
Dynamic Variable Elimination during Propagation Solving

Christian Schulte
KTH - Royal Institute of Technology

Sweden
cschulte@kth.se

Peter J. Stuckey
National ICT Australia, Victoria Laboratory

University of Melbourne
Australia

pjs@cs.mu.oz.au

ABSTRACT
Constraint propagation solvers interleave propagation (removing
impossible values from variables domains) with search. In order to
specify constraint problems with a propagation solver often many
new intermediate variables need to be introduced. Each variable
plays a role in calculating the value of some expression. Butas
search proceeds not all of these expressions will be of interest any
longer, but the propagators implementing them will remain active.
In this paper we show how we can analyse the propagation graph
of the solver in linear time to determine intermediate variables that
can be removed without effecting the result. Experiments show that
applying this analysis can reduce the space and time requirements
for constraint propagation on example problems.

1. INTRODUCTION
Finite domain propagation interleaved with search is a powerful
approach to solving combinatorial problems. The set of possible
values of each variable in the problem is stored in itsdomain. A
constraint is represented by apropagatorwhich consider the do-
mains of the variables in the constraint, and removes valuesfrom
the domain of a variable which could not take part in any solution
of the constraint. Propagators are repeatedly applied until no new
values can be removed. Then a choice is made, typically fixinga
variable to one of the values in its domain, and with this new infor-
mation the propagation process is repeated.

Since “most” of the work of the finite domain propagation is done
near the leaves of the search tree, finite domain solvers takesome
pains to simplify the problem they are tackling as search proceeds.
This involves: removing fixed variables from constraints involving
them, and eliminating redundant propagators (propagatorsthat will
no longer remove any value from any variable). But there is more
that can be done. In this paper we examine how to eliminate dur-
ing runtime variables and propagators that will not cause any more
useful propagation.

Example 1.1 [Disjunction] Consider a problem of placing squares
so that they do not overlap. Given two squares of dimensions
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w1 × h1 and w2 × h2, placed with their left corner at(x1, y1)
and(x2, y2) respectively, then the non-overlap is expressed as:

x1 + w1 ≤ x2 ∨ x2 + w2 ≤ x1 ∨ y1 + h1 ≤ y2 ∨ y2 + h2 ≤ y1

In a typical CP system this would be expressed as a conjunction of
reified constraints

∃b1.∃b2∃b3.∃b4.(b1 ⇔ x1 + w1 ≤ x2 ∧ b2 ⇔ x2 + w2 ≤ x1∧
b3 ⇔ y1 + h1 ≤ y2 ∧ b4 ⇔ y2 + h2 ≤ y1 ∧ or([b1, b2, b3, b4]))

where e.g. the reified constraintb1 ⇔ x1 +w1 ≤ x2 indicates that
b1 is true (1) if the constraintx1 + w1 ≤ x2 holds, and false (0) if
the negationx1 + w1 > x2 holds. Imagine that some stage later
in the search we have thath1 = 3, y1 ∈ [0 .. 4] andy2 ∈ [8 .. 10].
Then the propagatorb3 ⇔ y1+h1 ≤ y2 setsb1 = 1 since the right
hand side constraint must hold. The propagator then removesitself
(it is now redundant and can’t add more information). Now the
propagatoror([b1, b2, b3, b4]) detects it is redundant and removes
itself. Assumingh2 ≥ 0 then the propagatorb4 ⇔ y2 + h2 ≤ y1

with setb4 = 0 and remove itself. The remaining propagators will
remain in the solver even though they cannot cause failure orever
change the domains of any original variablex1, y1, x2 or y2. 2

Modeling in finite domain propagation systems will rarely involve
building models where a variable occurs only once, except when
it is an output variable, and clearly we do not wish to eliminate
these. But once constraints are found to be redundant it is quite
possible that such systems arise during search. One reason that
these cases occur reasonably frequently is that, in order tosimplify
the construction of a finite domain solver, constraints are broken
down into components. This introduces new variables that occur
only twice: once for defining the value of an intermediate term,
and once to constrain it.

Example 1.2 [Decomposition] Consider the constraint(x1−x2)
2+

(y1 − y2)
2 ≥ d which requires two points(x1, y1) and(x2, y2) to

be at least distance
√

d apart. This constraint is not directly avail-
able in most FD systems, instead it is decomposed into the system:

∃dxx.∃dx.∃dyy.∃dy.(dxx+ dyy ≥ d ∧ dxx = dx × dx ∧
dx = x1 − x2 ∧ dyy = dy × dy ∧ dy = y1 − y2)

Imagine at some time the domains of the original variables are
x1 ∈ [0 .. 10], x2 ∈ [15 .. 30], y1 ∈ [0 .. 30], y2 ∈ [0 .. 30], and
d = 25. Then propagation will calculate the domains of the newly
introduced variables asdx ∈ [−30 .. − 5], dxx ∈ [25 .. 900],
dy ∈ [−30 .. 30], dyy ∈ [0 .. 900]. The inequalitydxx + dyy ≥
d is redundant, and indeed the original constraint is redundant.
But every further change in the original variables will cause the



propagators for the new intermediate variables to be reexecuted
for no purpose. 2

Global constraints can also be implemented by decomposition, and
in this case we can possibly build large chains of introducedvari-
ables that may not be useful for the lifetime of the global constraint.

Example 1.3 [Lexicographic order] The lexicographic order con-
straint (x1, . . . , xn) < (y1, . . . , yn) can be encoded aslt(1, x, y)
where

lt(i, x, y) = false i > n

lt(i, x, y) = (xi < yi) ∨ (xi = yi ∧ lt(i + 1, x, y) otherwise

This is decomposed further toli ⇔ xi < yi, ei ⇔ xi = yi, ti ⇔
ei∧lt(i+1, q, y) andlt(i, x, y) ⇔ li∨ti. Supposelj becomes true
(because we detectxj < yj holds). Then by propagationlt(j, x, y)
will be settrue and the propagator forlt(j, x, y) ⇔ lk ∨ tj will
be removed as redundant. Nowtj only occurs in one propagator
and can be eliminated, which then allows the elimination ofej and
lt(j + 1, x, y). In fact all propagators for constraints with indices
greater thanj can be removed.

We can do the same if we determine thatlj andej are both false.
2

There are also special cases of variable elimination that arise from
optimization problems.

Example 1.4 [Linear inequalities] In a typical optimization prob-
lem, there is a variable representing the objective function, defined
by some constraint. For example to minimize

Pn

i=1
aixi we would

definey =
Pn

i=1
aixi and minimizey. Nowy only occurs once

in the propagation engine, but when a new solution is found with
valuey = d a new constraint is imposed globally thaty ≤ d − 1.
In forward computation no constraints will be placed ony and in-
deed as soon as we have that all possible values of

Pn

i=1
aixi are

less thand the propagator is removable since no other constraints
will modifyy (in forward computation).

In effect we wish to treat the constraint like
Pn

i=1
aixi ≤ d − 1,

although it is implemented using the variabley. 2

We present a runtime analysis to find such eliminable variables, and
remove the useless propagators attached to them. We will seethat
this can lead to improved performance in terms of time and space.

But there is a further use of the analysis. The analysis will visit
all the variables in the problem that may actually affect thefur-
ther computation. If there are variables that are not traversed from
the search variables, then they will not be modified further by the
search. Unless they have no propagators remaining on them this
indicates a modeling error. We return to this point in Section 4.

The paper is organized as follows. In the next section we define
propagation-based constraint solving, and how it performsredun-
dancy elimination. In Section 3 we define existential redundancy of
propagators, and explain how it can be detected for common prop-
agators. In Section 4 we define an algorithm for runtime analysis
of the propagation graph that detects variables and propagators that
can be safely removed without affecting future computation. In
Section 5 we discuss some of the issues that arise in implementing

the analysis in practice. In Section 6 we give experiments showing
the overhead and effectiveness of the analysis on example bench-
marks. In Section 7 we discuss related work, and finally conclude.

2. PROPAGATION-BASED CONSTRAINT
SOLVING

This section defines our terminology for the basic components of a
constraint propagation engine. In this paper we restrict ourselves to
finite domain integer constraint solving. Almost all the discussion
applies to other forms of finite domain constraint solving such as
for sets and multisets.

2.1 Propagation
2.1.1 Domains

A domainD is a complete mapping from a fixed (finite) set of
variablesV to finite sets of integers. Afalse domainD is a domain
with D(x) = ∅ for somex ∈ V. A variablex ∈ V is fixedby a
domainD, if |D(x)| = 1. Theintersectionof domainsD1 andD2,
denotedD1⊓D2, is defined by the domainD(x) = D1(x)∩D2(x)
for all x ∈ V.

A domainD1 is stronger than a domainD2, written D1 ⊑ D2,
if D1(x) ⊆ D2(x) for all x ∈ V. A domainD1 is stronger than
(equal to) a domainD2 w.r.t. variablesV , denotedD1 ⊑V D2

(resp.D1 =V D2), if D1(x) ⊆ D2(x) (resp.D1(x) = D2(x))
for all x ∈ V . We use the notation−{x} to denote the variable set
V − {x}.

A range is a contiguous set of integers, we userange notation
[l .. u] to denote the range{d ∈ Z | l ≤ d ≤ u} when l andu

are integers. A domain is arange domainif D(x) is a range for all
x. Let D′ = range(D) be the smallest range domain containing
D, that is, the unique domainD′(x) = [inf D(x) .. supD(x)] for
all x ∈ V.

We shall be interested in the notion of anstarting domain, which we
denoteDstart. The starting domain gives the initial values possible
for each variable. It allows us to restrict attention to domains D

such thatD ⊑ Dstart.

2.1.2 Valuations and constraints
An integer valuationθ is a mapping of variables to integer values,
written {x1 7→ d1, . . . , xn 7→ dn}. We extend the valuationθ
to map expressions and constraints involving the variablesin the
natural way.

Let vars be the function that returns the set of variables appearing
in a valuation. We define a valuationθ to be an element of a domain
D, writtenθ ∈ D, if θ(xi) ∈ D(xi) for all xi ∈ vars(θ).

The infimumand supremumof an expressione with respect to a
domain D are defined asinfD e = inf{θ(e) | θ ∈ D} and
supD e = sup{θ(e) | θ ∈ D}.

We can map a valuationθ to a domainDθ as follows

Dθ(x) =



{θ(x)} x ∈ vars(θ)
Dstart(x) otherwise

A constraintc over variablesx1, . . . , xn is a set of valuationsθ
such thatvars(θ) = {x1, . . . , xn}. We also definevars(c) =
{x1, . . . , xn}.



2.1.3 Propagators
We will implementa constraintc by a set of propagatorsprop(c)
that map domains to domains. Apropagatorf is a monotonically
decreasing function from domains to domains:f(D) ⊑ D, and
f(D1) ⊑ f(D2) wheneverD1 ⊑ D2. A propagatorf is correct
for a constraintc iff for all domainsD

{θ | θ ∈ D} ∩ c = {θ | θ ∈ f(D)} ∩ c

This is a very weak restriction, for example the identity propagator
is correct for all constraintsc.

A set of propagatorsF is checkingfor a constraintc, if for all val-
uationsθ wherevars(θ) = vars(c) the following holds:f(Dθ) =
Dθ for all f ∈ F , iff θ ∈ c. That is, for any domainDθ corre-
sponding to a valuation onvars(c), f(Dθ) is a fixpoint iff θ is a
solution ofc. We assume thatprop(c) is a set of propagators that
is correct and checking forc.

The variables,vars(f), of a propagatorf are defined as{v ∈
V | ∃D ⊑ Dstart, f(D)(v) 6= D(v)} ∪ {v ∈ V | ∃D1, D2 ⊑
Dstart, D1 =−{v} D2, f(D1) 6=−{v} f(D2)}. The set includes
the variables that can change as a result of applyingf , and the vari-
ables that can modify the result off .

To simplify presentation, we will useprops(x) to denote the set of
propagatorsf ∈ F with x ∈ vars(f),

Example 2.1 [Propagators] For the constraintc ≡ x1 ≤ x2 + 1
the functionf1 defined byf1(D)(x1) = {d ∈ D(x1) | d ≤
supD x2 +1} andf(D)(v) = D(v), v 6= x1 is a correct propaga-
tor for c. Its variables arex1 whose domain can be modified byf1

(the first case of the definition above) andx2 which can cause the
modification of the domain ofx1 (the second case of the definition
above). Sovars(f1) = {x1, x2}. Let D1(x1) = {1, 5, 8} and
D1(x2) = {1, 5}, thenf(D1) = D2 whereD2(x1) = D2(x2) =
{1, 5}.

The propagatorf2 defined asf2(D)(x2) = {d ∈ D(x2) | d ≥
infD x1 − 1} andf2(D)(v) = D(v), v 6= x2 is another correct
propagator forc. Againvars(f2) = {x1, x2}.

The set{f1, f2} is checking forc. The domainDθ1
(x1) = Dθ1

(x2) =
{2} corresponding to the solutionθ1 = {x1 7→ 2, x2 7→ 2}
of c is a fixpoint of both propagators. The non-solution domain
Dθ2

(x1) = {2}, Dθ2
(x2) = {0} corresponding to the valuation

θ2 = {x1 7→ 2, x2 7→ 0} is not a fixpoint (of either propagator).
2

2.1.4 Propagation Solving
A propagation solversolv(F, D) for a set of propagatorsF and a
domainD finds the greatest mutual fixpoint of all the propagators
f ∈ F . In other words,solv(F, D) returns a new domain defined
by

solv(F, D) = gfp(λd. iter(F, d))(D) iter(F, D) = ⊓
f∈F

f(D)

wheregfp denotes the greatest fixpoint w.r.t⊑ lifted to functions.

A constraint propagation system evaluates the functionsolv(F, D)
during backtracking search. We assume an execution model for
solving a constraint problem with a set of constraintsC and a start-
ing domain Dstart as follows. We execute the procedure
search(∅, F, Dstart, SV ) implementing depth-first search given in

search(Fo, Fn, D, SV )
D := isolv(Fo, Fn, D) % propagation
if (D is a false domain)

return false

if (∃x ∈ SV.|D(x)| > 1)
choose{c1, . . . , cm} where

C ∧ D |= c1 ∨ · · · ∨ cm % search strategy
for i ∈ [1 .. m]

D′ := search(Fo ∪ Fn, prop(ci), D, SV )
if (D′ 6= false)

return D′

return false

return D

Figure 1: Search procedure

isolv(Fo, Fn, D)
F := Fo ∪ Fn; Q := Fn

while (Q 6= ∅)
f := choose(Q) % next prop to apply
Q := Q − {f}
D′ := f(D)
V := {x ∈ V | D(x) 6= D′(x)} % modified vars
Q′ := {f ′ ∈ F | vars(f ′) ∩ V 6= ∅} % props to reconsider
Q := Q ∪ Q′

D := D′

return D

Figure 2: Incremental propagation solver

Figure 1 for an initial set of propagatorsF = ∪c∈C prop(c) on a
set of search variablesSV . It either returnsfalse or a domainD
representing a solution (or solutions) ofC.

Note that the propagators are partitioned into two sets, theold prop-
agatorsFo and the new propagatorsFn. Theincrementalpropaga-
tion solverisolv(Fo, Fn, D) takes advantage of the fact thatD is
guaranteed to be a fixpoint of the old propagatorsFo.

In this simple version ofisolv a propagatorf ′ is added back into
the queueQ of propagators to be executed if one of its variables
domains has changed, and the choice of next propagator to execute
given bychoose is left unspecified. For more detailed discussion
on howisolv is defined in practice see [13, 14].

2.1.5 Domain and Bounds Propagators
A consistency notionC gives a condition on domains with respect
to constraints. A set of propagatorsF maintainsC-consistencyfor
a constraintc, if for domainD wheref(D) = D, f ∈ F is always
C consistent forc. Many propagators in practice are designed to
maintain some form of consistency: usually domain or bounds. But
note that many more do not.

The most successful consistency technique isarc consistency[10],
which ensures that for each binary constraint, every value in the
domain of the first variable, has a supporting value in the domain
of the second variable that satisfied the constraint. Arc consistency
can be naturally extended to constraints of more than two variables
to givedomain consistency. A domainD is domain consistentfor a
constraintc if D is the least domain containing all solutionsθ ∈ D

of c, that is, there does not existD′
< D such thatθ ∈ D ∧ θ ∈



c → θ ∈ D′.

Define thedomain propagatordom(c), for a constraintc as

dom(c)(D)(x) = {θ(x) | θ ∈ D ∧ θ ∈ c} wherex ∈ vars(c)
dom(c)(D)(x) = D(x) otherwise

The basis of bounds consistency is to relax the consistency require-
ment to apply only to the lower and upper bounds of the domain of
each variablex. There are a number of different notions of bounds
consistency [2], we give the two most common here.

A domainD is bounds(Z) consistentfor a constraintc, vars(c) =
{x1, . . . , xn}, if for each variablexi, 1 ≤ i ≤ n and for eachdi ∈
{infD xi, supD xi} there existintegersdj with infD xj ≤ dj ≤
supD xj , 1 ≤ j ≤ n, j 6= i such thatθ = {x1 7→ d1, . . . , xn 7→
dn} is aninteger solutionof c.

A domainD isbounds(R) consistentfor a constraintc , vars(c) =
{x1, . . . , xn}, if for each variablexi, 1 ≤ i ≤ n and for each
di ∈ {infD xi, supD xi} there existreal numbersdj with infD xj

≤ dj ≤ supD xj , 1 ≤ j ≤ n, j 6= i such thatθ = {x1 7→
d1, . . . , xn 7→ dn} is areal solutionof c.

A bounds(Z) propagator, zbnd(c) for a constraintc ensures that
zbnd(c)(D) is bounds(Z) consistent withc, while abounds(R)
propagator, rbnd(c) ensuresbounds(R) consistency.

2.2 Redundancy Elimination
As part of propagation most propagation-based solver also deter-
mine which propagators are redundant and no longer can change
the domains of variables. Redundant propagators can be removed
from the solver.

A propagatorf is redundantfor domainD if f(D′) = D′,∀D′ ⊑
D. Clearlysolv(F ∪{f}, D′) = solv(F, D′) if f is redundant for
domainD ⊒ D′.

Example 2.2 Consider the domain propagator for the constraint
or([b1, b2, b3, b4]). Then if any of the Boolean variablesbi is set to
1 then the constraint holds and the propagator can be removed.

Consider thebounds(R) propagator for the constraintx + y ≥ z.
If at any stageinfD x+infD y ≥ supD z then the constraint is re-
dundant, for example whenD(x) = [25 .. 300], D(y) = [0 .. 300]
and D(z) = [−100 .. 25], and again the propagator can be re-
moved. 2

It is also possible that a constraint may become independentof
some of its variables. This means that any further change in the
domain of that variable is irrelevant to the constraint.

A propagatorf is independentof x for domainD if f(D′)⊓D′
x =

f(D′
x) for all D′

x ⊑ D′ ⊑ D whereD′ =−{x} D′
x andD′

x is not
a false domain. Note that if|D(x)| = 1 thenx is automatically
independent for all propagatorsf sinceD′ = D′

x as they only
differ in x and they are not false domains.

We can modify the variables of a propagator to remove those for
which it becomes independent.

Example 2.3 Consider the domain propagatorf for the constraint
x = min{y1, y2, y3} and the domainD(x) = [0 .. 10], D(y1) =

[2 .. 10], D(y2) = [10 .. 25], D(y3) = [0 .. 15]. Theny2 is never
the sole minimum of the set on the right hand side. Hence changes
in the domain ofy2 will not effect other variables through this prop-
agator, and changes to the domains of the other variables will never
effecty2. Hence the propagator for this constraint can be effec-
tively replaced by the domain propagator forx = min{y1, y3}
without changing any future computation. 2

Note that if propagatorf is redundant forD then it is independent
of all variablesx for domainD. We can modify our propagation
engine to take into account redundancy and independence by mod-
ifying the input variables to remove those for which it is indepen-
dent. Letindependent(f, D) be the set of variables invars(f)
for whichf is independent for domainD. Then we can modify the
incremental propagation solver of Figure 2 by adding the following
line just before the calculation ofV .

vars(f) := vars(f) − independent(f,D′)

In practice the propagatorf will be replaced in the propagator en-
gine by a new one, which has a smaller set of variables. Ifvars(f)
becomes the empty set then the propagator can be removed alto-
gether (it must be redundant). In addition the search procedure
usually checks that at the end no propagators remain that arenot
redundant. In this way it has a proof that the solution (or solu-
tions) described by the answer domainD actually satisfies all the
constraints.

3. VARIABLE ELIMINATION
A constraint problem is represented by an existential quantified
conjunction of primitive constraints. The primitive constraints are
those that can be directly represented by propagators.

3.1 Existential redundancy
A constraintc is existentially redundantfor y at domainD if D |=
∃y.c. That is for all valuationsθ ∈ D of variablesvars(c) − {y}
then there existsd ∈ D(y) whereθ ∪ {y 7→ d} ∈ c.

Since propagators may be less strong than constraints we canview
condition on propagators as: A propagatorf is existentially re-
dundantfor y at domainD if solv({f}, D′) =−{y} D′ for each
D′ ⊑ D whereD(y) = D′(y). That is for all future domainsD′

which don’t changeD(y), applyingf (repeatedly) will not change
any variable domain except that ofy.

If c is existentially redundant fory atD then any correct propagator
f for c is existentially redundant fory atD.

Lemma 3.1 Supposec is existentially redundant fory at D, andf

is a correct propagator forc thenf is existentially redundant fory
at D.

PROOF. Let vars(c) = {y} ∪ V . We have thatD |= ∃y.c.
Hence for every valuationθ ∈ D, θ is a solution of∃y.c and can
be extended to a solutionθy ∈ D whereθ(v) = θy(v),∀v ∈ V .

Consider an arbitrary valuationθ ∈ D′. Thenθy ∈ D′ since no
other propagator changes the domain ofy andθy is a solution of
c so the value ofθy(y) could not be removed byf as its correct.
Sinceθy ∈ D′ and it is a solution ofc we have thatθy ∈ f(D′).



Since this holds for arbitraryθ we have thatsolv({f}, D′) =−{y}

D′.

Existential redundancy allows a very simple form of optimization
of propagation. We can remove the propagatorf and variabley
from the propagation engine iff is existentially redundant fory,
andy occurs in no other propagators, without affecting future com-
putation. The key lemma for variable elimination is thus thefol-
lowing:

Lemma 3.2 (Key Lemma) Let f be existentially redundant fory
and domainD and y 6∈ vars(f ′),∀f ′ ∈ F . Thensolv(F ∪
{f}, D′) =−{y} solv(F, D′) for all D′ ⊑ D if D′(y) = D(y).

PROOF. Examinesolv(F ∪{f}, D′) = Dn. This is a sequence
of applications of propagators fromF ∪ {f} resulting in new do-
mains, until a fixpoint is reached. Let the sequence be denoted:

D
′ = D0 (f0) D1 (f1) · · ·Di (fi) Di+1 · · ·Dn

Consider the sequence

D
′ = D

′
0 (f ′

0) D
′
1 (f ′

1) · · ·D′
m (f) D

′
m+1 (f) · · · · · · (f) D

′
n

of this form where[f ′
i |i ∈ 0..m] = [fi|i ∈ 0..n, fi 6= f ] where

all the applications of propagatorf have been moved to the end.
ClearlyD′

i(y) = D′(y) = D(y) for i ∈ 0..m since nof ′ ∈ F

involvesy. Then sincef is existentially redundant atD we have
that D′

n =−{y} D′
m sincef cannot modify the domains of any

other variables.

Since none of the propagatorsf ′ ∈ F make use of the domain of
y andDi+1 = f(Di) =−{y} Di wheneverfi = f , we have that
D′

m =−{y} Dn. Sincef ′(Dn) = Dn,∀f ′ ∈ F by definition, we
also have thatf ′(D′

m) = D′
m and henceD′

m = solv(F, D′).

3.2 Detecting existential redundancy
Any original model that allows variable elimination is obviously a
poor model. So we will not expect to see it occurring in original
models. There is some possibility of this occurring though,if the
model itself has been generated automatically.

But in any usual model each variable occurs at least twice, except
perhaps some variables that are used only to create output, and
these of course we do not wish to eliminate. So how is that we
find variables to eliminate?

As evidenced by the examples in the introduction, existential re-
dundancy arises from the elimination of propagators that arise ini-
tially, or the removal of independent variables leading to variables
that occur exactly once in the remaining propagators.

The remaining requirement is that we can detect a propagatoras
existentially redundant. But how practical or frequent is this? The
definition given in the previous section is clearly too expensive to
check. Thankfully, existential redundancy is often easy tocheck.

All binary arc consistent propagators are always existentially re-
dundant for both variables involved.

Lemma 3.3 Letf be a domain consistent propagator for a binary
constraintc wherevars(f) = {x1, x2} (sof enforces arc consis-
tency). Thenf is existentially redundant forx1 andx2 for domains
D wheref(D) = D.

PROOF. By definition, f(D) is domain consistent withc and
hence∀d1 ∈ D(x1),∃d2 ∈ D(x2) where{x1 7→ d1, x2 7→ d2}
satisfiesc. HenceD |= ∃x2.c. By Lemma 3.1f is existentially
redundant forx2 atD. The same applies forx1.

Many propagators for functional constraints can be checkedfor ex-
istential redundancy reasonably easily. A Boolean total function
constraint, such asy ⇔ (∨n

i=1xi), y ⇔ (∧n
i=1xi), y ⇔ (⊕n

i=1xi)
(xor), y ⇔ (x1 → x2), andy ⇔ ¬x, is existentially redundant if
there is a full domain on the function variabley.

Lemma 3.4 Let f be a propagator for the total functional con-
straint y = e(x̄), wherey is Boolean thenf is existentially redun-
dant fory at D if D(y) = {0, 1}.

A bounds(Z) or bounds(R) propagator for a functional constraint
y = e(x̄), wheree is a total function, for exampley = a0 +
Pn

i=1
aixi andy = maxn

i=1 xi, can often easily checked for exis-
tential redundancy.

Lemma 3.5 Letf be abounds(Z) or bounds(R) propagator for
the functional constrainty = e(x̄) wheree is a total function and
D(y) ⊇ [infD e(x̄) .. supD e(x̄)], thenf is existentially redun-
dant fory at D.

Note that the result above holds trivially from Lemma 3.1. The
usefulness of the above lemma is that bounds propagators typically
calculate the value of the expressionsinfD e(x̄) and supD e(x̄),
or some weakening of them, in order to execute the propagator.
For example thebounds(R) propagator fory = 3x1 + 10x2 +
19x3 will calculate3 infD x1 +10 infD x2 +19 infD x3 as well as
3 supD x1 +10 supD x2 +19 supD x3 during propagation. Hence
checking the existential redundancy is straightforward.

Note that propagators do not necessarily have to be “equational” to
be existentially redundant. The domain propagator for

Pn

i=1
aixi ≥

d is existentially redundant forxj atD if

sup
D

ajxj ≥ d −
n

X

i=1,i6=j

inf
D

aixi.

Since the propagator determines
Pn

i=1
infD aixi in order to deter-

mine redundancy it is straightforward extend it to check existential
redundancy.

Many propagators are unlikely to be existentially redundant unless
they are almost redundant, that is will almost never propagate fur-
ther. For examplealldifferent([x1, . . . ,xn]) is existentially redun-
dant forxj if D(xi) ∩ D(xk) = ∅, 1 ≤ i 6= k ≤ n and some
further conditions hold. At this point thealldifferent is almost
redundant itself.

4. DYNAMIC ANALYSIS FOR VARIABLE
ELIMINATION



analyse(D,OV ,SV )
for (v ∈ V)

interested[v] := no
visited[v] := false

for (v ∈ OV ∪ SV )
interested[v] := yes

for (v ∈ SV )
traverse(v,−,D)

traverse(v,g,D)
if (visited[v])

return interested[v]
if (interested[v] = no)

interested[v] := maybe
visited[v] := true
for (f ∈ props(v) − {g})

if (f is existentially redundant fory 6= v atD)
if (traverse(y,f ,D) 6= no)

interested[v] := true
for (v′ ∈ vars(f) − {v, y})

traverse(v′, f, D)
else% not interested iny

deletef (removef from prop(v′) for v′ ∈ vars(f))
else

interested[v] := true
for (v′ ∈ vars(f) − {v})

traverse(v′, f, D)
if (interested[v] = maybe)

interested[v] := no
return interested[v]

Figure 3: Dynamic analysis for eliminable variables

We now give a simple linear time analysis algorithm for finding
variables to eliminate. The analysisanalyse shown in Figure 3
takes a current domainD, and the set of output variablesOV that
we cannot eliminate since we want them in the answer, as well as
the search variablesSV which we cannot eliminate since we will
be adding new constraints on them.

The algorithm marks all the output and search variables as being
interesting, and then traverses each search variable in turn. The
traverse function visits a variablev to determine if it can be elim-
inated, and visits other variables reachable from this variable. It
returns if we are interested in the variable (that is it cannot be elim-
inated). The traversal first checks that we haven’t already visited
the variable, and if so returns the previous result. If not itsets the
status to maybe meaning we are still determining it is interesting.
It then checks the propagatorsf attached tov except the propaga-
tor g by which we reachedv. If f is existentially redundant for
y 6= v and we are not interested iny then the propagatorf can be
removed. Otherwise we traverse all the variables reachablethrough
f . If it happens for all propagators forv are removed then it will
return that we are uninterested inv. The point of the maybe record-
ing is to ensure if we find a loop returning tov while determining
its interest, then the answer will be yes.

Theorem 4.1 Let F0 be a set of propagators,D a domain,SV a
set of variables, andOV a set of variables. Suppose after executing
analyse(D,OV, SV ) on the propagation graph forF0 we have
that F ⊂ F0 remain. Thensolv(F, D′) =OV solv(F0, D

′) for all
D′ ⊑ D whereD′ =−{OV ∪SV } D.

PROOF. Let F ′ = F0 − F . The proof is by induction on elim-
ination of propagatorsf ∈ F ′. If traverse eliminates a propa-
gatorf then it must be existentially redundant for somey at D,
such that all other occurrences ofy are in eliminated propagators.
Note thaty 6∈ OV ∪ SV . We can order the propagatorsF ′ say
f1, . . . , fn such thatfi is existentially redundant foryi atD andyi

appears in no propagators inF ∪ {fi+1, . . . fn} by reversing the
order of traversal of the propagators. Then using Lemma 3.2 we
can show thatsolv(F ∪ {fi, fi+1, . . . fn}, D′) =−{yi} solv(F ∪
{fi+1, . . . fn}, D′) for all D′ ⊑ D whereD′(y) = D(y).

By induction we findsolv(F0, D
′) =−{y1,...,yn} solv(F ′, D′) for

all D′ ⊑ D whereD(yi) = D′(yi), 1 ≤ i ≤ n. SinceOV ∪
SV ⊆ V − {y1, . . . , yn} the result holds.

In order for the algorithm to be efficient, we do not wish to spend
too much time checking iff is existentially redundant for somey 6=
v atD. For binary propagators, there is only one candidate variable.
For mostn-ary propagators this is still simple as there is only likely
to be one variable that can be detected as existentially redundant,
the variable being “equationally defined” by the propagator, e.g.y
in y = a0 +

Pn

i=1
aixi

But some constraints can be detected as existentially redundant for
multiple variables, for example propagators forc ≡ Pn

i=1
aixi =

d whereai ∈ {−1, 1}, 1 ≤ i ≤ n. For a particular domainD it
could be existentially redundant for any variablexi, since this con-
straint can be read as equationally defining each variable, e.g. xj =
d+

Pn

i=1,i6=j
aixi whenaj = −1, andxj = −d−Pn

i=1,i6=j
aixi

whenaj = 1.

Luckily for this constraintc and any domainD there is only a max-
imum of two candidates for which it can be existentially redundant
at any domainD, and the remaining variables are fixed, and hence
are independent of the propagator forc. Hence either only one vari-
able is possibly existentially redundant, or the constraint is binary.
In either case the traversal algorithm only has to visit one possible
variabley (different fromv).

Lemma 4.2 Suppose the bounds propagatorf for
Pn

k=1
akxk =

d whereak ∈ {−1, 1}, 1 ≤ k ≤ n is existentially redundant forxi

andxj at domainD, then the remaining variables are fixed inD.

PROOF. LetL = infD

Pn

k=1
akxk−d andU = supD

Pn

k=1
akxk−

d. Assume for simplicity thatai andaj are positive, the other cases
follow similarly.

Sincec is existentially redundant forxi andli = infD xi andui =
supD xi thenaili ≤ aiui −U andaiui ≥ aili −L. Similarly we
haveajlj ≤ ajuj − U andajuj ≥ ajlj − L.

Now by definitionUij = supD

Pn

k=1,k 6=i,k 6=j
aixi − d = U −

aiui −ajuj ≥ L−aili −ajlj = infD

Pn

k=1,k 6=i,k 6=j
aixi −d =

Lij . FromU − aiui − ajuj ≥ L − aili − ajlj andaiui − U ≥
aili we determine that−ajuj ≥ L − aj lj , or equivalentlyajlj −
ajuj ≥ L and fromajuj ≥ aj lj − L we haveL ≥ ajlj − ajuj

henceL = aj lj −ajuj . Similar reasoning givesU = ajuj −aj lj ,
L = aili − aiui andU = aiui − aili. Now Uij = U − aiui −
ajuj = (aiui − aili) − aiui − ajuj = −aili − ajuj andLij =
L− aili − ajlj = (aj lj − ajuj)− aili − ajlj = −aili − ajuj =
Uij . Hence all variablesxi, 1 ≤ k 6= i 6= j ≤ n must be fixed in
D.



There are constraints where there are multiple possible existentially
redundant variables at a single domain. Considerx1+x2+x3 ≥ 3
with domainD(x1) = D(x2) = D(x3) = [0 .. 10], then the
propagator is existentially redundant for all variables atD. The
algorithm above only considers one such variable, otherwise we
have to backtrack undoing the marking, and try other possibilities.
While this may find more variables to eliminate, it is certainly more
expensive, and the cases of constraints which can have multiple
possible existentially redundant variables for some domain are rare.

Under the assumption that the calculation of existential redundancy
for propagatorf is linear in the size off , as in all the examples
discussed above, and with an additional marking to ensure wedo
not visit the same propagator twice (see Section 5) the analysis is
linear in the size of the problem.

4.1 Other uses of the analysis
The analysis takes into account the output variablesOV which we
never wish to eliminate since they will be needed for the finalresult,
and the search variablesSV which cannot be eliminated since we
will add new propagators on these variables during search.

But what happens if theanalyse algorithm never visits a variable
v which is still involved in a propagatorf . Then clearly no modi-
fication of the domains of the search variables can lead to a change
in the domain ofv. Hence the propagatorf will never be executed.
Since the propagatorf is not known to be redundant the search
procedure will return an answer without determining that the con-
straint thatf implements is solved. Hence the program can return
wrong solutions.

One can argue that we can check this simply by examining the re-
maining propagators, at the end of the search. If propagators re-
main, then the domainD may not encode only solutions. The
difficulty with this is that the search may never return an answer
because the fact that propagatorf is incorrectly modeled means
that not enough domain reduction may occur and the search may
be stuck in an effectively infinite search space.

Hence whenever we run the analysis we should also check that no
variable remains unvisited, unless it is involved in no propagators.
If this is the case we should immediately abort execution andreport
the modeling error. In this sense we should always run the analysis
independent of its use for improving execution behavior, just to
catch such modeling errors.

5. IMPLEMENTATION
The algorithm in Figure 3 has been implemented in Gecode, but
most of the decisions made in the implementation should readily
carry over to other constraint programming systems.

Implementing analysis.While treatment of variables is generic
in the analysis algorithm, the way that propagators are traversed de-
pends on the particular propagator. Propagators are implemented
as objects in Gecode (as in most other systems, see for example
the architecture underlying ILOG Solver [11]). Propagators pro-
vide methods for propagation, creation, deletion, and so on. For
traversal, we add atraverse method that can be implemented
for each individual propagator. Manytraverse methods can be
reused through inheritance, for example, the same method can be
reused for all reified propagators.

In addition to thetraverse method, a propagator also main-
tains a fieldinterested which is initialized to maybe. The
traverse method for a propagatorf will either just traverse its
variablesvars(f) and setinterested to yes, or it will check
whether some of its variables are existentially redundant.In case it
finds a variabley to be existentially redundant and traversal finds
that nobody is interested iny, theinterested field of the prop-
agator is set to no. Note that the propagator is not immediately
deleted (see the discussion below).

The analysis starts from a solver state that hosts variablesand prop-
agators belonging to a single node in the search tree. After mark-
ing the search and output variables as interested, the traversal starts
from the search variables. Search variables are available from the
labellings (branchings) which the solver state maintains for search,
whereas output variables are available from the implemented model.
Only after traversal finishes, propagators withinterested set to
no are deleted, while propagators withinterested set to maybe
are reported as a possible modeling error (see Section 4.1).Propa-
gators are not immediately deleted during traversal. As allpropa-
gators have to be inspected to find those withinterested set to
maybe, it is simpler to delete propagators in this separate inspection
pass.

Interestingly, analysis does not increase the memory required for
variables and propagators: both provide sufficient space tomain-
tain the information for marking as interested or visited. The avail-
ability of sufficient space is due to the fact that the analysis is only
run when the solver is at fixpoint, hence some fields that are used
during propagation can be used during analysis and are restored
after analysis finishes.

The most critical aspect for the analysis to be efficient is that our
experimental implementation uses recursion as directly available
in C++. Recursion (which can be very deep during the analysis) in
C++ is not very efficient with respect to both memory and runtime.
A production quality implementation of the analysis might use an
explicit stack to manage traversal.

Gecode uses advisors in addition to propagators for achieving in-
cremental propagation [8]. An advisor is associated with a sin-
gle propagator to provide information about how a particular vari-
able changes during propagation. When traversing the propagators
prop(x) attached to a variablex this has to be reflected in that also
advisors can be attached to the variablex. In case of an attached ad-
visor, traversal will immediately continue with the advisor’s prop-
agator.

Dynamic event sets and watched literals.Due to the more
experimental nature of our analysis implementation, we make the
assumption that for all variablesx ∈ vars(f) for a propagatorf
there exists also an edge in the propagation graph from the variable
x to the propagatorf (the algorithm in Figure 3 usesprop(x) to
find all propagators for a variablex).

Some propagators might not require propagation even thoughthe
domains of some of its variables change. That is, even thoughx ∈
vars(f) it can be the case thatf 6∈ prop(x). In [14] this is used
for dynamic event sets and in [6] this is used for watched literals
to speed up propagation. A typical example is a propagator for
Boolean disjunctionor([x1, . . . , xn]) where it is sufficient thatf
is included in at least two of the setsprop(xi).



The problem with the analysis as presented is that during traver-
sal, a variablex can be visited and no propagators inprop(x) are
interested inx, even though there might be a propagatorf with
x ∈ vars(f). A simple solution that would incur some general
overhead would be to register all propagatorsf with f ∈ vars(x)
also inprop(x) where these extra entries are specially marked such
that they are only considered for analysis but not for propagation.

To avoid any overhead during propagation, these additionalentries
into prop(x) could be entered just before analysis is performed.
After analysis finishes, the entries are removed again. Provided the
system maintains a list of all relevant propagators, this would be
straightforward as the datastructures forprop(x) are designed to
support dynamic addition and deletion. An additional advantage of
this idea is that the extra entries are only available duringanalysis,
hence propagation would not have to check whether an entry isjust
needed for traversal.

When to run the analysis.An important aspect is when the
analysis should actually be run. The highest accuracy is obviously
obtained by performing analysis each time after a fixpoint has been
computed (that is, directly after thewhile-loop in Figure 2 termi-
nates). This might be to expensive (evaluation in Section 6 con-
firms that this is indeed the case). A remedy is to run the analysis
only everyn-th fixpoint computed to achieve a good compromise
between accuracy and overhead of the analysis.

A different strategy is to run the analysis just before the recursive
call to search in Figure 1. Depending on how search is imple-
mented, this can be beneficial. Gecode uses recomputation and
copying for implementing backtracking (similar to the model de-
scribed in [12, Chapter 7]). Here, a copy of the search state will be
created just before the recursive call to search. This copy will then
be reused for recomputation several times. One promising strategy
for analysis might be to run the analysis just before creating the
copy that is reused several times: the effort spent in analysis once
is reused every time a copy is created for recomputation. More-
over, creating a copy after several propagators have been deleted
due to analysis might save space and time during copying. Again,
the analysis can be run only everyn-th time a copy is created for
recomputation.

6. EXPERIMENTAL EVALUATION

Evaluation platform.All experiments use Gecode, a C++-based
constraint programming library [5]. Gecode is one of the fastest
constraint programming systems currently available, benchmarks
comparing Gecode to other systems are available from Gecode’s
webpage. The version used in this paper corresponds to Gecode 2.1.1.
Gecode has been compiled with the Microsoft Visual Studio Ex-
press Edition 2008.

All examples have been run on a Laptop with a2.2 GHz Core2 Duo
CPU and 2048 MB main memory running 32bit Windows Vista.
Runtimes are the average of 25 runs with a coefficient of deviation
less than5% for all benchmarks.

Example characteristics.Table 1 summarizes the character-
istics of the examples used for evaluation. Time is runtime in mil-
liseconds, memory is allocated memory in KB, and exec refersto

the number of propagator executions. Note that the same runtime
for bibd-7-3-40 andcircle-6-21 is just a coincidence and
not a mistake in the evaluation.

The examples are as follows:

• bibd-v-k-l are instances of a balanced incomplete block
design problem with parameters(v, k, l) (prob028 in [3]).
The model involves Boolean-sum propagators and propaga-
tors implementing lexicographic order for symmetry break-
ing as described in Example 1.3.

• circle-n-s are circle packing problem wheren circles
must be packed into as × s square. The example uses the
propagators described in Example 1.2 for constraining cir-
cles to not overlap.

• s-p-n-s are variants of the square packing problem (prob009
in [3]) for n squares to be packed into as × s square, where
multiple squares of the same size are allowed. The only con-
straints used are those discussed in Example 1.1.

• p-s-p-n-s is similar, in addition it uses many small rei-
fied constraints to improve capacity propagation by taking
the size of squares packed at a particularx or y coordinate
into account.

The choice of examples is motivated by the following facts. First,
all examples feature propagators that our analysis could remove.
Second, analysis forbibd-v-k-l is bound to be very expensive:
many propagators need to be traversed during analysis and only few
can be deleted during each run. For the other examples, fewerprop-
agators that could be deleted during analysis exist. Forcircle-n-s

ands-p-n-s, analysis should be very efficient: all propagators
can potentially be deleted.p-s-p-n-s provides an interesting
contrast tos-p-n-s in that only few propagators could be deleted
and also the impact of deletion will be rather small as most propa-
gation is concerned with capacity.

Analysis accuracy.Figure 4 provides an overview of the ac-
curacy of analysis. The analysis is run either everyn-th fixpoint
(shown as black bullet) or everyn-th recursive invocation of search
(shown as cross) wheren ranges from1 to 20 and accuracy from
0% to 100%. The measure of accuracy is based on the number
of propagator executions avoided by deleting propagators during
analysis. An accuracy of100% is achieved by running the analysis
immediately aftereveryfixpoint computed. An accuracy of50%
means that only half of all propagator executions are avoided. The
percentage numbers displayed in Figure 4 is the geometric mean of
the accuracy of all examples.

An important observation is that the accuracy deterioratesonly rel-
atively slowly with running the analysis more infrequently. Particu-
larly interesting is that for both strategies, after fixpoint and before
search, the analysis accuracy stays around50% up to running the
analysis only every10 to 15 operations. This is significant as it
gives ample opportunity to balance the overhead of analysiswith
its accuracy.

Best performance.Before studying in more detail the trade-
off between accuracy and cost of the analysis, let us first establish



Table 1: Example characteristics
Example variables propagators failures time/ms memory/KB exec

bibd-6-3-30 9 281 8 535 2 303 252.08 1 741 1 112 526
bibd-6-4-30 4 631 4 260 1 344 156.62 969 678 027
bibd-7-3-20 10 760 9 925 426 139.76 3 473 343 879
bibd-7-3-40 21 540 19 865 866 536.64 5 915 1 240 958

circle-6-21 72 77 56 867 536.64 125 2 548 578
circle-8-24 128 145 32 345 485.44 245 2 766 188

s-p-8-5 128 145 19 706 212.16 131 1 558 275
s-p-8-10 128 145 635 591 6 786.60 132 49 574 399

p-s-p-21-112 5 810 5 978 150 96.72 3 652 1 548 480
p-s-p-25-147 8 894 9 142 1 109 412.44 4 869 1 761 354
p-s-p-28-201 13 226 13 548 833 741.92 7 236 7 964 519
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Figure 4: Average analysis accuracy:• shows the accuracy at then-th fixpoint and × shows the accuracy at then-th invocation of
search.

that the analysis can actually deliver speedup in most casesand in-
dependent of whether the analysis is run after fixpoint or before
search.

Table 2 (a) gives the bestn for running the analysis after everyn-th
fixpoint, whereas Table 2 (b) gives the bestn for running the anal-
ysis before everyn-th recursive call to search. Here, best refers to
shortest runtime. Accuracy is shown as described earlier, whereas
all other measures are given relatively to not running the analysis at
all as in Table 1. A negative percentage means that the measure is
decreased by that percentage (hence, better) and a positivepercent-
age means that the measure is increased by that percentage (hence,
worse).

The reason why many examples do not show an improvement in
memory consumption is due to the fact that memory refers to al-
located rather than used memory. Gecode allocates relatively large
blocks of memory that are then used: hence less memory might be
in use even though the same amount of memory gets allocated.

In the best case, the number of propagator executions is reduced by
one third. In these cases also the runtime is reduced by up to25%.

The examples where it is most difficult to obtain a speedup are
thep-s-p-n-s examples. One has to keep in mind that only a
fraction of the propagators can be deleted by the analysis. With
that in mind, the analysis is successful as it does not slowdown
execution while it still saves a little memory. It is very important to
put this into perspective: one should always run the analysis now
and then to catch modeling errors as discussed in Section 4.1.

When small propagators due to decompositions are frequent the
analysis shows its true potential: the runtime overhead of the anal-
ysis is easily outweighed by its benefits and regardless of how often
the analysis runs, it will always save memory.

It is interesting to note that running the analysis before search rather
than after fixpoint appears to be the better decision, even though
the benefit might only be specific to Gecode as the system used for
the evaluation. Running analysis before search slightly reduces the
accuracy but the effect of every single analysis run is apparently
reused several times.

How often to run the analysis.The key question is whether
a user can determine how often she should run the analysis a priori.
Finding an appropriate frequency by inspecting runtimes ofseveral
tries might be infeasible.

In the following we will restrict our attention to running the analy-
sis directly after fixpoint, as the insight to be gained from running
before search is similar. Table 3 shows relative runtime, memory
usage, and accuracy for several values ofn.

It is obvious that trying to run the analysis very often is infeasible,
interesting values forn start withn = 5. More importantly, for all
examples values between10 and15 offer a feasible compromise
between accuracy and reduction in memory and runtime. Hence
it is plausible that a user can usen = 10 as a starting point for
the analysis. With vastly different problem sizes the user might
decrease the frequency depending on problem size.



Table 2: Best performance for analysis
Example n time/ms memory/KB exec accuracy

bibd-6-3-30 17 −23.0% −7.4% −35.3% 96.3%
bibd-6-4-30 11 −16.7% ±0.0% −25.8% 87.1%
bibd-7-3-20 19 −8.5% −5.5% −17.8% 84.1%
bibd-7-3-40 19 −7.0% −6.5% −19.1% 91.8%

circle-6-21 3 −24.7% ±0.0% −20.4% 87.3%
circle-8-24 3 −7.2% ±0.0% −7.1% 72.2%

s-p-8-5 5 −10.2% ±0.0% −25.4% 79.3%
s-p-8-10 5 −13.6% ±0.0% −23.2% 85.8%

p-s-p-21-112 13 +1.3% ±0.0% −0.1% 29.3%
p-s-p-25-147 13 +2.1% −1.3% −0.5% 70.0%
p-s-p-28-201 13 +2.2% −1.8% ±0.0% 40.0%

(a) Analysis after fixpoint

Example n time/ms memory/KB exec accuracy

bibd-6-3-30 17 −23.1% −7.4% −35.1% 95.8%
bibd-6-4-30 11 −16.1% ±0.0% −25.6% 86.4%
bibd-7-3-20 14 −6.8% −5.5% −19.0% 89.5%
bibd-7-3-40 20 −5.4% −6.5% −18.4% 88.6%

circle-6-21 1 −27.6% ±0.0% −22.0% 94.3%
circle-8-24 1 −7.7% ±0.0% −8.2% 83.5%

s-p-8-5 3 −15.7% ±0.0% −28.5% 89.1%
s-p-8-10 3 −15.5% ±0.0% −25.2% 93.3%

p-s-p-21-112 11 −0.4% ±0.0% −0.1% 29.3%
p-s-p-25-147 7 −2.4% −2.6% −0.8% 100.0%
p-s-p-28-201 9 +1.1% −1.8% ±0.0% 61.4%

(b) Analysis before search

Table 3: Analysis after fixpoint
Example n = 1 n = 2 n = 5

time/ms mem/KB acc time/ms mem/KB acc time/ms mem/KB acc
bibd-6-3-30 +32.9% − 7.4% 100.0% +3.7% −7.4% 99.6% −15.8% −7.4% 98.0%
bibd-6-4-30 +41.4% ±0.0% 100.0% +12.7% ±0.0% 98.7% −9.4% ±0.0% 94.8%
bibd-7-3-20 +63.9% −12.9% 100.0% +30.1% −11.1% 97.6% +5.1% −9.2% 92.1%
bibd-7-3-40 +73.9% −13.0% 100.0% +31.7% −10.8% 98.6% +5.6% −9.7% 95.4%

circle-6-21 −21.8% ±0.0% 100.0% −23.3% ±0.0% 94.0% −21.5% ±0.0% 72.4%
circle-8-24 −0.9% ±0.0% 100.0% −5.7% ±0.0% 84.5% −6.8% ±0.0% 57.6%

s-p-8-5 +5.9% ±0.0% 100.0% −6.3% ±0.0% 96.7% −10.2% ±0.0% 79.3%
s-p-8-10 +2.9% ±0.0% 100.0% −8.7% ±0.0% 96.8% −13.6% ±0.0% 85.8%

p-s-p-21-112 +31.3% −3.5% 100.0% +15.9% −3.5% 100.0% +7.4% ±0.0% 60.7%
p-s-p-25-147 +53.4% −3.9% 100.0% +23.8% −3.9% 99.6% +9.4% −2.6% 88.4%
p-s-p-28-201 +45.8% −1.8% 100.0% +22.5% −1.8% 100.0% +12.8% −1.8% 95.0%

Example n = 10 n = 15 n = 20
time/ms mem/KB acc time/ms mem/KB acc time/ms mem/KB acc

bibd-6-3-30 −18.7% −7.4% 97.4% −20.5% −7.4% 95.0% −16.8% −3.7% 86.3%
bibd-6-4-30 −5.0% ±0.0% 70.2% −9.0% ±0.0% 75.7% −5.0% ±0.0% 38.7%
bibd-7-3-20 −3.1% −5.5% 87.1% −1.8% −9.2% 85.0% −5.6% −5.5% 78.4%
bibd-7-3-40 +4.9% −6.5% 92.4% −3.9% −8.7% 94.1% −4.5% −6.5% 88.6%

circle-6-21 −7.8% ±0.0% 37.1% −7.9% ±0.0% 36.4% +0.5% ±0.0% 0.8%
circle-8-24 −1.9% ±0.0% 28.3% ±0.0% ±0.0% 6.7% −2.6% ±0.0% 27.7%

s-p-8-5 −5.0% ±0.0% 48.3% −3.8% ±0.0% 50.8% +1.5% ±0.0% 8.8%
s-p-8-10 −9.5% ±0.0% 64.5% −7.6% ±0.0% 45.1% −7.4% ±0.0% 40.0%

p-s-p-21-112 +5.9% ±0.0% 57.1% +1.4% ±0.0% 31.9% +1.9% ±0.0% 41.1%
p-s-p-25-147 +5.6% −1.3% 59.5% +4.4% −1.3% 43.4% +3.0% −1.3% 56.1%
p-s-p-28-201 +5.6% −1.8% 94.4% +8.6% −0.9% 49.2% +5.5% −0.9% 86.8%



7. RELATED WORK
The detection of redundant propagators, and their elimination from
the propagation system in forward execution has been a part of
propagation systems since almost the beginning. But this redun-
dancy detection does not know which variables are of interest to
the answer and hence cannot dynamically eliminate variables.

There has been earlier work on variable elimination, most notably
in the context of constraint logic programming over the reals [7].
Here, particularly with recursive definitions many intermediate vari-
ables are introduced, and analysis can sometimes determinethat
they can be eliminated during execution. The difference here is that
these solvers can use Gauss-Jordan variable elimination [9], and
Fourier elimination [4] to eliminate variables that only appear in
linear real constraints. While elimination that could be detected at
compile time and removed using Gauss-Jordan elimination [9] was
clearly beneficial, for the more complex Fourier elimination [4] the
cost of the elimination was only paid back in certain circumstances.
Elimination of variables in finite domain constraints is much more
restricted.

There is a relationship of this work with so-called “don’t care”
propagation in non-clausal SAT solvers [15]. Here Boolean formu-
lae are represented as a DAG with leaves made up of the Boolean
variables. Don’t care propagation of the node representinge.g. a
disjunctive constraintor([x1, . . . , xn]) realizes that if the node is
true andxi is true for some1 ≤ i ≤ n then this node does not
care about the remaining nodesx1, . . . , xi−1, xi+1, . . . , xn. If no
parent cares about a nodexj then its value becomes “don’t-care”
and this may propagates to its child nodes. The result is akinto
dynamic variable elimination on the propagator graph representing
the DAG. The solver used “don’t-care” values to avoid propagation
rather than eliminating the variables altogether.

Finally, the work of Brand and Yap [1] on finer control of prop-
agation is related. It effectively extends the “don’t care”propaga-
tion of [15] to formulae involving non-Boolean leaf constraints, and
uses this to prevent “unrolling” of complex constraint definitions.
So it ties variable elimination and constraint definition together. In
this way it can define 2-literal watching, and domain consistent lex
propagation. In contrast our approach does not consider preventing
unrolling/decomposition of global constraints but the existential re-
dundancy approach is not restricted to Boolean variables.

8. CONCLUSION
Dynamic variable elimination is a useful optimization for finite do-
main constraint systems, since modeling requires the introduction
of many intermediate variables, which may become irrelevant in
later solving. We give a linear time analysis of the propagator graph
to detect occurrences of dynamic variables to eliminate. Weshow
that the analysis can improve space and time performance forfi-
nite domain problems. There is an ancillary benefit, the analysis
can detect modelling errors that leave part of the propagation graph
separated from the search variables.

An avenue for future research is to automatically find out when it
is profitable to run the analysis. A simple scheme could startfrom
the idea to dynamically adapt the frequency as follows: whena run
of the analysis was useful (that is, many propagators were deleted),
the frequency is increased. Otherwise, the frequency is decreased.

In a production level implementation we believe the overhead of the
analysis could be reduced substantially from this prototype. Indeed

if tied to the copying of search state, the analysis could be folded
into the copying stage and we should execute with little overhead
compared to the copying itself.
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