchings as sequences or multisets. For exam-
ple, the matching prop(H1, c#i,H2,H3) can be treated as the sequence (H1 ++
[c#i] ++ H2 ++ H3). Similarly, simp(H1,H2, c#i,H3) is treated as (H1 ++ H2 ++
[c#i] ++ H3).

11 There may be other restrictive circumstances where the usage of trivial(S, c, B) as a wakeup
policy is correct.

The Refined Operational Semantics of CHRs 29

The definition of the refined operational semantics does not specify which match-
ing to choose if more than one is available. Non-confluence arises when given a state
σ, there are more than one possible matchings M1 and M2 (w.r.t. some rule r) such
that firing r on M1 results in a different answer than firing r on M2.

To help simplify things further, we define the following helper functions which
map matchings to useful information about matchings. These will be useful later.
We define function delete(M) which returns the multiset of constraints in M which
are deleted by occurrence, i.e.

delete(prop(H1, c#i,H2,H3)) = H3

delete(simp(H1,H2, c#i,H3)) = H2] {c#i}]H3

We also define entry(r, M) which returns the propagation history entry associated
with a rule r and a matching M , i.e.

entry(r, prop(H1, c#i, H2,H3)) =
ids(H1) ++ [i] ++ ids(H2) ++ ids(H3) ++ [r]

entry(r, simp(H1,H2, c#i, H3)) =
ids(H1) ++ ids(H2) ++ [i] ++ ids(H3) ++ [r]

We also similarly define θ(r, M) to be the set of equations derived from unifying M

with the head of r, and

goal(r) = C where r = (H1\H2 ⇐⇒ g | C)

to be the body of the renamed rule used by the transition. Using these functions,
we can write the result of applying Simplify or Propagate to a state 〈[c#i :
j|A], S,B, T 〉n and matching M ⊆ S as as 〈goal(r) ++ A,S − delete(M), θ(r, M)∧
B, {entry(r, M)} ∪ T 〉n where r is the renamed copy of the rule used by the tran-
sition.

Non-confluence can arise when multiple matchings exist for a rule r, and r is
not allowed to eventually try them all. This may happen when firing r with one
matching results in the deletion of a constraint in another matching.

Definition 20 (Matching Completeness) An occurrence j in (renamed) rule r

is matching complete if for all reachable states 〈[c#i : j|A], S,B, T 〉n with M1, ...,Mm

possible matchings, then for all Mi ∈ {M1, ...,Mm} if

〈goal(r), S − delete(Mi), θ(r, M) ∧B, {entry(r, Mi)} ∪ T 〉n �∗ 〈A′, S′, B′, T ′〉n′

then for all Mj ∈ {M1, ...,Mm} − {Mi} we have that Mj ⊆ S′.

In other words, firing rule r for any matching Mi and executing goal(r, Mi) does not
result in the deletion of a constraint occurring in a different matching Mk, k 6= i.
The intention is that rules will always try all possible matchings unless failure
occurs.

Note that r itself may directly delete the active constraint (via the Simplify
transition). If so, r will only be matching complete if there is only one possible
matching, i.e., m = 1.

30 G. Duck et al.

Example 16 Consider the database confluence problem from Example 11. This
can be expressed as a matching completeness problem since there exists a state,
namely

〈[lookup(key, V)#3 : 1], {lookup(key, V)#3,

entry(key, cat)#2, entry(key, dog)#1}, true〉4
with two matchings

M1 = [entry(key, cat)#2, lookup(key, V)#3]

M2 = [entry(key, dog)#1, lookup(key, V)#3]

such that firing the rule on M1 deletes constraint lookup(key, V)#3 (the active
constraint) which also appears in M2. Therefore the occurrence for lookup cannot
be matching complete.

This occurrence will be matching complete if all states where there are multiple
matchings for a given lookup are unreachable. This can be achieved by adding a
rule that enforces a functional dependency (Duck and Schrijvers 2005), i.e. a rule
that ensures the are no duplicate entry/2 constraints on the same key. For exam-
ple, adding the following rule to the start of the program enforces the appropriate
functional dependency.

killdup @ entry(Key,Val1) \ entry(Key,Val2) <=> Val1 = Val2.

This rule causes failure if two non-identical entries with the same key appear in the
store. Now the occurrence is matching complete, since only one matching will ever
be possible.

Matching completeness can also be broken if the body of a rule indirectly deletes
constraints from other matchings.

Example 17 Consider the following CHR program

r1 @ p1, q(X) ==> r(X).

r2 @ p2, r(a) <=> true.

The occurrence 1 of p in r1 is not matching complete because of the (reachable)
state

〈[p#3 : 1], {p#3, q(a)#2, q(b)#1}〉4
with matchings M1 = [p#3, q(a)#2] and M2 = [p#3, q(b)#1]. Firing r1 against
M1 calls the new constraint r(a) which in turn deletes p#3 (which appears in both
matchings) by firing rule r2. Therefore occurrence 1 for p is not matching complete.

A matching complete occurrence is guaranteed to eventually try all possible
matchings for a given execution state. However, matching completeness is some-
times too strong if the programmer does not care which matching is chosen. This
is common when the rule body does not depend on the matching.

Example 18 For example, consider the following rule from a simple ray tracer.

The Refined Operational Semantics of CHRs 31

shadow @ sphere(C,R,) \ light ray(L,P, ,) <=>

blocks(L,P,C,R) | true.

This rule calculates if point P is in shadow by testing if the ray from light L is blocked
by a sphere at C with radius R. Consider an active light ray constraint: there may
be more than one sphere blocking the ray, however we do not care which sphere
blocks, just if there is a sphere which blocks. This rule is not matching complete,
but since the matching chosen does not affect the resulting state, it is matching
independent.

We define matching independence as the property that the matching chosen does
not matter.

Definition 21 (Matching Independence) A matching incomplete occurrence for
(renamed) rule r that deletes the active constraint only is matching independent if
for all reachable states 〈[c#i : j|A], S,B, T 〉n with M1, . . . ,Mm possible matchings,
then all of

〈goal(r), S − delete(Mi), θ(r, Mi) ∧B, {entry(r, Mi)} ∪ T 〉n

for each Mi ∈ {M1, ...,Mm} are joinable (see Definition 16).

The rule shadow in Example 18 satisfies the definition since goal(r) = true for all
r, i.e. the goal does not depend on the matching chosen.

Suppose that a rule is matching complete, and there are multiple possible match-
ings. The ordering in which the matchings are tried is still chosen nondeterministi-
cally. Hence, there is still potential of non-confluence. For this reason we also require
order independence, which ensures the choice of order does not affect the result.

Definition 22 (Order Independence) A matching complete occurrence j in rule
r is order independent if for all reachable states 〈[c#i : j|A], S,B, T 〉n with M1, . . . ,Mm

possible matchings, the states

〈goal(ri), Sj − delete(Mi), θ(ri,Mi) ∧Bj , {entry(ri,Mi)} ∪ Tj〉nj

and

〈goal(rj), Si − delete(Mj), θ(rj ,Mj) ∧Bi, {entry(rj ,Mj)} ∪ Ti〉ni

(where ri and rj are distinct renamings of r) are joinable for all Mi,Mj ∈ {M1, . . . ,Mm}
where Si, Sj, Bi, Bj, Ti, Tj, ni and nj are given by final states arising from sub-
computations

〈goal(ri), S − delete(Mi), θ(ri,Mi) ∧B, {entry(ri,Mi)} ∪ T 〉n �∗

〈Ai, Si, Bi, Ti〉ni
= σi

and

〈goal(rj), S − delete(Mj), θ(rj ,Mj) ∧B, {entry(rj ,Mj)} ∪ T 〉n �∗

〈Aj , Sj , Bj , Tj〉nj
= σj

where σi and σj are final states.

32 G. Duck et al.

The following is a typical example of order independence.

Example 19 Consider the following fragment of code for summing colours from
the ray tracer.

add1 @ add color(C1), color(C2) <=> C3 = C1 + C2, color(C3).

add2 @ add color(C) <=> color(C).

Assume the colours are encoded as ordinary integers (e.g. for a gray scale image).
All occurrences of color and add color are matching complete. Furthermore, call-
ing add color(C1), ..., add color(Cn) results in color(C1 + ... + Cn). Since
addition is associative and commutative, it does not matter in what order the
add color constraints are called. Consider the occurrence of output in

render @ output(P) \ light ray(,P,C,) <=> add color(C).

Here, calling output(P) calculates the (accumulated) color at point P where any
light rays (a ray from a light source) may intersect. If there are multiple light
sources, then there may be multiple light ray constraints. The order add color is
called does not matter, hence the occurrence is order independent.

5.3 Confluence Test

We claim is that if a program P can is shown to satisfy the conditions outlined
above, then it is confluent. In this section we present a formal proof of this fact.

Before we present the main result, we prove two useful lemmas.

Lemma 5 (Parallel Derivations I) For all execution stacks A1 and A2 the fol-
lowing holds: σ = 〈G ++ A1, S,B, T 〉n �∗ 〈G′ ++ A1, Sk, Bk, Tk〉nk

= σk iff
σ′ = 〈G ++ A2, S,B, T 〉n �∗ 〈G′ ++ A2, Sk, Bk, Tk〉nk

= σ′k or both states σk and
σ′k are false, provided no states in either derivation is of the form 〈A1, S

′, B′, T ′〉n′
or 〈A2, S

′, B′, T ′〉n′ respectively.

Proof
Note that it suffices to prove one direction of the “iff” only, since the other direction
is symmetric (i.e. obtained by substituting A1 with A2 and vice-versa). We prove
the “ =⇒ ” direction by induction over derivations of length k.

Base case: Derivations of zero length (k = 0). Then σ0 = σ and σ′0 = σ are zero
length derivation of the required form.

Induction step: Assume that for all derivations of length k that if σ = 〈G ++
A1, S,B, T 〉n �∗ 〈Gk ++ A1, Sk, Bk, Tk〉nk

= σk then for all A2 we have that
σ′ = 〈G ++ A2, S,B, T 〉n �∗ 〈Gk ++ A2, Sk, Bk, Tk〉nk

= σ′k. We show the same
holds for derivations of length k + 1.

We consider all ωr derivation steps from σk to σk+1 and show the same derivation
step can be applied to σ′k to derive σ′k+1 of the required form.

By assumption Gk is non-empty, otherwise σk is of the form 〈A1, S
′, B′, T ′〉n′

The Refined Operational Semantics of CHRs 33

which is not allowed. Therefore the top-most constraint on the respective execution
stacks for σk and σ′k are the same.

The k +1 case easily verified by inspection over all of the transition steps for the
refined operational semantics (Definition 10). All of these transitions only depend
on the top-most constraint of the execution stack, and all transition preserve the
tail of the execution stack. Thus, if σk � σk+1 then σ′k � σ′k+1 by the same
transition step.

Therefore if σ = 〈G ++ A1, S,B, T 〉n �∗ 〈Gk ++ A1, Sk, Bk, Tk〉nk
= σk then for

all A2 we have that σ′ = 〈G ++ A2, S,B, T 〉n �∗ 〈Gk ++ A2, Sk, Bk, Tk〉nk
= σ′k

provided the conditions noted in the Lemma above hold. By symmetry the other
direction of the “iff” also holds.

This next Lemma is almost identical to the previous one, except that it handles
the case where all of goal G has finished executing.

Lemma 6 (Parallel Derivations II) For all execution stacks A1 and A2 the fol-
lowing holds: σ = 〈G ++ A1, S,B, T 〉n �∗ 〈A1, Sk, Bk, Tk〉nk

= σk iff σ′ = 〈G ++
A2, S,B, T 〉n �∗ 〈A2, Sk, Bk, Tk〉nk

= σ′k or both states σk and σ′k are false,
provided no states in either derivation (apart from σk and σ′k) are of the form
〈A1, S

′, B′, T ′〉n′ or 〈A2, S
′, B′, T ′〉n′ respectively.

Proof
As with the proof of Lemma 6, it suffices to prove one direction of the “iff” only,
since the other direction is symmetric. We prove the “ =⇒ ” direction by direct
proof.

There are two cases to consider. The first is that the derivation is of zero length,
i.e. σ = σk, then σ′k = σ′ satisfies the hypothesis.

The second case is derivations of non-zero length. Let Dk be the derivation σ�
σk above. We can write Dk = Dk−1 � σk, where the last state in Dk is σk−1 =
〈G ++ A1, Sk−1, Bk−1, Tk−1〉nk−1 for some non-empty G. By Lemma 5 there is a
derivation from σ′ to the state σ′k−1 = 〈G ++ A2, Sk−1, Bk−1, Tk−1〉nk−1 . Call this
derivation Dk−1.

Consider the transition from σk−1 to σk. We can apply exactly the same transition
to σ′k−1 to derive σ′k of the above form (using the same argument as in the proof
of Lemma 6).

Therefore if σ = 〈G ++ A1, S,B, T 〉n �∗ 〈A1, Sk, Bk, Tk〉nk
= σk then for all A2

we have that σ′ = 〈G ++ A2, S,B, T 〉n �∗ 〈A2, Sk, Bk, Tk〉nk
= σ′k provided the

conditions noted in the Lemma above hold. By symmetry the other direction of the
“iff” also holds.

We are ready for the main result. First we give a formal definition of the conflu-
ence test.

Definition 23 (Confluence Test) A program P passes our confluence test if

1. P is terminating;

34 G. Duck et al.

2. All occurrences in P are matching complete or matching independent; and
3. All matching complete occurrences in P are order independent.

Also, the implementation uses trivial(S, c, B) as the wakeup policy.

We show that the test outlined above actually proves confluence. First we show
that it at least proves local confluence, which is a weaker form of confluence.

Definition 24 (Local Confluence) A CHR program is local confluent if the fol-
lowing holds for all states σ0, σ1 and σ2 where σ0 is a reachable state: If σ0 � σ1

and σ0 � σ2 then σ1 and σ2 are joinable with respect to σ0.

The only difference between local confluence and confluence is that states σ1 and
σ2 are derived after a single transition step, rather than an arbitrary number of
steps. We can now state the Lemma.

Lemma 7 (Local Confluence Test) Let P be a CHR program that satisfies Def-
inition 23, then P is locally confluent.

Proof
Direct proof. We show that all reachable states σ such that if σ �1 σ1 and σ �2

σ2 then σ1 and σ2 are joinable. Note the notation �1 and �2 representing the
transitions from σ to σ1 and σ2 respectively.

By inspection, all of the conditions for ωr transitions are pairwise mutually ex-
clusive. In other words, it is not possible that�1 and�2 are different transitions,
thus �2=�1.

Assume �1 and �2 are one of Activate, Reactivate, Drop or Default. By
inspection, all of these transitions are deterministic, hence σ1 = σ2 thus the two
states are trivially joinable.

The remaining cases for�1 (and�2) are as follows.
CASE Solve:

Then σ is of the form 〈[c|A], S,B, T 〉n, where c is a built-in constraint, and σ1

and σ2 are both of the form

〈trivial(S, c, B) ++ A,S, c ∧B, T 〉n = 〈A,S, c ∧B, T 〉n

The other case is that σ1 = σ2 = false. Either way σ1 = σ2 and hence are trivially
joinable.
CASE Simplify:

State σ is of the form 〈[c#i : j|A], S,B, T 〉n and there are two (possibly identical)
matchings M1 and M2 which satisfy the conditions for Simplify. Then σ1 and σ2

are given by

σm = 〈goal(rm) ++ A,S − delete(Mm), θ(rm,Mm) ∧B, {entry(rm,Mm)} ∪ T 〉n

for m = 1 and m = 2 respectively. Here, r1 and r2 are two distinct renamings of
the rule used in the transition.

There are two possible cases to consider for the occurrence j.

The Refined Operational Semantics of CHRs 35

1. j is matching complete: By the definition of Simplify the active constraint c#i

is deleted, thus c#i ∈ delete(M1) and c#i ∈ delete(M2). Thus the only way for
occurrence j to be matching complete is that there is only one possible matching,
i.e. M1 = M2. Then σ1 and σ2 must be variants and therefore are trivially joinable.

2. j is matching independent (and matching incomplete): Matching independence re-
quires the states given by

σ′m = 〈goal(rm), S − delete(Mm), θ(rm,Mm) ∧B, {entry(rm,Mm)} ∪ T 〉n

for m = 1 and m = 2 are joinable. This means that there exists variant states σ′′1
and σ′′2 such that σ′1 �

∗ σ′′1 and σ′2 �
∗ σ′′2 . We write σ′′1 and σ′′2 as

σ′′m = 〈A′′
m, S′′m, B′′

m, T ′′
m〉n′′m

for m = 1 and m = 2. Then by Lemma 6, we have that σ1 �∗ σ3 and σ2 �∗ σ4

where σ3 and σ4 are given by

σm = 〈A′′
m ++ A,S′′m, B′′

m, T ′′
m〉n′′m

for m = 3 and m = 4. Clearly if σ′′1 and σ′′2 are variants then σ3 and σ4 are variants,
therefore σ1 and σ2 are joinable.

CASE Propagate:
Matching independence is not applicable because Propagate does not delete the

active constraint.
State σ is of the form 〈[c#i : j|A], S,B, T 〉n and there are two (possibly identical)

matchings M1 and M2 which satisfy the conditions for Propagate. Then σ1 and
σ2 are given by

σm = 〈goal(rm) ++ [c#i : j|A], S − delete(Mm),
θ(rm,Mm) ∧B, {entry(rm,Mm)} ∪ T 〉n

for m = 1 and m = 2 respectively. Once again, r1 and r2 are two distinct renamings
of the rule used in the transition.

Thanks to order independence, we know that the states given by

σ(m1,m2) = 〈goal(rm1), Sm2 − delete(Mm1), θ(rm1 ,Mm1) ∧Bm2 ,

{entry(rm1 ,Mm1)} ∪ Tm2〉nm2

are joinable where Sm2 , Bm2 , Tm2 and nm2 are given by final states arising from

〈goal(rm2), S − delete(Mm2), θ(rm2 ,Mm2) ∧B, {entry(rm2 ,Mm2)} ∪ T 〉n �∗

〈Am2 , Sm2 , Bm2 , Tm2〉nm2

for (m1,m2) = (1, 2) and (m1,m2) = (2, 1). This means that there exists variant
states σ′′1 and σ′′2 such that σ(1,2) �∗ σ′′1 and σ(2,1) �∗ σ′′2 . We write σ′′1 and σ′′2 as

σ′′m = 〈A′′
m, S′′m, B′′

m, T ′′
m〉n′′m

for m = 1 and m = 2.
Consider σ1 defined above. Then by Lemma 1 we have that

σ1 �
∗ 〈[c#i : j|A], S1, B1, T1〉n1 = σ′1

36 G. Duck et al.

By matching completeness M2 ⊆ S1. W.l.o.g. we can assume entry(r2,M2) 6∈ T1

and the guard still holds (because the built-in store in monotonic by assumption).
Thus

σ′1 �propagate 〈goal(r2,M2) ++ [c#i : j|A], S1 − delete(M2),
B1, {entry(r2,M2)} ∪ T1〉n1

By Lemma 6 we have that

σ1 �
∗ σ′1 �

∗= 〈A′′
1 ++ [c#i : j|A], S′′1 , B′′

1 , T ′′
1 〉n′′1

We can apply a symmetric argument to similarly derive

σ2 �
∗ 〈A′′

2 ++ [c#i : j|A], S′′2 , B′′
2 , T ′′

2 〉n′′2
These states must be variants because σ′′1 and σ′′2 (defined above) are also variants.
Therefore σ1 and σ2 are joinable.

We have shown that if σ� σ1 and σ� σ2 then σ1 and σ2 are joinable. Therefore
P is locally confluent.

Finally, we can state the main result.

Theorem 3 (Confluence Test) Let P be a CHR program that satisfies Defini-
tion 23, then P is confluent.

Proof
By Lemma 7 program P is locally confluent. By definition P is terminating. There-
fore by Newman’s Lemma (Newman 1942) P is confluent.

6 Implementation of Confluence Test

So far we have introduced some conditions, e.g. matching completeness etc., and
shown that if these conditions hold for a given program P , then P is confluent. The
confluence test is undecidable in general, since it relies on termination, however in
this section we discuss how a modern CHR compiler can test (with some assump-
tions) if these conditions hold based on information it collects from CHR program
analysis (Schrijvers et al. 2005). We allow the tests to be inaccurate, in that it is
allowed to reject programs that are confluent, but not the other way around. Later
in this paper we try the confluence tests on several examples.

The tests outlined below have been implemented as part of the Mercury CHR
compiler, which we will refer to as confluence checker from now on. The confluence
checker implements partial tests for fixedness of CHR constraints, matching com-
pleteness and matching independence, and relies on user annotation for determining
order independence except for a few cases discussed below. The confluence checker
assumes termination, which (as usual) is left to the programmer to decide.

The first part of the confluence test the Mercury CHR compiler tests for is ground-
ness/fixedness, since this is required for the usage of the trivial wakeup policy to
be correct. The Mercury compiler already has access to this information, since the
user must write a mode declaration for each CHR constraint. If the modes for every

The Refined Operational Semantics of CHRs 37

argument for each CHR constraint are ‘in’, then the program passes this part of
the confluence test.

In Mercury CHR, constraints are allowed to have mode ‘out’ under restricted
conditions. Let c be a CHR constraint with an ‘out’ argument represented by v

(which must be a ‘new’ variable at runtime). A constraint p/n is never-stored if
it never exists in the CHR store S when it is not the top of the activation stack
(see (?; Holzbaur et al. 2005) for a more complete discussion of never-stored). A
constraint with mode ‘out’ is acceptable if:

1. c is never-stored anywhere in the program ;
2. all possible rule bodies called by c (by firing a rule) either bind v to a ground

value or fail.

The never-stored requirement will ensures that c is never in the CHR store whenever
a built-in constraint is Solved, hence we avoid the nondeterminism.

Example 20 The find(A,X) constraint in Example 2 is a classic example of a
constraint with a argument with mode ‘out’. Its mode declaration provided by the
programmer is as follows.

:- mode find(in,out) is semidet.

When called, variable X will be unbound, but will be bound to the representative of
the equivalence class for A at the end of the execution of the goal.

Since constraints with ‘out’ modes can never be woken up, the usage of the trivial
wakeup policy is still correct. Therefore, such programs also pass the confluence
checker.

The confluence checker also uses information about never-stored and functional
dependencies (Duck and Schrijvers 2005) to determine how many possible match-
ings there are for each occurrence in a given rule. Functional dependencies for CHR
constraints define characteristics of the constraint store. For example the functional
dependency: entry(K, V) :: {K} {V } states that for all entry/2 constraints in
the store, the key K functionally determines the value V , that is for each K there
is at most one V where entry(K, V) is in the store. We can extend the notion of
functional determination as follows. Let F be a set of functional dependencies that
hold, then closeF (V) be the smallest set such that closeF (V) ⊇ V and for each
p(X̄) :: V0 V1 in F , if V0 ⊆ closeF (V) then V1 ⊆ closeF (V). We say a constraint
c functionally determines a set of constraints C if F is the set of functional de-
pendencies that hold for each constraint in c ∪ C, and vars(C) ⊆ closeF (vars(c)).
Clearly if an active constraint c functionally determines the head of the rule, then
there can be at most one matching.

For occurences where there are zero or one possible matchings, then the oc-
currence is trivially matching complete. This is very common in many programs.
Otherwise if there are multiple possible matchings, the confluence checker then
checks for matching completeness as follows. Suppose that there are at least two
matchings M1 and M2 for a given occurrence, then for matching completeness there

38 G. Duck et al.

are are two cases to consider: applying the Simplify or Propagate transition on
M1 directly deletes a constraint c#i ∈ M2 (e.g. Example 11); or executing the rule
body indirectly deletes c#i ∈ M2 (e.g. Example 17).

For the first part, we check for direct deletion as follows. Let (H1\H2) be the
head of the rule, and let c be the active constraint, then there are two cases to
consider. The first case is when the active constraint is deleted by the occurrence
(i.e. a member of H2). To be matching complete, it must be that there can only
ever be zero or one possible matchings (since c must be present in all matchings).
To check this we use never-stored and functional dependency information to check
if either one of chr(H1) ∪ chr(H2) − {c} is never-stored (therefore there cannot
be any matchings) or the head chr(H1) ∪ chr(H2) is functionally determined by c

(therefore there can only be one possible matching).
The other case where active c is not deleted by the occurrence is more compli-

cated. We allow for four possible sub-cases:

1. the rule is a propagation rule, i.e. H2 = ∅;
2. one of chr(H1) ∪ chr(H2)− {c} is never-stored;
3. the active constraint c functionally determines chr(H1) ∪ chr(H2);
4. for all d ∈ chr(H2) we have that d functionally determines chr(H1)∪chr(H2)−
{c} and for all d1, d2 ∈ (chr(H1)∪ chr(H2)−{c}) we have that the predicate
symbols of d1 and d2 are distinct.

Propagation rules can never directly delete constraints from any matching by def-
inition, so they are safe. The second case and third cases are also trivially safe,
since they imply there is only ever zero or one possible matching. The fourth case
is more complicated. Suppose that for active c#i there is a constraint d#j and two
matchings M1 and M2 such that d#j ∈ delete(M1) and d#j ∈ delete(M2). Then
it must be that M1 − {c#i} = M2 − {c#i}, hence M1 = M2, otherwise d does not
functionally determine the matching. Therefore, for all matchings M1 and M2 it
must be that delete(M1) ∩ delete(M2) = ∅.

Example 21 Consider the following rule with three constraints in the head, and
assume that all of these constraints have set semantics (at most one copy of each
constraint can be in the store at any time).

p \ q, r(X) <=> true.

Firstly note that the body cannot indirectly delete any constraint from any matching.
The occurrence for r(X) is matching complete because p and q are both (trivially)
functionally determined by the active constraint (thanks to set semantics).

The occurrence of p is not matching complete because neither p nor q functionally
determine r(X). However, if we were to modify the rule to the following, then the
occurrence of p is matching complete.

p \ q(X), r(X) <=> true.

Now both q(X) and r(X) functionally determine each other.

The Refined Operational Semantics of CHRs 39

The second part of the matching completeness check tests if the body can indi-
rectly delete a constraint from another matching. This information can be read from
a call-graph of CHR constraints, and by examining the heads of rules to determine
which CHR constraints can delete other CHR constraints.

Example 22 For example, consider the program from Example 17.

r1 @ p, q(X) ==> r(X).

r2 @ p, r(a) <=> true.

The call graph reveals that the body of rule r1 calls constraints of predicate symbol
r/1. By examining the heads of the rules, we see that an active r/1 constraint may
delete a p constraint. Therefore calling the body of rule r1 may delete the active p

constraint, hence the matching completeness check must fail.

If an occurrence fails matching completeness, then the confluence checker will
try and prove matching independence, i.e. the choice of matching does not matter.
Recall that matching independence is only applicable to occurrences where the
active constraint is the only constraint deleted by the rule. A very simple matching
independence test is to check if the free variables in the rule body are contained in
the free variables of the active constraint. This was trivially true in Example 18,
where the set of free variables in the body is empty. We can improve the matching
completeness check by also allowing variables that are functionally determined by
the active constraint.

Example 23 Consider the following rule.

r(Z), q(X,Y) \ p(X) <=> t(X,Y).

The occurrence for p(X) is not matching independent because variable Y appears
in the body, but not in the active constraint. If however there exists a functional
dependency q(X, Y) :: {X} {X, Y } then the occurrence is matching independent.

Currently the Mercury confluence checker assumes all occurrences are order in-
dependent by default, however the programmer can turn on order independence
checking via a flag to the compiler. The order independence check is currently very
weak, it involves finding all occurrences with more than one possible matching, and
then checking if the rule body contains only built-in constraints,12 or if the rule
body is functionally determined by the active constraint. The programmer can also
declare certain constraints and/or rules as “order independent”, which narrows the
checking to potential problem areas.

The order independence test could be improved by automatically checking some
common CHR programming idioms. One such idiom is using constraints to accumu-
late some value, as was the case in Example 19. This can be generalised as follows.
Suppose we have a rule of the form:

12 This is a surprisingly common case, since many rules simply have ‘true’ as the body.

40 G. Duck et al.

p(X), p(Y) <=> p(X op Y).

Where op is some binary operator that is commutative and associative, e.g. addition
X+Y or set union X∪Y , etc., then it does not matter which order goals of the form
p(X1), ..., p(Xn) are called. Therefore any rule body consisting of a p(X) constraint
is order independent.

6.1 Experimental Results: Confluence Test

This section investigates the confluence of four CHR programs using our confluence
checker. The programs are:

• union – Example 2 (see (Schrijvers and Frühwirth 2004)); and
• ray – a simple ray tracer;
• bounds – an extensible bounds propagation solver;
• dijkstra – Dijkstra’s shortest path algorithm implemented in CHRs (see (Sney-

ers et al. 2006))

These programs are chosen because either they were

• implemented before the confluence test and checker were invented; or
• implemented by those who are not authors of this paper.

These conditions are designed to minimize the possibility of knowledge of the conflu-
ence test influencing how the program is implemented. We believe that knowledge of
the confluence test encourages a more “deterministic” style of CHR programming,
which is more likely to pass.

Each program is tested twice: the .orig version is the original program without
any modifications (apart from being ported to Mercury CHR). The .fixed version
is the same as .orig except (1) any bug detected by the confluence test is fixed;
and (2) an appropriate rule is added for each implicit never-stored constraint or
constraints with functional dependencies. For example, a constraint p/n is implicitly
never-stored if it is always deleted before it is stored (considering late storage), but
the compiler’s analysis is too weak to detect this. In such cases, the .fixed version
of the program includes an explicit rule

p(,...,) <=> error("not never-stored").

which the compiler understands as enforcing the never-stored condition. The com-
piler can now detect more never-stored constraints, and take this information into
account when deciding confluence. Similarly for implicit functional dependencies.

The results of our experiments are shown in Figure 4. The column ¬MC/I lists
the number of occurrences in the program that are not matching complete nor
matching independent. The column ¬OI lists the number of occurrences that are
not order independent. Both indicate potential sources of non-confluence, and are
reported as warnings by the Mercury CHR compiler.

Overall, the .fixed versions of the program – with bug fixes and explicity
never-stored/functional-dependency rules – have fewer occurrences that report non-
confluence warnings. Most of the improvement is in the number of occurrences
¬MC/I.

The Refined Operational Semantics of CHRs 41

Prog. rules constraints occurrences ¬MC/I ¬OI

union.orig 14 11 15 5 1
union.fixed 18 11 21 0 (-5) 0 (-1)
ray.orig 32 19 52 1 3
ray.fixed 33 19 54 0 (-1) 3 (=)
bounds.orig 79 38 123 4 3
bounds.fixed 79 38 123 3 (-1) 3 (=)
dijkstra.orig 28 16 42 9 3
dijkstra.fixed 30 16 46 3 (-6) 3 (=)

Fig. 4. Summary of results from the confluence test.

The naive union find algorithm is shown in Example 2. The confluence checker
finds 5 matching completeness problems associated with 3 rules. Each of these
problems exposed implicit assumptions about functional dependencies and never-
stored constraints.

For example, the confluence checker complains that the following rule is not
matching complete for all occurrences.

link @ link(A,B), root(A), root(B) <=> arrow(B,A), root(A).

This is solved by the addition of two rules: the first declares root/1 to have set
semantics and the second explicitly deletes unused link/2 constraints (the pro-
grammer was implicitly assuming that link/2 will always fire this rule, however
the confluence checker cannot detect this). The revised version is

root(A) \ root(A) <=> true.

link @ link(A,B), root(A), root(B) <=> arrow(B,A), root(A).

link(,) <=> true.

which passes the confluence checker.
The occurrence for find/2 in the findRoot rule is also reported as matching

incomplete.

findRoot @ root(A) \ find(A,X) <=> X = A.

This is because the programmer intends there to be a single root(A) constraint
per A, however the confluence checker cannot detect this. The problem is resolved
in union.fixed by adding the following rule.

root(A) \ root(A) <=> true.

Similarly, the find/2 occurrence in the findNode rule is also matching incomplete.

findNode @ arrow(A,B) \ find(A,X) <=> find(B,X).

In this case the confluence checker does not know that there is one arrow(A,B)

constraint per A. The problem is resolved in union.fixed by the following rule.

42 G. Duck et al.

arrow(A,) \ arrow(A,) <=> true.

In the ray program the matching completeness problem appeared in:

lr1 @ intersection(IP,Id,D) \ light(LP,C) <=>

light ray(LP,IP,C,Id).

The intersection constraint is in fact an accumulator which keeps track of the
nearest intersection with an object and the ray from the eye point.

int near @ intersection(, ,D1) \ intersection(, ,D2) <=>

D1 =< D2 | true.

This rule ensures that there is at most one possible intersection constraint in
the store at once, however the functional dependency analysis in the compiler is
too weak to detect this (because it currently does not take the guard into account).
This is fixed in ray.fixed by the user asserting the functional dependency to the
compiler, which currently is managed by adding the following rule.

int fd @intersection(, ,) \ intersection(, ,) <=> true.

Almost all of the confluence problems in the other programs were fixed using
a similar method. The exception is bounds.orig, where the confluence analysis
detects a bug. The following rule is not matching complete nor independent when
kill(Id) is active since there are (potentially) many possible matchings for the
delayed goals partner.

kill @ kill(Id), delayed goals(Id,X, ,...,) <=> true.

Here delayed goals(Id,X, ,...,) represents the delayed goals for bounds solver
variable X. The code should be

kill1 @ kill(Id) \ delayed goals(Id,X, ,...,) <=> true.

kill2 @ kill() <=> true.

This highlights how a simple confluence analysis can be used to discover bugs.
Order independence is harder to detect, and there is little the programmer can

do to remove the related warning messages (other than disable them). The once
exception is in the union.orig program, where adding a explicit never-stored re-
duced the number of occurrences the confluence checker considers. This resulted in
the offending occurrence being removed from consideration, and hence no warning.

Dispite fixing bugs and adding explicit rules, some of the confluence warnings are
not removed. For example, the confluence analysis reports warnings for the rules for
bounds propagation themselves, e.g. the following rule handles bounds propagation
for a leq/2 constraint.

leq @ leq(X,Y), bounds(X,LX,UX), bounds(Y,LY,UY) ==>

bounds(X,LX,UY), bounds(Y,LX,UY).

The problem is that the constraint bounds(X,L,U) which stores the lower L and
upper U bounds of variable X has complex self-interaction. Two bounds constraints
for the same variable can interact using, for example,

The Refined Operational Semantics of CHRs 43

b2b @ bounds(X,L1,U1), bounds(X,L2,U2) <=>

bounds(X,max(L1,L2),min(U1,U2)).

Imagine an active bounds constraint visiting one of the occurrences for rule leq.
The body of leq calls a new bounds which may delete the active constraint, and
therefore the occurrences are indeed not matching complete.

Although the program contains rules which are not matching complete, in this
case the matching incompleteness does not indicate a bug (the rules are still con-
fluent). In this case confluence can be established by showing that the propagation
rules, together with the other rules for the bounds constraint, are confluence un-
der the theoretical semantics. Confluence under the refined semantics then follows
because of Corollary 1. Unfortunately, proving confluence under the theoretical se-
mantics is beyond the current implementation, so this is left for the programmer.
A similar argument can be made for all of the remaining matching incompleteness
problems reported by the confluence checker.

7 Related Work

The presentation of the theoretical operational semantics of CHRs differs from
others that have appeared in past literature, e.g. in (Frühwirth 1998; Abdennadher
1997), in several ways. In this section we argue that our formalisation subsumes the
previous versions.

The main difference is the interpretation of simpagation rules. Previous versions
of the operational semantics treated simpagation rules as shorthand for simplifica-
tion rules. Specifically, a simpagation rule of the form

h1, . . . , hl\hl+1, . . . , hn ⇐⇒ g | b1, . . . , bm

is treated as a simplification rule of the form

h1, . . . , hl, hl+1, . . . , hn ⇐⇒ g | h1, . . . , hl, b1, . . . , bm

This translation does not necessarily preserve operational equivalence under (our
version of) ωt, since the copies of h1, . . . , hl will be assigned new constraint numbers
when they are (re)executed in the body. This may effect the behaviour of the
propagation history.

The new interpretation of simpagation rules effectively extends the operational
semantics in (Frühwirth 1998; Abdennadher 1997) (the old interpretation can be
emulated under ωt by translating simpagation rules explicitly). It should be noted
that some theoretical results for CHRs, e.g. Abdennadher’s confluence test (Ab-
dennadher 1997), may depend on the old interpretation of simpagation rules.

Most of the other differences are trivial. For example, we represent the constraint
store as a (multi)set of c#i tuples where each i is unique. In the formalisation pre-
sented in (Abdennadher 1997), the constraint store is represented as a conjunction
of constraints, where repeats in the conjunction are allowed (i.e. assuming non-
idempotent conjunction). Both formalisations of the constraint store are isomor-
phic.

44 G. Duck et al.

Propagation histories are also handled differently. In our approach, entries in the
propagation history are tuples of constraint numbers (and the rule token), whereas
in other versions of the operational semantics (e.g. (Abdennadher 1997)), entries
record the CHR constraints themselves. This is implemented as follows. When a
new constraint c is introduced into the store (via the Introduce transition), a so-
called token set13 is generated for constraint c. Each token is of the form r@H ′,
where (r @ H =⇒ g | B) is a propagation rule in P (r is the rule identifier),
and H ′ is a conjunction of constraints in c ∧ S and c is a conjunct in H ′. When
propagation rule r fires on constraints H ′ ⊆ S, a corresponding token r@H ′ must
be present in the propagation history, and is removed when the rule fires. Notice
this is the the opposite approach, removing elements, rather than adding elements
to propagation history as the derivation progresses.

Example 24 For example, consider the following propagation rule.

transitivity @ leq(X,Y), leq(Y,Z) ==> leq(X,Z).

Under our representation, firing the propagation rule on the following matching
constraints, leq(A,B)#1, leq(B,C)#2, adds the entry [1, 2, transitivity] to the
propagation history.

Under the alternative formalisation, a token transitivity@(leq(A,B)∧leq(B,C))
is present in the propagation history and removed when the rule fires.

These approaches are isomorphic, that is the operational semantics are equivalent
no matter which formalisation of the propagation history is chosen, however our
approach more closely mimics what most CHRs systems actually implement.

8 Conclusion

In this paper we have formalized the refined operational semantics of CHRs, which
are a popular semantics used by almost all current CHR implementations that
we are aware of. The refined operational semantics define a powerful and expres-
sive language, where simple database operations and fixed-point computations are
straightforward to implement.

We have proved several important results, such as correctness, soundness, com-
pleteness, termination and confluence. The correctness results state that every
derivation in the refined semantics map to a derivation under the theoretical seman-
tics with the same answer. Also, every reachable final state in the refined semantics
maps to a reachable final state in the theoretical semantics, therefore the refined
semantics correctly implement the theoretical semantics. The other results includ-
ing soundness, completeness, termination and confluence follow from correctness.
Soundness and completeness are important results from a theoretical point of view.

Termination is an essential property of any program, including CHR programs.
The termination result ensures that a termination proof in the theoretical semantics

13 Although it is called the token “set”, it is really a multiset of tokens (repeats are allowed).

The Refined Operational Semantics of CHRs 45

immediately applies to the refined semantics. This is useful since termination of
CHRs has been looked at in (Frühwirth 1999), and therefore these results carry
to the refined semantics. It may be easier to prove termination under the refined
semantics because of the increased determinism, hence there are less derivations to
consider, however it is still left to the programmer.

The refined operational semantics for Constraint Handling Rules provides a pow-
erful and expressive language, ideal for applications such as compilers, since fix-
point computations and simple database operations are straightforward to pro-
gram. The disadvantage of CHRs over other possible languages is that CHRs do
not have a fully deterministic operational semantics, so to counter this problem
the programmer usually aims to write confluent CHRs programs. Unfortunately,
the Abdennadher confluence test (Abdennadher 1997) is too strong for the refined
operational semantics, so we have presented a novel static confluence checker based
on information obtained from standard CHR program analysis.

The confluence test identifies four properties that if satisfied, guarantees con-
fluence under the refined semantics. These are: termination, trivial wakeup policy,
matching completeness or independence, and order independence. The termina-
tion requirement is solely left for the programmer, and order independence typi-
cally requires help from the programmer (in current implementations). Groundness
and matching completeness/independence can be checked automatically in modern
CHR compilers.

We implemented a confluence checker for Mercury CHRs based on the confluence
test, and evaluated the checker on four CHR programs: a union-find algorithmg,
a simple ray tracer, a bounds propagation solver, and a shortest path program.
By far testing for matching completeness or independence is the most useful, since
the majority of all occurrences the case studies were either matching complete,
matching independent, or in one instance indicated a bug. The exceptions occur
when the programmer is relying on confluence under the theoretical semantics, as
with some of the rules in the bounds example.

Matching completeness exposes the programmer’s implicit assumptions about
functional dependencies, as was shown by the case studies. This is good because
it encourages the programmer to declare functional dependencies explicitly, which
has other benefits, such as optimisation.

Order independence remains a difficult property to test for, hence the conflu-
ence checker usually requires help in the form of user annotations. In order not to
overwhelm the programmer, the compiler can try its best to exclude as many oc-
currences as possible, for example, when the body of the rule contains only built-in
constraints, and when the body is functionally determined by the active constraint.
A more sophisticated compiler can also try to exclude some other cases, e.g., when
the body of a rule is calling constraints that just accumulate some value, etc.

Unfortunately the confluence test performs poorly when the programmer writes
code with complex interactions, e.g. the bounds constraint and propagators. In
these cases the programmer is usually relying on confluence under the theoretical
operational semantics, which our current implementation cannot detect (although
this may be future work). In such cases the programmer can ignore, or disable

46 G. Duck et al.

the confluence checker, or reformulate the program so that it complies with the
confluence test in Definition 23.

References

Abdennadher, S. 1997. Operational semantics and confluence of constraint propagation
rules. In Proceedings of the Third International Conference on Principles and Practice
of Constraint Programming, G. Smolka, Ed. LNCS 1330. Springer-Verlag, 252–266.

Abdennadher, S., Frühwirth, T., and Muess, H. 1999. Confluence and Semantics of
Constraint Simplification Rules. Constraints 4, 2, 133–166.

Duck, G. and Schrijvers, T. 2005. Accurate functional dependency analysis for con-
straint handling rules. In Proceedings of the 2nd Workshop on Constraint Handling
Rules, T. Schrijvers and T. Frühwirth, Eds. 109–124.

Frühwirth, T. 1998. Theory and practice of constraint handling rules. Journal of Logic
Programming 37, 95–138.

Frühwirth, T. 1999. Proving termination of constraint solver programs. In New Trends
in Contraints, Joint ERCIM/Compulog Net Workshop. LNCS 1865. Springer-Verlag,
298–317.

Frühwirth, T. 2005. Parallelizing union-find in constraint handling rules using conflu-
ence. In Proceedings of the International Conference on Logic Programming, M. Gab-
brielli and G. Gupta, Eds. Lecture Notes in Computer Science, vol. 3668. Springer,
113–127.

Holzbaur, C., de la Banda, M. G., Stuckey, P., and Duck, G. 2005. Optimiz-
ing compilation of constraint handling rules in HAL. Theory and Practice of Logic
Programming 5, 4–5, 503–532.

Holzbaur, C. and Frühwirth, T. 1999. Compiling constraint handling rules into Pro-
log with attributed variables. In Proceedings of the International Conference on Princi-
ples and Practice of Declarative Programming, G. Nadathur, Ed. LNCS 1702. Springer-
Verlag, 117–133.

Holzbaur, C. and Frühwirth, T. 2000. A Prolog constraint handling rules compiler
and runtime system. Journal of Applied Artificial Intelligence 14, 4.

Holzbaur, C., Stuckey, P., de la Banda, M. G., and Jeffery, D. 2001. Optimizing
compilation of constraint handling rules. In Logic Programming: Proceedings of the 17th
International Conference, P. Codognet, Ed. LNCS 2237. Springer-Verlag, 74–89.

Newman, M. 1942. On theories with a combinatorial definition of “equivalence”. Annals
of Mathematics 43, 2, 223–243.

Schrijvers, T. 2005. http://www.cs.kuleuven.ac.be/∼dtai/projects/CHR/.

Schrijvers, T. and Frühwirth, T. 2004. Implementing and Analysing Union-Find in
CHR. Tech. Rep. CW 389, K.U.Leuven, Department of Computer Science. July.

Schrijvers, T. and Frühwirth, T. 2006. Optimal union-find in constraint handling
rules. Theory and Practice of Logic Programmin 6, 1&2, 213–224.

Schrijvers, T., Stuckey, P., and Duck, G. 2005. Abstract interpretation for constraint
handling rules. In PPDP’05: Proceedings of the 7th International ACM SIGPLAN
Conference on Principles and Practice of Declarative Programming, A. Felty, Ed. ACM,
Lisbon, Portugal, 218–229.

Sneyers, J., Schrijvers, T., and Demoen, B. 2006. Dijkstra’s algorithm with fibonacci
heaps: an executable description in CHR. In Proceedings of the 20th Workshop on Logic
Programming, M. Fink, H. Tompits, and S. Woltran, Eds. 182–191.

