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Abstract

The technical report presents a generic exact solution approach for minimizing
the project duration of the resource-constrained project scheduling problem with
generalized precedences (Rcpsp/max). The approach uses lazy clause generation,
i.e., a hybrid of finite domain and Boolean satisfiability solving, in order to apply
nogood learning and conflict-driven search on the solution generation. Our experi-
ments show the benefit of lazy clause generation for finding an optimal solutions and
proving its optimality in comparison to other state-of-the-art exact and non-exact
methods. The method is highly robust: it matched or bettered the best known
results on all of the 2340 instances we examined except 3, according to the currently
available data on the PSPLib. Of the 631 open instances in this set it closed 573
and improved the bounds of 51 of the remaining 58 instances.

1. Introduction

The Resource-constrained Project Scheduling Problem with generalized precedences
(Rcpsp/max)1 consists of scarce resources, activities and precedence constraints be-
tween pairs of activities. Each activity requires some units of resources during their
execution. The aim is to build a schedule that obeys the resource and precedence con-
straints. Here, we concentrate on renewable resources (i.e., their supply is constant
during the planning period), non-preemptive activities (i.e. once started their execution

1In the literature Rcpsp/max is also called as Rcpsp with temporal precedences, arbitrary precedences,
minimal and maximal time lags, and time windows.
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cannot be interrupted), and finding a schedule that minimizes the project duration (also
called makespan). This problem is denoted as PS|temp|Cmax by Brucker et al. [8] and
m, 1|gpr|Cmax by Herroelen et al. [16]. Bartusch et al. [5] show that the decision wether
an instance is feasible or not is already NP-hard.

The Rcpsp/max problem is widely studied and some of its applications can be found
in Bartusch et al. [5]. A problem instance consists of a set of resources, a set of activities,
and a set of generalized precedences between activities. Each resource is characterized
by its discrete capacity, and each activity by its discrete processing time (duration) and
its resource requirements. Generalized precedences express relations of start-to-start,
start-to-end, end- to-start, and end-to-end times between pairs of activities. All these
relations can be formulated as start-to-start times precedence. Those precedences have
the form Si + dij ≤ Sj where Si and Sj are the start times of the activities i and j
resp., and dij is a discrete distance between them. If dij is non-negative this imposes a
minimal time lag, while if dij is negative this imposes a maximal time lag between start
times.

Example 1. A simple example of an Rcpsp/max problem consists of the five activi-
ties [a, b, c, d, e] with their start times [sa, sb, sc, sd, se], their durations [2, 5, 3, 1, 2] and
resource requirements on a single resource [3, 2, 1, 2, 2] and a resource capacity of 4.
Suppose we also have the generalized precedences sa + 2 ≤ sb (activity a ends before
activity b starts), sb + 1 ≤ sc (activity b starts at least 1 time unit before activity c
starts), sc − 6 ≤ sa (activity c can not start later than 6 time units after activity a
starts), sd + 3 ≤ se (activity d starts at least 3 time units before activity e starts), and
se− 3 ≤ sd (activity e can not start later than 3 time units after activity d starts). Note
that the last two precedences express the relation sd + 3 = se (activity d starts exactly
3 time units before activity e).

Let the planning horizon, in which all activities must be completed be 8. Figure 1
illustrates the precedence graph between the five tasks and source at the left (time 0)
and sink at the right (time 8), as well as a potential solution to this problem, where a
rectangle for activity i has width equal to its duration and height equal to its resource
requirements. 2

To our knowledge the first exact method to tackle Rcpsp/max was proposed by Bar-
tusch et al. [5]. They use a branch-and-bound algorithm to tackle the problem. Their
branching is based on resolving (minimal) conflict sets2 by the addition of precedence
constraints breaking these sets. Later other branch-and-bound methods were developed
which are based on the same idea (e.g. De Reyck and Herreolen [10], Schwindt [29],
and Fest et al. [12]). The results from Schwindt are the best published one for an exact
method on the testset Sm so far.

Dorndorf et al. [11] use a time-oriented branch-and-bound combined with constraint
propagation for precedence and resource constraints. In every branch one unscheduled
and “eligible” activity is selected and its start time is assigned to the earliest point in

2Conflict sets are set of activities for which their execution might overlap in time and violate at least
one resource constraint if they are executed at the same time.
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Figure 1: The precedence graph and a solution to a small Rcpsp/max problem.

time that does not violate any constraint regarding the current partial schedule. In the
case of backtracking they apply dominance rules to fathom search space. As far as we
can determine this exact approach outperforms other exact methods for Rcpsp/max on
the CD benchmark set.

Franck et al. [15] compare different solution methods on a benchmark set UBO with
instances ranging from 10 to 1000 activities. Their methods are a truncated branch-and-
bound algorithms, filter-beam search, heuristics with priority rules, genetic algorithms
and tabu search. All methods share a preprocessing step to determining feasibility or
infeasibility. The preprocessing step decomposes the precedence network into strongly
connected components (SCCs) (which are denoted “cyclic structures” in [15]). The
preprocessing then determines a solution or infeasibility for each SCC individually using
constraint propagation and a destructive lower bound computation. Once a solution for
all SCCs is determined a first solution can be deterministically generated for the original
instance; otherwise infeasibility is proven.

Ballest́ın et al. [4] employ an evolutionary algorithm based on a serial generation
scheme with unscheduling step. Their crossover operator is based on so called conglom-
erates, i.e. set of cycle structures and other activities which cannot move freely inside a
schedule, it tries to keep the “good” conglomerates of the parents to their children. This
is the best published local search method so far on the testsets UBO (up to instances
with 100 activties) and CD.

Cesta at al. [9] propose a two layered heuristic that is based on a temporal precedence
network and extension of this network by new temporal precedence in order to resolve
minimal conflict sets. For guidance, constraint propagation algorithms are applied on
the network. Their method is competitive on the benchmark set SM.

Oddi and Rasconi [23] apply a generic iterative search consisting of of a relaxation
and flatting step based on temporal precedences which are used for resolving resource
conflicts. In the first step some of the temporal precedences are removed from the
problem and then in the second others added if a resource conflict exists. Their methods
is evaluate on instances with 200 activities from the benchmark set UBO.

A special case of Rcpsp/max is the well-studied Resource-constrained Project Schedul-
ing Problem (Rcpsp) where the precedence constraints Si + dij ≤ Sj express that the
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activity j must start after the end of i, i.e. dij equals to the duration of i. In con-
trast to Rcpsp/max the decision variant of Rcpsp is polynomial solvable, but not its
optimization variant which is NP-hard (Blazewicz et al. [7]). The reason for this is the
absence of maximal time lags, i.e. here activity executions can always be delayed un-
til to a point in time where enough resource units are available without breaking any
precedence constraints. That is not possible for Rcpsp/max.

The best exact methods for Rcpsp to our knowledge are our own [26, 27] and Hor-
bach [17]. Both use advanced SAT technology in order to take advantage of its nogood
learning facilities. Our methods [26, 27] are a generic approach based on the Lazy
Clause Generation (LCG) [24] using the G12 Constraint Programming Platform [32].
Lazy clause generation is a hybrid of a finite domain and a Boolean satisfiability solver.
Our approaches model the cumulative resource constraint either by decomposing into
smaller primitive constraints, or by the creating a global cumulative propagator. The
global propagation approach performs better as the size of the problem grows. In con-
trast to our methods Horbach’s approach is a hand-tailored for Rcpsp, but similarly
a hybrid with SAT solving. He uses a linear programming solver to determine activity
schedules and hybridize with the SAT solver. Overall our global approach [27] is superior
to Horbach’s approach on Rcpsp.

In this paper we apply the same generic lazy clause generation approach to the more
general problem of Rcpsp/max. Because the problems are more difficult than pure
RCPSP we need to modify our approach in particular to prove feasibility/infeasibility
We show that the approach to solving Rcpsp/max performs better than published meth-
ods so far, especially for improving a solution, once a solution is found, and proving
optimality. We state the limitations of our current model and how to overcome them.
We compare out approach to the best known approaches to Rcpsp/max on several
benchmark suites accessible via the PSPLib [1].

The paper is organized as follows. In Section 2 we give an introduction to lazy clause
generation. In Section 3 we present our basic model for Rcpsp/max and discuss some
improvements to it. In Section 4 we discuss the various branch-and-bound procedures
that we use to search for optimal solutions. In Section 5 we compare our algorithm
to the best approaches we are aware of on 3 challenging benchmark suites. Finally in
Section 6 we conclude.

2. Preliminaries

In this section we explain lazy clause generation by first introducing finite domain prop-
agation and DPLL based SAT solving, and then explaining the hybrid approach. We
discuss how the hybrid explains conflicts and briefly discuss how a cumulative propa-
gator is extended to explain its propagations.

2.1. Finite Domain Propagation

Finite domain propagation (see e.g. [25]) is a powerful approach to tackling combinatorial
problems. A finite domain problem (C,D) consists of a set of constraints C over a set

4



of variables V, a domain D which determine the finite set of possible values of each
variable in V. A domain D is a complete mapping from V to finite sets of integers. Hence
given domain D, then D(x) is the set of possible values that variable x can take. Let
minD(x) = min(D(x)) and maxD(x) = max(D(x)). Let [ l .. u ] = {d | l ≤ d ≤ u, d ∈ Z}
denote a range of integers., where [ l .. u ] = ∅ if l > u. In this paper we will concentrate on
domains where D(x) is a range for all x ∈ V. The initial domain is referred as Dinit. Let
D1 and D2 be domains, then D1 is stronger than D2, written D1 v D2, if D1(v) ⊆ D2(v)
for all v ∈ V. Similarly if D1 v D2 then D2 is weaker than D1. For instance, all domains
D that occur will be stronger than the initial domain, i.e. D v Dinit.

A valuation θ is a mapping of variables to values, written {x1 7→ d1, . . . , xn 7→ dn}.
We extend the valuation θ to map expressions or constraints involving the variables in
the natural way. Let vars be the function that returns the set of variables appearing in
an expression, constraint or valuation. In an abuse of notation, we define a valuation θ
to be an element of a domain D, written θ ∈ D, if θ(v) ∈ D(v) for all v ∈ vars(θ). Define
a valuation domain D as one where |D(v)| = 1,∀v ∈ V. We can define the corresponding
valuation θD for a valuation domain D as {v 7→ d | D(v) = {d}, v ∈ V}.

Then a constraint c ∈ C is a set of valuations over vars(c) which give the allowable
values for a set of variables. In FD solvers constraints are implemented by propagators.
A propagator f implementing c is a monotonically decreasing function on domains such
that for all domains D v Dinit: f(D) v D and no solutions are lost, i.e. {θ ∈ D |
θ ∈ c} = {θ ∈ f(D) | θ ∈ c}. We assume each propagator f is checking, that is if
D is a valuation domain then f(D) = D iff θD restricted to vars(c) is a solution of c.
Given a set of constraints C we assume a corresponding set of propagators F = {f | c ∈
C, f implements c}.

A propagation solver for a set of propagators F and current domain D, solv(F,D),
repeatedly applies all the propagators in F starting from domain D until there is no
further change in resulting domain. solv(F,D) is the weakest domain D′ v D which is
a fixpoint (i.e. f(D′) = D′) for all f ∈ F .

Finite domain solving interleaves propagation with search decisions. Given a initial
problem (C,D) where F are the propagators for the constraints C we first run the propa-
gation solver D′ = solv(F,D). If this determines failure then the problem has no solution
and we backtrack to visit the next unexplored choice. If D is a valuation domain we have
determined a solution. Otherwise we pick a variable x ∈ V and split its domain D′(x)
into two disjoint parts S1∪S2 = D′(x) creating two subproblems (C, D1), (C, D2), where
Di(x) = Si and Di(v) = D′(v), v 6= x, whose solutions are the solutions of the original
problem. We then recursively explore the first problem, and when we have shown it has
no solutions we explore the second problem.

As defined above finite domain propagation is only applicable to satisfaction prob-
lems. Finite domain solvers solve optimization problems by mapping them to repeated
satisfaction problems. Given an objective function o to minimize under constraints C
with domain D, the finite domain solving approach first finds a solution θ to (C, D), and
then finds a solution to (C ∪{o ≤ θ(o)}, D), that is, the satisfaction problem of finding a
better solution than previously founds. It repeats this process until a problem is reached
with no solution, in which case the last found solution is optimal. If the process is halted
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before proving optimality, then the solving process just returns the last solution found
as the best known.

Finite domain propagation is a powerful generic approach to solving combinatorial
optimization problems. Its chief strengths are the ability to model problems at a very
high level, and the use of global propagators, specialized propagation algorithms for
important constraints.

2.1.1. Cumulative

Of particular interest to us in this work is the global cumulative constraint for cumu-
lative resource scheduling.

The cumulative constraint introduced by Aggoun and Beldiceanu [3] in 1993 is a
constraint with Zinc [20] type

predicate cumulative(list of var int: s, list of int: d,

list of int: r, int: c);

Each of the first three arguments are lists of the same length n and indicate information
about a set of activities. s[i] is the variable start time of the ith activity, d[i] is the fixed
duration of the ith activity, and r[i] is the fixed resource usage (per time unit) of the ith

activity. The last argument c is the fixed resource capacity.
The cumulative constraints represent cumulative resources with a constant capacity

over the considered planning horizon applied to non-preemptive activities, i.e. if they
are started they cannot be interrupted. Without loss of generality we assume that all
values are integral and non-negative and there is a planning horizon tmax which is the
latest time any activity can finish.

Example 2. Consider the five activities [a, b, c, d, e] from Example 1 with durations
[2, 5, 3, 1, 2] and resource requirements [3, 2, 1, 2, 2] and a resource capacity of 4. This is
represented by the cumulative constraint.

cumulative([sa, sb, sc, sd, se], [2, 5, 3, 1, 2], [3, 2, 1, 2, 2].4)

Imagine each task must start at time 0 or after and finish before time 8. The cumulative
problem corresponds to packing the rectangles shown in Figure 2(a) into the resource
box shown below. 2

There are many propagation algorithms for cumulative, but the most widely used is
based on timetable propagation [19]. An activity i has a compulsory part given domain D
from [maxD s[i]..minD s[i]+d[i]−1], that requires that activity imakes us of r[i] resources
at each of the times in [ maxD s[i] .. minD s[i] + d[i]− 1 ] if the range is non-empty. The
timetable propagator for cumulative first determines the resource usage profile ru[t]
which sums for each time t the resources requires for all compulsory parts of activities
at that time. If at some time t the profile exceeds the resource capacity, i.e. ru[t] > c,
the constraint is violated and failure detected. If at some time t point the resource
used in the profile that there is not enough left for an activity i, i.e. ru[t] + r[i] > c,
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Figure 2: Figure illustrating propagation of the cumulative constraint.

then we can determine that activity i cannot be scheduled to run during time t. If the
earliest start time of activity i, minD s[i] means that the activity cannot be scheduled
completely before time t, i.e. minD s[i] + d[i] > t, we can update the earliest start time
to be t + 1, similarly if the lastest start time of the activity means that the activity
cannot be scheduled completely after t , i.e. maxD s[i] ≤ t then we can update the latest
start time to be t− d[i]. For a full description of timetable propagation for cumulative
see e.g. [27].

Example 3. Consider the cumulative constraint of Example 2 where the domains of the
start times are now D(sa) = [ 1 .. 2 ], D(sb) = [ 0 .. 3 ], D(sc) = [ 3 .. 5 ], D(sd) = [ 0 .. 2 ],
D(se) = [ 0 .. 4 ]. Then there is compulsory parts of activities a and b in the ranges
[2..2] and [3..4] respectively shown in Figure 2(b) in red. No other activities have a
compulsory part. Hence the red contour illustrates the resource usage profile. Since
activity b cannot be scheduled in parallel with activity a, and the earliest start time of
activity b, 0, means that the activity cannot be scheduled before activity a we can reduce
the domain of the start time for activity b to the singleton [ 3 .. 3 ]. This is illustrated in
Figure 2(b). The opposite holds for activity a that cannot be run after activity b, hence
the domain of its start time shrinks to the singleton range [ 1 .. 1 ]. Once we make these
changes the compulsory parts of the activities a and b increase to the ranges [ 1 .. 2 ] and

7



[ 3 .. 7 ] respectively. This in turn causes the start times of activities d and e to become
[ 0 .. 0 ] and [ 3 .. 4 ] respectively creating compulsory parts in the ranges [ 0 .. 0 ] and [ 4 .. 4 ]
respectively. The later causes the start time of activity c to become fixed at 5 generating
the compulsory part in [ 5 .. 7 ] which causes that the start time of activity e becomes
fixed at 3. This is illustrated in Figure 2(c). In this case the timetable propagation
results in a final schedule in the right of Figure 1. 2

2.2. Boolean Satisfiability

Let B be a set of Boolean variables. A literal l is Boolean variable b ∈ B or its negation
¬b. The negation of a literal ¬l is defined as ¬b if l = b and b if l ≡ ¬b. A clause C is a
set of Boolean variables understood as a disjunction. Hence clause {l1, . . . , ln} is satisfied
if at least one literal li is true. An assignment A is a set of Boolean literals that does not
include a variable and its negation, i.e. @b ∈ B.{b,¬b} ⊆ A. An assignment can be seen
as a partial valuation on Boolean variables, {b 7→ true |b ∈ A} ∪ {b 7→ false |¬b ∈ A}. A
theory T is a set of clauses. A SAT problem (T,A) consists of a set of clauses T and an
assignment over (some of) the variables occuring in T .

A Davis-Putnam-Loveland-Logemann (DPLL) SAT solver is a form of finite domain
propation solver specialized for Boolean clauses. Each clause is propagated by so called
unit propagation. Given an assignment A, unit propagation detects failure using clause
C is such that {¬l | l ∈ C} ⊆ A, and unit propagation detects a new unit consequence l
if C ≡ {l}∪C ′ and {¬l′ | l′ ∈ C ′} ⊆ A, in which case it adds l to the current assignment
A. Unit propagation continues until failure is detected, or no new unit consequences can
be determined.

SAT solvers exhaustively apply unit propagation to the current assignment A to gen-
erate all the consequences possible A′. They then choose an unfixed Boolean variable b
and create two equivalent problem (T,A′ ∪ {b}), (T,A′ ∪ {¬b}) and recursively search
these subproblems. The Boolean literals added to the assignment by choice are termed
decision literals.

Modern DPLL based SAT solving is a powerful approach to solving combinatorial
optimization problems because it records nogoods that prevent the search from revisiting
similar parts of the search space. The SAT solver records an explanation for each unit
consequence discovered (the clause that caused unit propagation), and on failure uses
these explanations to determine a set of mutually incompatible decisions, a nogood which
is added as a new clause to the theory of the problem. These nogoods drastically reduce
the size of the search space needed to be examined. Another advantage of SAT solvers is
that they track which Boolean variables are involved in the most failures (called active
variables), and use a powerful autonomous search procedure which concentrates on the
variables that are most active. The disadvantages of SAT solvers are the restriction
to Boolean variables and the sometime huge models that are required to represent a
problem because the only constraints expressible are clauses.

8



2.3. Lazy Clause Generation

Lazy clause generation is a hybrid of finite domain propagation and Boolean satisfiability.
The key idea in lazy clause generation is to run a finite domain propagation solver, but
to build explanation of the propagations made by the solver by recording them as clauses
on a Boolean variable representation of the problem. Hence as the FD search progresses
we lazily create a clausal representation of the problem. The hybrid has the advantages
of FD solving, but inherits the SAT solvers ability to create nogoods to drastically reduce
search, and use activity based search.

2.3.1. Variable Representation

In lazy clause generation each integer variable x ∈ V with the initial domain Dinit =
[ l .. u ] is represented by the following Boolean variables Jx = lK, . . . , Jx = uK and Jx ≤
lK, . . . , Jx ≤ u − 1K. The variable Jx = dK is true if x takes the value d, and false if x
takes a value different from d. Similarly the variable Jx ≤ dK is true if x takes a value
less than or equal to d and false for a value greater than d. Note that we use Jx = dK
and Jx ≤ dK throughout the paper as the names of Boolean variables. Sometimes the
notation Jd ≤ xK is used for the literal ¬Jx ≤ d− 1K.

Not every assignment of Boolean variables is consistent with the integer variable x,
for example {Jx = 3K, Jx ≤ 2K} (i.e. both Boolean variables are true) requires that x
is both 3 and ≤ 2. In order to ensure that assignments represent a consistent set of
possibilities for the integer variable x we add to the SAT solver the clauses DOM (x)
that encode Jx ≤ dK → Jx ≤ d + 1K, l ≤ d < u, Jx = lK ↔ Jx ≤ lK, Jx = dK ↔ (Jx ≤
dK∧¬Jx ≤ d− 1K), l < d < u, and Jx = uK↔ ¬Jx ≤ u− 1K where Dinit(x) = [ l .. u ]. We
let DOM = ∪{DOM (v) | v ∈ V}.

Any assignmentA on these Boolean variables can be converted to a domain: domain(A)(x) =
{d ∈ Dinit(x) | ∀JcK ∈ A, vars(JcK) = {x} : x = d |= c}, that is, the domain includes all
values for x that are consistent with all the Boolean variables related to x. It should be
noted that the domain may assign no values to some variable.

Example 4. Consider Example 1 and assume Dinit(si) = [ 0 .. 15 ] for i ∈ {a, b, c, d, e}.
The assignmentA = {¬Jsa ≤ 1K,¬Jsa = 3K,¬Jsa = 4K, Jsa ≤ 6K,¬Jsb ≤ 2K, Jsb ≤
5K,¬Jsc ≤ 4K, Jsc ≤ 7K,¬Jse ≤ 3K} is consistent with sa = 2, sa = 5, and sa = 6.
Hence domain(A)(sa) = {2, 5, 6}. For the remaining variables domain(A)(sb) = [ 3 .. 5 ],
domain(A)(sc) = [ 5 .. 7 ], domain(A)(sd) = [ 0 .. 15 ], and domain(A)(se) = [ 4 .. 15 ].
Note that for brevity A is not a fixpoint of a SAT propagator for DOM(sa) since we are
missing many implied literals such as ¬Jsa = 0K, ¬Jsa = 8K, ¬Jsa ≤ 0K etc. 2

2.3.2. Explaining Propagators

In LCG a propagator is extended from a mapping from domains to domains to a gen-
erator of clauses describing propagation. When f(D) 6= D we assume the propagator f
can determine a clause C to explain each domain change. Similarly when f(D) is a false
domain the propagator must create a clause C that explains the failure.
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Example 5. Consider the propagator f for the precedence constraint sa + 2 ≤ sb from
Example 1. When applied to the domains D(si) = [ 0 .. 15 ] for i ∈ {a, b} it obtains
f(D)(sa) = [ 0 .. 13 ], and f(D)(sb) = [ 2 .. 13 ]. The clausal explanation of the change
in domain of sa is Jsb ≤ 15K → Jsa ≤ 13K, similarly the change in domain of sb is
¬Jsa ≤ −1K → ¬Jsb ≤ 1K (Jsa ≥ 0K → Jsb ≥ 2K). These become the clauses ¬Jsb ≤
15K ∨ Jsa ≤ 13K and Jsa ≤ −1K ∨ ¬Jsb ≤ 1K. 2

The explaining clauses of the propagation are added to the database of the SAT solver
on which unit propagation is performed. Because the clauses will always have the form
C → l where C is a conjunction of literals true in the current assignment, and l is a
literal not true in the current assignmet, the newly added clause will always cause unit
propagation, adding l to the current assignment.

Example 6. Consider the propagation from Example 5. The clauses ¬Jsb ≤ 15K∨ Jsa ≤
13K and Jsa ≤ −1K ∨ ¬Jsb ≤ 1K are added to the SAT theory. Unit propagation infers
that Jsa ≤ 13K = true and ¬Jsb ≤ 1K = true since ¬Jsb ≤ 15K and Jsa ≤ −1K are false,
and adds these literals to the assignment. Note that the unit propagation is not finished,
since for example the implied literal Jsa ≤ 14K, can be detected true as well. 2

The unit propagation on the added clauses C is guaranteed to be as strong as the
propagator f on the original domains, i.e. if domain(A) v D then domain(A′) v f(D)
where A′ is the resulting assignment after addition of C and unit propagation (see [24]
for the formal results).

Note that a single new propagation may be explainable using different set of clauses. In
order to get maximum benefit from the explanation we desire a “strongest” explanation
as possible. A set of clauses C1 is stronger than a set of clauses C2 if C2 implies C1. In
other words, C1 restricts the search space at least as much as C2.

Example 7. Consider explaining the propagation of the start time of the activity c
described in Example 3 and Figure 2(c). The domain change J5 ≤ scK arises from the
compulsory parts of activity b and e as well as the fact that activity c cannot start before
time 3. An explanation of the propagation is hence J3 ≤ scK∧ J3 ≤ sbK∧ Jsb ≤ 3K∧ J3 ≤
seK ∧ Jse ≤ 4K→ J5 ≤ scK.

We can observe that if 2 ≤ sc then the same domain change J5 ≤ scK follows due to
the compulsory parts of activity b and e. Therefore, a stronger explanation is obtained
by replacing the literal J3 ≤ scK by J2 ≤ scK.

Moreover, the compulsory parts of the activity b in the ranges [ 3 .. 3 ] and [ 5 .. 7 ] are
not necessary for the domain change. We only require that there is not enough resources
at time 4 to schedule task c. Thus the refined explanation can be further strengthened
by replacing J3 ≤ sbK∧Jsb ≤ 3K by Jsb ≤ 4K which is enough to force a compusory part of
sb at time 4. This leads to the stronger explanation J2 ≤ scK∧ Jsb ≤ 4K∧ J3 ≤ seK∧ Jse ≤
4K→ J5 ≤ scK.

In this example the final explanation corresponds to a pointwise explanation in Schutt
et al. [27]. Here, those pointwise explanations are used to explain the timetable prop-
agation. For a full discussion about the best way to explain cumulative propagation
see [27].
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2.3.3. Nogood generation

Since all the propagation steps in lazy clause generation have been mapped to unit
propagation on clauses, we can perform nogood generation just as in a SAT solver.

The nogood generation is based on an implication graph and the first unique impli-
cation point (1UIP). The graph is a directed graph where nodes represent fixed literals
and directed edges reasons why a literal became true, and is extended as the search
progresses. Each unit propagation marks the literal it makes true with the clause that
caused the unit propagation. The true literals are kept in a stack showing the order that
they were determined as true by unit consequence or decisions.

For clarity purpose, we do not differentiate between literal and node. A literal is fixed
either by a search decision or unit propagation. In the first case the graph is extended
only by the literal and in the second case by the literal and incoming edges to that literal
from all other literals in the clause on that the unit propagation assigned the true value
to the literal.

Example 8. Consider the strongest explanation J2 ≤ scK ∧ Jsb ≤ 4K ∧ J3 ≤ seK ∧ Jse ≤
4K → J5 ≤ scK from Example 7. It is added to the SAT database as clause ¬J2 ≤
scK ∨ ¬Jsb ≤ 4K ∨ ¬J3 ≤ seK ∨ ¬Jse ≤ 4K ∨ J5 ≤ scK and unit propagation sets J5 ≤ scK
true. Therefore the implication graph is extended by the edges J2 ≤ scK → J5 ≤ scK,
Jsb ≤ 4K→ J5 ≤ scK, J3 ≤ seK→ J5 ≤ scK, and Jse ≤ 4K→ J5 ≤ scK. 2

Every node and edge is associated with the search level at which they are added to the
graph. Once a conflict encounters a nogood which is the 1UIP in LCG is calculated based
on the implication graph. A conflict is recognized when the unit propagation reaches a
clause where all literals are false. This clause is the starting point of the analysis and
builds a first tentative nogood. Now, literals in the tentative nogood are replaced by
the literals from its incoming edges in the reverse order of the graph extension. This
process holds on until the tentative nogood includes exactly one literal from the current
decision level. The resulting nogood is called 1UIP (first unique implication point), since
it corresponds to a cut through the implication graph that has one node in the current
decision level.

Example 9. Considered the Rcpsp/max instance from Example 1 on page 2.
Assume an initial domain of Dinit = [ 0 .. 15 ] then after the initial propagation of

the precedence constraints the domains are D(sa) = [ 0 .. 8 ], D(sb) = [ 2 .. 10 ], D(sc) =
[ 3 .. 12 ], D(sd) = [ 0 .. 10 ], and D(sb) = [ 3 .. 13 ]. Note that no tighter bounds can be
inferred by the cumulative propagator.

Assume search now sets sa ≤ 0. This sets the literal Jsa ≤ 0K as true, and unit
propagation on the domain clauses will set Jsa = 0K, Jsa ≤ 1K, Jsa ≤ 2K, etc. In
the remainder of the example we will ignore propagation of the domain clauses and
concentrate on the “interesting propagation”.

The precedence constraint sc − 6 ≤ sa will force sc ≤ 6 with explanation Jsa ≤ 0K →
Jsc ≤ 6K. The the precedence constraint sb + 1 ≤ sc will force sb ≤ 5 with explanation
Jsc ≤ 6K→ Jsb ≤ 5K.
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Figure 3: (Part of) The implication graph for the propagation of Example 9. Decision
literals are shown double boxed, while literals set by unit propagation are
shown boxed.

The timetable propagator for cumulative will use the compulsory part of activity a
in [0..2) to force sd ≥ 2. The explanation for this is Jsa ≤ 0K → Jsd ≥ 2K. The the
precedence sd + 3 ≤ se forces se ≥ 5 with explanation Jsd ≥ 2K→ Jse ≥ 5K.

Suppose next that search sets sb ≤ 2. There is no propagation from precedence
constraints or the cumulative constraint. It does create a compulsory part of sb from
[2..7) but there is no propagation.

Suppose now that search sets sd ≤ 2. Then the precedence constraint se − 3 ≤ sd
forces se ≤ 5 with explanation Jsd ≤ 2K → Jse ≤ 5K. This creates a compulsory part of
d in [2..3) and a compulsory part of e in [5..7). In fact all the activities a, b, d and e
are fixed now. Timetable propagation sees since all resources are used at time 5 then
activity c cannot start before time 6. A reason for this is Jsb ≥ 2K∧Jsb ≤ 5K (which forces
b to use 2 resources in [5..7)), plus Jse ≥ 5K∧ Jse ≤ 5K (which forces e to use 2 resources
in [5..7)), plus Jsc ≥ 3K (which forces c to overlap this time. Hence an explanation is
Jsb ≥ 2K ∧ Jsb ≤ 5K ∧ Jse ≥ 5K ∧ Jse ≤ 5K ∧ Jsc ≥ 3K→ Jsc ≥ 6K.

This forces a compulsory part of c at time 6 which causes a resource overload at that
time. An explanation of the failure is Jsb ≥ 2K ∧ Jsb ≤ 5K ∧ Jse ≥ 5K ∧ Jse ≤ 5K ∧ Jsc ≥
6K ∧ Jsc ≤ 6K→ fail. The edges are shown in the conflict graph as dashed (for clarity).

The nogood generation process starts from this original explanation. It removes the
last literal in the explanation by replacing it by its explanation. Replacing Jsc ≥ 6K by
its explanation creates the new nogood Jsb ≥ 2K ∧ Jsb ≤ 5K ∧ Jse ≥ 5K ∧ Jse ≤ 5K ∧ Jsc ≥
3K ∧ Jsc ≤ 6K → fail. Since this nogood has only one literal that was made true after
the last decision level Jse ≤ 5K this is the 1UIP nogood. Rewritten as a clause it is
Jsb ≤ 1K ∨ ¬Jsb ≤ 5K ∨ Jse ≤ 4K ∨ ¬Jse ≤ 5K ∨ Jsc ≤ 2K ∨ ¬Jsc ≤ 6K. 2

After discovering a new nogood C the lazy clause generation solver, like a SAT solver,
adds the clause C to the theory, and backtracks to the decision level of the second newest
literal in nogood C. At this point we are guaranteed that the clause will unit propagate.
After unit propagation finishes search proceeds as usual.

Example 10. Continuing Example 9, the solver backtracks to the decision level of the
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second newest literal (in this case se ≤ 5) thus undoing the decisions sd ≤ 2 and sb ≤ 2
and their consequences. The newly added nogood unit propagates to force se ≥ 6 with
explanation Jsb ≥ 2K ∧ Jsb ≤ 5K ∧ Jse ≥ 5K ∧ Jsc ≥ 3K ∧ Jsc ≤ 6K → Jse ≥ 6K, and the
precedence constraint se − 3 ≤ sd forces sd ≥ 3 with explanation Jse ≥ 6K → Jsd ≥ 3K.
Search proceeds looking for a solution. 2

3. Models for RCPSP/max

In this section a basic model for Rcpsp/max instance is presented at first, and then dif-
ferent possible model improvements which are mainly based on activities in disjunction.

An Rcpsp/max problem can be represented as follows: A set of activities V =
{1, . . . , n} is subjected to generalized precedences in E ⊂ V2 × Z between two activi-
ties, and scarce resources in R. The goal is to find a schedule S = (Si)i∈V that respects
the precedence and resource constraints, and minimizes the project duration (makespan)
where Si is the start time of the activity i.

Each activity i has a finite processing time or duration pi and requires (non-negative)
rik units of resource k, k ∈ R for its execution where rik is the resource requirement or
usage of activity i for resource k. A resource k ∈ R has a constant3 resource capacity Rk

over the planning period which cannot be exceeded at any point in time. The planning
period is given by [0, tmax) where tmax is the maximal planning horizon.

Generalized precedences (i, j, dij) ∈ E between the activities i and j are subjected to
the constraint Si + dij ≤ Sj , i.e. it represents a minimal time lag (j must start at least
dij time units after i starts) if dij ≥ 0 and a maximal time lag (i must start at most
−dij time units after the start of j) if dij < 0. Generalized precedences encode not
only start-to-start relations between activities, but also start-to-end, end-to-start, and
end-to-end by addition/ subtraction of i’s or j’s duration to dij . If a minimal time lag
d+ij and a maximal time lag d−ji exist for an activity j concerning to i then the start time

Sj is restricted to [Si + d+ij ..Si − d
−
ji]. In the case of d+ij = −d−ji the activity j must start

exactly d+ij time units after i.
For the remainder of this section let an Rcpsp/max instance be given with activ-

ities V = {1, 2, . . . , n}, generalized precedences E , resources R, and a planning pe-
riod [0, tmax). Then the basic model can be stated as the following Zinc [20] model.

%---------------------------------------------------------------------%

% Parameters

int: t max; % The planning horizon

set of int: R; % The set of resources

set of int: V; % The set of activities

set of int: Idx; % The index set of precedences

array [R] of int: rcap; % The resource capacities

array [V] of int: p; % The activities durations

3Variation of resource capacities can be obtained by using artificial activities that claim the not-available
resource units.
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array [V, R] of int: r; % The activities resource requirements

array [Idx, 1..3] of int: E; % The precedences of form x + c <= y

set of int: Times = 0..t max; % The planning period

%---------------------------------------------------------------------%

% Variables

array [V] of var Times: S;

var Times: objective;

%---------------------------------------------------------------------%

% Constraints

% Precedence constraints

constraint

forall (id in Idx) (S[E[id, 1]] + E[id, 2] <= S[E[id, 3]]);

% Cumulative resource constraints

constraint

forall (res in R) (cumulative(S, p, [r[i, res] | i in V], rcap[res]));

% Objective constraints

constraint

forall (i in V) (S[i] + p[i] <= objective);

%---------------------------------------------------------------------%

% Search

solve minimize objective;

%---------------------------------------------------------------------%

This basic model has a number of weaknesses: first the initial domains of the start
times are large, second each precedence constraint is modelled as one individual propa-
gator, and finally the SAT solver in LCG has no structural information about activities
in disjunction.

A smaller initial domain can be computed by taking into account the precedences in
E as described in the next subsection. Individual propagators for precedences may not
be so bad for a small number of precedences, but for a larger number of propagators,
their queuing behaviour may result in long and costly sequences of propagation steps.
A global propagator can efficiently adjust the time-bounds in O(n log n + m) time as
described in Feydy et al. [13], but we did not have access to such a propagator for
the experiments. Reified precedence constraints can be used for modelling activities in
disjunctions as described later in this section.

3.1. Initial Domain

A smaller initial domain can be obtained for the start time variables by applying the
Bellman-Ford single source shortest path algorithm [6, 14] on the digraph G = (V ′, E ′)
where V ′ = V ∪ {v0, vn+1}, E ′ = {(i, j,−dij) | (i, j, dij) ∈ E} ∪ {(v0, i, 0), (i, vn+1,−pi) |
i ∈ V}, v0 is the source node, and vn+1 is the sink node. The digraph is referred as
the activity-on-node network in the literature (e.g. [5, 22]). If the digraph contains a
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negative-weight cycle then the Rcpsp/max instance is infeasible. Otherwise the shortest
path from the source v0 to an activity i determines the earliest possible start time
for i, i.e. −w(v0 → i) where w(.) is the length of the path and the shortest path
from an activity i to the sink vn+1 the latest possible start time for i in any schedule,
i.e. tmax + w(i → vn+1). The Bellman-Ford algorithm has a runtime complexity of
O(|V| × |E|).

These earliest and latest start times can not only used for an initial smaller domain,
but also to improve the objective constraints by replacing them with

% Objective constraints

constraint

forall (i in V) (S[i] + tail[i] <= objective);

where tail[i] is the “negative” length −w(i → vn+1) of the shortest path from i to
vn+1 in the digraph G. Preliminaries experiments confirmed that this modification gave
major improvements for solving an instance and generating a first solution, especially on
larger instances. Another advantage specific to LCG is that a smaller initial domain also
reduces the size of the problem because less Boolean variables are necessary to represent
the integer domain in the SAT solver.

3.2. Activities in Disjunction

Two activities i and j ∈ V are in disjunction, if they cannot be executed at the same
time, i.e. their resource requirement for at least one resource k ∈ R is bigger than the
available capacity: rik + rjk > Rk. Activities in disjunction can be exploited in order to
reduce the search space.

The simplest way to model two activities i and j in disjunction is by two propositional
constraints sharing the same Boolean variable Bij .

Bij → Si + pi ≤ Sj ∀i < j in disjunction (1)

¬Bij → Sj + pj ≤ Si ∀i < j in disjunction (2)

If Bij is true then i must end before j starts (denoted by i � j), and if Bij is false
then j � i. The literals Bij and ¬Bij can be directly represented in the SAT solver,
consequently Bij represents the relation (structure) between these activities. The prop-
agator of such a propositional constraint can only infer new bounds on left hand side
of the implication if the right hand side is false, and on the start times variables if the
left hand side is true. For example, the right hand side in the second constraint is false
if and only if maxD Si −minD Sj < pj . In this case the literal ¬Bij must be false and
therefore i� j.

Adding these redundant constraints to the model allows the propagation solver to
more quickly determine information about start time variables. The Zinc model of these
constraints is

% Redundant non-overlapping (disjunctive) constraints
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constraint

forall (i, j in V where i < j) (

if exists(res in R)(r[i, res] + r[j, res] > rcap[res]) then

% Activity i must be run before or after j

let {var bool: b} in (

(b -> S[i] + p[i] <= S[j])

/\ (not(b) -> S[j] + p[j] <= S[i])

)

else true endif

);

The detection which activity runs before the other can be further improved by con-
sidering the domains of the start times, and the minimal distances in the activity-on-
node-network (see e.g. Dorndorf et al. [11]).

4. The Branch-and-Bound Algorithm

Our branch-and-bound algorithms are based on deterministic and conflict- driven branch-
ing strategies. We use them solely or in combination as a hybrid where at first the deter-
ministic and then the conflict-driven branching is chosen (cf. Schutt et al. [26]). After
each branch all constraints are propagated until a fixpoint is reached or the inconsistency
for the partial schedule or the instance is proven. In the first case a new node is explored
and in the second case an unexplored branch is chosen if one exists or backtracking is
performed.

4.1. Deterministic Branching

The deterministic branching strategy selects an unfixed start time variable Si with the
smallest possible start time minD Si. If there is a tie between several variables then the
variable with the biggest size, i.e. maxD Si − minD Si, is chosen. If there is still a tie
then the variable with the lowest index i is selected. The binary branching is as follows:
left branch Si ≤ minD Si, and right branch Si > minD Si. We denote this branching
strategy by Mslf.

This branching creates a time-oriented branch-and-bound algorithm similar to Dorn-
dorf et al. [11], but it is simpler and does not involves any dominance rule. Hence, it is
weaker than their algorithm.

4.2. Conflict-driven Branching

The conflict-driven branching is a binary branching over literals in the SAT solver. In
the left branch the literal is set to true and in the right branch to false. As described
in Sec. 2.3.1 on page 9 the Boolean variables in the SAT solver represent values in the
integer domain of a variable x (e.g. ¬Jx ≤ 3K (Jx ≤ 10K)) or a disjunction between
activities. Hence, it creates a branch-and-bound algorithm that can be considered as a
mixture of time oriented and conflict-set oriented.
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As branching heuristic the Variable-State-Independent-Decaying-Sum (Vsids) [21] is
used which is a part of the SAT solver. In each branch it selects the literal with the
highest activity counter where an activity counter is assigned to each literal, and is
increased during conflict analysis if the literal is related to the conflict. The analysis
results in a nogood which is added to the clause data base. Here, we use the 1UIP as a
nogood.

In order to accelerate the solution finding and increase the robustness of the search
on hard instances Vsids can be combined with restarts which has been shown beneficial
in SAT solving. On restart the set of nogoods and the activity counter has changed, so
that the search will explore a very different part of the search tree. In the remainder
Vsids with restart is denoted by Restart. Different restart policies can be applied,
here a geometric restart on nodes with an initial limit of 250 and a restart factor of 2.0
are used.

4.3. Hybrid Branching

At the beginning of each search the activity counters are all initialized with the same
value which can result in a poor performance of Vsids at the start of search. In order
to avoid this situation at first Mslf can be chosen for branching and then Vsids used
after a restart is performed (e.g. after a specific number of explored nodes). This has
the advantage that the deterministic search initializes the activity counters with more
meaningful values that can be fully exploited by Vsids. Here, we switch the searches
after exploration of the first 500 nodes unless otherwise stated. In the remainder we refer
to the strategy as Hot Start. Once more, the Vsids search after the first restart can
benefit from restart. We denote the hybrid branching approach with restarts by Hot
Restart.

5. Computational Results

We carried out experiments on Rcpsp/max instances available from [2] and accessible
from the PSPLib [1]. Our approach is compared to the best known exact and non-exact
methods so far on each testset. At the website http://www.cs.mu.oz.au/~pjs/rcpsp

detailed results can be obtained.
Our methods are evaluated on the following testsets which were systematically created

using the instance generator ProGen/max (Schwindt [28]):

• CD — 1080 instances with 100 activities and 5 resources (cf. Schwindt [30]).

• UBO — ubo10, ubo20, ubo50, ubo100, and ubo200: each containing 90 in-
stances with 5 resources and 10, 20, 50, 100, and 200 activities respectively (cf.
Franck et al. [15]).

• SM — j10, j20, and j30: each containing 270 instances with 5 resources and 10,
20, and 30 activities respectively (cf. Kolisch et al. [18]).
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Note that although the testset SM consists of small instances they are considerably
harder than e.g. ubo10 and ubo20.

The experiments were run on Intel(R) Xeon(R) CPU E54052 processor with 2 GHz
clock running GNU/Linux. The code was written in Mercury using the G12 Con-
straint Programming Platform and compiled with the Mercury Compiler using grade
hlc.gc.trseg. Each run was given a 10 minute runtime limit.

5.1. Setup and Table Notations

In order to solve each instance a two-phase process was used. Both phases used the basic
model with the two extensions described in Subsections 3.1 and 3.2.

In the first phase a Hot Start search was run to determine a first solution or to
prove the infeasibility of the instance. In contrast to the normal Hot Start we give the
deterministic search more time to find a first solution and therefore we switch to Vsids
only after after 5× n nodes are explored, where n is the number of activities.

The feasibility runs were set up with the trivial upper bound on the makespan tmax =∑
i∈V max(pi,max{dij | (i, j, dij) ∈ E}). The first phase was run until a solution (with

makespan UB) was found or infeasibility proved or the time limit reached. In the first
phase the the search strategy used should be at both finding feasible solutions and
proving infeasibility. Hence, it could be exchanged with methods which might be more
suitable than Hot Start.

In the second optimization phase, each feasible instance was set up again this time
with tmax = UB. The tighter bound is highly beneficial to lazy clause generation since it
reduces the number of Boolean variables required to represent the problem. The search
for optimality was performed using one of the various search strategies defined in the
previous section.

The execution of the two-phased process lead to the following measurements.

rtmax: The runtime limit in seconds (for both phases together).

rtavg: The average runtime in seconds (for both phases).

fails: The average number of fails perfomed in both phases of the search.

feas: The percentage of instances for which a solution was found.

infeas: The percentage of instances for which the infeasibility was proven.

opt: The percentage of instances for which an optimal solution was found and proven.

∆LB: The average distance from the best known lower bounds of feasible instances given
in [2].

#svd: The number of instances which were proven to be infeasible or optimal.

cmpr(i): Columns with this header give measurements only related to those instances
that were solved by each procedure where i is the number of these instances.
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Table 1: Comparison on the testsets CD, UBO, and SM

Procedure #svd ∆LB
cmpr(2230) all(2340)
rtavg fails rtavg fails

Mslf 2237 3.96785 7.73 6804 35.96 23781
Mslf with restart 2237 3.96352 7.80 6793 36.04 23787
Vsids 2276 3.76928 2.16 1567 22.91 13211
Restart 2276 3.73334 2.02 1363 22.38 12212
Hot Start 2277 3.84003 2.22 1684 22.71 12933
Hot Restart 2278 3.73049 2.04 1475 22.36 12341

all(i): Columns with this header comare measurements for all instances examined in the
experiment where i is the number of these instances.

A note about special entries in the tables. A table entry “-” indicates no related
number was available from previously published work. A table entry with two numbers
the second in parentheses indicates the procedure was applied several times: the first
number is the average over all runs with the second number, in parentheses, is the best
number for all runs. A table entry marked “?” indicates the situation where a procedure
was not able to find a solution for all feasible instances and therefore the corresponding
number may not be comparable with the number for other procedures in the same
column.

5.2. Comparison of the different strategies

In the first experiment we compare all of our search strategies against each other on all
testsets. The strategies are compared in terms of rtavg and failures for each test set.

The results are summarized in the Table 1. Similar to the results for Rcpsp in Schutt
et al. [27] all strategies using Vsids are superior to the deterministic methods (Mslf),
and similarly competitive. Hot Restart is the most robust strategy, solving the most
instances to optimality and having the lowest ∆LB. Restart is essential to make the
search more robust for the conflict-driven strategies, whereas the impact of restart on
Mslf is minimal.

In contrast to the results in Schutt et al. [27] for Rcpsp the conflict-driven searches
were not uniformly superior to Mslf. The three instances 67, 68, and 154 from j30 were
solved to optimality by Mslf and Mslf with restart, but neither Restart and Hot
Restart could prove the optimality in the given time limit, whereas Vsids and Hot
Start were not even able to find an optimal solution within the time limit. Furthermore,
our method could not find a first solution for the ubo200 instances 2, 4, and 70 nor
prove the infeasibility for the ubo200 instance 40 within 10 minutes.
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Table 2: Results on the testset CD

Procedure rtmax rtavg feas opt infeas ∆LB

B&BD00 100 - 98.1 71.7 1.9 4.6a

Eva - 0.62 98.1 ≥ 65.9 - 3.24 (3.16)

Restart

1 0.38 97.9 78.1 1.6 4.73?

10 1.39 98.1 89.8 1.9 3.20
100 6.17 98.1 94.0 1.9 2.86
600 19.32 98.1 95.8 1.9 2.81

Hot Restart

1 0.44 97.9 76.8 1.6 4.87?

10 1.49 98.1 89.6 1.9 3.20
100 6.27 98.1 93.9 1.9 2.86
600 19.42 98.1 96.0 1.9 2.79

a ∆LB is based on the lower bounds presented in Schwindt [30] which were not
accessible for us.

5.3. Results on the testset CD

Table 2 presents the results for the testsets CD where 98.1% (1.9%) of the instances
are feasible (infeasible). Here, we compare Restart and Hot Restart with the time-
oriented branch-and-bound procedure (B&BD00) from Dorndorf et al. [11] and the evolu-
tionary algorithm Eva from Ballest́ın et al. [4]. The method B&BD00 performs better on
this testset than the methods proposed by De Reyck and Herroelen [10], Schwindt [29]4,
and Fest et al. [12]. Moreover, B&BD00 is the best published exact method on this
testset so far. The B&BD00 method was implemented in C++ using Ilog Solver and
Ilog Scheduler. Their experiments were run on a Pentium Pro/200 PC with NT 4.0
as operating system, thus their results were obtained on a machine approximately ten
times slower.

We compare our results achieved with a runtime limit of 1 second to their results with
a limit of 100 seconds which should be clearly in favour of them. While B&BD00 can
prove feasibility and infeasibility of all instances, the first-phase Hot Start search with
one second was unable to prove infeasibilty of four infeasible instances or find solutions
to two feasible instances. It does prove infeasibility of these four infeasible instances
in less than 2.1 seconds and finds a first solution for these two feasible instances in 4.8
seconds and 5.04 seconds respectively. Within one second both our methods Restart
and Hot Restart were able to prove the optimality of substantially more instances
than B&BD00. With more time our methods are able to prove optimality of almost all
instances in these testsets.

One reason for the first-phase results at one second may simply be that there is a
reasonable set up time required for lazy clause generation to generate all the Boolean
variables and hence there is not much time left for search. Another reason for the weak-
ness of proving infeasibility is that our model only contains propagators that determine

4As reported in [11]
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Table 3: Results on the testset UBO for ubo10, ubo20, ubo50 and ubo100 instances
in comparison with Franck et al.

Procedure rtmax rtavg feas + infeas feas opt infeas ∆LB

FbsF01 n 12.4 99.66 - - - 6.82?

DmF01 n 0.03 100 81.7 - 18.3 10.72
GaF01 n 3.16 100 81.7 - 18.3 6.93

Restart
n/100 0.21 95.0 80.0 70.8 15.0 5.73?

n/10 0.78 100 81.7 75.3 18.3 4.99

Hot Restart
n/100 0.25 95.0 80.0 69.7 15.0 5.73?

n/10 0.81 100 81.7 75.3 18.3 5.04

the order of activities in disjunction concerning their domains, but not also their mini-
mal distance in the transitive closure of all precedences.5 Dorndorf et al. [11] shows that
these propagators are crucial for detecting infeasibility. That Hot Start is not so good
at finding a first solution is not surprising, since the search is not very problem specific
as B&BD00. In order to overcome these problems one could run at first e.g. B&BD00 to
prove infeasibility and generate a first solution, and then apply our methods.

The method Eva is the best published local search procedure on this testset. Their
results were obtained on a Samsung X15 Plus computer with Pentium M processor with
1400 MHz clock speed. This means that our machine is about 1.46 times faster than
their. Their limits are a maximum of 5000 schedules and a stop of the process if within
10 generation the best schedule could not be improved. Our methods generates better
schedules within 10 seconds than there approach, visible in the lower ∆LB of 3.20.

Overall our methods are able to close 310 open problems and improve the upper bound
for all 21 remaining open problems in testset CD, according to the results recorded in [2].

5.4. Results on testset UBO

Table 3 compares our procedures Restart and Hot Restart with the truncated
branch-and-bound methods FbsF01, the heuristic DmF01, and the genetic algorithm GaF01

all proposed by Franck et al. [15] on the UBO testset where 81.7% (18.3%) of the in-
stances are feasible (infeasible). In this table we add the column feas + infeas showing
the sum of percentage of feas and infeas because the corresponding numbers for FbsF01
are not available. Their results were obtained on personal computer PII with a 333MHz
processor running NT 4.0 as operating system, i.e. our machine is about 6.2 times faster.
They imposed a time limit of n seconds, e.g. an instance with 100 activities was given at
most 100 seconds. We compare our methods with 10 (100) times lower time limit which
should be favorable to the other methods.

Their methods were able to prove the feasibility or infeasibility for all instances (except
one instance for the method FbsF01). Indeed DmF01 is extremely fast requiring just 0.03
seconds on average, but it does not necessarily find very good solutions, as shown by the

5The missing propagators are not available in the G12 Constraint Programming Platform.
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Table 4: Results on the testset UBO for ubo10, ubo20, ubo50 and ubo100 instances
in comparison with Ballest́ın et al.

Procedure rtmax rtavg feas opt infeas ∆LB

Eva - 0.38 81.7 - - 4.82 (4.79)

Restart

1 0.22 80.0 71.4 15.3 5.60?

10 0.89 81.7 75.3 18.3 4.92
100 5.32 81.7 77.2 18.3 4.51
600 24.47 81.7 78.1 18.3 4.40

Hot Restart

1 0.26 80.0 70.6 15.3 5.65?

10 0.92 81.7 75.3 18.3 5.01
100 5.26 81.7 77.2 18.3 4.55
600 24.14 81.7 78.1 18.3 4.43

high ∆LB.
In contrast our first-phase was not always able to find a first solution or prove infeasi-

bilty with the time limit n/100. No solution was found for 6 instances with 100 activities
and the infeasibility was not shown for 11 (1) instances with 100 (50) activities. Once the
time limit was extended to n/10 then the first phase was always able to find a solution
or prove infeasibility. If we compare ∆LB achieved with a time limit n/10 (note for a
time limit n/100 the data is not comparable, since our methods could not find a solution
for all feasible instances) then our methods have a substantially better ∆LB than their
approaches, i.e., our methods are quicker in improving the makespan. Our approaches
could prove optimality for a substantial fraction of these problems even with time limit
n/100.

In the Table 4 we compare our results with the best local search method Eva from
Ballest́ın et al. [4] on the UBO instances with at most 100 activities. Their limits are
a maximum of 5000 schedules and a stop of the evolution process after 10 generations
if no better schedule could be found. Our methods creates better schedules within 100
seconds than the evolutionary algorithm Eva leading to a smaller lower bound deviation.

The Table 5 presents the results on ubo200 which are compared to the iterative
flattening searches Ifs, Ifs-Fr, and Ifs-Mcsr from Oddi and Rasconi [23].6 The table
contains the extra column ∆UB that reports the average distance from the best known
upper bounds of feasible instances given in [2]. Note Franck et al. [15] also run their
methods on ubo200, but the presented results are accumulated with the results on
instances with 500 and 1000 activities, so that a comparison is not possible.

Within the given time limit Hot Start was not able to find a solution for the in-
stances 2, 4, and 70 and to prove the infeasibility for the instance 40. In order to compare
the results with Oddi and Rasconi we let the first phase of our solution method until a
solution was found or infeasibility proven. The runtimes for the instances 2, 4, 40, and
70 were 1030, 1478, 1139, and 3103 seconds respectively. Interestingly, the first solutions
obtained by our method for the instances 2, 4, and 70 have a better upper bound by 62,

6No machine details are given in [23].
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Table 5: Results on the testset UBO for ubo200 instances

Procedure rtmax rtavg feas opt infeas ∆LB ∆UB

Ifs - 2148.7 88.9 - - - 2.06
Ifs-Fr - 2024.7 88.9 - - - 1.81
Ifs-Mcsr - 1716.7 88.9 - - - 1.65

Restart
100 29.55 81.1 67.8 7.8 7.37? -0.41?

600 139.0 85.6 68.9 10.0 10.11? -1.110?

600+a 187.5 88.9 68.9 11.1 11.88 -1.249

Hot Restart
100 29.9 81.1 68.9 7.8 7.22? -0.48?

600 139.0 85.6 68.9 10.0 10.10? -1.111?

600+a 186.9 88.9 68.9 11.1 11.87 -1.250

a For comparison purpose the instances 2, 4, 40, and 70 were run until a first solution
was found or infeasibility proven.

46, and 37 respectively than the previously best known upper bound recorded in [2].
Comparing these results on ∆UB with Oddi and Rasconi clearly our procedures achieve

better schedules. Restart and Hot Restart perform comparably. The ubo200 in-
stances clearly show that Hot Start as the search strategy in the first phase can have
problems to find a first solution or to prove infeasibility.

In total our approaches close 178 open instances and improve the upper bound for 27
instances of 31 remaining open instances with 200 activities or less in the testset UBO,
according to the results recorded in [2].

5.5. Results on testset SM

Finally for the testset SM we compare our approaches Mslf, Restart, and Hot
Restart with method B&BS98 from Schwindt [29]7, Ises from Cesta et al. [9], and
Swo(br) from Smith and Pyle [31]. The method B&BS98 [29] is a branch-and-bound
algorithm that resolves resource conflicts by adding precedences between activities and
has been run on a Pentium 200 with a 100 seconds time limit. Ises [9] is a heuristic that
also adds precedences between activities in order to resolve/avoid resource conflicts, uses
restarts and has been run on a SUN UltraSparc 30 (266 MHz) with the same time limit.
The method Swo(br) [31] is a squeaky wheel optimisation. Their methods is divided
into two stages: schedule generation and prioritisation where the schedule is created by a
heuristic with priority scheme and the latter changes the priorities on variables depend-
ing on how “well” it is handled in the former stage. Their benchmarks were performed
on a 1700 Mhz Pentium 4. Note that Ises and Swo(br) are not exact methods, i.e.
they cannot prove infeasibility unless the precedence graph contains a positive weight
cycle, and optimality is only proven if the makespan of the solution found equals the
known lower bound.

7The paper [29] was not accessible for us, so that here the reported results are taken from [9].
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Table 6: Results on the j30

Procedure rtmax rtavg feas opt infeas ∆LB

B&BS98 100 - 67.7 42.6 - 9.56a

Ises 100 22.68 68.5 33.9 (35.6) - 10.99 (10.37)
Swo(br) 10 1.07 68.5 35.0 - 10.3

Mslf 1 0.16 68.5 58.1 31.5 8.91
10 0.82 68.5 61.9 31.5 8.40
100 4.90 68.5 64.8 31.5 8.23
600 21.61 68.5 65.5 31.5 8.20

Restart 1 0.12 68.5 61.5 31.5 8.38
10 0.57 68.5 64.1 31.5 8.19
100 3.92 68.5 64.8 31.5 8.17
600 21.34 68.5 65.2 31.5 8.12

Hot Restart 1 0.12 68.5 61.5 31.5 8.37
10 0.59 68.5 64.4 31.5 8.18
100 3.93 68.5 64.8 31.5 8.16
600 21.47 68.5 65.2 31.5 8.13

a ∆LB is based on the lower bounds presented in Schwindt [30] which were not accessible
for us.

Table 6 presents the results for the 270 instances from SM with 30 activities. From
these instances 185, i.e. 68.5% are feasible and 85, i.e. 31.5% infeasible. All our
approaches could prove feasibility and infeasibility of all instances within one second
whereas B&BS98 could not find a solution for a few feasible instances. Moreover, our
methods could prove optimality significantly more often than the exact method B&BS98

(and clearly also the incomplete methods). All our methods were able to find on average
better solution in one seconds than these approaches as indicated by a lower ∆LB. For
these harder benchmarks our methods clearly outperform the competition. One rea-
son could be that constraint propagation over the cumulative constraint has a greater
benefit than on other testsets because here more activities can be run simultaneously.

Our approaches each give similar results: Restart and Hot Restart are superior
to Mslf until 10 seconds, and all are similar each other with longer time limits. For
this problem set Mslf could be prove optimality for three instances where Restart
and Hot Restart only found the optimal solution. On the other hand Mslf could not
find an optimal solution for two instance where Restart and Hot Restart could. It
seems that Mslf may better suits problems where more activities can be executed in
parallel, but this needs further investigation.

Experiments were also carried out on the instances with 10 or 20 activities. All out
methods could solve all 270 instances with 10 activities within 0.05 seconds. And all out
methods could solve all 270 instances with 20 activities within 30 seconds. Moreover for
the instances with 20 activities an optimal solution was found within 1 second for all
feasible instances.
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Here, our approaches close 85 open problems and improve the upper bound for 3
problems of the 6 remaining open problems in the testset SM, according to the results
recorded in [2].

6. Conclusion

In this paper we minimize the project duration of Rcpsp/max using a generic constraint
programming solver that includes nogood learning facilities and conflict-driven search.
Experiments on three well-established benchmark suites show that our solver is able to
find better solutions quicker than competing approaches, and prove optimality for many
more instances than competing approaches.

We use a two-phase process. In the first phase a solution is generated or infeasibility is
proven and in the second phase a branch-and-bound algorithm is used for optimization
where the problem is set up with an upper bound on the project duration found from the
first solution. In contrast to some previous approaches we use individual propagators for
precedence constraints instead of propagators taking all precedences into account at once.
This yields not only to weaker propagation, but also slower detection of infeasibility, in
particular for instances with a large number of precedences like for instances with 100
activities or more from the testset UBO. Hence our generic search used in the first phase
is sometimes slower in finding a first solution than other problem-specific approaches in
the literature. However, the first-phase generic search could be replaced by one of these
methods.

Overall, our method could close 573 open problems and improve a further 51 upper
bounds on the project duration from the 58 remaining open problems, according to
the best known results given in [2]. We note though that the methods from Ballest́ın
et al. [4], and Oddi and Rasconi [23] may have found better upper bounds than are
recorded in [2] on some problems, but we could not find any record of this. Note that
our method is highly robust: our method proves the best known optimal for each already
closed instance in every testset. Furthermore, for every open instance in every testset
we either close the instance or improve the upper bounds, except for 7 instances (and
here we regenerate the best known upper bound for 4 of them).
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[12] Fest, A., Möhring, R. H., Stork, F., and Uetz, M. Resource-constrained
project scheduling with time windows: A branching scheme based on dynamic re-
lease dates. Tech. Rep. 596, Technische Universität Berlin, 1999.

[13] Feydy, T., Schutt, A., and Stuckey, P. J. Global difference constraint propa-
gation for finite domain solvers. In PPDP ’08: Proceedings of the 10th international
ACM SIGPLAN conference on Principles and practice of declarative programming
(New York, NY, USA, 2008), ACM, pp. 226–235. To appear in: 10th International
ACM SIGPLAN Symposium on Principles and Practice of Declarative Program-
ming.

[14] Ford, L. R., and Fulkerson, D. R. Flows in Networks. Princeton University
Press, 1962.

26



[15] Franck, B., Neumann, K., and Schwindt, C. Truncated branch-and-
bound, schedule-construction, and schedule-improvement procedures for resource-
constrained project scheduling. OR Spectrum 23, 3 (2001), 297–324.

[16] Herroelen, W., De Reyck, B., and Demeulemeester, E. Resource-
constrained project scheduling: A survey of recent developments. Computers &
Operations Research 25, 4 (1998), 279–302.

[17] Horbach, A. A boolean satisfiability approach to the resource-constrained project
scheduling problem. Annals of Operations Research To appear (2010), To appear.

[18] Kolisch, R., Schwindt, C., and Sprecher, A. Project Scheduling: Recent Mod-
els, Algorithms and Applications. Kluwer Academic Publishers, 1998, ch. Bench-
mark instances for project scheduling problems, pp. 197–212.

[19] Le Pape, C. Implementation of resource constraints in ILOG Schedule: A library
for the development of constraint-based scheduling systems. Intelligent Systems
Engineering 3, 2 (1994), 55–66.

[20] Marriott, K., Nethercote, N., Rafeh, R., Stuckey, P. J., Garcia de la
Banda, M., and Wallace, M. G. The design of the zinc modelling language.
Constraints 13, 3 (Sept. 2008), 229–267.

[21] Moskewicz, M. W., Madigan, C. F., Zhao, Y., Zhang, L., and Malik, S.
Chaff: Engineering an efficient SAT solver. In Design Automation Conference (New
York, NY, USA, 2001), ACM, pp. 530–535.

[22] Neumann, K., and Schwindt, C. Activity-on-node networks with minimal and
maximal time lags and their application to make-to-order production. OR Spectrum
19 (1997), 205–217. 10.1007/BF01545589.

[23] Oddi, A., and Rasconi, R. Iterative flattening search on rcpsp/max problems:
Recent developments. In Recent Advances in Constraints, A. Oddi, F. Fages, and
F. Rossi, Eds., vol. 5655 of Lecture Notes in Computer Science. Springer Berlin /
Heidelberg, 2009, pp. 99–115. 10.1007/978-3-642-03251-6 7.

[24] Ohrimenko, O., Stuckey, P. J., and Codish, M. Propagation via lazy clause
generation. Constraints 14, 3 (2009), 357–391.

[25] Schulte, C., and Stuckey, P. J. Efficient constraint propagation engines. ACM
Transactions on Programming Languages and Systems 31, 1 (2008), 1–43. Article
No. 2.

[26] Schutt, A., Feydy, T., Stuckey, P. J., and Wallace, M. G. Why cumulative
decomposition is not as bad as it sounds. In Proceedings of the 15th International
Conference on Principles and Practice of Constraint Programming (2009), I. Gent,
Ed., vol. 5732 of LNCS, Springer-Verlag, pp. 746–761.

27



[27] Schutt, A., Feydy, T., Stuckey, P. J., and Wallace, M. G. Explaining the
cumulative propagator. Constraints To appear (2010), 1–33.

[28] Schwindt, C. ProGen/max: A new problem generator for different resource-
constrained project scheduling problems with minimal and maximal time lags.
WIOR 449, Universität Karlsruhe, Germany, 1995.

[29] Schwindt, C. A branch-and-bound algorithm for the resource-constrained project
duration problem subject to temporal constraints. WIOR 544, Universität Karl-
sruhe, Germany, 1998.

[30] Schwindt, C. Verfahren zur Lösung des ressourcenbeschränkten Projektdauermin-
imierungsproblems mit planungsabhängigen Zeitfenstern. Shaker-Verlag, 1998.

[31] Smith, T. B., and Pyle, J. M. An effective algorithm for project scheduling
with arbitrary temporal constraints. In Proceedings of the 19th national conference
on Artifical intelligence (AAAI’04) (2004), AAAI Press, pp. 544–549.

[32] Stuckey, P. J., Garcia de la Banda, M., Maher, M., Marriott, K.,
Slaney, J., Somogyi, Z., Wallace, M. G., and Walsh, T. The g12 project:
Mapping solver independent models to efficient solutions. In Proceedings of the 21st
International Conference on Logic Programming (Oct. 2005), M. Gabbrielli and
G. Gupta, Eds., vol. 3668 of Lecture Notes in Computer Science, Springer-Verlag,
pp. 9–13.

28



A. Closed instances

In the Tables 7–15 all 573 previously open instances (regarding to the reported results
in [2]) are listed that had been closed by one of our methods. For each instance follow-
ing parameters are given the instance number (Inst), the previously best known upper
bound (Best UB) on the makespan, the proved optimal makespan (Optimal) and the
lowest runtime (Best rt) of our methods which could solve the instance till optimality.
Optimal makespan are written in italic if the makespan is lower than the previously best
known upper bound. Note that some of these instances were presumably closed by other
methods, but we can find no record of either the instance number or the optimal value.

Table 7: All closed instances from class c
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1 336 336 0.61 3 379 379 0.24 4 258 258 0.70
6 336 327 0.44 12 331 331 0.24 32 370 367 6.12

33 383 383 2.43 34 421 391 60.40 35 259 254 221.81
37 325 312 129.92 38 306 291 40.96 39 428 421 5.10
40 395 386 1.45 62 621 602 10.72 64 688 688 0.39
65 376 355 60.37 90 293 293 0.19 91 260 260 0.74
92 360 360 0.24 94 428 428 0.22 95 399 399 0.58
96 501 501 0.81 97 489 489 0.53 98 518 518 0.55

100 399 399 0.42 121 410 399 6.19 124 304 270 26.90
126 502 502 2.64 127 404 401 0.24 128 505 505 0.53
129 517 506 9.26 130 434 417 28.87 153 554 553 3.76
154 535 524 12.41 155 375 361 201.56 156 399 387 134.98
157 475 453 1.89 158 397 397 1.28 159 488 488 2.44
165 371 371 3.17 181 456 456 0.36 182 376 376 0.37
183 461 461 0.45 185 370 364 2.36 186 410 410 0.40
188 321 307 0.97 190 401 401 0.19 191 493 493 0.13
211 445 445 0.88 212 564 564 0.89 213 710 710 1.01
214 624 624 1.56 217 365 362 2.64 220 403 393 1.95
224 304 304 0.45 242 431 425 76.30 243 533 519 7.76
244 514 508 4.74 246 574 574 1.54 247 478 471 15.98
248 443 430 31.29 249 635 633 1.95 251 308 308 1.21
260 469 469 0.54 271 498 497 2.84 272 277 277 0.39
273 598 579 1.05 277 448 410 2.08 278 587 587 0.27
280 451 451 0.30 301 412 412 1.33 303 329 319 1.53
304 346 333 132.18 306 296 288 1.00 307 342 309 110.16
308 564 545 19.74 309 503 503 2.87 314 329 324 2.03

Continued on next page
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Table 7 – continued from previous page

In
st

B
es

t
U
B

O
p

ti
m

al

B
es

t
rt

In
st

B
es

t
U
B

O
p

ti
m

a
l

B
es

t
rt

In
st

B
es

t
U
B

O
p

ti
m

a
l

B
es

t
rt

315 294 294 0.49 328 255 255 0.34 332 336 326 15.10
333 410 404 3.71 335 426 413 3.03 338 415 403 145.06
340 322 312 12.46 346 446 446 8.43 349 451 444 17.53
361 523 513 5.18 363 566 566 1.77 364 372 360 0.36
365 445 445 0.65 366 419 419 0.25 367 322 322 0.32
369 390 390 0.21 391 323 314 6.78 392 322 311 30.72
393 337 331 0.37 394 469 469 0.50 397 588 524 8.76
399 315 290 72.91 400 420 411 2.21 406 362 362 0.22
413 344 344 0.36 421 469 458 7.04 422 794 776 33.42
423 401 401 1.11 424 394 382 74.41 426 350 333 302.85
427 314 308 2.07 428 831 831 30.62 430 361 345 108.07
433 372 369 9.68 435 361 359 3.53 440 260 258 5.52
451 365 365 0.25 452 420 419 0.62 453 659 659 5.45
454 498 493 0.65 455 304 304 0.29 456 609 609 0.26
457 430 428 0.29 458 402 402 0.24 459 499 447 1.26
481 433 420 1.22 482 905 905 16.12 483 426 402 4.73
484 574 574 0.58 486 586 568 15.16 487 734 734 11.47
488 485 483 0.46 489 397 382 6.55 490 462 462 0.22
493 503 503 0.21 495 353 353 0.16 497 333 323 2.58
511 440 440 1.32 513 555 551 0.80 514 501 489 3.21
515 715 673 19.99 516 394 393 1.17 517 407 399 0.78
518 424 418 8.86 519 437 437 0.78 520 567 560 1.38
523 389 389 1.86 530 292 292 0.17 538 308 308 0.38
540 310 310 8.64

Table 8: All closed instances from class d

In
st

B
es

t
U
B

O
p

ti
m

al

B
es

t
rt

In
st

B
es

t
U
B

O
p

ti
m

a
l

B
es

t
rt

In
st

B
es

t
U
B

O
p

ti
m

a
l

B
es

t
rt

2 488 488 0.71 3 359 351 1.22 6 483 475 1.90
7 371 371 0.47 9 558 552 7.16 10 430 428 1.89

11 400 400 0.13 31 581 562 35.64 32 603 588 285.56
33 448 445 46.95 34 489 466 5.93 36 674 674 11.08
37 529 529 0.67 38 496 490 2.00 40 491 491 0.80
61 476 476 2.02 62 717 710 9.69 64 611 596 6.12
65 539 493 138.61 66 472 449 323.21 67 501 483 4.92

Continued on next page
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68 582 554 123.64 70 622 613 235.48 71 356 354 2.34
88 394 394 1.12 91 502 502 0.41 92 407 407 0.28
93 392 387 1.09 94 457 457 1.13 96 450 445 0.22
97 468 464 2.49 98 540 527 0.85 100 447 447 0.49

122 665 656 4.19 123 497 481 4.63 124 634 623 7.57
125 492 491 0.76 126 413 393 40.83 127 445 432 0.95
128 661 626 43.29 130 623 616 13.47 134 455 454 0.76
151 575 560 7.24 152 467 456 1.25 153 535 514 204.89
155 463 440 122.23 156 545 514 152.52 157 670 651 65.59
160 546 530 9.81 165 418 418 0.98 166 426 414 52.70
169 386 386 0.74 182 464 464 0.37 184 659 659 0.64
189 608 608 0.97 190 504 504 0.47 211 670 668 4.53
213 449 440 1.77 214 457 455 0.70 215 627 627 1.90
217 635 635 1.00 218 605 605 0.60 219 458 445 2.05
220 685 677 0.95 225 615 615 0.14 241 827 782 26.30
242 803 765 96.46 243 739 713 9.88 245 520 507 3.56
247 481 443 104.31 249 707 684 31.53 251 484 484 0.24
252 600 600 0.35 254 402 402 5.17 258 543 543 0.88
272 597 597 0.51 274 474 473 0.48 275 613 613 1.07
276 526 523 0.46 277 575 569 0.41 280 665 665 0.71
303 485 473 2.33 304 451 451 2.84 305 644 634 3.56
306 596 578 1.46 309 761 754 2.18 332 699 682 75.84
333 588 583 1.58 336 658 658 0.63 337 531 506 6.67
338 632 632 1.12 339 839 839 31.77 340 770 753 184.18
343 522 522 0.29 346 432 432 0.18 348 457 457 0.46
355 431 431 0.53 358 588 588 0.21 361 544 544 0.63
363 430 430 2.50 369 504 504 0.46 370 662 662 0.34
391 655 653 3.93 392 624 624 1.22 393 655 654 0.99
394 507 487 2.95 396 691 687 1.47 397 636 636 1.72
398 422 400 3.66 399 546 543 1.90 400 723 723 0.87
419 551 551 0.17 421 589 550 77.41 422 729 729 0.63
423 791 776 67.25 424 789 757 21.17 425 813 783 17.20
426 707 707 1.00 427 592 592 0.81 428 584 584 0.99
429 663 629 2.33 430 770 768 7.14 431 394 394 0.71
436 477 477 0.42 437 578 578 0.38 440 619 619 0.23
452 616 610 0.85 455 546 546 0.28 456 676 676 0.57
457 553 553 0.21 458 538 538 0.53 462 373 373 0.12
470 483 483 0.17 481 546 546 0.47 482 656 656 1.61

Continued on next page
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Table 8 – continued from previous page
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483 578 578 0.31 484 795 795 0.81 485 622 615 1.56
486 692 692 1.44 487 663 663 0.96 489 630 615 4.93
490 778 778 1.02 498 508 508 0.14 501 669 669 0.15
504 438 438 0.16 507 527 527 0.21 511 719 719 1.28
512 580 562 4.30 513 576 566 2.47 514 800 800 1.48
516 801 801 0.79 517 603 602 0.92 518 709 709 2.87
519 618 600 3.25 520 695 695 2.32 522 431 431 0.27
523 409 409 0.75 524 492 490 0.65 528 450 450 0.27
529 421 421 0.29 530 486 486 0.29 540 510 510 0.74

Table 9: All closed instances from class j20
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34 95 95 0.58 35 103 103 1.11 38 106 106 0.43
48 50 50 0.01 58 63 63 0.01 65 92 92 5.45
70 117 117 1.00 71 58 56 0.05 72 50 49 0.08
73 59 58 0.07 75 24 23 0.05 77 46 46 0.02
78 38 38 0.04 80 28 27 0.06 81 43 43 0.01
88 36 36 0.02 90 40 40 0.01 128 100 100 0.44

130 98 98 0.34 149 64 64 0.00 150 47 46 0.01
154 119 119 15.90 167 52 50 0.04 170 63 63 0.01
220 113 113 0.48 246 119 119 1.25

Table 10: All closed instances from class j30
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4 104 101 1.12 12 48 46 0.04 13 63 63 0.04
17 57 57 0.02 20 32 31 0.02 24 39 39 0.02
32 114 113 0.23 33 135 114 5.70 37 119 118 8.15
38 93 90 5.42 40 120 113 2.64 41 47 46 0.07
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Table 10 – continued from previous page
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42 64 64 0.02 45 56 54 0.04 46 51 47 0.06
47 46 46 0.02 53 46 46 0.02 57 70 70 0.02
59 58 55 0.09 60 47 46 0.09 67 130 130 15.89
68 174 174 27.08 71 56 54 0.08 75 65 61 0.19
76 72 68 0.19 77 48 46 0.68 78 64 61 0.07
79 71 71 0.09 80 65 65 0.03 89 80 80 0.04

102 60 60 0.04 114 42 42 0.01 119 79 79 0.02
123 151 150 265.21 124 133 133 1.72 129 145 145 0.29
131 83 83 0.02 133 101 101 0.02 134 59 57 0.14
138 96 96 0.03 139 89 88 0.03 144 102 102 0.01
149 105 105 0.01 154 134 134 34.96 163 54 53 0.15
165 70 69 0.18 167 112 112 0.03 168 45 43 4.90
170 96 95 0.08 173 85 85 0.02 174 60 60 0.03
175 71 70 0.03 176 93 93 0.05 195 58 55 0.03
204 52 51 0.03 224 116 116 0.03 230 116 116 0.02
244 153 153 1.24 247 175 175 0.34

Table 11: All closed instances from class ubo10
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9 37 37 0.00 16 28 28 0.00 18 45 45 0.00
23 32 32 0.00 26 34 34 0.00 29 33 33 0.00
34 50 50 0.01 38 57 57 0.00 41 39 39 0.00
43 40 40 0.00 47 27 27 0.00 58 31 31 0.00
60 30 30 0.00 75 32 32 0.00 81 59 59 0.00

Table 12: All closed instances from class ubo20
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4 98 98 0.06 6 108 108 0.08 8 93 93 0.04
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Table 12 – continued from previous page
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10 106 106 0.08 13 92 92 0.01 15 46 45 0.02
17 69 69 0.02 20 66 65 0.02 21 44 44 0.01
25 39 39 0.01 26 61 61 0.01 28 58 58 0.01
32 86 86 0.05 34 125 125 0.02 40 106 106 0.09
41 62 62 0.01 44 78 78 0.01 46 73 73 0.01
48 88 88 0.02 49 63 63 0.01 54 57 57 0.01
56 56 56 0.01 57 107 107 0.01 60 40 40 0.00
65 119 119 0.03 74 99 99 0.01 82 53 53 0.00
87 75 75 0.00

Table 13: All closed instances from class ubo50
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6 232 213 0.48 9 230 194 13.81 11 146 141 0.16
12 115 115 0.13 13 134 134 0.11 14 168 153 0.10
15 105 99 0.19 17 112 109 0.19 18 164 163 0.06
19 166 156 0.16 23 161 161 0.05 30 289 289 0.04
31 308 302 0.26 34 232 223 10.53 36 218 204 16.38
37 232 229 0.27 40 203 201 149.02 41 139 139 0.15
42 148 147 0.06 43 100 98 0.14 45 187 181 0.08
47 196 196 0.08 49 153 145 0.11 51 124 124 0.05
52 139 137 0.05 54 91 89 0.06 55 191 191 0.06
57 133 132 0.06 58 182 182 0.04 60 128 128 0.08
61 288 288 0.22 63 240 240 0.72 64 326 326 0.24
65 215 198 10.59 67 246 243 0.36 68 278 275 0.41
71 156 156 0.10 76 162 162 0.09 77 260 260 0.12
78 219 219 0.10 80 298 298 0.10 82 149 149 0.04
84 169 169 0.07 85 190 190 0.04 87 269 269 0.11
88 245 245 0.05 89 218 218 0.05 90 243 243 0.06
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Table 14: All closed instances from class ubo100
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11 263 243 0.53 12 224 216 1.09 13 180 158 0.90
14 206 190 1.90 16 144 131 16.91 18 306 306 0.26
19 200 177 4.67 20 209 201 0.36 21 262 262 0.21
22 492 492 0.30 27 225 204 0.88 36 457 405 127.34
38 483 477 3.00 39 462 457 2.60 41 363 363 0.45
42 359 358 0.44 44 491 483 0.57 45 407 407 0.38
46 283 278 1.19 47 302 301 0.32 48 433 433 0.46
50 269 260 0.81 51 272 267 0.36 53 177 177 0.22
55 247 247 0.25 56 288 288 0.27 57 356 356 0.34
59 256 256 0.21 60 188 188 0.25 61 680 680 3.59
62 540 526 17.73 64 538 533 2.30 65 451 433 284.60
67 459 402 39.81 68 540 538 1.18 71 514 514 0.49
73 414 398 0.57 74 255 228 1.46 76 411 411 0.62
77 351 345 0.68 78 412 410 1.15 79 483 483 0.61
81 453 452 0.44 82 571 568 0.29 85 497 497 0.24
86 531 531 0.31 87 368 363 0.28 88 402 402 0.35
89 374 374 0.23 90 476 476 0.24

Table 15: All closed instances from class ubo200
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11 424 362 25.07 14 467 442 4.68 15 363 361 1.33
16 604 604 1.75 17 470 470 6.51 18 382 377 1.17
28 371 371 1.75 30 350 350 1.12 41 571 533 13.52
42 721 712 3.82 43 653 642 1.16 45 522 514 1.60
46 572 572 2.01 47 380 345 5.18 48 853 853 2.19
49 696 683 2.21 50 650 650 1.10 51 581 581 1.53
52 612 612 2.34 53 624 624 1.63 58 689 689 1.50
63 1424 1422 27.69 68 1205 1155 42.62 69 994 943 72.23
71 728 725 3.01 72 720 717 2.96 73 861 856 2.76
74 1176 1175 9.77 75 830 827 4.86 76 810 808 2.32
77 804 762 11.94 78 778 773 2.31 79 760 757 2.25
82 774 774 1.51 83 820 817 2.11 84 463 463 1.57
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Table 15 – continued from previous page
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85 592 592 1.27

B. Instances with new better upper bound

In the Table 16 all 51 instances are listed for which our methods could find a new
upper bound on the makespan, but could not prove the optimality or find a optimal
solution. For each instance following parameters are given the class of the instance
(Class), the instance number (Inst), the previously best known upper bound (Best UB)
on the makespan (regarding to the reported results in [2]), the new best upper bound
(New UB), and the lowest runtime (Best rt) of our methods to find a schedule with the
new best upper bound.

Table 16: All new UB for instances from all classes
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c 61 407 393 417.240 c 63 380 366 530.730
c 66 385 368 550.930 c 67 367 350 151.220
c 69 388 380 80.910 c 70 391 379 305.150
c 125 351 316 159.530 c 152 384 369 569.710
c 160 394 374 504.980 c 218 325 309 148.550
c 241 430 416 406.440 c 245 468 453 483.840
c 310 277 267 549.740 c 331 388 381 212.150
c 336 393 371 429.530 c 337 296 287 103.620
c 339 429 412 234.700 d 35 420 408 286.630
d 63 544 524 528.090 d 158 696 687 390.240
d 246 489 463 406.390 j30 65 163 162 0.150

j30 73 57 53 187.120 j30 151 158 157 303.550
ubo100 4 429 410 132.720 ubo100 7 447 419 364.420
ubo100 8 435 400 547.800 ubo100 10 522 453 343.380
ubo100 32 485 448 95.060 ubo100 33 435 418 313.430
ubo100 34 488 425 245.220 ubo100 37 453 426 399.410
ubo100 40 504 473 97.510 ubo100 70 422 410 296.430
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Table 16 – continued from previous page
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ubo200 2 1000 938 1029.500 ubo200 3 951 906 242.970
ubo200 4 1009 963 1477.460 ubo200 5 866 852 278.910
ubo200 6 939 841 311.270 ubo200 8 998 911 400.510
ubo200 33 892 855 351.700 ubo200 34 931 816 272.330
ubo200 36 1025 921 391.010 ubo200 37 843 798 495.620
ubo200 39 906 898 505.510 ubo200 62 853 847 389.050
ubo200 67 977 904 566.380 ubo200 70 1009 972 3102.610
ubo50 3 204 196 130.220 ubo50 4 253 216 424.010
ubo50 10 204 192 117.310
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