
Explaining Producer/Consumer Constraints

Andreas Schutt and Peter J. Stuckey

Decision Sciences Research Group, Data61, CSIRO Australia, and Department of
Computing and Information Systems, The University of Melbourne, Victoria 3010,

Australia
{andreas.schutt,peter.stuckey}@data61.csiro.au

Abstract. Resource-constrained project scheduling problems are one
of the most studied scheduling problem, and constraint programming
with nogood learning provides the state-of-the-art solving technology
for them, at least when the aim is minimizing makespan. In this pa-
per we examine the closely related problem of scheduling producers and
consumers of discrete resources and reservoirs. Producer/consumer con-
straints model consumable resources, such as raw materials (e.g., water)
and money, in which event times relate to a production or consump-
tion event. In this paper, we investigate what is the most appropriate
language of learning: should we learn about the event times for produc-
tion and consumption, or should be instead learn about the temporal
relationships between events? For this reason, we explore global con-
straint propagators with explanation for producer/consumer constraints
and contrast this with simple decomposition approaches. Experiments
on resource-constrained project scheduling problems involving produc-
er/consumer constraints show that nogood learning solvers are highly
effective at these problems.

1 Introduction

One of the most-studied and well-known scheduling problem is the resource-
constrained project scheduling problem (RCPSP) that comprises non-preemptive
activities, scarce renewable resources, and precedence relations between pairs of
activities. A schedule determines the start and end time of activities such that
no resource limit is exceeded over the planning horizon and all precedence rela-
tions are satisfied. In RCPSP, an activity consumes some units of the renewable
resource and releases or produces them at its ends. Renewable resources are very
common and model, e.g., manpower and machines, whereas non-renewable re-
sources model, e.g., money and energy, and have a fixed initial capacity, i.e., an
activity only consumes them. Reservoirs (also called inventories [13]) are con-
sumable resources, for which activities can produce and/or consume resource
units at their start and/or end. Normally, they have maximal capacity or level
and a minimal level requirement, e.g., safety stock. They generalize renewable
and non-renewable resources. The constraints that the activities impose on the
reservoir are called producer/consumer constraints. Typical examples for such a

resource are fuel or water tanks, raw materials, and, even money in an investment
project [13].

There is limited literature about producer/consumer constraints. Simonis et
al. [18] brought it to the attention of the constraint programming (CP) commu-
nity for the first time. They motivated different application scenarios and show
how to model them with the global cumulative constraint. Barták [3] provided
an overview of the intersection of industrial planning and scheduling problems
which include producer/consumer constraints. Neumann et al. [13] studied the
properties of the feasible regions, proposing a branch-and-bound algorithm and
filtered beam search heuristic for solving producer/consumer constraints in com-
bination with generalized precedence constraints. They also created the test set
ubo. Laborie [10] investigated the intersection of planning and scheduling in-
volving producer/consumer constraints with generalized precedence relations.
He proposed a balance constraint that reasons about the temporal relations be-
tween two events and can detect new temporal relations. He then developed
an exact solution method with several dedicated search heuristics, which were
combined to closed the remaining open instances in the test set ubo. Beldiceanu
et al. [5] presented the new global constraint cumulatives, which generalized
the global cumulative constraint. This new constraint allowed negative heights
in order to model producer/consumer constraints. Beck [4] investigated heuris-
tics for scheduling problems involving inventories, and more recently Kinable [8]
extended the balance constraints [10] to optional events.

We consider the scheduling of production and consumption events for dis-
crete resources in reservoirs, as well as generalized precedence constraints (also
called temporal constraints, minimal and maximal time lags, difference logic
constraints) relating those events.

A reservoir is a finite pool for storing a resource, having a minimal Lmin and
maximal resource level Lmax. A production event adds an amount of resource to
a reservoir at a certain time, the reservoir should not exceed its maximal level. A
consumption event removes an amount of resource from a reservoir at a certain
time, the reservoir should not go below its minimal level. An event x has a start
or event time t(x) and an effect or height h(x) on the reservoir. If h(x) < 0
(h(x) > 0) then we have a consumption (production) event.

Generalized precedence constraints relate two events and are of the form:
t(x)− t(y) ≤ d where d is integral. Note that this allows us to express, e.g.,

– fixed separation of events: t(x)−t(y) = d as t(x)−t(y) ≤ d∧t(y)−t(x) ≤ −d,
– x is before y written x ≺ y as t(x)− t(y) ≤ −1
– x is no later than y written as x � y as t(x)− t(y) ≤ 0

Example 1. Consider a RCPSP with activities i and a resource of capacity R. Let
si, ei, di and ri be the start time of i, the end time of i, the fixed duration of i and
the fixed resource requirement of i on R. Then we can reformulate the problem
as producer/consumer constraints with generalized precedence constraints. Each
activity i is modeled with a consumption event xi and production event yi for
which t(xi) = si, h(xi) = −ri, t(yi) = ei, and h(yi) = ri. and precedence

2

constraints enforcing t(xi) + di = t(yi) and the renewable resource is modeled
as a reservoir with Lmin = 0, Lmax = R, and initial resource level at R. The
initial resource level is modeled by a dummy production event z with t(z) = 0
and h(z) = R where 0 is the start of the planning horizon. ut

Given the success of nogood learning on RCPSP and related scheduling prob-
lems [16,17,9], it is interesting to explore what is the best learning approach to
tackle the producer/consumer problems with generalized precedence constraints,
a class of problems that generalizes RCPSP and many other scheduling problems.

Usually in CP there is fairly well understood tradeoff: a propagator that in-
fers more is worthwhile as long as the cost of the inference does not outweigh the
benefits of the extra inference. With nogood learning, this becomes more compli-
cated. A propagator with weaker inference may be better if it makes more local
inferences, that are more reusable, in particular a decomposition may be advan-
tageous since it introduces new local variables which may be worthwhile learning
about. In the case of producer/consumer we have three distinct possibilities:

– a decomposition may be best since the local variables it introduces are valu-
able for learning

– a time bounds approach may be best since it uses native literals to the
problem, and bounds can succinctly capture lots of schedules independent
of what happened to earlier events,

– an approach based on ordering may be best, since ordering of events captures
the essence of the constraints on reservoirs

The aim of this paper is to answer the question of which approach is best.

2 Preliminaries

2.1 Lazy Clause Generation

CP solves constraint satisfaction problems by interleaving propagation, which re-
move impossible values of variables from the domain, with search, which guesses
values. All propagators are repeatedly executed until no change in domain is
possible, then a new search decision is made. If propagation determines there is
no solution then search undoes the last decision and replaces it with the oppo-
site choice. If all variables are fixed then the system has found a solution to the
problem. For more details see, e.g., [15].

We assume we are solving a constraint satisfaction problem over set of vari-
ables x ∈ V, each of which takes values from a given initial finite set of values or
domain Dinit(x). The domain D keeps track of the current set of possible values
D(x) for a variable x. Define D v D′ iff D(x) ⊆ D′(x),∀x ∈ V. The constraints
of the problem are represented by propagators f which are functions from do-
mains to domains which are monotonically decreasing f(D) v f(D′) whenever
D v D′, and contracting f(D) v D. If all values are removed from one domain
of a variable x, i.e., D(x) = ∅ then the constraints cannot be satisfied with the
search decisions made and a failure is triggered.

3

We make use of CP with learning using the lazy clause generation (LCG) [14]
approach. Learning keeps track of what caused changes in domain to occur, and
on failure computes a nogood which records the reason for failure. The nogood
prevents search making the same incorrect set of decisions again.

In an LCG solver integer domains are also represented using Boolean vari-
ables. Each variable x with initial domain Dinit(x) = [l..u] is represented by two
sets of Boolean variables Jx = dK, l ≤ d ≤ u and Jx ≤ dK, l ≤ d < u which define
which values are in D(x). We use Jx 6= dK as shorthand for ¬Jx = dK, and Jd ≤ xK
as shorthand for ¬Jx ≤ d− 1K. An LCG solver keeps the two representations of
the domain in sync. For example if variable x has initial domain [0..5] and at some
later stage D(x) = {1, 3} then the literals Jx ≤ 3K, Jx ≤ 4K,¬Jx ≤ 0K,¬Jx = 0K,
¬Jx = 2K,¬Jx = 4K,¬Jx = 5K will hold. Explanations are defined by clauses over
this Boolean representation of the variables.

Example 2. Consider a simple constraint satisfaction problem with constraints
b → x + 3 ≤ y, ¬b → y + 3 ≤ x, b′ → y ≤ 3, ¬b′ → x ≤ 3, with initial do-
mains Dinit(b) = Dinit(b

′) = {0, 1}, and Dinit(x) = Dinit(y) = {0, 1, 2, 3, 4, 5, 6}.
There is no initial propagation. Setting Jy = 2K makes the first constraint prop-
agate D(b) = {0} with explanation Jy = 2K → ¬b, then the second constraint
propagates D(x) = {5, 6} with explanation ¬b ∧ Jy = 2K → J5 ≤ xK. The third
constraint propagates D(b′) = {0} with explanation Jy = 2K→ ¬b′ and the last
constraint sets D(x) = ∅, with explanation J5 ≤ xK ∧ ¬b′ → false. The graph of
the implications is

¬b // J5 ≤ xK
((

Jy = 2K

66

//

33

¬b′ // false

Any cut separating the decision Jy = 2K from false gives a nogood. The simplest
one is Jy = 2K→ false. ut

2.2 Global Difference Logic Propagator

Constraints of difference, i.e., of the form x− y ≤ d where d is a fixed value are
one of the simplest form of constraints. Efficient algorithms based on shortest
paths are known for computing satisfaction and implications, and propagation
for this class of constraints. In this work we use them inside an explaining solver,
hence the propagator needs to explain its reasoning, making it more akin to a
difference logic theory propagator [6] in SAT modulo theories (SMT).

The global difference logic propagator [7] reasons with literals of the form
Jx − y ≤ dK, and for example can make transitive deductions like Jx − y ≤
1K∧ Jy−z ≤ 4K→ Jx−z ≤ 5K which are beyond the scope of usual finite domain
propagation. The propagator will detect if a literal Jx − y ≤ dK becomes true
or false given the current set of difference constraints (and bounds) which are
asserted, and also detect unsatisfiability of the set of asserted constraints. This
will be important for the producer/consumer constraint which can both make

4

use of difference logic information, and produce new difference logic information.
Note that because bounds literals Jx ≤ dK and J−x ≤ dK are so much more
important in CP they are treated specially unlike in SMT, for details see [7].

3 The Producer/Consumer Constraint

Laborie [10] provides the framework of the producer/consumer constraint (or
balance constraint) for reasoning about a reservoirs. In this section, we revisit
his framework in order to extend it for nogood learning solvers in the next
section.

Given a set of events Ev on the reservoir with t(x) being the time of the event
x and h(x) the effect on the reservoir. Let Pr and Co be the set of producer
and consumer events respectively, Pr = {x ∈ Ev | h(x) > 0}, Co = {x ∈ Ev |
h(x) < 0}. The producer/consumer constraint enforces that the reservoir stays
within the minimal (resource) level Lmin and maximal (resource) level Lmax.
Hence for every point in the planning horizon τ it enforces

Lmin ≤
∑

x∈Ev:t(x)≤τ

h(x) ≤ Lmax .

The event time t(x) and height h(x) can be variable. We use the notation tmin(x)
(tmax(x)) to refer to the current minimum (resp. maximum) possible time for
event x, and similarly hmin(x) (hmax(x)) for minimum (maximum) height.

In order to propagate the producer/consumer constraint, we will (following
Laborie [10]) partition the set of events into the following six sets with respect
to an event x.

before B(x) = {y ∈ Ev | t(y) < t(x)}
before or with BS(x) = {y ∈ Ev | t(y) ≤ t(x) ∧ y /∈ B(x) ∪ S(x)}
with S(x) = {y ∈ Ev | t(y) = t(x) ∨ (t(y) ≤ t(x) ∧ t(y) ≥ t(x))}
after or with AS(x) = {y ∈ Ev | t(y) ≥ t(x) ∧ y /∈ A(x) ∪ S(x)}
after A(x) = {y ∈ Ev | t(y) > t(x)}
unknown U(x) = {y ∈ Ev | y /∈ B(x) ∪BS(x) ∪ S(x) ∪A(x) ∪AS(x)}

Since normally not all relationships between pairs of events are known in
advanced, the partition of events dynamically changes during the search. How-
ever, only events in one of these sets BS(x), AS(x), or U(x) can move to an-
other set and that at most twice. At the end, all events are partitioned by
B(x) ∪ S(x) ∪ A(x). An event in U(x) can move to all other sets. An event in
BS(x) can move to either B(x) or S(x). An event in AS(x) can move to either
S(x) or A(x).

Determining to which set an event y belongs to during search can be per-
formed by checking the earliest and latest event time or using ordering con-

5

straints. If we use event time information then the sets are determined by:

B(x) = {y ∈ Ev \ {x} | tmax(y) < tmin(x)}
BS(x) = {y ∈ Ev \ {x} | tmax(y) ≤ tmin(x) ∧ (tmin(y) < tmax(y) ∨ tmin(x) < tmax(x))}
S(x) = {y ∈ Ev \ {x} | tmax(y) = tmin(x) ∧ tmin(y) = tmax(y) ∧ tmin(x) = tmax(x)} ∪ {x}

AS(x) = {y ∈ Ev \ {x} | tmin(y) ≥ tmax(x) ∧ (tmin(y) < tmax(y) ∨ tmin(x) < tmax(x))}
A(x) = {y ∈ Ev \ {x} | tmin(y) > tmax(x)}
U(x) = {y ∈ Ev \ {x} | tmin(y) < tmax(x) ∧ tmin(x) ≤ tmax(y)}

To make use of ordering constraints, we first introduce the ordering Booleans
Bxy for all event pairs {x, y} ⊆ Ev, and the constraints

bxy ↔ t(x) < t(y) byx ↔ t(y) < t(x) ¬bxy ∨ ¬byx

unless we use the global difference logic propagator where instead we simply
define the ordering literals bxy as

bxy ≡ Jt(x)− t(y) ≤ −1K byx ≡ Jt(y)− t(x) ≤ −1K

Using the ordering literals the sets are determined by:.

B(x) = {y ∈ Ev \ {x} | bxy = true}
BS(x) = {y ∈ Ev \ {x} | D(bxy) = {true, false} ∧ byx = false}
S(x) = {y ∈ Ev \ {x} | bxy = false ∧byx = false} ∪ {x}

AS(x) = {y ∈ Ev \ {x} | bxy = false ∧D(byx) = {true, false}}
A(x) = {y ∈ Ev \ {x} | byx = true}
U(x) = {y ∈ Ev \ {x} | D(bxy) = {true, false} ∧D(byx) = {true, false}}

Note that the relationships determined by the ordering constraints will be strictly
more informative than those determined from event time information (indepen-
dent of whether we use difference logic or not). The conditions for B(x), S(x)
and A(x) for event time, will enforce the conditions for ordering literals. Thus,
the ordering literals can potentially decide earlier to which set an event y belongs
to and exploit that information for propagation.

3.1 Immediate Maximal Resource Level Before Event

In this sub-section following [10], we describe the consistency check and the
filtering on the event times and heights. The maximal resource level shortly
before an event x ∈ Ev can be approximated by

L<max(x) =
∑

y∈B(x)

hmax(y) +
∑

y∈Pr∩(BS(x)∪U(x))

hmax(y) (1)

where the last sum is an approximation because it neglects precedence relations
and consumer events.

6

Consistency If the maximal resource level is too low then there does not exist
any producer event that can be pushed for execution before the event x. Thus,
the system is inconsistent.

L<max(x) < Lmin → false

Time Bounds Filtering If the first sum in (1) is less than Lmin then the lower
bound on t(x) can be improved.∑

y∈B(x)

hmax(y) < Lmin → ∃Ω ⊆ Pr ∩ (BS(x) ∪ U(x)) with

∑
y∈B(x)∪Ω

hmax(y) ≥ Lmin : ∀y ∈ Ω : t(y′) < t(x)

Searching for an arbitrary set Ω is expensive, but a “practical” set can be com-
puted as follows. Let the events y1, y2, . . . ∈ Pr ∩ (BS(x) ∪ U(x)) be in chrono-
logical order according to their earliest start time, i.e., tmin(y1) ≤ tmin(y2) ≤
Then the lower bound on t(x) can be updated as follows.

∃k :

k−1∑
i=1

hmax(yi) < Lmin −
∑

y∈B(x)

hmax(y) ≤
k∑
i=1

hmax(yi)→ tmin(yk) < t(x)

Consumption and Production Level Filtering The consumption or production
level of certain events y can be filtered with the respect to x. The following rule
holds for all consumers y ∈ Co∩B(x) and all producers y ∈ Pr∩(B(x)∪BS(x)∪
U(x)).

L<max(x) + hmin(y)− hmax(y) < Lmin → Lmin − L<max(x) + hmax(y) ≤ h(y)

This rules avoids a resource level that is below the safety level Lmin.

3.2 Other Resource Levels Regarding an Event

Similar reasoning to the immediate maximal resource level before an event can
be performed for the immediate minimal resource level before the event and the
immediate minimal and maximal resource level after the event. They lead to
similar propagations to those described for L<max(x) in the previous subsection.

Immediate Minimal Resource Level Before Event

L<min(x) =
∑

y∈B(x)

hmin(y) +
∑

y∈Co∩(BS(x)∪U(x))

hmin(y)

Immediate Maximal Resource Level After Event

L>max(x) =
∑

y∈B(x)∪BS(x)∪S(x)

hmax(y) +
∑

y∈Pr∩(AS(x)∪U(x))

hmax(y)

7

Immediate Minimal Resource Level After Event

L>min(x) =
∑

y∈B(x)∪BS(x)∪S(x)

hmin(y) +
∑

y∈Co∩(AS(x)∪U(x))

hmin(y)

4 Explanations

In this section, we describe how to explain propagations for L<max, the prop-
agations for other resource levels are explained similarly. Since we investigate
different propagation algorithms, we introduce general explanations at first be-
fore refining them to each of the propagators.

4.1 Explanation of the Resource Level and Inconsistency

Explanation for inconsistencies or filtering regarding to an event x must express
the reason for the current bound on the resource level L<max(x). For simplicity,
we assume fixed consumption/production of the events at first. In this case, the
bound on the level is caused by the following reasons.

– consumer events are executed before event x
– producer events are executed simultaneously to or after event x

All those events cause a lower level on the reservoir shortly before event x. Thus,
the corresponding explanation would be

expl(L<max(x)) =∧
y∈Co∩B(x)

expl(y ≺ x) ∧
∧

y∈Pr∩(S(x)∪AS(x)∪A(x)):y 6=x

expl(y � x) (2)

where the functions expl(y ≺ x) and expl(y � x) are defined later. Note that the
relative position of events that are not considered are irrelevant for the current
bound on the level. Thus, they can be left out of the explanation.

In the case, events can have flexible consumption/production then the bound
on the resource level can be caused by these additional reasons.

– consumer events run before event x consume too many resource units
– production events that are not simultaneously to or after event x produce

too few resource units

Thus, the explanation (2) must be extended by∧
y∈Co∩B(x)

Jh(y) ≤ hmax(y)K ∧
∧

y∈Pr∩(B(x)∪BS(x)∪U(x))

Jh(y) ≤ hmax(y)K

Explanation for Inconsistency If we have resource underflow L<max(x) < Lmin

immediately before an event x then the explanation is simply

expl(L<max(x))→ false .

We generalize this explanation by removal of consumer and producer events
considered in (2) using the slack Lmin − L<max(x)− 1.

8

4.2 Explanation for Time Bounds Filtering

The lower bound on the event time of x can be updated if all events that are
before x are not enough to achieve the minimal resource level. In that case, some
producer events that are currently in the before-or-simultaneously (BS(x)) or
unknown relationship (U(x)) to x, must happen before x in any solution. In
addition to the reasons considered for the current bound on the maximal resource
level, these reasons need to be considered for a bound update

– producer events in BS(x) ∪ U(x) that start too late

These reasons result in the following explanation.

expl(L<max(x)) ∧
∞∧
i=k

Jtmin(yk) ≤ t(yi)K→ tmin(yk) < t(x)

We generalize this explanation in the same way as in the case of inconsistency,
but we use the slack

∑k
i=1 hmax(yi)− Lmin.

4.3 Explanation for Consumption and Production Level Filtering

The lower bound on the height of an event y can be updated if it would cause
a resource underflow shortly before event x. The potential underflow is only
related the current bound on the maximal level and an explanation is simply

expl(L<max(x))→ Lmin − L<max(x) + hmax(y) ≤ h(y) .

5 Global Reservoir Propagators

In this section, we describe three different reservoir propagators and specialize
the general explanations described in the previous section.

5.1 Bounds Propagator

The bounds propagator bounds uses the current bounds on the event times
in order to relate pairs of events, i.e., partitioned all events into the six sets
described in the previous section with respect to an event x. For each event, the
propagator can easily determine the event partition in linear time by scanning
over all events. Thus, it can also determine all four reservoir levels and time
for the time bounds filtering in linear time, for the last one we assume that
the events are sorted with respect to tmin(.). The sorting can be done at the
beginning of the propagator’s execution. Therefore, the worst case complexity
of the bounds propagator is O(|Ev|2).

When the propagator bounds detects a inconsistency or performs filtering
it additional generates the explanation described in the previous section and
specializes them by using following bounds on the event times.

expl(y ≺ x) = Jt(y) < tmin(x)K ∧ Jtmin(x) ≤ t(x)K
expl(y � x) = Jtmax(x) ≤ t(y)K ∧ Jt(x) ≤ tmax(x)K

9

Note the literals Jtmin(x) ≤ t(x)K and Jt(x) ≤ tmax(x)K will only appear once
in an explanation. Since most of the explanation, e.g. expl(L<max(x)), can be
pre-computed in linear time for an event x. It does not add to the worst case
complexity of the propagator.

5.2 Order Propagator

The order propagator order works in the same way as bounds, but it uses
ordering variables between pairs of events for propagation. Hence, it has the
same runtime complexity O(|Ev|2). It uses ordering literals in the explanations.

expl(y ≺ x) = byx expl(y � x) = ¬byx

Note that Laborie [10] uses the non-learning version of the propagator order.

5.3 Timetable Propagator

The timetable propagator tt does not consider the time relations between pair
of events, but relates events to time points in the planning horizon. Instead
of performing propagation at each time point in the horizon, it only has to
consider time points at which the minimal or maximal level may changes. These
time points are the bounds on the event times, i.e., tmin(x) and tmax(x). Hence,
it considers a number of time points which is linear in the number of events.

The propagation and explanation work similar to the bounds propagator.
Consider the time point τ = tmax(x) of an event x for propagation and let z
be an artificial event with t(z) = tmin(z) = tmax(z) = τ and h(z) = 0 then the
same propagation can be done as the bounds propagator with respect to this
fixed artificial event. Consequently, the explanation are the same and reduce to
one of the following literals due to the fixed event z.

expl(y ≺ z) = Jt(y) < τK expl(y � z) = Jτ ≤ t(y)K

It is obvious that the tt propagator can easily be implemented with a worst
case complexity O(|Ev|2). Note that this propagator is a specialized form of the
timetable propagator of the global cumulative constraint. Thus, it will prune the
same as the timetable propagator in cumulative when the reservoir constraints
are modeled as cumulative propagators as described in [18].

6 Models

We use the solver-independent modeling language MiniZinc [11] for describing
our models. The input parameter of an instance are as follows. Their meaning
is giving in the comment after the declaration.

set of int: R; % Set of reservoirs
set of int: E; % Set of events
set of int: P; % Set of generalized precedence relations

10

array [R] of int: Lmin; % Minimum level of the reservoirs
array [R] of int: Lmax; % Maximum level of the reservoirs
array [R, E] of int: rr; % Amount of resource production / consumption of

the events
array [P, 1..3] of int: prec; % Generalized precedence relations between

two events: start(prec[i ,1]) + prec[i ,2] <= start(prec[i ,3])
array [R] of set of int: resE = [{i | i in E where rr[r,i] != 0} | r in R];

% Set of "non -zero" events for each reservoir

Then the start (event) time variables s and the objective objective are declared
as follows where 0..UB is the planning horizon.

set of int: Times = 0..UB; % Planning horizon
array [E] of var Times: s; % Event time variables
var Times: objective = s[sink]; % Objective variable

The initial upper bound on the objective UB is initialized by
sum(i in E)(max([0] ++ [prec[p,2] | p in P where prec[p,1] = i]))

unless otherwise stated. Note that the set of events E contains one dummy
source (source) and sink (sink) event. The source start time is constrained by
s[source] = 0. Generalized precedence constraints are expressed by one binary
linear inequality constraints as usual.

constraint forall(p in P)(s[prec[p, 1]] + prec[p, 2] <= s[prec[p, 3]]);

Reservoir Decompositions The first decomposition is the time-indexed formula-
tion (dTT), which allows learning about the event times. This model creates two
linear constraints for each point in time in the planning horizon. Thus the model
size is time-dependent.

array[E, Times] of var bool: bit =
array2d(E, Times , [s[i] <= t | i in E, t in Times]);

constraint forall(r in R, t in Times)(
sum(i in res_events[r])(rr[r,i] * bit[i,t]) <= Lmax[r]

/\ sum(i in res_events[r])(rr[r,i] * bit[i,t]) >= Lmin[r]);

Note that the additional Boolean variables bit are literals of the Boolean repre-
sentation of s in LCG solver, i.e., those already exists for LCG solvers. In total
O(|R| · UB) linear constraints of size O(|E|) are created.

The second decomposition is an event-based formulation (dAfter), which
ensures that the resource levels are within the limits at the event time for each
event. For modeling it, we required two additional sets of Boolean variables
s_eq_0 and s_leq_s, where the first set describes whether an event starts at
time point 0 and the second set are order variables between pairs of events.

array[E] of var bool: s_eq_0 = [s[i] <= 0 | i in E];
array[E,E] of var bool: s_leq_s = array2d(E, E, [s[i] <= s[j] | i, j in E]);
% Constraints for correct reservoir levels at event time
constraint forall(r in R, i in resE[r])(

sum(j in resE[r])(rr[r,j] * s_leq_s[j,i]) <= Lmax[r]
/\ sum(j in resE[r])(rr[r,j] * s_leq_s[j,i]) >= Lmin[r]);

% Constraints for correct reservoir level at time point 0
constraint forall(r in R)(

if Lmin[r] > 0
then sum(i in res_events[r])(rr[r,i] * s_eq_0[i]) >= Lmin[r]
else if Lmax[r] < 0

then sum(i in res_events[r])(rr[r,i] * s_eq_0[i]) <= Lmax[r]
else true endif endif);

% Constraints for s_leq_s

11

constraint forall(i, j in E where i < j)(s_leq_s[i, j] \/ s_leq_s[j, i]);

The first set of constraints enforces the reservoir level at each event time, whereas
the second enforces it for time point 0, and the last set of constraints explicitly
models that one of the pair of order variables must be true. Due to the order vari-
ables s_leq_s, a learning solver is able to learn about the temporal relations be-
tween pairs of events. The reified constraints s_leq_s[i,j] <-> s[i] <= s[j]

are created in the definition of s_leq_s. The decomposition (after) creates
O(|R| · |E|) linear constraints of size O(|E|) and O(|E|2) Boolean variables and
reified binary linear constraints.

The third decomposition (dBefore) is an extension of the second one (dAfter).
It adds redundant linear constraints for the reservoir level shortly before the
event time for each event. It re-uses the Boolean variables s_eq_0 and s_leq_s.

constraint forall(i in resE[r])(
sum(j in resE[r])(rr[r,j]*not(s_leq_s[i,j])) <= Lmax[r]-Lmin[r]* s_eq_0[i]

/\ sum(j in resE[r])(rr[r,j]*not(s_leq_s[i,j]))-Lmin[r]*not(s_eq_0[i]) >= 0);

In addition to the constraints and variables created by the decomposition (dAfter),
it creates O(|R| · |E|) linear constraints of size O(|E|).

Global Reservoir Constraints Rather than using decompositions to model the
reservoir constraints we can make use of the global propagators. The tt propa-
gators has the same propagation strength as the decomposition dTT, but dras-
tically reduces the model size and makes it time independent, but note it does
not have the same language of learning. The order propagator is equivalent
to the dBefore decomposition, but again drastically smaller in size. Again it
does not have many intermediate variables which might be useful for learning.
The bounds propagator is weaker than the dBefore and dAfter decompositions,
since it does not reason about order, but it is, of course, concise, and avoids the
need for any order variables.

7 Experiments

The experiments were run on a machine running Ubuntu 14.04 with an Intel(R)
Core(TM) i7 CPU running at 2.8GHz with 8GB memory. We implemented the
described propagators in the lazy clause generation solver Chuffed (chuffed).
We ran all model with a smallest first search alternating on each restart with ac-
tivity based search. We used the benchmarks ubo10, ubo20, ubo50, and ubo100

created by [13] consisting of 90 instances with 10, 20, 50, and 100 events, respec-
tively. Since all instances are closed, we constructed the new benchmark ubo2001

consisting of 90 instances with 200 events in the same way as [13].
While the main purpose of our experiments is to determine the best form of

explanation for this class of problem, in order to calibrate the learning methods
against other approaches we also ran the method of Neumann and Schwindt [13]
(neu&sch) on a machine running Windows 10 and having a Intel(R) Core(TM) i5

1 Available at http://people.eng.unimelb.edu.au/pstuckey/

12

Table 1. Results on ubo50

solver #inst #opt #sat #unk #inf m.rt m.it m.#confl m.#nodes

neu&sch 90 47 1 0 42 16.23s 0.0s
order+diff 90 48 0 0 42 0.07s 0.01s 48 757
order 90 48 0 0 42 0.33s 0.01s 305 1823
bounds+diff 90 48 0 0 42 0.50s 0.01s 2143 6517
bounds 90 48 0 0 42 0.56s 0.01s 2384 6741
tt+diff 90 48 0 0 42 0.94s 0.01s 314 2131
tt 90 48 0 0 42 0.86s 0.01s 282 2108
dTT 90 48 0 0 42 1.21s 0.71s 259 735
dAfter 90 48 0 0 42 0.35s 0.08s 330 2115
dBefore 90 48 0 0 42 0.53s 0.14s 346 2101

Table 2. Results on ubo100

solver #inst #opt #sat #unk #inf m.rt m.it m.#confl m.#nodes

neu&sch 90 50 7 2 31 60.11s 0.0s
order+diff 90 57 0 0 33 0.89s 0.03s 229 2818
order 90 55 2 0 33 18.16s 0.03s 3996 17758
bounds+diff 90 55 2 0 33 20.55s 0.02s 38048 103067
bounds 90 55 2 0 33 22.02s 0.02s 44001 122138
tt+diff 90 55 2 1 32 31.96s 0.02s 6718 32048
tt 90 55 2 1 32 33.61s 0.02s 6655 33665
dTT 90 57 0 1 32 17.23s 3.45s 2045 12001
dAfter 90 56 1 0 33 11.41s 0.30s 1800 12509
dBefore 90 56 1 0 33 18.22s 0.57s 2347 14017

CPU with 3.2GHz and 4GB memory (since we only have a Windows executable).
We were unable to obtain an executable of Laborie’s method [10] to compare
with. All runs were limited to 10 minutes.

We compare the following variations of decompositions and global propa-
gators: (dTT) dTT decomposition, (dAfter) dAfter decomposition, (dBefore)
dBefore decomposition, (order) order propagator, (bounds) bounds propaga-
tor, (tt) tt propagator, (order+diff) order and diff propagator, (bounds+diff)
bounds and diff propagator, and (tt+diff) tt and diff propagator.

7.1 Results

The results are shown in Tab. 1–3. Each table shows: (#inst) the number of
benchmark instances, (#opt) the number of instances proved optimal in the
time limit, (#sat) the number where a solution was found, but was not proven
optimal in the time limit, (#unk) the number where no solution was found,
(#inf) the number proved unsatisfiable, (m.rt) the mean runtime in seconds,
(m.it) the mean initialization time in seconds, (m.#confl) the mean number of
conflicts, and (m.#nodes) the mean number of nodes. If the solver timed out
for an instance then the number of conflicts (nodes) at that time are counted in
m.#confl (m.#nodes).

13

Table 3. Results on ubo200

solver #inst #opt #sat #unk #inf m.rt m.it m.#confl m.#nodes

neu&sch 90 54 10 11 15 148.92s 0.0s
order+diff 90 66 0 0 24 24.67s 0.09s 2056 22454
order 90 53 12 4 21 154.49s 0.09s 6676 29181
bounds+diff 90 60 5 4 21 82.70s 0.05s 75348 245707
bounds 90 61 4 4 21 83.86s 0.05s 75297 242386
tt+diff 90 52 13 4 21 160.49s 0.05s 4498 21846
tt 90 51 14 5 20 166.96s 0.05s 4644 23048
dTT 90 0 0 90 0 — ∞ — —
dAfter 90 52 14 3 21 155.67s 1.61s 4636 24930
dBefore 90 51 15 2 22 172.75s 3.03s 4634 21900

Note that learning was crucial for solving these problems, even on smaller
benchmarks (ubo20) the best method order+diff was unable to solve all prob-
lems within the 10 minute time limit without learning, whereas with learning all
our methods could easily solve all these problems, and the larger ones (ubo50).

The method of Neumann and Schwindt is not competitive, for the smallest
sizes it can solve most problems, but significantly slower, and it is very poor at
detecting infeasible problems. The order based explanations are clearly domi-
nant in terms of number of conflicts and number of nodes. The difference logic
propagator, which clearly supports the order based explanations is significantly
advantageous to the point where in Table 3 even though order based search with-
out the difference logic propagator is massively smaller than linear explanation
search, it cannot prove optimality of as many instances.

What is surprising is how effective the decompositions are, at least in terms
of search. Clearly the intermediate literals introduced by the decompositions
are improving the learning. The decompositions are actually better than all
methods other than the order-based globals until size 200 where the size of the
decompositions become disadvantageous. The time decomposition initialization
time grows quickly, to the point that for ubo200 it prevents the method running.

As the size grows the tradeoff of weaker propagation but better runtime
complexity the bounds global propagator (bounds,bounds+diff) over the tt

global propagator (tt,tt+diff) becomes evident. It still cannot compete with
the order propagator, when used in conjunction with globals difference propa-
gation. This may well change with incremental versions of these propagators.

We also examined the 12 hard instances of the benchmark set generated by
Neumann et al [12] and closed by Laborie [10] using ILOG Scheduler. Table 4
compares with the published results of Neumann et al [13] and Laborie [10] on a
HP-UX 9000/785 workstation. Note that Laborie only presents the best results
from his nine different heuristics for each instance.

Clearly order+diff is comparable to the best of Laborie’s 9 method (al-
though his CPU is somewhat slower). His approaches includes the inference of
new ordering relationships, and specialized search routines that make use of the
information about precedences inferred by the search. ILOG scheduler includes a
component equivalent to the global difference logic propagator, without learning.

14

Table 4. Comparison with Neumann et al. [13] and Laborie [10].

instance optimal neu&sch best of laborie order+diff

50 10 92 time out 0.28s 0.03s
50 27 96 346.483s 2.43s 0.1s
50 82 unsat 509.161s 0.05s 0.03s
100 6 211 time out 0.97s 2.3s

100 12 197 time out 0.72s 0.88s
100 20 199 time out 0.46s 13.6s
100 30 204 time out 2.11s 0.85s
100 41 337 time out 0.62s 1.62s
100 43 unsat time out 7.65s 0.54s
100 54 344 time out 0.46s 6.95s
100 58 317 time out 0.49s 0.37s
100 69 unsat time out 1.96s 0.41s

As the combinatorics of these problem grow substantially as the size increases
we are confident that the our learning solver would out perform his approach on
larger problems, although perhaps we would need to invest in incremental prop-
agators and inference of precedences to match the well engineered commercial
solver.

8 Conclusion

The producer/consumer constraints is a powerful tool for specifying complex
scheduling problems with renewable and non-renewable resources. In this pa-
per we have explored what is right approach to solving these problems once
we are using nogood learning. The key language of learning is the ordering lit-
erals bxy used by the order propagator, but with the proviso that we need to
use a global difference logic propagator to see the interaction of the inference
between ordering literals. Surprisingly without the use of the global difference
logic propagator, decompositions based on ordering are competitive, since they
generates many intermediate literals which prove to be useful for learning, even
if the models they create are far larger.

There is considerable scope for improving the producer/consumer propaga-
tors with learning. Making the propagators incremental, and extending the order
propagator to create new order inferences are likely to be highly beneficial. Given
the effectiveness of the decompositions, at least in terms of search, it might be
worth investigating a global propagator that supports lazy decomposition [1,2]
where intermediates are made available during search in parts of the global where
many explanations are generated.

Acknowledgments We thank to Christoph Schwindt for providing us the instance
generator and an executable of the method used in [13]. This work was partially
supported by Asian Office of Aerospace Research and Development grant 15-
4016.

15

References

1. Abio, I., Stuckey, P.: Conflict directed lazy decomposition. In: Milano, M. (ed.)
Proceedings of the 18th International Conference on Principles and Practice of
Constraint Programming. pp. 70–85. No. 7514 in LNCS, Springer (2012)

2. Abio, I., Nieuwenhuis, R., Oliveras, A., Rodriguez-Carbonell, E., Stuckey, P.J.: To
encode or propagate: The best choice for each constraint in SAT. In: Schulte, C.
(ed.) Proceedings of the 19th International Conference on Principles and Practice
of Constraint Programming. LNCS, vol. 8124, pp. 97–106. Springer (2013)

3. Barták, R.: Conceptual models for combined planning and scheduling. Electronic
Notes in Discrete Mathematics 4, 1 (2000)

4. Beck, J.C.: Heuristics for scheduling with inventory: dynamic focus via constraint
criticality. Journal of Scheduling 5(1), 43–69 (2002), http://dx.doi.org/10.1002/
jos.91

5. Beldiceanu, N., Carlsson, M.: A new multi-resource cumulatives constraint with
negative heights. In: Van Hentenryck, P. (ed.) Principles and Practice of Constraint
Programming - CP 2002: 8th International Conference, CP 2002 Ithaca, NY, USA,
September 9–13, 2002 Proceedings. pp. 63–79. Springer Berlin Heidelberg, Berlin,
Heidelberg (2002)

6. Cotton, S., Maler., O.: Fast and flexible difference constraint propagation for
DPLL(T). In: In Theory and Applications of Satisfiability Testing - SAT 2006.
LNCS, vol. 4121, pp. 170–183. Springer (2006)

7. Feydy, T., Schutt, A., Stuckey, P.J.: Global difference constraint propagation for
finite domain solvers. In: Antoy, S. (ed.) Proceedings of 10th International ACM
SIGPLAN Symposium on Principles and Practice of Declarative Programming.
pp. 226–235. ACM Press (2008)

8. Kinable, J.: A reservoir balancing constraint with applications to bike-sharing. In:
Quimper, C.G. (ed.) Integration of AI and OR Techniques in Constraint Program-
ming: 13th International Conference, CPAIOR 2016, Banff, AB, Canada, May 29 -
June 1, 2016, Proceedings. pp. 216–228. Springer International Publishing, Cham
(2016)

9. Kreter, S., Schutt, A., Stuckey, P.J.: Modeling and solving project scheduling with
calendars. In: Pesant, G. (ed.) Principles and Practice of Constraint Programming.
Lecture Notes in Computer Science, vol. 9255, pp. 262–278. Springer International
Publishing (2015)

10. Laborie, P.: Algorithms for propagating resource constraints in AI planning and
scheduling: Existing approaches and new results. Artificial Intelligence 143(2), 151–
188 (2003)

11. Nethercote, N., Stuckey, P., Becket, R., Brand, S., Duck, G., Tack, G.: Minizinc:
Towards a standard CP modelling language. In: Bessiere, C. (ed.) Proceedings of
the 13th International Conference on Principles and Practice of Constraint Pro-
gramming. LNCS, vol. 4741, pp. 529–543. Springer-Verlag (2007)

12. Neumann, K., Zimmermann, J.: Project Scheduling: Recent Models, Algorithms
and Applications, chap. Methods for resource-constrained project scheduling with
regular and nonregular objective functions and schedule-dependent time windows,
pp. 261–287. Kluwer (1999)

13. Neumann, K., Schwindt, C.: Project scheduling with inventory constraints. Math-
ematical Methods of Operations Research 56(3), 513–533 (2002)

14. Ohrimenko, O., Stuckey, P.J., Codish, M.: Propagation via lazy clause generation.
Constraints 14(3), 357–391 (2009)

16

15. Schulte, C., Stuckey, P.J.: Efficient constraint propagation engines. ACM Transac-
tions on Programming Languages and Systems 31(1), Article No. 2 (2008)

16. Schutt, A., Feydy, T., Stuckey, P., Wallace, M.: Explaining the cumulative propa-
gator. Constraints 16(3), 250–282 (2011)

17. Schutt, A., Feydy, T., Stuckey, P., Wallace, M.: Solving RCPSP/max
by lazy clause generation. Journal of Scheduling 16(3), 273–289 (2013),
http://dx.doi.org/10.1007/s10951-012-0285-x

18. Simonis, H., Cornelissens, T.: Modelling producer/consumer constraints. In: Mon-
tanari, U., Rossi, F. (eds.) Principles and Practice of Constraint Programming
— CP ’95: First International Conference, CP ’95 Cassis, France, September 19–
22, 1995 Proceedings. pp. 449–462. Springer Berlin Heidelberg, Berlin, Heidelberg
(1995)

17

