Dynamic Variable Elimination during Propagation Solving

Christian Schulte
KTH - Royal Institute of Technology
Sweden

cschulte@kth.se

ABSTRACT

Constraint propagation solvers interleave propagatiem¢wing
impossible values from variables domains) with searchrdieoto
specify constraint problems with a propagation solverroftany
new intermediate variables need to be introduced. Eaclahiari
plays a role in calculating the value of some expression. &ut
search proceeds not all of these expressions will be ofastemy
longer, but the propagators implementing them will remaitiva.

Peter J. Stuckey
National ICT Australia, Victoria Laboratory
University of Melbourne
~_Australia
pjs@cs.mu.oz.au

w1 X h1 andwsz X hg, placed with their left corner atx1,y1)
and (z2, y2) respectively, then the non-overlap is expressed as:

z1+wr <z2Vret+we<z1Vyr+h <y2Vya+ha <y1

In a typical CP system this would be expressed as a conjunofio
reified constraints

3()1.3()23()3.31)4.(()1 Srrt+w <z Aby & 10+ we < TN

In this paper we show how we can analyse the propagation graph b3 < y1 + h1 < y2 A by & y2 + ha < y1 Aor([by, ba, bs, b))

of the solver in linear time to determine intermediate Jalga that
can be removed without effecting the result. Experimentsvsthat
applying this analysis can reduce the space and time reqeits
for constraint propagation on example problems.

1. INTRODUCTION

Finite domain propagation interleaved with search is a phe
approach to solving combinatorial problems. The set of iptess
values of each variable in the problem is stored irdidsnain A
constraint is represented bypaopagatorwhich consider the do-
mains of the variables in the constraint, and removes vdhoes
the domain of a variable which could not take part in any sofut
of the constraint. Propagators are repeatedly applied nmtew
values can be removed. Then a choice is made, typically fizing
variable to one of the values in its domain, and with this nefar
mation the propagation process is repeated.

Since “most” of the work of the finite domain propagation isido
near the leaves of the search tree, finite domain solversstke
pains to simplify the problem they are tackling as searclogeds.
This involves: removing fixed variables from constraintgiring
them, and eliminating redundant propagators (propag#tatswill

no longer remove any value from any variable). But there isemo
that can be done. In this paper we examine how to eliminate dur
ing runtime variables and propagators that will not causenaore
useful propagation.

Example 1.1 [Disjunction] Consider a problem of placing squares
so that they do not overlap. Given two squares of dimensions

PPDP’08°08 Valencia, Spain

where e.g. the reified constraibt < 1 + w1 < x2 indicates that
b1 is true (1) if the constraink; + wy < z2 holds, and false (0) if
the negationr; + w1 > x2 holds. Imagine that some stage later
in the search we have that = 3,y € [0 .. 4] andy. € [8 .. 10].
Then the propagatdis < y1+h1 < y2 setshy = 1 since the right
hand side constraint must hold. The propagator then remitsel$

(it is now redundant and can’'t add more information). Now the
propagatoror([b1, bz, bs, ba]) detects it is redundant and removes
itself. Assuming2 > 0 then the propagatobs < y2 + he < y1
with setb, = 0 and remove itself. The remaining propagators will
remain in the solver even though they cannot cause failuever
change the domains of any original variabte, y1, 2 ory.. 0O

Modeling in finite domain propagation systems will rarelyadtve
building models where a variable occurs only once, excemnvh
it is an output variable, and clearly we do not wish to elinténa
these. But once constraints are found to be redundant itiie qu
possible that such systems arise during search. One relaabn t
these cases occur reasonably frequently is that, in ordemiolify

the construction of a finite domain solver, constraints amkdn
down into components. This introduces new variables thatioc
only twice: once for defining the value of an intermediaterter
and once to constrain it.

Example 1.2 [Decomposition] Consider the constraifit; —x2)*+
(y1 — y2)? > d which requires two pointér;,y1) and (zz, y2) to

be at least distanc€/d apart. This constraint is not directly avail-
able in most FD systems, instead it is decomposed into thensys

Idxx.3dz.Idyy.3dy.(dzx + dyy > d A dex = dz X dz A
dr=x1 —z2 Ndyy =dy X dy Ndy = y1 — y2)

Imagine at some time the domains of the original variables ar
z1 € [0..10], x2 € [15..30], y1 € [0.. 30], y2 € [0 .. 30], and

d = 25. Then propagation will calculate the domains of the newly
introduced variables adz € [—-30 .. — 5], dzx € [25 .. 900],

dy € [-30 .. 30], dyy € [0 .. 900]. The inequalitylzz + dyy >

d is redundant, and indeed the original constraint is redumda
But every further change in the original variables will cauthe



propagators for the new intermediate variables to be reetest
for no purpose. O

Global constraints can also be implemented by decomposkiad
in this case we can possibly build large chains of introdueed
ables that may not be useful for the lifetime of the globalstraint.

Example 1.3 [Lexicographic order] The lexicographic order con-

straint (z1,...,2n) < (y1,.-.,yn) can be encoded d¢(1, x, y)
where

lt(i,z,y) = false i>n

i, z,y) = (x: <yi) V(zi =y NUt(i + 1,2,y) otherwise

This is decomposed furtherip< z; < yi, e, < ©; = yi, ti <
eiNlt(i+1,q,y) andit(i, z,y) < 1;Vt;. Supposé; becomes true
(because we detegt < y; holds). Then by propagatida(j, x,y)
will be setirue and the propagator fott(j, z,y) < I V t; will
be removed as redundant. Nawonly occurs in one propagator
and can be eliminated, which then allows the elimination;aind
It(7 4+ 1,z,y). Infact all propagators for constraints with indices
greater thanj can be removed.

We can do the same if we determine thyaand e; are both false.
O

There are also special cases of variable elimination tlsé &ilom
optimization problems.

Example 1.4 [Linear inequalities] In a typical optimization prob-
lem, there is a variable representing the objective funttatefined

by some constraint. For example to minimjzg'_, a;x; we would
definey = >, a;z; and minimizey. Nowy only occurs once

in the propagation engine, but when a new solution is fourtth wi
valuey = d a new constraint is imposed globally that< d — 1.

In forward computation no constraints will be placed gand in-
deed as soon as we have that all possible valugs bf, a;x; are
less thand the propagator is removable since no other constraints
will modify y (in forward computation).

In effect we wish to treat the constraint lif€_; a;z; < d — 1,
although it is implemented using the varialyle ad

We present a runtime analysis to find such eliminable vaggland
remove the useless propagators attached to them. We withaee
this can lead to improved performance in terms of time andespa

But there is a further use of the analysis. The analysis visikt v
all the variables in the problem that may actually affect fine
ther computation. If there are variables that are not tsmefrom

the search variables, then they will not be modified furthethe
search. Unless they have no propagators remaining on thism th
indicates a modeling error. We return to this point in Secto

The paper is organized as follows. In the next section we éefin
propagation-based constraint solving, and how it perfareasin-
dancy elimination. In Section 3 we define existential redunoy of
propagators, and explain how it can be detected for commar pr
agators. In Section 4 we define an algorithm for runtime asisly
of the propagation graph that detects variables and propagat
can be safely removed without affecting future computatidm
Section 5 we discuss some of the issues that arise in implargen

the analysis in practice. In Section 6 we give experimentsvsig
the overhead and effectiveness of the analysis on examplehbe
marks. In Section 7 we discuss related work, and finally agfel

2. PROPAGATION-BASED CONSTRAINT
SOLVING

This section defines our terminology for the basic companeha
constraint propagation engine. In this paper we restritalues to
finite domain integer constraint solving. Almost all theaission
applies to other forms of finite domain constraint solvingtsas
for sets and multisets.

2.1 Propagation

2.1.1 Domains

A domain D is a complete mapping from a fixed (finite) set of
variablesV to finite sets of integers. false domainD is a domain
with D(z) = () for somez € V. Avariablez € V is fixedby a
domainD, if | D(x)| = 1. Theintersectiorof domainsD; andD-,
denotedD;MDs, is defined by the domaiP(z) = D1 (x)ND2(x)
forallz € V.

A domain D, is strongerthan a domainD., written D; C Do,

if Di(z) C Da(x) forall z € V. A domainD; is stronger than
(equal to) a domairD, w.r.t. variablesV, denotedD; Cy D,
(resp.D1 =v Do), if Di(z) C D2(z) (resp.Di(z) = D2a(z))
for all z € V. We use the notation{x} to denote the variable set
vV —{z}.

A range is a contiguous set of integers, we wuaege notation

[l .. u] to denote therangéd € Z | | < d < u} whenl andu
are integers. A domain isrange domainf D(z) is a range for all
x. Let D' = range(D) be the smallest range domain containing
D, that is, the unique domaib’(z) = [inf D(z) .. sup D(z)] for
allz e V.

We shall be interested in the notion ofstarting domainwhich we
denoteDs:art. The starting domain gives the initial values possible
for each variable. It allows us to restrict attention to dommaD
such thatD C Dsggart.

2.1.2 Valuations and constraints

An integer valuatiord is a mapping of variables to integer values,
written {z1 — di,...,zn — dn}. We extend the valuatiof

to map expressions and constraints involving the variaiolébe
natural way.

Let vars be the function that returns the set of variables appearing
in a valuation. We define a valuatiério be an element of a domain
D, written® € D, if 8(x;) € D(x;) for all z; € vars(9).

The infimumand supremunof an expressior with respect to a
domain D are defined asnfp e inf{f(e) | & € D} and
supp e =sup{f(e) | 0 € D}.

We can map a valuatiofito a domainDy as follows

Doty - { 0

Dstart(x)
A constraintc over variablesry, ..., z, is a set of valuationg
such thatvars(f) = {z1,...,z.}. We also definevars(c)

{z1,...,2n}.

x € vars(6)
otherwise



2.1.3 Propagators

We will implementa constraint by a set of propagatonsrop(c)

that map domains to domains. gkopagator f is a monotonically
decreasing function from domains to domain&:D) C D, and
f(D1) C f(D2) wheneverD, C D,. A propagatorf is correct
for a constraint iff for all domains D

{0|0eDync={0|0€ f(D)}Nc

This is a very weak restriction, for example the identitygagator

search(F,, F,,, D, SV)
D :=isolv(F,, Fy, D)
if (D is a false domain)
return false
if (3z € SV.|D(z)| > 1)
choose{ci, ..., cn} Where
CADEcV---Ven % search strategy
forie[1..m]
D’ :=search(F, U F,, prop(c;), D, SV)

% propagation

H /
is correct for all constraints. i 7 fal}se)
return D
A set of propagatorg’ is checkingfor a constraint, if for all val- retrlfrtrl:me alse

uationsf wherevars(6) = vars(c) the following holds:f(Dy) =
Dy forall f € F,iff 8 € c. Thatis, for any domairD, corre-
sponding to a valuation omars(c), f(Dy) is a fixpoint iff 0 is a
solution ofc. We assume thairop(c) is a set of propagators that
is correct and checking far.

Figure 1: Search procedure

isolV(F,, Fy, D)
F=F,UF,;Q =F,

The variablesvars(f), of a propagatorf are defined agv € while (Q # 0)

V | 3D £ Dstare, f(D)(v) # D(v)}U{v €V | 3Dy, D2 C f :=choose(Q) % next prop to apply
Dstart, D1 =_1y) Do, f(D1) #_tvy f(D2)}. The set includes Q=0 - {f}

the variables that can change as a result of applyirand the vari- D' = (D)

ables that can modify the result ¢f Vi={zeV|D()#D(z)} % modified vars

Q' ={f" € F| vars(f') NV # 0} % props to reconsider

To simplify presentation, we will usgrops(z) to denote the set of Q=QuUQ
propagatory’ € F with z € vars(f), D=D'
return D

Example 2.1 [Propagators] For the constraintc = z1 < z2 + 1
the function f; defined byfi(D)(xz1) = {d € D(z1) | d <
supp z2+1}and f(D)(v) = D(v),v # z is a correct propaga-
tor for c. Its variables arer; whose domain can be modified fy
(the first case of the definition above) angl which can cause the ) o
modification of the domain of; (the second case of the definition ~ Figure 1 for an initial set of propagatofs = Ucec prop(c) on a
above). Sovars(fi) = {z1,22}. LetDi(z1) = {1,5,8} and set of search variableSV'. It either returngfalse or a domainD
Di(22) = {1,5}, thenf(Dy) = Dy whereDs(z1) = Da(x2) = representing a solution (or solutions)©f

{1,5).

The propagatorf. defined asfz(D)(z2) = {d € D(x2) | d >
infpxzi1 — 1} and fo(D)(v) = D(v),v # x2 is another correct
propagator forc. Againvars(f2) = {z1,z2}.

Figure 2: Incremental propagation solver

Note that the propagators are partitioned into two setjlthprop-
agatorsF, and the new propagatofs,. Theincrementalpropaga-
tion solverisolv(F,, F,, D) takes advantage of the fact thatis
guaranteed to be a fixpoint of the old propagatbys

The sef f, f2} is checking for. The domairDy, (z1) = De, (z2) = In this simple version ofsolv a propagatorf’ i_s added _back i_nto
{2} corresponding to the solutiofi, = {z1 — 2,22 — 2} the qgeueQ of propagators to be e?(ecuted if one of its variables
of ¢ is a fixpoint of both propagators. The non-solution domain domains has changed, and the choice of next propagator ¢atexe
Do, (z1) = {2}, Do, (z2) = {0} corresponding to the valuation ~ 9iven bychoose is left unspecified. For more detailed discussion
05 = {z1 — 2,32 — 0} is not a fixpoint (of either propagator). ~ N howisolv is defined in practice see [13, 14].

|

2.1.5 Domain and Bounds Propagators

A consistency notior' gives a condition on domains with respect
to constraints. A set of propagatafsmaintainsC-consistencyor

a constraint, if for domain D wheref (D) = D, f € F is always

C consistent fore. Many propagators in practice are designed to
maintain some form of consistency: usually domain or bouBds
note that many more do not.

2.1.4 Propagation Solving

A propagation solvesolv (F, D) for a set of propagatorg’ and a
domainD finds the greatest mutual fixpoint of all the propagators
f € F. In other wordssolv(F, D) returns a new domain defined

by

solv(F, D) = gfp(\d.iter(F,d))(D) iter(F,D) = [1 f(D)

fer The most successful consistency techniguardésconsistencyl0],
which ensures that for each binary constraint, every vaiugne
domain of the first variable, has a supporting value in theaom
A constraint propagation system evaluates the funeiidn( £, D) of the second variable that satisfied the constraint. Arsistency
during backtracking search. We assume an execution model fo can be naturally extended to constraints of more than twialvias
solving a constraint problem with a set of constraifitand a start- to givedomain consistencyA domainD is domain consisterfor a
ing domain Dga¢ as follows. We execute the procedure constraintcif D is the least domain containing all solutiohg D
search(, F, Dstart, SV) implementing depth-first search givenin  of ¢, that is, there does not exift’ = D such thath € D A0 €

wheregfp denotes the greatest fixpoint wirtlifted to functions.



c—0eD.

Define thedomain propagatorlom(c), for a constraint as

dom(c)(D)(x) =
dom(c)(D)(z) =

{6(z) |0 € DNO € c} wherex € vars(c)
D(z) otherwise

The basis of bounds consistency is to relax the consistegyine-
ment to apply only to the lower and upper bounds of the domfin o
each variable. There are a number of different notions of bounds
consistency [2], we give the two most common here.

A domainD is bounds(Z) consistenfor a constraint, vars(c) =
{z1,...,x,}, if for each variabler;, 1 < i < n and for eachi; €
{infp x;,supp z; } there exisintegersd; with infp z; < d; <
supp zj, 1 < j < n,jF#isuchthab = {z1 — di,...,zn —
d»} is aninteger solutiorof c.

AdomainD is bounds(RR) consistenfor a constraint:, vars(c) =
{z1,...,z,}, if for each variablezr;,1 < i < n and for each
d; € {infp z;, supp, z; } there exisreal numbersi; with infp z;
< dj < suppz;, 1 < j < n,j # isuchthatt = {z1 —
di,...,zn — dy} is areal solutionof c.

A bounds(Z) propagator zbnd(c) for a constraint ensures that
zbnd(c)(D) is bounds(Z) consistent withe, while abounds(R)
propagator rbnd(c) ensuredbounds(R) consistency.

2.2 Redundancy Elimination
As part of propagation most propagation-based solver aserd

[2..10], D(y2) = [10 .. 25], D(y3) = [0 .. 15]. Theny is never
the sole minimum of the set on the right hand side. Hence &sang
in the domain ofj, will not effect other variables through this prop-
agator, and changes to the domains of the other variabldsyewser
effecty.. Hence the propagator for this constraint can be effec-
tively replaced by the domain propagator for = min{yi,ys}
without changing any future computation. m|

Note that if propagatof is redundant foD then it is independent
of all variablesz for domainD. We can modify our propagation
engine to take into account redundancy and independencety m
ifying the input variables to remove those for which it is épen-
dent. Letindependent(f, D) be the set of variables imars(f)
for which f is independent for domaif». Then we can modify the
incremental propagation solver of Figure 2 by adding thiefghg
line just before the calculation 6f.

vars(f) 1= vars(f) — independent(f,D’)

In practice the propagatgf will be replaced in the propagator en-
gine by a new one, which has a smaller set of variablesa¥( f)
becomes the empty set then the propagator can be removed alto
gether (it must be redundant). In addition the search prureed
usually checks that at the end no propagators remain thataare
redundant. In this way it has a proof that the solution (ousol
tions) described by the answer domdinactually satisfies all the
constraints.

mine which propagators are redundant and no longer can ehang 3. \JARIABLE ELIMINATION

the domains of variables. Redundant propagators can bevesimo
from the solver.

A propagatorf is redundantfor domainD if f(D') = D',vD’' C
D. Clearlysolv(FU{f}, D") = solv(F, D’) if fisredundant for
domainD 1 D'.

Example 2.2 Consider the domain propagator for the constraint
or([b1, b2, b3, ba]). Then if any of the Boolean variablésis set to
1 then the constraint holds and the propagator can be removed

Consider thébounds(R) propagator for the constraint +y > z.
If at any stagenfp « +infp y > supp, z then the constraint is re-
dundant, for example whed(z) = [25 .. 300], D(y) = [0 .. 300]
and D(z) = [-100 .. 25], and again the propagator can be re-
moved. O

It is also possible that a constraint may become indepenafent
some of its variables. This means that any further changhen t
domain of that variable is irrelevant to the constraint.

A propagatorf is independentf x for domainD if f(D')N D}, =

f(Dy) forall D;, C D' C D whereD' =_y,y D andD;, is not
a false domain. Note that [D(z)| = 1 thenz is automatically
independent for all propagatoys since D’ = D!, as they only
differ in « and they are not false domains.

We can modify the variables of a propagator to remove those fo
which it becomes independent.

Example 2.3 Consider the domain propagatgrfor the constraint
x = min{y1, y2, ys} and the domairD(z) = [0 .. 10], D(y1) =

A constraint problem is represented by an existential dfieaht
conjunction of primitive constraints. The primitive corahts are
those that can be directly represented by propagators.

3.1 Existential redundancy

A constraintc is existentially redundanfor y at domainD if D =
Jy.c. That is for all valuation® € D of variablesvars(c) — {y}
then there existd € D(y) whered U {y — d} € c.

Since propagators may be less strong than constraints w&essn
condition on propagators as: A propagajoiis existentially re-
dundantfor y at domainD if solv({f}, D’) =_y,3; D' for each
D' € D whereD(y) = D’'(y). That is for all future domain®’
which don’t changeD(y), applying f (repeatedly) will not change
any variable domain except that of

If cis existentially redundant fay at D then any correct propagator
f for cis existentially redundant fay at D.

Lemma 3.1 Suppose: is existentially redundant fay at D, and f
is a correct propagator for then f is existentially redundant fay
atD.

PROOF Letvars(c) = {y} U V. We have thatD | Jy.c.
Hence for every valuatioi € D, 6 is a solution ofdy.c and can
be extended to a solutigh, € D whered(v) = 0,(v),Vv € V.

Consider an arbitrary valuatioch € D’. Thend, € D’ since no
other propagator changes the domainyaindé, is a solution of
¢ so the value of),(y) could not be removed by as its correct.
Sinced, € D’ and it is a solution of we have that, € f(D').



Since this holds for arbitrar§ we have thasolv({f}, D') =_(,3
D'. O

Existential redundancy allows a very simple form of optiatian
of propagation. We can remove the propagatand variabley
from the propagation engine ff is existentially redundant foy,
andy occurs in no other propagators, without affecting futuneeo
putation. The key lemma for variable elimination is thus tble
lowing:

Lemma 3.2 (Key Lemma) Let f be existentially redundant fay
and domainD andy ¢ vars(f’),Vf' € F. Thensolv(F U
{f},D") =_gyy solv(F, D) forall D' C D if D'(y) = D(y).

PrROOF Examinesolv(FU{f}, D') = D,. Thisis a sequence
of applications of propagators froii U { f} resulting in new do-
mains, until a fixpoint is reached. Let the sequence be ddnote

D' = Do (fo) D1 (f1) -+ Di (fi) Dig1--+Dn

Consider the sequence

D/:Dé (fé) Dll (f{) D;n (f) D;n+l (f) """ (f) D;L

of this form where[f{|i € 0..m] = [fi|¢ € 0..n, fi # f] where
all the applications of propagatgr have been moved to the end.
Clearly Dj(y) = D'(y) = D(y) for i € 0..m since nof’ € F
involvesy. Then sincef is existentially redundant dD we have
that D, =_y,; Dy, sincef cannot modify the domains of any
other variables.

Since none of the propagatof$ € F' make use of the domain of
yandD; 1 = f(D;) =_(,3 D: wheneverf; = f, we have that
Dy, =_{y} Dn. Sincef'(Dy) = Dn,Vf' € F by definition, we
also have thaf’(D},) = D;, and henceD,,, = solv(F, D). O

3.2 Detecting existential redundancy

Any original model that allows variable elimination is obusly a
poor model. So we will not expect to see it occurring in orégin
models. There is some possibility of this occurring thouflthe
model itself has been generated automatically.

But in any usual model each variable occurs at least twiosgx

perhaps some variables that are used only to create outpdit, a
these of course we do not wish to eliminate. So how is that we

find variables to eliminate?

As evidenced by the examples in the introduction, exisa&né-
dundancy arises from the elimination of propagators tHaeani-
tially, or the removal of independent variables leadingddables
that occur exactly once in the remaining propagators.

The remaining requirement is that we can detect a propagator
existentially redundant. But how practical or frequenthis? The
definition given in the previous section is clearly too exgpea to
check. Thankfully, existential redundancy is often easgtteck.

All binary arc consistent propagators are always exisiéiptre-
dundant for both variables involved.

Lemma 3.3 Let f be a domain consistent propagator for a binary
constraintc wherevars(f) = {z1,z2} (so f enforces arc consis-
tency). Thery is existentially redundant for; andz. for domains
D wheref(D) = D.

PrROOF By definition, f(D) is domain consistent witkh and
hencevd, € D(z1),3d2 € D(x2) where{z1 — di,z2 — da}
satisfiesc. HenceD = Jz..c. By Lemma 3.1f is existentially
redundant forc, at D. The same applies far;. [

Many propagators for functional constraints can be chedteelx-
istential redundancy reasonably easily. A Boolean totatfion
constraint, such ag < (Visizi), y < (Afm12i), ¥y < (Dje1m:)
(xor), y < (z1 — x2), andy < -, is existentially redundant if
there is a full domain on the function variahje

Lemma 3.4 Let f be a propagator for the total functional con-
strainty = e(z), wherey is Boolean thery is existentially redun-
dant fory at D if D(y) = {0, 1}.

A bounds(Z) or bounds(R) propagator for a functional constraint
y = e(Z), wheree is a total function, for example = ao +
>, a;w; andy = max}; x;, can often easily checked for exis-
tential redundancy.

Lemma 3.5 Let f be abounds(Z) or bounds(R) propagator for
the functional constrainy = e(z) wheree is a total function and
D(y) D [infp e(Z) .. supp e(Z)], then f is existentially redun-
dant fory at D.

NG

Note that the result above holds trivially from Lemma 3.1.eTh
usefulness of the above lemma is that bounds propagatacslyp
calculate the value of the expressian$p e(z) andsupp, e(Z),

or some weakening of them, in order to execute the propagator
For example théounds(R) propagator fory = 3z + 10z2 +
19x3 will calculate3 infp 1 +10infp 22 +19infp z3 as well as
3supp 1 + 10supp, 2 + 19 sup, 23 during propagation. Hence
checking the existential redundancy is straightforward.

Note that propagators do not necessarily have to be “equatito
be existentially redundant. The domain propagatodfdt , a;z; >
d is existentially redundant far; at D if

supa;z; > d— Z inf a;x;.
b i=tizi
Since the propagator determingg_, infp a;x; in order to deter-

mine redundancy it is straightforward extend it to checlstexitial
redundancy.

Many propagators are unlikely to be existentially redundeness
they are almost redundant, that is will almost never profeafia-

ther. For examplelidifferent([x1, ..., zx]) is existentially redun-
dant forz; if D(xz;) N D(zx) = 0,1 < i # k < n and some
further conditions hold. At this point thelldifferent is almost
redundant itself.

4. DYNAMIC ANALYSIS FOR VARIABLE
ELIMINATION



analyse(D,0V,SV)

for (v € V)
interested}] := no
visited[v] := false

for (v e OV U SV)
interested}] := yes

for (v € SV)
traverse(v,—,D)

traverse(v,g,D)
if (visitedf])
return interestedy]
if (interested{] = no)
interested}] := maybe
visited[v] := true
for (f € props(v) — {g})
if (f is existentially redundant fay # v at D)
if (traverse(y,f,D) # no)
interestedy] :=true
for (v’ € vars(f) — {v,y})
traverse(v’, f, D)
else% not interested iy
deletef (removef from prop(v’) for v’ € vars(f))
else
interestedy] := true
for (v’ € vars(f) — {v})
traverse(v’, f, D)
if (interested)] = maybe)
interested}] := no
return interestedj]

Figure 3: Dynamic analysis for eliminable variables

We now give a simple linear time analysis algorithm for firglin
variables to eliminate. The analysasalyse shown in Figure 3
takes a current domaiP, and the set of output variabléxV that

we cannot eliminate since we want them in the answer, as well a
the search variableSV which we cannot eliminate since we will
be adding new constraints on them.

The algorithm marks all the output and search variables a®be
interesting, and then traverses each search variable rin fline
traverse function visits a variable to determine if it can be elim-
inated, and visits other variables reachable from thisatdei It
returns if we are interested in the variable (that is it cafmeocelim-
inated). The traversal first checks that we haven't alreasliyed
the variable, and if so returns the previous result. If naeis the
status to maybe meaning we are still determining it is irstémg.
It then checks the propagatofsattached ta except the propaga-
tor g by which we reached. If f is existentially redundant for
y # v and we are not interested inthen the propagatof can be
removed. Otherwise we traverse all the variables reachhatdagh
f- If it happens for all propagators farare removed then it will
return that we are uninterestecinThe point of the maybe record-
ing is to ensure if we find a loop returning towhile determining
its interest, then the answer will be yes.

Theorem 4.1 Let Fy be a set of propagatord) a domain,SV a

set of variables, an@V a set of variables. Suppose after executing
analyse(D, OV, SV) on the propagation graph foF, we have
that F' C Fy remain. Themolv(F, D) =ov solv(Fy, D') for all

D' C D whereD’

=_tovusvy D.

PROOF Let F’ = Fy — F. The proof is by induction on elim-
ination of propagatory € F’. If traverse eliminates a propa-
gator f then it must be existentially redundant for someat D,
such that all other occurrenceswpfre in eliminated propagators.
Note thaty ¢ OV U SV. We can order the propagatofs say
f1,..., fn such thatf; is existentially redundant fay; at D andy;
appears in no propagators nU {fi;+1,... f»} by reversing the
order of traversal of the propagators. Then using Lemma &2 w
can show thagolv (F U {fz, fit1,... f7l}7 D,) =_{y;} solv(F U
{fi+1,--- fu}, D) forall D' C D whereD'(y) = D(y).

By induction we findsolv (Fo, D') =_yy, ...y} sOlv(F’, D") for
all D' C D whereD(y;) = D'(y:),1 < i < n. SinceOV U
SV CV—{y,...,yn}theresult holds. (1

In order for the algorithm to be efficient, we do not wish torspe
too much time checking if is existentially redundant for some#

v atD. For binary propagators, there is only one candidate viariab
For mostn-ary propagators this is still simple as there is only likely
to be one variable that can be detected as existentiallyndzdu,
the variable being “equationally defined” by the propagatay. y
Ny =ao+ Y 1, @it

But some constraints can be detected as existentially deshtirfior
multiple variables, for example propagators o= 3" | a;z; =
d wherea; € {—1,1},1 < i < n. For a particular domaitD it
could be existentially redundant for any varialble since this con-
straint can be read as equationally defining each varialgjere =
d+377 ., aixiwhena; = —1,andz; = —d—>71" | . aiw;
whena; = 1.

Luckily for this constraint and any domaitD there is only a max-
imum of two candidates for which it can be existentially nedant

at any domainD, and the remaining variables are fixed, and hence
are independent of the propagator foHence either only one vari-
able is possibly existentially redundant, or the constrgiinary.

In either case the traversal algorithm only has to visit oogsible
variabley (different fromv).

Lemma 4.2 Suppose the bounds propagatpfor >°;_, arzr =
dwherea;, € {—1,1},1 < k < nis existentially redundant fo;
andz; at domainD, then the remaining variables are fixedin

PROOF. LetL =infp > ;_, arzx—dandU = supp, > ;_, ar®r—
d. Assume for simplicity that; anda; are positive, the other cases
follow similarly.
Sincec is existentially redundant far; andi; = infp z; andu; =
supp z; thena;l; < a;u; — U anda;u; > a;l; — L. Similarly we
haveajlj < a;u; — U andajuj > ajlj — L.

Now by definitionU;; = supj, Z::l,k#i,k#j aixi —d =U —
a; Ui — A5Uj Z L— aili — ajlj = infD Z::l,k#i,k#j a;Ti; — d=
L;;. FromU — aju; — aju; > L — ail; — ajl; anda;u; — U >
a;l; we determine that-aju; > L — a;l;, or equivalentlya;l; —
a;Uj > L and fromajuj > ajlj — L we haveL > ajlj — Q;Uj
hencel = a;l; —aju;. Similar reasoning give§ = aju; —a;l;,
L = a;l; — a;u; andU = a;u; — a;l;. Now Uij =U — a;u; —
a;u; = (aiui — aili) — QiU; — ajU; = —a;l; — a;Usj andLij =
L— aili — ajlj = (ajlj — ajuj) — aili — ajlj = —aili — a;uj
U;;. Hence all variables;, 1 < k # i # j < n must be fixed in
D. O



There are constraints where there are multiple possib&texially
redundant variables at a single domain. Consider x2+z3 > 3
with domainD(z1) = D(z2) = D(zs) = [0..10], then the
propagator is existentially redundant for all variablesbat The
algorithm above only considers one such variable, otherwis
have to backtrack undoing the marking, and try other pditsisi
While this may find more variables to eliminate, it is certgimore
expensive, and the cases of constraints which can havepheulti
possible existentially redundant variables for some doraeg rare.

Under the assumption that the calculation of existent@dinelancy
for propagatorf is linear in the size off, as in all the examples
discussed above, and with an additional marking to ensurdove
not visit the same propagator twice (see Section 5) the sisaly
linear in the size of the problem.

4.1 Other uses of the analysis

The analysis takes into account the output variabl&swhich we
never wish to eliminate since they will be needed for the fiesllt,
and the search variablg8” which cannot be eliminated since we
will add new propagators on these variables during search.

But what happens if thanalyse algorithm never visits a variable
v which is still involved in a propagatof. Then clearly no modi-
fication of the domains of the search variables can lead taagsh
in the domain ofv. Hence the propagatgrwill never be executed.

Since the propagatof is not known to be redundant the search

procedure will return an answer without determining that¢bn-

In addition to thet r aver se method, a propagator also main-
tains a fieldi nt er est ed which is initialized to maybe. The

t r aver se method for a propagatof will either just traverse its
variablesvars(f) and seti nt er est ed to yes, or it will check
whether some of its variables are existentially redundantase it
finds a variabley to be existentially redundant and traversal finds
that nobody is interested i thei nt er est ed field of the prop-
agator is set to no. Note that the propagator is not immdgiate
deleted (see the discussion below).

The analysis starts from a solver state that hosts variablégrop-

agators belonging to a single node in the search tree. Aftekm
ing the search and output variables as interested, the$a\starts
from the search variables. Search variables are availatre the

labellings (branchings) which the solver state maintaimséarch,
whereas output variables are available from the implendentzdel.

Only after traversal finishes, propagators witit er est ed set to

no are deleted, while propagators wiitht er est ed set to maybe
are reported as a possible modeling error (see SectionPrdpa-

gators are not immediately deleted during traversal. Apralpa-

gators have to be inspected to find those with er est ed set to

maybe, itis simpler to delete propagators in this sepanafeeiction

pass.

Interestingly, analysis does not increase the memory redor
variables and propagators: both provide sufficient spaceain-
tain the information for marking as interested or visitetievail-
ability of sufficient space is due to the fact that the analysionly
run when the solver is at fixpoint, hence some fields that agd us

straint thatf implements is solved. Hence the program can return during propagation can be used during analysis and arereesto

wrong solutions

after analysis finishes.

One can argue that we can check this simply by examining the re the most critical aspect for the analysis to be efficient & tur

maining propagators, at the end of the search. If propagaesr
main, then the domai® may not encode only solutions. The
difficulty with this is that the search may never return anvaars
because the fact that propagatbiis incorrectly modeled means

experimental implementation uses recursion as directiiae
in C+. Recursion (which can be very deep during the analysis) in
C+ is not very efficient with respect to both memory and runtime.
A production quality implementation of the analysis migeewan

that not enough domain reduction may occur and the search MaYexplicit stack to manage traversal.

be stuck in an effectively infinite search space.

Hence whenever we run the analysis we should also checkdhat n

variable remains unvisited, unless it is involved in no @E@gtors.
If this is the case we should immediately abort executionrepdrt
the modeling error. In this sense we should always run thiysisa
independent of its use for improving execution behaviost jio
catch such modeling errors.

5. IMPLEMENTATION

The algorithm in Figure 3 has been implemented in Gecode, but

most of the decisions made in the implementation shouldilsead
carry over to other constraint programming systems.

Gecode uses advisors in addition to propagators for actyen-
cremental propagation [8]. An advisor is associated withina s
gle propagator to provide information about how a particutei-
able changes during propagation. When traversing the petpies
prop(z) attached to a variable this has to be reflected in that also
advisors can be attached to the variahlén case of an attached ad-
visor, traversal will immediately continue with the adwisgprop-
agator.

Dynamic event sets and watched literatsie to the more
experimental nature of our analysis implementation, weartak
assumption that for all variables € vars(f) for a propagatorf

there exists also an edge in the propagation graph from tiela

Implementing analysiswhile treatment of variables is generic  * t0 the propagatoyf (the algorithm in Figure 3 usgsrop(z) to

in the analysis algorithm, the way that propagators aretsad de-
pends on the particular propagator. Propagators are ingpitsd

find all propagators for a variablée).

as objects in Gecode (as in most other systems, see for exampl SOM€ propagators might not require propagation even ththeh

the architecture underlying ILOG Solver [11]). Propagatpro-
vide methods for propagation, creation, deletion, and so For

traversal, we add &r aver se method that can be implemented

for each individual propagator. Maryr aver se methods can be
reused through inheritance, for example, the same methobea
reused for all reified propagators.

domains of some of its variables change. That is, even theugh
vars(f) it can be the case thgt ¢ prop(x). In [14] this is used
for dynamic event sets and in [6] this is used for watcheddite

to speed up propagation. A typical example is a propagator fo
Boolean disjunctiorr([z1, ..., z,]) where it is sufficient thayf

is included in at least two of the sgtsop(z;).



The problem with the analysis as presented is that duringttra
sal, a variabler can be visited and no propagatorspirop(x) are
interested inz, even though there might be a propagafowith

xz € vars(f). A simple solution that would incur some general
overhead would be to register all propagatprwith f € vars(x)

also inprop(z) where these extra entries are specially marked such
that they are only considered for analysis but not for pragiag.

To avoid any overhead during propagation, these additieniaies
into prop(z) could be entered just before analysis is performed.
After analysis finishes, the entries are removed again.iédwthe
system maintains a list of all relevant propagators, thisld/de
straightforward as the datastructures fepp(z) are designed to
support dynamic addition and deletion. An additional adege of
this idea is that the extra entries are only available duaimglysis,
hence propagation would not have to check whether an enjtrgtis
needed for traversal.

When to run the analysisin important aspect is when the
analysis should actually be run. The highest accuracy igably
obtained by performing analysis each time after a fixpoisttheen
computed (that is, directly after thehile-loop in Figure 2 termi-
nates). This might be to expensive (evaluation in Sectionré ¢
firms that this is indeed the case). A remedy is to run the aisaly
only everyn-th fixpoint computed to achieve a good compromise
between accuracy and overhead of the analysis.

A different strategy is to run the analysis just before thaursive
call to search in Figure 1. Depending on how search is imple-
mented, this can be beneficial. Gecode uses recomputatibn an
copying for implementing backtracking (similar to the mbde-
scribed in [12, Chapter 7]). Here, a copy of the search stdtbev
created just before the recursive call to search. This cafyhen

be reused for recomputation several times. One promisiatesty
for analysis might be to run the analysis just before cregatire
copy that is reused several times: the effort spent in aisatyxe

is reused every time a copy is created for recomputation. eMor
over, creating a copy after several propagators have bdetede
due to analysis might save space and time during copyinginAga
the analysis can be run only evenyth time a copy is created for
recomputation.

6. EXPERIMENTAL EVALUATION

Evaluation platform.All experiments use Gecode, a:®ased
constraint programming library [5]. Gecode is one of thedsis
constraint programming systems currently available, berarks
comparing Gecode to other systems are available from G&code
webpage. The version used in this paper corresponds to €2cbd.
Gecode has been compiled with the Microsoft Visual Studie Ex
press Edition 2008.

All examples have been run on a Laptop with2 GHz Core2 Duo
CPU and 2048 MB main memory running 32bit Windows Vista.
Runtimes are the average of 25 runs with a coefficient of tievia
less tharb% for all benchmarks.

Example characteristicsTable 1 summarizes the character-
istics of the examples used for evaluation. Time is runtimenil-
liseconds, memory is allocated memory in KB, and exec refers

the number of propagator executions. Note that the samament
for bi bd- 7- 3- 40 andci r cl e- 6- 21 is just a coincidence and
not a mistake in the evaluation.

The examples are as follows:

e bi bd- v- k- [ are instances of a balanced incomplete block
design problem with parametefs, k, 1) (pr ob028 in [3]).
The model involves Boolean-sum propagators and propaga-
tors implementing lexicographic order for symmetry break-
ing as described in Example 1.3.

e circl e-n- s are circle packing problem where circles
must be packed into a x s square. The example uses the
propagators described in Example 1.2 for constraining cir-

cles to not overlap.

s- p- n- s are variants of the square packing problgmgb009
in [3]) for n squares to be packed intasac s square, where
multiple squares of the same size are allowed. The only con-
straints used are those discussed in Example 1.1.

p- s- p- n- s is similar, in addition it uses many small rei-
fied constraints to improve capacity propagation by taking
the size of squares packed at a particular y coordinate
into account.

The choice of examples is motivated by the following factsst-
all examples feature propagators that our analysis coultbve.
Second, analysis fdsi bd- v- k- [ is bound to be very expensive:
many propagators need to be traversed during analysis &ntean
can be deleted during each run. For the other examples, feaps
agators that could be deleted during analysis existcFocl e- n- s
ands- p- n- s, analysis should be very efficient: all propagators
can potentially be deletedp- s- p- n- s provides an interesting
contrast tas- p- n- s in that only few propagators could be deleted
and also the impact of deletion will be rather small as mospar
gation is concerned with capacity.

Analysis accuracyFigure 4 provides an overview of the ac-
curacy of analysis. The analysis is run either evesth fixpoint
(shown as black bullet) or evenyth recursive invocation of search
(shown as cross) where ranges froml to 20 and accuracy from
0% to 100%. The measure of accuracy is based on the number
of propagator executions avoided by deleting propagatorsgl
analysis. An accuracy d00% is achieved by running the analysis
immediately aftereveryfixpoint computed. An accuracy &0%
means that only half of all propagator executions are abid@e
percentage numbers displayed in Figure 4 is the geometian wie
the accuracy of all examples.

An important observation is that the accuracy deterioradgrel-
atively slowly with running the analysis more infrequentarticu-
larly interesting is that for both strategies, after fixgaind before
search, the analysis accuracy stays arcdi$d up to running the
analysis only everyl0 to 15 operations. This is significant as it
gives ample opportunity to balance the overhead of analyiis
its accuracy.

Best performanceBefore studying in more detail the trade-
off between accuracy and cost of the analysis, let us firabéish



Table 1: Example characteristics

| Example || variables| propagatorg| failures || time/ms | memory/KB]  exec |

bi bd- 6- 3- 30 9281 8535 2303 252.08 1741 1112526
bi bd- 6-4- 30 4631 4260 1344 156.62 969 678 027
bi bd- 7- 3- 20 10760 9925 426 139.76 3473 343 879
bi bd- 7- 3- 40 21540 19 865 866 536.64 5915 1240958
circle-6-21 72 7 56 867 536.64 125 2548 578
circle-8-24 128 145 32345 485.44 245 2766 188
s-p-8-5 128 145 | 19706 || 212.16 131 | 1558275
s-p-8-10 128 145 | 635591 || 6786.60 132 | 49574399
p-s-p-21-112 5810 5978 150 96.72 3652 1548 480
p- s- p- 25- 147 8894 9142 1109 412.44 4869 1761354
p-s- p-28-201 13226 13 548 833 741.92 7236 7964 519

100%-# >.< .

X e °
[210] EERERERRREREE ><.><. ....... @ T
BOUG -~ -ve e X, ; ....... L
X 2 rw » Y
AOUG - - ovvmm e X .................... X*. .....
X [ ]
X
200 ..................................................................................
W12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 4: Average analysis accuracy:e shows the accuracy at the:-th fixpoint and x shows the accuracy at the:-th invocation of

search.

that the analysis can actually deliver speedup in most Gas-
dependent of whether the analysis is run after fixpoint opigef
search.

Table 2 (a) gives the bestfor running the analysis after evenyth
fixpoint, whereas Table 2 (b) gives the bedr running the anal-
ysis before every:-th recursive call to search. Here, best refers to
shortest runtime. Accuracy is shown as described earliegreas

all other measures are given relatively to not running trayais at

all as in Table 1. A negative percentage means that the ne@sur
decreased by that percentage (hence, better) and a p@stivent-
age means that the measure is increased by that percentange (h
worse).

When small propagators due to decompositions are freqhent t
analysis shows its true potential: the runtime overhead®final-
ysis is easily outweighed by its benefits and regardlesswfditen
the analysis runs, it will always save memory.

Itis interesting to note that running the analysis befoeed®rather
than after fixpoint appears to be the better decision, eveuagthn
the benefit might only be specific to Gecode as the system osed f
the evaluation. Running analysis before search slightlyeces the
accuracy but the effect of every single analysis run is apubr
reused several times.

How often to run the analysisthe key question is whether

The reason why many examples do not show an improvement in g user can determine how often she should run the analysisra pr

memory consumption is due to the fact that memory refers-to al
located rather than used memory. Gecode allocates rdjalirge
blocks of memory that are then used: hence less memory might b
in use even though the same amount of memory gets allocated.

In the best case, the number of propagator executions iseddy
one third. In these cases also the runtime is reduced by 2§to

The examples where it is most difficult to obtain a speedup are
the p- s- p- n- s examples. One has to keep in mind that only a
fraction of the propagators can be deleted by the analysigh W
that in mind, the analysis is successful as it does not slamdo
execution while it still saves a little memory. It is very ionpant to

put this into perspective: one should always run the aralysiv

and then to catch modeling errors as discussed in Section 4.1

Finding an appropriate frequency by inspecting runtimeseoéral
tries might be infeasible.

In the following we will restrict our attention to runningetanaly-
sis directly after fixpoint, as the insight to be gained framning
before search is similar. Table 3 shows relative runtimemory
usage, and accuracy for several values.of

It is obvious that trying to run the analysis very often isiasible,
interesting values fon start withn = 5. More importantly, for all
examples values betwed® and 15 offer a feasible compromise
between accuracy and reduction in memory and runtime. Hence
it is plausible that a user can uge= 10 as a starting point for

the analysis. With vastly different problem sizes the uséghin
decrease the frequency depending on problem size.



Table 2: Best performance for analysis

[ Example | » | time/ms] memory/KB] exec [ accuracy]
bi bd- 6- 3- 30 17 | —23.0% —7.4% | —35.3% 96.3%
bi bd- 6-4-30 11 | —16.7% +0.0% | —25.8% 87.1%
bi bd- 7-3-20 19 —8.5% —5.5% | —17.8% 84.1%
bi bd- 7- 3- 40 19 —7.0% —6.5% | —19.1% 91.8%
circle-6-21 3| —24.7% +0.0% | —20.4% 87.3%
circle-8-24 3| —72% +0.0% | —-7.1% 72.2%
s-p-8-5 5 —10.2% +0.0% | —25.4% | 79.3%
s-p-8-10 5 —13.6% +0.0% | —23.2% 85.8%
p-s-p-21-112 || 13 +1.3% +0.0% —0.1% 29.3%
p-s-p-25-147 || 13 +2.1% —1.3% —0.5% 70.0%
p-s-p-28-201 || 13 | +2.2% —-1.8% | £0.0% 40.0%
(a) Analysis after fixpoint
[ Example [ » | time/ms] memory/KB] exec [ accuracy]
bi bd- 6- 3- 30 17 | —23.1% —7.4% | —35.1% 95.8%
bi bd- 6-4-30 11 | —-16.1% +0.0% | —25.6% 86.4%
bi bd- 7-3-20 14 —6.8% —5.5% | —19.0% 89.5%
bi bd- 7- 3- 40 20 —5.4% —6.5% | —18.4% 88.6%
circle-6-21 1] -27.6% +0.0% | —22.0% 94.3%
circle-8-24 1] -7.7% +0.0% | —8.2% 83.5%
s-p-8-5 31 -15.7% +0.0% | —285% | 89.1%
s-p-8-10 3| —15.5% +0.0% | —25.2% 93.3%
p-s-p-21-112 [ 11 | —0.4% T0.0% | —0.1% | 293%
p-s-p-25-147 || 7] —24% —2.6% | —0.8% | 100.0%
p-s-p-28-201f 9| +1.1% —-1.8% | +0.0% 61.4%
(b) Analysis before search
Table 3: Analysis after fixpoint
Example n=1 n =2 n=>5
fime/ms | mem/KB | _ acc fime/ms | mem/KB ] _ acc fime/ms | mem/KB ] _acc
bi bd- 6- 3- 30 +32.9% —7.4% | 100.0% +3.7% —7.4% 99.6% || —15.8% —7.4% | 98.0%
bi bd- 6-4-30 +41.4% +0.0% | 100.0% +12.7% +0.0% 98.7% —9.4% +0.0% | 94.8%
bi bd-7-3-20 +63.9% | —12.9% | 100.0% +30.1% | —11.1% 97.6% +5.1% —9.2% | 92.1%
bi bd- 7- 3- 40 +73.9% | —13.0% | 100.0% +31.7% | —10.8% 98.6% +5.6% —9.7% | 95.4%
circle-6-21 —21.8% +0.0% | 100.0% || —23.3% +0.0% 94.0% || —21.5% +0.0% | 72.4%
circle-8-24 —0.9% +0.0% | 100.0% —5.7% +0.0% 84.5% —6.8% +0.0% | 57.6%
S-p-8-5 +5.9% +0.0% [ 100.0% —6.3% +0.0% 96.7% || —10.2% +0.0% | 79.3%
s-p-8-10 +2.9% +0.0% | 100.0% —8.™% +0.0% 96.8% || —13.6% +0.0% | 85.8%
p-s-p-21-112 || +31.3% —3.5% [ 100.0% +15.9% —3.5% [ 100.0% +7.4% +0.0% | 60.7%
p-s- p- 25- 147 || +53.4% —3.9% | 100.0% +23.8% —3.9% 99.6% +9.4% —2.6% | 88.4%
p-s-p-28-201 || +45.8% —1.8% | 100.0% +22.5% —1.8% | 100.0% [| +12.8% —1.8% | 95.0%
Example n =10 n=15 n =20
fime/ms | mem/KB | _acc fime/ms | mem/KB | _acc fime/ms | mem/KB ] _acc
bi bd- 6-3-30 —18.7% —7.4% 1 97.4% || —20.5% —7.4% 1 95.0% [| —16.8% —3.7% | 86.3%
bi bd- 6-4-30 —5.0% +0.0% | 70.2% —9.0% +0.0% | 75.7% —5.0% +0.0% | 38.7%
bi bd- 7- 3- 20 —3.1% —5.5% | 87.1% —1.8% —9.2% | 85.0% —5.6% —5.5% | 78.4%
bi bd-7-3-40 +4.9% —6.5% | 92.4% —3.9% —8.7% | 94.1% —4.5% —6.5% | 88.6%
circle-6-21 —7.8% +0.0% | 37.1% —7.9% +0.0% | 36.4% +0.5% +0.0% 0.8%
circle-8-24 —1.9% +0.0% | 28.3% +0.0% +0.0% 6.7% —2.6% +0.0% | 27.7%
S-p-8-5 —5.0% +0.0% | 48.3% —3.8% +0.0% | 50.8% +1.5% +0.0% 8.8%
s-p-8-10 —-9.5% +0.0% | 64.5% —7.6% +0.0% | 45.1% —7.4% +0.0% | 40.0%
p-s-p-21-112 +5.9% +0.0% | 57.1% +1.4% +0.0% | 31.9% +1.9% +0.0% | 41.1%
p-S-p-25-147 || +5.6% | —1.3% | 50.5% || +4.4% | —1.3% | 43.4% || +3.0% | —1.3% | 56.1%
p-s- p-28-201 +5.6% —1.8% | 94.4% +8.6% —0.9% | 49.2% +5.5% —0.9% | 86.8%




7. RELATED WORK

The detection of redundant propagators, and their elinondtom

if tied to the copying of search state, the analysis coulddbeefl
into the copying stage and we should execute with little losad

the propagation system in forward execution has been a part o compared to the copying itself.

propagation systems since almost the beginning. But thisrre
dancy detection does not know which variables are of inteaces
the answer and hence cannot dynamically eliminate vasable

There has been earlier work on variable elimination, mogilrig
in the context of constraint logic programming over the sddl.
Here, particularly with recursive definitions many intediate vari-
ables are introduced, and analysis can sometimes detethdhe
they can be eliminated during execution. The difference fsthat
these solvers can use Gauss-Jordan variable eliminatjpraél
Fourier elimination [4] to eliminate variables that onlypagar in
linear real constraints. While elimination that could béedéed at
compile time and removed using Gauss-Jordan eliminatipwg8
clearly beneficial, for the more complex Fourier eliminatjd] the
cost of the elimination was only paid back in certain circtanses.
Elimination of variables in finite domain constraints is rhunore
restricted.

There is a relationship of this work with so-called “don’trea
propagation in non-clausal SAT solvers [15]. Here Booleamti-

lae are represented as a DAG with leaves made up of the Boolean

variables. Don't care propagation of the node represemigg a
disjunctive constrainbr([z1,...,zx]) realizes that if the node is
true andz; is true for somel < ¢ < n then this node does not
care about the remaining nodes, ..., zi—1, Zi+1,...,Zn. IfNO
parent cares about a node then its value becomes “don’t-care”
and this may propagates to its child nodes. The result is t@kin
dynamic variable elimination on the propagator graph regméng
the DAG. The solver used “don’t-care” values to avoid pregiam
rather than eliminating the variables altogether.

Finally, the work of Brand and Yap [1] on finer control of prop-
agation is related. It effectively extends the “don’t capedpaga-
tion of [15] to formulae involving non-Boolean leaf constis, and
uses this to prevent “unrolling” of complex constraint difams.
So it ties variable elimination and constraint definitiogether. In
this way it can define 2-literal watching, and domain comesistex
propagation. In contrast our approach does not consideeptieg
unrolling/decomposition of global constraints but thesgatial re-
dundancy approach is not restricted to Boolean variables.

8. CONCLUSION

Dynamic variable elimination is a useful optimization farife do-
main constraint systems, since modeling requires thedotritbion
of many intermediate variables, which may become irreleimn
later solving. We give alinear time analysis of the propaggtaph
to detect occurrences of dynamic variables to eliminate.skidev
that the analysis can improve space and time performanci- for
nite domain problems. There is an ancillary benefit, theyamal
can detect modelling errors that leave part of the propagafiaph
separated from the search variables.

An avenue for future research is to automatically find out mwite
is profitable to run the analysis. A simple scheme could §tant
the idea to dynamically adapt the frequency as follows: waham
of the analysis was useful (that is, many propagators weetath),
the frequency is increased. Otherwise, the frequency isedsed.

In a production level implementation we believe the ovedafahe
analysis could be reduced substantially from this prottypdeed

9. REFERENCES

[1] S.Brand and R. H. C. Yap. Towards "Propagation = Logic +
Control". In S. Etalle and M. Truszczynski, editotsgic
Programming, 22nd International Conferengages
102-116, 2006.

[2] C. W. Choi, W. Harvey, J. H.-M. Lee, and P. J. Stuckey.
Finite domain bounds consistency revisitedAIi2006:
Advances in Atrtificial Intelligencevolume 4304 of_ecture
Notes in Computer Scienggages 49-58. Springer-Verlag,
Berlin, Germany, 2006.

[3] CSPLib. CSPLib: a problem library for constraints, 2006
Available fromht t p: / / www. cspl i b. org.

[4] A. Fordan and R. H. C. Yap. Early projection in CLZRY. In
M. J. Maher and J.-F. Puget, editoPsjnciples and Practice
of Constraint Programming - CP98, 4th International
Conferencepages 177-191, 1998.

[5] Gecode Team. Gecode: Generic constraint development
environment, 2006. Available from
http://ww. gecode. org.

] 1. P. Gent, C. Jefferson, and I. Miguel. Watched literfais
constraint propagation in Minion. In F. Benhamou, editor,
Twelfth International Conference on Principles and Preeti
of Constraint Programmingvolume 4204 oL NCS pages
182-197, Nantes, France, Sept. 2006. Springer.

[7] J. Jaffar, S. Michaylov, P. Stuckey, and R. Yap. The CRP(
language and systerACM Transactions on Programming
Languages and Systenig}(3):339—-395, 1992.

[8] M. Z. Lagerkvist and C. Schulte. Advisors for incremdnta
propagation. In C. Bessiére, editdhirteenth International
Conference on Principles and Practice of Constraint
Programming Lecture Notes in Computer Science, pages
409-422, Providence, RI, USA, Sept. 2007. Springer-Verlag

[9] A. Macdonald, P. Stuckey, and R. Yap. Redundancy of
variables in CLPR). In Logic Programming: Proceedings of
the 1993 International Symposiupages 75-93, Vancouver,
Canada, October 1993. MIT Press.

[10] A. K. Mackworth. Consistency in networks of relations.
Artificial Intelligence 8(1):99-118, 1977.

[11] J.-F. Puget and M. Leconte. Beyond the glass box:
Constraints as objects. In J. Lloyd, editBrpceedings of the
International Symposium on Logic Programmipgges
513-527, Portland, OR, USA, Dec. 1995. The MIT Press.

[12] C. SchulteProgramming Constraint Servicegolume 2302
of Lecture Notes in Artificial Intelligencépringer-Verlag,
2002.

[13] C. Schulte and P. Stuckey. Speeding up constraint
propagation. In M. Wallace, editdProceedings of the
International Conference on Principle and Practice of
Constraint Programmingvolume 3258 oL NCS pages
619-633. Springer-Verlag, 2004.

[14] C. Schulte and P. J. Stuckey. Efficient constraint pgapian
enginesTransactions on Programming Languages and
Systems2008. To appear.

[15] C. Thiffault, F. Bacchus, and T. Walsh. Solving nontdal
formulas with DPLL search. In M. Wallace, editor,
Principles and Practice of Constraint Programming - CP
2004, 10th International Conferencgages 663—678, 2004.



