
Global Difference Constraint Propagation for Finite Domain
Solvers

Thibaut Feydy
National ICT Australia, Victoria

Laboratory
Department of Computer Science &

Software Engineering
The University of Melbourne, Australia

tfeydy@csse.unimelb.edu.au

Andreas Schutt
National ICT Australia, Victoria

Laboratory
Department of Computer Science &

Software Engineering
The University of Melbourne, Australia

aschutt@csse.unimelb.edu.au

Peter J. Stuckey
National ICT Australia, Victoria

Laboratory
Department of Computer Science &

Software Engineering
The University of Melbourne, Australia

pjs@csse.unimelb.edu.au

Abstract
Difference constraints of the form x − y ≤ d are well studied,
with efficient algorithms for satisfaction and implication, because
of their connection to shortest paths. Finite domain propagation al-
gorithms however do not make use of these algorithms, and typi-
cally treat each difference constraint as a separate propagator. Prop-
agation does guarantee completeness of solving but can be need-
lessly slow. In this paper we describe how to build a (bounds con-
sistent) global propagator for difference constraints that treats them
all simultaneously. SAT modulo theory solvers have included the-
ory solvers for difference constraints for some time. While a theory
solver for difference constraints gives the basis of a global differ-
ence constraint propagator, we show how the requirements on the
propagator are quite different. We give experiments showing that
treating difference constraints globally can substantially improve
on the standard propagation approach.

Categories and Subject Descriptors D.3.2 [Language Classifi-
cations]: Constraint and logic languages; D.3.3 [Language Con-
structs and Features]: Constraints

General Terms Algorithms

Keywords Finite domain propagation, Separation logic, global
constraints

1. Introduction
Finite domain propagation is a powerful approach to solving com-
plex combinatorial satisfaction and optimization problems. The
core of a finite domain propagation solver are the propagators
which given a constraint c and a domain D representing the set
of possible values of the variables in c, remove the possible val-
ues of the variables which cannot take part in any solution in c.
The propagation solver interleaves the fixpoint computation of the
propagators with user-controlled search in order to find a solution
or optimal solution. In this paper we study how we should propa-
gate constraints of the form x− y ≤ d.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PPDP’08, July 15–17, 2008, Valencia, Spain.
Copyright c© 2008 ACM 978-1-60558-117-0/08/07. . . $5.00

Constraints of difference, that is x− y ≤ d where x, y are vari-
ables and d is an integer constant, are one of the simplest form of
constraints. They are well-studied, with efficient algorithms known
for their satisfaction and implication, because of their connection
to shortest path algorithms.

But finite domain propagation solvers do not make use of these
algorithms. Difference constraints are represented as individual
propagators just like any other constraints. Unlike most constraints,
propagation on difference constraints is complete. That is if C is a
set of difference constraints then a propagation solver starting from
domain D will fail if C ∧D is unsatisfiable.

But the order of the propagation of the constraints can make
a significant difference. In a sense the propagation engine imple-
ments a version of Fords labelling and scanning algorithm (see (han
1990), p.558) that also checks for negative cycles. The potential
bad behaviour of propagation on constraints of difference is well
recognized.

EXAMPLE 1. Consider the constraints: x − y ≤ 0, y − x ≤ −2.
Together these are unsatisfiable. If the initial domains of x and y
are D(x) = D(y) = [0 .. n] then a propagation engine will take
O(n) steps to determine the unsatisfiability of the constraints. This
could be determined in constant time. 2

Reified constraints of difference b⇔ x−y ≤ d, that is if b = 1
then the constraint x− y ≤ d holds, and if b = 0 then its negation
y − x ≤ −d − 1 holds, are very useful in expressing scheduling
and other problems.

Finite domain propagation engines typically implement them as
weak bounds propagators that only propagate to either set b = 1
when the bounds of x and y force the constraint to be true, or set
b = 0 if the bounds of x and y force it to be false, or propagate as
the difference constraint (or its negation) if b is set to 1 (resp. 0).

Finite domain propagation engines are not complete for check-
ing implication of reified difference constraints by difference con-
straints.

EXAMPLE 2. Consider the constraints c1 ≡ y − x ≤ −2 c2 ≡
x−z ≤ 3 with initial domainsD(x) = D(y) = D(z) = [0 .. 10].
The resulting domains after propagation are D′(x) = [0 .. 8] and
D′(y) = D′(z) = [2 .. 10]. The reified constraint b⇔ y − z ≤ 4
does not force b = 1 although this is certainly a consequence of
c1 ∧ c2 since c1 ∧ c2 |= y − z ≤ 1 by simply summing the
constraints. 2

SAT Modulo Theories (SMT) solvers (Niewenhuis et al. 2005,
2006) treat difference constraints quite differently than finite do-
main propagators. Effectively, they treat reified difference con-

straints b ⇔ x − y ≤ d where b acts as the “name” of the con-
straint in the SAT solver. They use specialized shortest path algo-
rithms (Cotton and Maler 2006) to determine the unsatisfiability
of the difference constraints which are consequences of the current
Boolean evaluation (e.g. if b is true then x−y ≤ d, and if b is false
then y − x ≤ −d − 1), and to determine all the difference con-
straints that are entailed or disentailed by the difference constraints
which are consequences of the current Boolean evaluation.

In this paper we investigate how we can build a global propaga-
tor for difference constraints for use in a finite domain propagation
engine, that treats all difference constraints together, that can de-
termine all consequences of reified constraints. As we shall see the
questions that arise in a finite domain propagation context are dif-
ferent from those in SMT, and there are different trade offs for the
implementation.

With this global propagator we can straightforwardly construct,
for the first time, a domain propagation for the SEQUENCE con-
straint with best known complexity (the CD encoding of (Brand
et al. 2007)).

The contributions of this paper are:

• the first implementation of a global difference logic propagator
• improved algorithms for bounds propagation using

global difference logic
• the first implementation of the best known sequence constraint

propagator
• the development of hybrid propagation approaches that com-

bine the global propagator with individual difference constraint
propagators

• experiments illustrating that treating difference logic constraint
globally can be substantially more efficient than treating them
as individual constraints.

The remainder of the paper is organized as follows. In Section 2
we introduce our notation for finite domain solving, and illustrate
the usual propagators for difference constraints. In Section 3 we in-
troduce notation for graphs and shortest paths, and give the funda-
mental theorem relating difference constraint satisfaction and im-
plication to shortest paths. We then explain the state of the art incre-
mental algorithms for difference constraints. In Section 4 we define
the capabilities and default implementation of a global difference
constraint propagator, before discussing how to improve it by han-
dling bounds specially. Then in Section 5 we give experimental
results, and finally in Section 6 we conclude.

2. Finite Domain Solvers
We now introduce our terminology for finite domain propagation
based solving.

A domain D is a complete mapping from a fixed (finite) set of
variables V to finite sets of integers. A false domain D is a domain
withD(x) = ∅ for some x ∈ V . We can understand a domainD as
the logical formula∧v∈Vv ∈ D(v). A false domain is equivalent to
false. A variable x ∈ V is fixed by a domainD, if |D(x)| = 1. The
intersection of domainsD1 andD2, denotedD1uD2, is defined by
the domainD(x) = D1(x)∩D2(x) for all x ∈ V . A domainD1 is
stronger than a domain D2, written D1 v D2, if D1(x) ⊆ D2(x)
for all x ∈ V .

A range is a contiguous set of integers, we use range notation
[l .. u] to denote the range {d ∈ Z | l ≤ d ≤ u} when l and u are
integers. A range domain D is one where D(x) is a range for all
x ∈ V . We shall only be interested in range domains for this paper.

An integer valuation θ is a mapping of variables to integer val-
ues, written {x1 7→ d1, . . . , xn 7→ dn}. We extend the valuation

θ to map expressions and constraints involving the variables in the
natural way.

Let vars be the function that returns the set of variables appear-
ing in a valuation. We define a valuation θ to be an element of a
domain D, written θ ∈ D, if θ(xi) ∈ D(xi) for all xi ∈ vars(θ).

A constraint c over variables x1, . . . , xn is a set of valuations
θ such that vars(θ) = {x1, . . . , xn}. We also define vars(c) =
{x1, . . . , xn}.

We will implement a constraint c by a propagator prop(c) that
maps domains to domains. A propagator f is a monotonically
decreasing function from domains to domains: f(D) v D, and
f(D1) v f(D2) whenever D1 v D2. A propagator f is correct
for a constraint c iff for all domains D {θ | θ ∈ D}∩ c = {θ | θ ∈
f(D)}∩ c. This is a very weak restriction, for example the identity
propagator is correct for all constraints c. A domain propagator for
c, dom(c), is the strongest correct propagator for c. It is defined as
dom(c)(D)(v) = {θ(v) | θ ∈ D ∧ θ ∈ c}.

EXAMPLE 3. The domain propagator f = dom(x − y ≤ d) for
the difference constraint x− y ≤ d can be implemented as:

f(D)(x) = {e ∈ D(x) | e ≤ d+ maxD(y)}
f(D)(y) = {e ∈ D(y) | minD(x)− d ≤ e}
f(D)(v) = D(v), v 6∈ {x, y} .

A domain propagator f ′ = dom(y − x ≤ −d − 1) can be
implemented analogously. A domain propagator g = dom(b ⇔
x− y ≤ d) can be implemented as:

g(D)(v) = f(D)(v), if D(b) = {1}
g(D)(v) = f ′(D)(v), if D(b) = {0}
g(D)(b) = D(b) \ {0}, if maxD(x)−minD(y) ≤ d
g(D)(b) = D(b) \ {1}, if minD(x)−maxD(y) > d

g(D)(v) = D(v), otherwise

where v ∈ V . 2

A propagation solver solv(F,D) for a set of propagators F
and an initial domain D finds the greatest mutual fixpoint of all
the propagators f ∈ F . In other words, solv(F,D) returns a new
domain defined by

solv(F,D) = gfp(λd. iter(F, d))(D)

and

iter(F,D) =
l

f∈F

f(D)

where gfp denotes the greatest fixpoint w.r.t v lifted to functions.

3. Solving Difference Constraints
Difference constraints are highly connected to shortest paths, a
statement we shall formalize shortly. In this section we give our
graph notation, and then explain how the state of the art difference
constraints algorithms work.

3.1 Graphs, Paths and Potential Functions
A weighted directed graph G = (V,E) is made up of vertices
V and a set E of weighted directed edges (u, v, d) from vertex
u ∈ V to vertex v ∈ V with weight d. We also use the notation
u

d→ v to denote the edge (u, v, d). A path P from v0 to vk in
graph G, denoted v0 vk, is a sequence of edges e1, . . . , ek

where ei = (vi−1, vi, di) ∈ E. A simple path P is a path where
vi 6= vj , 0 ≤ i < j ≤ k. A (simple) cycle P is a path P where
v0 = vk and vi 6= vj , 0 ≤ i < j ∧ k ∧ (i 6= 0 ∨ j 6= k). The path
weight of a path P , denoted w(P) is Σk

i=1di.

LetG be a graph without negative weight cycles, that is without
a cycle P where w(P) < 0. Then we can define a shortest path
from v0 to vk, which we denote by SP (v0, vk), as the (simple) path
P from v0 to vk such that w(P) is minimized. Let wSP (x, y) =
w(SP (x, y)) or +∞ if no path exists from x to y. Given a graph
G and vertex x define the functions δ←x , δ→x : V → R as

δ←x (y) = wSP (x, y) and δ→x (y) = wSP (y, x) .

Let G be a graph without negative weight cycles. Then π is a
valid potential function for G if π(u) + d − π(v) ≥ 0 for every
edge (u, v, d) in G.

There are many algorithms (see e.g. (Cherkassky and Goldberg
2006)) for detecting negative weight cycles in a weighted directed
graph, which either detect a cycle or determine a valid potential
function for the graph. The standard approach is the Bellman-Ford
algorithm which is O(nm).

Given a valid potential function π for graph G = (V,E) we
can define the reduced cost graph rc(G) as (V, {(x, y, π(x) + d−
π(y) | (x, y, d) ∈ E}). All weights in the reduced cost graph are
non-negative and we can recover the original path length w(P)
for path P from x to y from paths in the reduced cost graph
since w(P) = w + π(y) − π(x) where w is the weight of the
corresponding path in the reduced cost graph.

Since edges in the reduced cost graph are non-negative we can
use Dijkstra’s algorithm to calculate shortest paths in the reduced
cost graph in timeO(n logn+m) instead ofO(nm) assuming the
use of a Fibonacci heap.

3.2 Difference Constraints
Difference constraints are a well studied class of constraints (see
e.g. (Shostak 1981; Dechter et al. 1991)). Difference constraints are
of the form x−y ≤ d. Note that we can encode bounds constraints
of the form x ≥ l and x ≤ u by selecting a dummy variable v0 to
represent the fixed value 0, and encoding them as v0−x ≤ −l and
x−v0 ≤ u respectively. We call these encoded bounds constraints.
We can map difference constraints to a weighted directed graph.
For the remainder of this paper let v0 denote the dummy variable.

DEFINITION 1. Let C be a set of difference constraints and let
GC = (V,E) be the graph comprised of one weighted edge x d→ y
for every constraint x − y ≤ d in C. We call GC the constraint
graph of C. 2

The following well-known result characterizes how the con-
straint graph can be used for satisfiability and implication checking
of difference constraints.

THEOREM 1. Let C be a set of difference constraints and GC

its corresponding graph. C is satisfiable iff GC has no negative
weight cycles, and if C is satisfiable then C |= x − y ≤ d iff
wSP (x, y) ≤ d. 2

Ramalingam et al (Ramalingan et al. 1999) define efficient al-
gorithms for satisfiability of difference constraints after incremen-
tally adding or deleting a constraint. Cotton and Maler (Cotton and
Maler 2006) define efficient incremental algorithms for difference
constraints, the satisfiability algorithm for incremental addition is
identical to that of (Ramalingan et al. 1999), while they also give
an algorithm for checking implication of difference constraints on
addition. For our purposes we are only interested in incremental
addition algorithms so we will use the formulation of Cotton and
Maler.

The incremental satisfaction algorithm for addition (Algorithm
1: INCSAT) of (Cotton and Maler 2006; Ramalingan et al. 1999)
relies on maintaining a potential function π for the constraint graph
GC . In a sense it is an incremental Bellman-Ford algorithm. On

Algorithm 1: INCSAT

Input: GC = (V,E) a graph, π a valid potential function
for GC , edge (u, v, d) a new constraint to add to GC .

Output: UNSAT if C ∪ {u− v ≤ d} is unsatisfiable, or
GC∪{u−v≤d} and a valid potential function π′ for
GC∪{u−v≤d}.

γ(v) := π(u) + d− π(v);1
γ(w) := 0 for all w 6= v;2
π′(v) := π(v) for all v ∈ V;3
while min(γ) < 0 ∧ γ(u) = 0 do4

s := argmin(γ) ;5
π′(s) := π(s) + γ(s) ;6
γ(s) := 0 ;7

for all s d′
→ t ∈ G do8

if π′(t) = π(t) then9
γ(t) := min{γ(t), π′(s) + d′ − π′(t)}10

if γ(u) < 0 then11
return UNSAT12

return ((V,E ∪ {(u, v, d)}), π′)13

addition of a new constraint u− v ≤ d the edge u d→ v is added to
GC and a new potential function π′ is calculated or unsatisfiability
is detected. The algorithm is O(n logn + m) for m difference
constraints on n variables (using a Fibonacci heap to implement
argmin).

The implication algorithm (Algorithm 2: INCIMP) of (Cotton
and Maler 2006) simply checks for each difference constraint x −
y ≤ d of interest whether the new edge has created a path from x
to y of length≤ d. It makes use of the potential function previously
calculated to compute shortest paths on the reduced cost graph
using Dijkstra rather than using a more expensive algorithm that
handles negative weight edges. The algorithm isO(n logn+m+p)
for m difference constraints on n variables and p constraints to
check for implication.

Algorithm 2: INCIMP

Input: G = (V,E) a constraint graph representing a set of
difference constraints C ∪ {u− v ≤ d}, π a valid
potential function on G, a set of difference
constraints P where C 6|= d,∀d ∈ D.

Output: The set P ′ ⊆ P of constraints not implied by
C ∪ {u− v ≤ d}.

P ′ := ∅ ;1
compute δ←u and δ→v by using rc(G) via π;2
for all c′ = (x− y ≤ d′) ∈ P do3

if δ←u (x) + d+ δ→v (y) > d′ then P ′ := P ′ ∪ {c′};4
return P ′5

EXAMPLE 4. Consider the system of constraints C = {x − y ≤
−2, y − z ≤ 3} where D(x) = D(y) = D(z) = [0 .. 10].
The corresponding graph GC is shown in Figure 1(a). Given a
valid potential function π(v0) = 0, π(x) = −3, π(y) = −8,
π(z) = −7, the reduced cost graph of GC is shown in Figure 1(b).

Consider the addition of the constraint y−x ≤ 0 using INCSAT.
γ(x) = −5 and γ for the remaining variables is 0. x is the minimal
γ value. We set π′(x) = −8 and set γ(x) = 0. We then adjust the
γ values: γ(y) = −2. Now γ(y) 6= 0 and the loop terminates
and returns UNSAT. The unsatisfiable loop has been found just
examining the nodes x and y and their outgoing edges.

(a) v0
0

//

0

::

0

''
x

−2
//

10

((
y

3
//

10

99z
10

// v0

(b) 0
v0 3

//

8

88

7

((−3
x 3

//

7

((−8
y 2

//

2

88−7
z 3

// 0
v0

Figure 1. The corresponding constraint graph GC for a system of
difference constraints C = {x− y ≤ −2, y − z ≤ 3} is shown in
(a). The node for dummy variable v0 is shown twice for clarity of
presentation. The reduced cost graph is shown in (b) assuming the
potential value shown above the nodes. Note how all edge lengths
are non-negative.

Now consider the implication test for the constraint y − z ≤ 4
using INCIMP assuming we have just added the constraint x− y ≤
−2, and obtained the potential function illustrated in Figure 1(b).
We compute δ←x from the reduced cost graph in Figure 1(b). First
we compute the weights of shortest paths to x wSP (v0, x) = 3,
wSP (z, x) = 6, wSP (y, x) = 5 and then calculate δ←x using the
potential values δ←x (x) = 0, δ←x (v0) = 0, δ←x (z) = 10, δ←x (y) =
10. We similarly calculate wSP (y, z) = 2, wSP (y, v0) = 2,
wSP (y, x) = 5 in the reduced cost graph and hence δ→y (y) =
0, δ→y (z) = 3, δ→y (v0) = 10, and δ→y (x) = 10. Examining
δ←x (x) + −2 + δ→y (z) = 0 + −2 + 3 we find this is less that
4 and hence the constraint is implied. 2

4. Difference Constraint Propagation
In this section we explain how we can create a global propagator
for all difference constraints and reified difference constraints.

4.1 A Global Difference Constraint Propagator
We can use the incremental algorithms INCSAT and INCIMP to
create a global propagator as follows:

The global propagator needs to support the following opera-
tions:

• Add a new difference constraints x− y ≤ d
• Add a new bound x ≥ l or x ≤ u
• Add a new reified difference constraint b⇔ u− v ≤ d′

• Mark a state and backtrack to a previous marked state

Adding a new difference constraint x− y ≤ d causes the prop-
agator to run INCSAT, and fails if this determines unsatisfiability.
If not it runs INCIMP to determine if any reified difference con-
straints b⇔ u− v ≤ d′ become entailed and disentailed, and sets
the Booleans to true (1) or false (0) appropriately. This is the same
as an SMT difference constraint solver.

This is not enough since we are also interested in any new
bounds of variables z that result from the constraint addition. A
corollary of Theorem 1 gives the key insight.

COROLLARY 1. IfC is a satisfiable set of difference and (encoded)
bounds constraint then C |= z ≥ l iff wSP (v0, z) ≤ −l and
C |= z ≤ u iff wSP (z, v0) ≤ u. 2

To extract new bounds the propagator needs to determine for
each variable z the weight of a shortest path from v0 to z via the
new edge (x, y, d), i.e. is δ←x (v0)+d+δ→y (z). The negation of this
is a lower bound on z. It also determines the weight of a shortest
path from z to v0 via the new edge (x, y, d), δ←x (z) +d+ δ→y (v0),

which is an upper bound on z. The propagator updates the bounds
of variables which have changed with respect to these weights.

EXAMPLE 5. Consider adding the new constraint x − y ≤ −2
to obtain the system of constraints C of Example 4 illustrated in
Figure 1(a). In order to extract new bounds we need to determine
δ←x (v0) but this is just −minD(x), we have already determined
δ→y for INCIMP. The possibly new bounds are 0 +−2 + 0 for y (or
a lower bound of 2), 0+−2+3 for z (or a lower bound of -1, so not
new). The upper bounds are calculated similarly as 0+−2+10 for
x or 8. The resulting domain is D(x) = [0 .. 8], D(y) = [2 .. 10],
and D(z) = [0 .. 10]. 2

Adding a new bound x ≤ u or x ≥ l is simply adding a new
difference constraint x − v0 ≤ u or v0 − x ≤ −l, which then is
treated as described in the previous paragraphs.

Adding a new reified constraint b⇔ u−v ≤ d′ is a new feature
not usually present in SMT solvers, since in this context all reified
constraints are known from the beginning of solving. We need to
check if the constraint is entailed or disentailed with the current
set of difference constraints. To do so we calculate wSP (u, v)
and wSP (v, u) by using Dijkstra’s algorithm on the reduced cost
graph. Note that reified bounds constraints b ⇔ u ≤ d′ or b ⇔
−v ≤ d′ can be handled by examining the domain D directly.

For backtracking we need to restore the state of the difference
constraint propagator to that at an earlier time. The only state of
the solver is the set of difference constraints posted, and the set
of posted reified difference constraints, as well as the valid po-
tential function. The potential function π remains valid on back-
tracking since it simply ensures that π(x) + d − π(y) ≥ 0 for all
edges (x, y, d) ∈ G, and removing edges does not invalidate this.
Hence the potential function need not be trailed, as been noted by
Wang et al. (Wang et al. 2005). Backtracking must simply remove
the representation of the constraints added since the marked state.

Under the assumptions that the domain D is a range domain
and no Boolean variable appears twice in the set of difference con-
straints and bounds constraints and reified difference constraints C
added, the global propagator defined in this subsection is a domain
propagator for (the conjunction) C.

4.2 Handling Bounds Constraints Better
While in the SMT context bounds are simply another form of
difference constraint, for a propagation engine bounds updates are
much more frequent than difference constraint additions. Hence
it is worth treating them separately. We will not use the dummy
variable v0 to encode bounds constraints but treat them directly.
The basis of this treatment is the following theorem.

THEOREM 2. Let C be a set of difference constraints and D a
range domain, c a difference constraint, and D′ = solv(C,D)
the domain after propagation.

Then (a) D′ is a false domain iff D ∧ C is unsatisfiable. And
(b) C ∧ D |= c iff C |= c or D′ |= c. I.e. we can check implica-
tions by checking implication by difference constraints alone, and
implication by bounds alone.

Proof : (a) (⇐) By the correctness of propagation C ∧D |=
solv(C,D) = D′ and hence if D′ is a false domain C ∧D
is unsatisfiable.
(⇒) Let G be the graph encoding C and D (as encoded
bounds constraints using dummy variable v0), then by The-
orem 1 we have that the corresponding graph has a negative
weight cycle p. W.l.o.g., let p be from v v with weight
w < 0,D(v) = [lv .. uv] be the range of v and k be chosen
so that kw + uv − lv < 0.

Then consider the path

v0
−lv−→

k timesz }| {
v v · · · v v

uv−→ v0

Now standard bounds propagation choosing the constraints
in the order of this path eventually sets the lower bound of
v to lv − kw > uv and creates a false domain. Since any
order of propagating constraints leads to the same result,D′

is a false domain.
(b)(⇐) Clearly C |= c or D′ |= c imply that C ∧ D |= c
since C ∧D |= D′.
(⇒) By Theorem 1 we have that c ≡ x− y ≤ d is implied
iff the graph G encoding C and D using encoded bounds
constraints iff a shortest path from x to y is length less
than or equal to d. Suppose the shortest path does not visit
v0. Then clearly C |= c since GC (without the encoded
bound constraints) has the same shortest path. Otherwise
SP (x, y) = x v0 y where w(x v0) = w1 and
w(v0 y) = w2 and w1 + w2 ≤ d. Bounds propagation
on the path v0 y sets the lower bound of y to at least
−w2. Bounds propagation on the path x v0 sets the
upper bound of x to at mostw1. HenceD′ |= x ≤ w1∧y ≥
−w2 and hence D′ |= x− y ≤ d.

The above theorem implies we can check the satisfiability of
bounds constraints using propagation on the difference constraints,
and we can split implication into two checks: just using the differ-
ence constraints and just using the computed bounds.

At first let us consider bounds updating. We define an algorithm
that simultaneously considers all bounds changes since the last time
the global propagator was run, as opposed to adding them one by
one which is required by the base approach.

Since the calculation of the new lower and upper bounds is sym-
metric, we describe only the algorithm INCLB (see Algorithm 3)
for the lower bounds.

For the new lower bounds of a variable xwe want to know if the
negative of the weight of the shortest path to x from v0,−δ→v0(x) is
greater than the current lower bound of x, minD(x). Because we
do not represent a dummy variable v0 in the constraint graph, we
compute a valid potential function value π(v0) for v0 with respect
to π in the first step and consider for this calculation only variables
whose current lower bound is less than the value of the lower bound
resulting from the last run of INCLB.

At the second step we run Dijkstra on the reduced cost graph
with a starting priority queue of the variables which have changed
lower bound since the last run of the propagator. The initial value
for variable x is the reduced cost of the “imaginary” edge between
v0 and x. At last we create the bounds constraints for calculated
new bounds.

Our Dijkstra’s algorithm does not explore all variables in the
graph, it visits only variables x for which −δ→v0(x) > minD(x)
holds, that is where a new lower bound has been found.

EXAMPLE 6. Consider the set of constraints C = { x − y ≤ −2,
y − z ≤ 3, z − u ≤ −1, u − v ≤ 2, x − t ≤ 1, t − z ≤ −1}.
The constraint graph GC is shown in Figure 2(a). A valid potential
function for GC is π(x) = −3, π(y) = −8, π(z) = −7,
π(u) = −9, π(v) = −7, π(t) = −4. In fact since the graph
does not include the dummy variable v0 there are no cycles. The
domain D(x) = [0 .. 18], D(y) = [2 .. 20], D(z) = [6 .. 19],
D(u) = [8 .. 20],D(v) = [11 .. 20],D(t) = [0 .. 18] is a fixpoint
for propagation on these constraints.

Suppose we update the lower bounds of variables t to 1 and x
to 5. The algorithm works as follows: Vl = {t, x} and we compute

Algorithm 3: INCLB
Input: GC = (V, E) a constraint graph representing set of

difference constraints C, π a valid potential function
on GC , a range domain Do giving the upper and
lower bounds of variables the last time the
propagator was run, and a range domain D giving
the current bounds.

Output: A set of lower bounds constraints B giving new
bounds for variables in V .

Vl := {x ∈ V | minD(x) > minDo(x)};1
π(v0) := max{minD(x) + π(x) | x ∈ Vl};2
% Dijktras algorithm from v0 on the reduced cost graph3
rc(G) augmented so that variable s is not considered if the
new lower bound −δ→v0(s) is smaller than the existing
bound minD(s);
γ(v) := π(v0)−minD(v) + π(v) for all v ∈ Vl;4
γ(v) := +∞ for all v ∈ V \ Vl;5
wSP (v0, v) := +∞ for all v ∈ V;6
while min(γ) < +∞ do7

s := argmin(γ) ;8
wSP (v0, s) := γ(s);9
γ(s) := +∞ ;10
δ→v0(s) := wSP (v0, s) + π(s)− π(v0);11
if −δ→v0(s) > minD(s) then12

for all s d′
→ t ∈ G do13

if wSP (v0, t) < +∞ then14
γ(t) := min{γ(t), π(s) + d′ − π(t)}15

% Convert new bounds into constraints;16
for all v ∈ V do17

if −δ→v0(v) > −minD(v) then18
B := B ∪ {−v ≤ δ→v0(v)}19

return B20

π(v0) = 2. Effectively we will be searching for shortest paths from
v0 from the reduced cost graph shown in Figure 2(b).

Dijktras algorithm determines wSP (v0, x) = 0 or equivalently
δ→v0(x) = 0 + −3 − 2 = −5 and the lower bound of x is 5, a
tighter bound, so the algorithm updates values for edges leaving x.
Then wSP (v0, t) = 2 or δ→v0(t) = 2 +−4− 2 = −4, again a new
bound 4 so t’s neighbours are enqueued. Then wSP (v0, y) = 3
or δ→v0(y) = 3 + −8 − 2 = −7, again a new lower bound. Then
wSP (v0, z) = 4 and δ→v0(z) = 4+−7−2 = −5, and a new bound.
When we calculate wSP (v0, u) = 5 and δ→v0(u) = 5 +−9− 2 =
−6, the new bound 6 is not stronger than the existing bound, so no
new propagation occurs. The algorithm never visits node v.

Compare this with the naive global difference approach of the
previous section. Each new bound is a new constraint v0 − t ≤ 1
and v0 − x ≤ −5, and the graph shown in Figure 2(a) has 12
additional edges to and from the dummy node v0. Adding the
first constraint may determine a new potential function, and then
shortest paths from v0 are determined for each variable, and bounds
updated. Then the second constraint is added and a possibly new
potential function computed and once more the shortest paths from
v0 are determined and bounds updated. The improved method has a
smaller graph, does not update potential function values, and visits
each edge at most once regardless of the number of bounds changes
since the last execution. 2

Note that INCLB (and INCUB) requires O(n logn + m) time
and O(n + m) space for m difference constraints (not bounds
constraints) on n variables. Incremental propagation of difference

y0
n

//

n−1

77

n−2
((

2

))

1

((
y1 // y2 // y3 // . . . // yn−1 // yn

��
xn xn−1oo xn−2oojj xn−3ookkhh . . .oo x1ookkiiggff x0oolljjiihh

Figure 3. The corresponding constraint graph for a system of difference constraints of Example 7. Edges with 0 weight are unlabelled.

(a) x
−2

//

1
��???????? y

3
// z

−1
// u

2
// v

t

−1

??��������

(b) −3
x 3

//

2
��========
−8
y 3

// −7
z 1

// −9
u 0

// −7
v

2
v0

0

@@�
�

�
�

5
//_______ −4
t

2

@@��������

Figure 2. (a) The corresponding constraint graph GC for a system
of difference constraints of Example 6 and (b) the reduced cost
graph with the dummy node v0 and imaginary edges (dashed)
added.

constraints using a FIFO queue of propagators1 can requireO(nm)
time.

EXAMPLE 7. Consider the system of difference constraints C de-
fined as yi−1−yi ≤ 0, 2 ≤ i ≤ n, y0−yi ≤ n− i+1, 1 ≤ i ≤ n
and yn − x0 ≤ 0, xi − xj ≤ 0, 1 ≤ i < j ≤ n illustrated in Fig-
ure 3. DomainD is a fixpoint forC whenD(y0) = [0 .. (k − 1)n],
D(yi) = [n .. kn] , 1 ≤ i ≤ n and D(xi) = [n .. kn] , 0 ≤
i ≤ n. None of the difference constraints is implied by the domain,
which would mean it could be removed from the propagation en-
gine.

Consider when the domain of y0 becomes [n .. (k − 1)n]. All
constraints involving y0 are queued for propagation. If we are
unlucky we will first bounds propagate on y0 − yn ≤ 1, which
will change D(yn) to [n+ 1 .. kn] and queue the yn − x0 ≤ 0.
We then propagate on y0 − yn−1 ≤ 2 which changes D(Yn−1) to
[n+ 2 .. kn] and queues yn−1 − yn ≤ 0. Continuing we modify
each domainD(yi), 1 ≤ i ≤ n to [n+ n− i+ 1 .. kn] and queue
each yi−1 − yn ≤ 0, 1 ≤ i ≤ n in reverse order. The next
propagator considered is yn − x0 ≤ 0 which changes D(x0) to
[n+ 1 .. kn] and queues the constraints on x0. Then we consider
yn−1 − yn ≤ 0 and modify D(yn) = [n+ 2 .. kn] and queue
yn−x0 ≤ 0 again. Continuing we modify each domainD(yi), 2 ≤
i ≤ n to [n+ n− i+ 2 .. kn] and queue each yi−1−yn ≤ 0, 2 ≤
i ≤ n in reverse order. We then propagate the constraints on x0

setting all D(xi) to [n+ 1 .. kn] and queuing all constraints on
xi, 1 ≤ i ≤ n. We then propagate on yn − xn ≤ 0 again and
modify D(x0) = [n+ 2 .. kn]. We queue the constraints on x0

once more. To reach a fixpoint the domain of x0 changes n times,

1 A FIFO queue is the usual case, and for a LIFO queue it is easy to create
even worse behaviour.

and we queue each constraint on x n times, hence the process is
O(n3).

Compare this with the execution of INCLB. Since all the arcs
are positive we can assume π(v) = 0,∀v ∈ V and the reduced cost
graph is identical to the original graph. The algorithm will process
each edge exactly once, visiting the nodes in order y0, y1, . . . , yn,
x0 followed by the remainder of the x nodes in any order. The
process is O(n2).

Finally note the whole process of increasing the lower bound of
y0 by n can be carried out k− 1 times down a branch of the search
tree! 2

We can thus check satisfiability of addition of bounds con-
straints by running INCLB on the new lower bounds and INCUB on
the new upper bounds and seeing if in the result any variable has
an empty domain. Afterwards, we can check new implications of
difference constraints caused by the addition of bounds constraints
by simply checking for each (x − y ≤ d) ∈ P if it is implied by
bounds i.e. maxD(x)−minD(y) ≤ d.

We check satisfiability on addition of a new difference con-
straints u − v ≤ d by running INCSAT on the graph GC contain-
ing only the difference constraints (not bounds constraints), and
then perform bounds propagation by determining the possibly new
lower bound for v given by −d + minD(u) and doing bounds
propagation with INCLB and the possibly new upper bound for u
of d+ maxD(v) and doing bounds propagation with INCUB. We
can then check implication by first checking if the bounds imply
some difference constraint in P , and then running INCIMP on the
graph GC∪{u−v≤d}.

Adding a new reified difference constraint b ⇔ u − v ≤ d′

requires us to check if it is entailed or disentailed by the domain
D, and if not we calculate wSP (u, v) and wSP (v, u) using the
reduced cost graph of GC .

4.3 Variations
Theorem 2 also provides us with other ways of building difference
constraint propagators by mixing the standard approach of a propa-
gator per difference constraint and reified difference constraint with
the global approach.

Standard propagators will perform bounds propagation and im-
plication by bounds. Hence we can combine the global propagator
which only considers addition of difference constraints x− y ≤ d
and reified difference constraints b ⇔ u − v ≤ d′ with the usual
propagators for these constraints. By prioritizing the global propa-
gator before the standard propagators we can avoid the worst case
behaviour of Example 1 determine implication purely by difference
constraints, and use the standard incremental queueing for bounds
propagators/implication by bounds.

4.4 Optimizations
We can further improve upon the algorithms above by taking into
account fixedness of variables, and reasoning better on which dif-
ference constraints in P can be implied by a constraint addition.

Any fixed variable x where D(x) = {d} acts similarly to
the dummy variable v0 since any path x y implies a path
v0
−d→ x y, and similarly y x implies the path y x

d→ v0.
Once a variable is fixed and we have updated the bounds caused
by the fixing, then the variable plays no further role. We can ignore
fixed variables x in INCSAT, INCIMP, INCLB and INCUB without
compromising correctness using a result analogous to Theorem 1.
Hence edges to and from fixed variables need not be considered in
these algorithms.

After every addition of a constraint we need to check the con-
straints in P for implication. We can do better than checking every
one if we keep track of what changes have been made by the latest
constraints addition.

Cotton and Maler (Cotton and Maler 2006) show how we can
restrict the shortest path calculations in INCIMP to those that may
actually decrease a shortest path. There is a shorter path from x to y
via new edge (u, v, d) iff there is a shorter path from x to v or u to
y via this edge. If we calculate δ←v (as opposed to δ←u) and δ→u we
can modify Dijkstra’s algorithm to restrict attention to those nodes
that give a shorter path using the edge (u, v, d) (see (Cotton and
Maler 2006) for details). We can calculate the weight of a shortest
path from x to y via (u, v, d) as δ←v (x)− d+ δ→u (y).

Note that wSP (x, y) = w + π(y) − π(x) where w is the
weight of a shortest path from x to y in the reduced cost graph.
Clearly w ≥ 0 and hence wSP (x, y) ≥ π(y) − π(x). Hence if
π(y) − π(x) > d we know that x − y ≤ d is not implied by the
constraints. Note also that π only changes by reducing the values at
particular nodes (See INCSAT). Hence if π(y)− π(x) > d then at
some future time π′(y) − π′(x) > d unless the potential function
value at y changed.

Given both the above observations we can improve the checking
of implication of constraints in P by only checking constraints
x − y ≤ d ∈ P if δ→u (y) made use of the edge (u, v, d) in its
calculation, and if π(y) − π(x) > d in the past, then π(y) has
changed.

5. Experiments
We have built a global difference constraint propagator in the G12
finite domain solver engine (P.J. Stuckey et al. 2005). We will con-
sider four implementations in the experiments: sp: only separate
propagators for each constraint (the standard approach); sps: seper-
ate propagators with a global satisfaction check INCSAT run first on
addition of new difference constraints; spsi: separate propagators
with IncSat and IncImp run on difference and reified difference
constraints. gp: a global propagator using IncSat and IncImp on
difference and reified difference constraints, and IncLB and IncUB
to handle bounds. We do not consider the base implementation of
Section 4.1 since it is an order of magnitude slower than gp when
there are bounds constraints.

All the experiments were carried out on a 3GHz Intel Pentium
D with 4GB of RAM running Debian GNU/Linux 3.1.

5.1 Worst case behaviour for separate propagators
Example 7 shows a problem where the use of single propagators
could be terrible compared to the global propagator gp just for
bounds propagation. In the first experiment, we validate this ex-
perimentally, comparing the separate propagators sp and the global
propagator gp on this problem. Note that the sp implementation
is the existing G12 engine implementation and is quite standard.
For different number of variables n, we applied consecutive lower

0
200
400
600
800

1000
1200
1400
1600
1800

0 100 200 300 400 500 600 700 800 900 1000

t(ms)

number of variables

”sp.data”

33 3 3
3

3

3

3

3

33

Figure 4. Times(ms) to reach fixpoint for Example 7 as a function
of the number of variables

bounds updates of y0 from (k − 1)n to kn, k ∈ 1..10, and mea-
sured the time needed to reach these 10 fixpoints. The results for
the sp implementation are show in Figure 4. The gp times are all
below 10 ms and are not reported. One can see from the results that
very bad propagation behaviour can occur in practical solvers when
using single propagators, while a global propagator only needs to
run once to reach a fixpoint.

5.2 The generalized sequence constraint
The generalized sequence constraint, GEN-SEQUENCE, was intro-
duced by van Hoeve et al. (van Hoeve et al. 2006) as a general-
ization of the SEQUENCE constraint. Given a sequence of Boolean
variables Y1, . . . , Yn and a set of quadruples (i, j, l, u) ∈ Q where
i ≤ j,

GEN-SEQUENCE([Y1, . . . , Yn], Q) =^
(i,j,l,u)∈Q

l ≤ Yi + · · ·+ Yj ≤ u

that is for each quadruple (i, j, l, u) the number of Booleans in the
sub-sequence Yi, . . . , Yj that are true is between l and u (inclu-
sive). The constraint SEQUENCE([Y1, . . . , Yn], k, l, u) is equiva-
lent to GEN-SEQUENCE([Y1, . . . , Yn], R) where R = {(i, i+ k−
1, l, u) | 1 ≤ i ≤ n− k + 1}).

The generalized sequence constraint can be encoded using dif-
ference constraints and reified difference constraints using a cumu-
lative sums encoding using the sum variables Si =

Pk
j=1 Yk. The

encoding is:

Si − Si−1 ≤ 1, 1 ≤ i ≤ n
Si−1 − Si ≤ 0, 1 ≤ i ≤ n

Yi ⇔ Si−1 − Si ≤ −1, 1 ≤ i ≤ n
Si − Sj ≤ −l, (i, j, l, u) ∈ Q
Sj − Si ≤ u, (i, j, l, u) ∈ Q.

This is a slight extension of the CD encoding of (Brand et al.
2007) which only considered SEQUENCE constraints. The result
from (Brand et al. 2007) readily extends:

THEOREM 3. The global difference constraint propagator on the
encoding of the GEN-SEQUENCE constraint enforces domain con-
sistency inO(n2 logn+n|Q|) time down each branch of a search
tree. 2

To illustrate the performance of the difference constraint propa-
gator we experimented using single SEQUENCE constraints.

For each combination of n ∈ {50, 200, 500}, k ∈ {7, 15, 25, 50},
∆ ∈ {1, 5}, 20 SEQUENCE([Yi, . . . , Yn], k, l, l + ∆) problems
were randomly generated with l picked in [0, . . . , k − ∆]. These
are similar experiments to those undertaken in (Brand et al. 2007).
The average times and number of backtracks required to solve
these problems are shown in Table 1 for different SEQUENCE im-
plementations. All problems were solved with a random variables
and values ordering over the Boolean variables Yi. For these prob-
lems there are no bounds constraints so spsi is useless overhead
compared to gp and is omitted

As the results in (Brand et al. 2007) show, there are not many
cases where domain propagation of the sequence constraint im-
proves upon weaker encodings. Although for our examples the
domain propagator never needs to backtrack, the overhead of the
global propagator is not repaid on these examples. We can how-
ever see that the difference constraint graph implementation of SE-
QUENCE has a better asymptotic behaviour for large n and k com-
pared to other implementations in (Brand et al. 2007). We do see
however that while adding a global consistency check of the dif-
ference constraints cannot improve search (as explained by Theo-
rem 2) it does improves the running time, as it is a relatively cheap
test compared to detecting failure through propagation.

5.3 Multiple sequences
The domain propagation of the sequence constraint is important for
harder problems combining sequence constraints with other con-
straints. In order to illustrate this we constructed problems consist-
ing of 3 sequence constraints on 3 sets of Booleans variables x,
y, and z such that zi = xi ⊕ yi (⊕ is exclusive or). We gener-
ated satisfiable non-trivial instances for sequences of length 30 to
50, and solved them with a random static labeling order. Again we
only compare sp, sps and gp since there are no bounds constraints
so spsi is useless overhead compared to gp.

In Table 2, we show the number of instances solved by the dif-
ferent implementations with a time limit of 10 min. We also give
the average times and failures for the instances that all implemen-
tations could solve. As we can see, for these problems the stronger
propagation of gp significantly improves performance, allowing it
to solve more problems, and to solve them on average 3 times faster.

5.4 Open Shop Scheduling Problems
We give experiments using open-shop scheduling problems from
(CSP2SAT). Open-shop shedules are given a matrix ofm×n tasks
t with duration dt constrained so that each task t can not overlap
with tasks t′ in the same row or column of the matrix. Non-overlap
is encoded as b1 ⇔ st−st′ ≤ dt′ , b2 ⇔ st′−st ≤ dt, b1+b2 ≥ 1.
While there are many specialized global propagators for scheduling
problems (see e.g. (Laborie 2005)), and specialized approaches to
open-shop scheduling (Tamura et al. 2006) with which a global
difference constraint propagator cannot compete, they do provide
a rich example to illustrate the advantages of global difference
propagation.

The GPx-y are small hard instances of open shop scheduling
problems, with x machines and x jobs (CSP2SAT). Table 3 shows
the time and number of backtracks required to solve these instances
for different combination of propagators. The number of backtracks
are listed in the columns #bts for sp,sps, and #bts-i for spsi, gp. We
show two search approachs: search by setting the earliest possible
task to either start at its earliest possible time, or start later; and
default labelling on the Boolean variables in the order of occurence.
The second search is more effective, we did not run the larger
examples using the first search

For the first search strategy the stronger implication does not
reduce the search (since there are very few tasks overall). The
addition of the global satisfaction check sps gives a significant

improvement, and gp improves slightly on that, probably because
of queueing savings. The second strategy is much better for these
problems, and on the larger problems we see that the stronger
implication check of spsi and gp reduces search. On the hardest
example sps is slightly better than spsi and gp, while for remainder
sp or gp are best.

6. Conclusion
Difference constraints appear widely in constraint programming
models, and the default representation as individual propagators
has some known bad behaviour. We show that by treating them
globally we can improve upon propagator behaviour. We present 3
different approaches to using global information: sps simply adding
a global satisfaction check to the usual individual propagators,
which is always clearly beneficial; spsi adding a global satisfaction
and implication check to individual propagators, which guarantees
domain consistency; and gp replacing the individual propagators by
a global propagator with special treatment of bounds propagation,
which has better worst case behaviour than the previous methods.

We note that while SMT (Niewenhuis et al. 2005, 2006) solvers
treat difference constraints globally, the naive importing of their
methodology is impractical for finite domain propagation solving
because of the relative importance of bounds propagation for FD.
For problems with bounds constraints the approach outlined in
Section 4.1 is an order of magnitude slower than gp.

Our current implementation of the global propagator is ineffi-
cient since we do not have advisors (Lagerkvist and Schulte 2007)
to incrementally maintain which variables bounds have changed
since the last time the global propagator was run. Hence we must
scan all variables on each invocation. Thus it could be substantially
improved with advisors. Finally it is straightforward to extend the
global propagators to record the reasons for unsatisfiability or im-
plication. If these are recorded as nogoods substantial search reduc-
tion can result (see e.g. (Tamura et al. 2006)).

References
Handbook of Theoretical Computer Science: Volume A: Algorithms and

Complexity. Elsevier and MIT Press, 1990.
S. Brand, N. Narodytska, C-G. Quimper, P. J. Stuckey, and T. Walsh. Encod-

ings of the sequence constraint. In C. Bessiere, editor, Proceedings of the
13th International Conference on Principles and Practice of Constraint
Programming, volume 4741 of LNCS, pages 210–224. Springer-Verlag,
2007.

B. V. Cherkassky and A. V. Goldberg. Negative-cycle detection algorithms.
In Proceedings of the European Symposium on Algorithms, pages 349–
363, 2006.

S. Cotton and O. Maler. Fast and Flexible Difference Constraint Propaga-
tion for DPLL(T). In Theory and Applications of Satisfiability Testing
- SAT 2006, volume 4121 of LNCS, pages 170–183. Springer-Verlag,
2006.

CSP2SAT. CSP2SAT. http://bach.istc.kobe-u.ac.jp/csp2sat/.
[Dec07].

R. Dechter, I. Meiri, and J. Pearl. Temporal constraint networks. Artificial
Intelligence, 49:61–95, 1991.

P. Laborie. Complete MCS-based search: Application to resource con-
strained project scheduling. In Proceedings IJCAI 2005, pages 181–186,
2005.

M. Lagerkvist and C. Schulte. Advisors for incremental propagation. In
C. Bessiere, editor, Proceedings of the 13th International Conference
on Principles and Practice of Constraint Programming, volume 4741 of
LNCS, pages 409–422. Springer-Verlag, 2007.

R. Niewenhuis, A. Oliveras, and C. Tinelli. Abstract DPLL and Abstract
DPLL Modulo Theories. In Logic for Programming, Artificial Intelli-
gence, and Reasoning, volume 3452 of LNAI, pages 36–50. Springer-
Verlag, 2005.

gp sps sp
Backs. Time(ms) Backs. Time(ms) Backs. Time(ms)

n = 50

k = 7
∆ = 1 0 9 6 1 6 0
∆ = 5 0 6 0 2 0 1

k = 15
∆ = 1 0 6 4 0 4 1
∆ = 5 0 5 3 1 3 0

k = 25
∆ = 1 0 3 2 0 2 0
∆ = 5 0 4 4 1 4 0

k = 50
∆ = 1 0 2 0 1 0 0
∆ = 5 0 4 0 1 0 1

n = 200

k = 7
∆ = 1 0 71 36 11 36 19
∆ = 5 0 81 3 23 3 30

k = 15
∆ = 1 0 80 22 7 22 8
∆ = 5 0 99 12 15 12 25

k = 25
∆ = 1 0 82 24 8 24 10
∆ = 5 0 97 22 10 22 22

k = 50
∆ = 1 0 74 11 6 11 8
∆ = 5 0 95 16 8 16 14

n = 500

k = 7
∆ = 1 0 439 97 54 97 151
∆ = 5 0 464 9 149 9 227

k = 15
∆ = 1 0 459 65 33 65 60
∆ = 5 0 532 47 81 47 246

k = 25
∆ = 1 0 473 53 27 53 42
∆ = 5 0 545 63 53 63 191

k = 50
∆ = 1 0 494 43 28 43 39
∆ = 5 0 580 55 38 55 94

Table 1. Backtracks/Times(ms) of sequence constraint encodings, for sequence constraints over a length n seqeunce, where the sums of
subsequences of length k are constrained to be is a range of size ∆.

Solved Timed Out Backtracks Time(ms)
sp 35/59 24/59 46636 11572
sps 35/59 24/59 46636 9200
gp 40/59 19/59 10641 3114

Table 2. Results for 59 hard sequence-based problems, combining three sequence constraints on sequences of variables x̄, ȳ and z̄ where
zi = xi ⊕ yi.

R. Niewenhuis, A. Oliveras, and C. Tinelli. Solving SAT and SAT Mod-
ulo Theories: from an abstract Davis-Putnam-Logemann-Loveland pro-
cedure to DPLL(T). JACM, 53(6):937–977, 2006.

P.J. Stuckey, M. Garcia de la Banda, M. Maher, K. Marriott, J. Slaney,
Z. Somogyi, M. Wallace, and T. Walsh. The G12 project: Mapping
solver independent models to efficient solutions. In P. Van Beek, editor,
Proceedings of the 11th International Conference on Principles and
Practice of Constraint Programming, number 3709 in LNCS, pages 13–
16. Springer-Verlag, 2005.

G. Ramalingan, J. Song, L. Joskowicz, and R.E. Miller. Solving systems of
difference constraints incrementally. Algorithmica, 23:261–275, 1999.

R. Shostak. Deciding linear inequalities by computing loop residues. JACM,
28(4):769–779, 1981.

N. Tamura, A. Taga, S. Kitagawa, and M. Banbara. Compiling finite linear
CSP to SAT. In Proceedings of CP-2006, volume 4204 of LNCS, pages
590–603. Springer-Verlag, 2006.

Willem-Jan van Hoeve, Gilles Pesant, Louis-Martin Rousseau, and Ashish
Sabharwal. Revisiting the sequence constraint. In Proceedings of the
12th International Conference on Principles and Practice of Constraint
Programming (CP ’06), 2006.

Chao Wang, Franjo Ivančić, Malay Ganai, and Aarti Gupta. Deciding
Separation Logic Formulae by SAT and Incremental Negative Cycle
Elimination. In Logic for Programming, Artificial Intelligence, and
Reasoning, volume 3835 of LNCS, pages 322–336. Springer-Verlag,
2005.

Earliest Booleans labelling
#bts sp sps #bts-i spsi gp #bts sp sps #bts-i spsi gp

GP03-01 532512 58.90 31.97 532512 32.38 28.16 216 1.34 1.34 214 1.33 1.33
GP03-02 755164 81.73 42.75 755164 43.04 38.64 227 1.34 1.32 225 1.33 1.33
GP03-03 385593 43.86 23.81 385593 23.97 21.60 151 1.34 1.33 151 1.33 1.33
GP03-04 288415 33.27 18.81 288415 18.99 16.50 161 1.34 1.33 161 1.33 1.33
GP03-05 812349 86.31 44.86 812349 45.08 40.54 144 1.34 1.34 144 1.33 1.34
GP03-06 693235 75.35 40.12 693235 40.03 35.45 175 1.33 1.33 175 1.33 1.33
GP03-07 152158 19.07 11.50 152158 11.61 10.06 117 1.33 1.34 117 1.33 1.33
GP03-08 338889 38.61 21.39 338889 21.57 19.04 165 1.35 1.33 165 1.33 1.33
GP03-09 319610 36.31 20.03 319610 20.20 18.15 190 1.34 1.33 188 1.33 1.34
GP03-10 564040 61.38 32.87 564040 33.24 29.44 113 1.33 1.32 113 1.33 1.33
GP04-01 1082 1.45 1.80 1046 1.79 1.79
GP04-02 826 1.46 1.82 824 1.79 1.36
GP04-03 1663 1.65 1.87 1626 1.89 1.84
GP04-04 2655 2.11 1.87 2485 1.89 1.86
GP04-05 591721 85.93 19.12 557328 19.25 18.12
GP04-06 686 1.61 1.81 686 1.80 1.37
GP04-07 1679 1.69 1.87 1672 1.87 1.89
GP04-08 556 1.41 1.76 555 1.77 1.35
GP04-09 3488592 324.85 110.08 3430994 112.74 112.73
GP04-10 692 1.43 1.78 689 1.79 1.36

average 484196 53.479 28.811 484196 29.011 25.758 204591 21.8485 7.8545 199978 7.994 7.8495

Table 3. Comparison of propagator combination of Open Shop Scheduling. GPn-m is a problem with n×n tasks. We compare two different
search strategies: Earliest setting a task with the earliest possible start time to this time or to start later; and Boolean labelling, where the
Boolean variables in the model are labelled in order of appearance.

