
A Declarative Encoding of Telecommunications Feature
Subscription in SAT

Michael Codish
Department of Computer Science

Ben-Gurion University of the Negev
Beer-Sheva, Israel

mcodish@cs.bgu.ac.il

Samir Genaim
DSIC, Faculatad de Informática

Complutense University of Madrid
Madrid, Spain

samir.genaim@fdi.ucm.es

Peter J. Stuckey
National ICT Australia

Department of Comp Sci and Soft Eng
University of Melbourne, Australia

pjs@cs.mu.oz.au

Abstract
This paper describes the encoding of a telecommunications fea-
ture subscription configuration problem to propositional logic and
its solution using a state-of-the-art Boolean satisfaction solver. The
transformation of a problem instance to a corresponding proposi-
tional formula in conjunctive normal form is obtained in a declar-
ative style. An experimental evaluation indicates that our encoding
is considerably faster than previous approaches based on the use of
Boolean satisfaction solvers. The key to obtaining such a fast solver
is the careful design of the Boolean representation and of the basic
operations in the encoding. The choice of a declarative program-
ming style makes the use of complex circuit designs relatively easy
to incorporate into the encoder and to fine tune the application.

Categories and Subject Descriptors D.3.2 [Programming Lan-
gauges]: Language Classifications—Constraint and logic lan-
guages; D.1.6 [Software]: Programming Techniques—Logic Pro-
gramming; I.2 [Computing Methodologies]: Artificial Intelligence

Keywords SAT solving, telecommunications feature subscription,
declarative modelling

General Terms Algorithms, Experimentation

1. Introduction
Modern telecommunications enable a customer to subscribe to ser-
vices selected from a catalog of features. Familiar features in-
clude: speed dialing, call waiting, three-way calling, caller identi-
fication, call screening, call announce, call blocking, call forward-
ing, follow-me forwarding, and may more. Large PSTN (Public
Switched Telephone Network) switches are reported, for example
in (Bond et al. 2004), to involve hundreds or even thousands of
features. A configuration is a sequence of selected features. The
configuration of a feature subscription is often personalized based
on preferences provided by the customer and constraints imposed
by the provider to prevent undesirable feature interactions at run-
time. For example, the provider may have constraints making a call-
logging feature incompatible with call-forwarding-unconditional,
and that a do-not-disturb feature may not be selected without first

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PPDP’09, September 7–9, 2009, Coimbra, Portugal.
Copyright c© 2009 ACM 978-1-60558-568-0/09/09. . . $5.00

sequencing the call-logging feature as otherwise calls may be com-
pletely lost. A customer may prefer time-dependent-routing over
terminating-call-screening if both are available.

Typically, both customer preferences as well as the constraints
imposed by the provider are expressed as precedence or exclusion
constraints on features. A precedence constraint, f > g, means that
feature f is only possible if feature g is sequenced before f . An
exclusion constraint, f <> g, means that f and g cannot both be
subscribed to and may be formulated using precedence constraints
as f > g ∧ g > f . When the subscription requested by a user
is inconsistent, due to cycles in the precedence constraints, one
problem is to find an optimal relaxation which is consistent.

This problem is a variant of the maximum acyclic subgraph
problem (MAS): given a directed graph (V, E) and a parameter
m, is there a subset E′ ⊆ E with |E′| ≥ m such that E′ is
acyclic. An alternative (dual) formulation of the maximum acyclic
subgraph problem is the feedback arc set problem (FAS) which is
on the list of 21 problems presented by Karp (Karp 1972) in 1972
exhibiting the first NP complete problems. Applications involving
MAS are abundant and many research papers address the topic of
approximation algorithms and identifying special cases for which
there exist efficient algorithms. This paper addresses the general
situation in which an exact solution is required and graphs do not
belong to a class for which an efficient algorithm is known.

Propositional satisfiability (SAT) solvers are becoming remark-
ably powerful and there is an increasing number of papers which
propose encoding hard combinatorial (finite domain) problems in
SAT. The increasing power and success of modern SAT solvers
is due to a combination of several techniques (see e.g. (Gomes
et al. 2008)). Two main factors are the highly optimized propa-
gation mechanisms based on watched literals (Moskewicz et al.
2001) and the incorporation of efficient conflict-clause learning al-
gorithms based on the 1UIP scheme (Zhang et al. 2001).

We mention propagation techniques because when choosing
an encoding we will prefer a representation that better supports
propagation. We mention conflict-clause learning because when
iterating with a SAT solver to optimize the selected solution we
should be careful to reuse learned clauses from previous iterations.

In recent research, described in (Lesaint et al. 2008), the au-
thors formalize the telecommunications feature subscription con-
figuration problem and prove that the complexity of finding an op-
timal relaxation is NP-hard. That paper compares three techniques
to address the problem using: constraint programming, encoding to
Boolean satisfaction (SAT), and integer linear programming. The
authors present a series of experiments and conclude that the con-
straint programming approach is able to scale well compared to the
other approaches.

This paper reexamines the encoding of telecommunications fea-
ture subscription configuration problems to SAT. Our approach to
the encoding leads to a scalable solution which is considerably
faster than the three techniques reported in (Lesaint et al. 2008).
Given the direct graph (V, E) and parameter m, our encoding in-
volves three main components to construct a propositional formula,
satisfiability of which identifies E′ ⊆ E with |E′| ≥ m such that
E′ is acyclic:

1. To express acyclicity, each selected edge (u, v) ∈ E′ imposes
a constraint of the form u > v where u and v are viewed as
integer values and > is interpreted as the standard order on
integers.

2. To express that |E′| ≥ m, each edge e ∈ E is interpreted as a
Boolean variable which indicates if e is selected to be in E′ or
not. The set of these variables in E are summed to an integer
value m′, indicating the size of E′, which must satisfy m′ ≥ m.

3. To find a maximum value of m for which an instance has a
solution we need to solve a maximization problem. The SAT
solving technology we use for solving propositional formulae
only answers satisfaction questions. Hence we need to encode
the maximization problem as a series of satisfaction problems.
There are a number of ways of doing this.

A key design decision is how to represent integer values and
how to encode the elementary constraints such as total/partial or-
ders, summing of weighted bits, addition of integer values and com-
parison of integer values. Taking a high-level declarative approach
facilitates the encoding and combination of a wide variety of low-
level options for these design choices. We illustrate the encodings
for the main components and demonstrate how complex circuit de-
signs take a clear form when expressed declaratively. An experi-
mental evaluation indicates that our approach leads to an encoding
which is much faster than previous approaches based on the use of
SAT solvers and which is highly competitive with published results
that use constraint programming and integer linear programming.

A preliminary version of this paper (Codish et al. 2008a) was
presented as a Short Paper at ICLP 2008. This paper provides the
full details. The contributions of this paper are:

• A full description of the encodings as logic programs;
• A new and effective encoding of acyclicity using unary number

representation;
• A careful comparison of the effects of different encoding

choices on the quality of the encoding; and
• A final encoding that improves on the results of the preliminary

version (Codish et al. 2008a) by 1-2 orders of magnitude, and is
considerably faster than the previous best published results (Le-
saint et al. 2008).

This paper is not about theorems and proofs. It is about how to
put together a collection of well studied techniques from the area
of circuit design and apply them in the context of SAT encoding.
While the existence of an encoding to SAT follows from Cook’s
theorem, small improvements in the encoding can make large dif-
ferences when SAT solving. The declarative encoding of circuits
to SAT gives us the opportunity to explore which circuit designs
are best for Boolean satisfiability, as opposed to, for use in hard-
ware. The trade-offs are quite different. In SAT solving the circuits
are omni-directional, and we are interested in the power of unit
propagation, often principally in the reverse direction (from outputs
to inputs). Each new internal wire is a new propositional variable
which can increase the potential search space significantly. Consid-
erations such as gate layout, wiring complexity and circuit fan-out

are irrelevant to SAT encoding, whereas in hardware design they
are important considerations.

The remainder of the paper is organized as follows. In the next
section we give a full statement of the telecommunications feature
subscription problem. In Section 3 we first briefly introduce our
notation for Boolean problems, and then discuss how we represent
and construct Boolean satisfiability problems in a declarative man-
ner using Prolog. We illustrate this using adder circuits. In Section 4
we give the basic encoding of the feature subscription problem
into SAT, leaving unspecified the crucial details of how to encode
acyclicity, sum weighted bits, and manage optimization, which are
explored later. In Section 5 we explain various options for encod-
ing the acyclicity constraint in SAT. In Section 6 we discuss various
options for encoding the summing of bits in SAT, before extending
this to weighted bits. In Section 7 we discuss methods for managing
optimization with a SAT solver. In Section 8 we give experimental
results showing the effect of various choices in the mapping to SAT,
and compare against the previous solutions to this problem. Finally
in Section 9 we conclude.

2. Problem Statement
This section presents the formal statement of the telecommunica-
tions feature subscription configuration problem and is taken (with
slight modification) from (Lesaint et al. 2008).

Let F denote a finite set of features. For fi, fj ∈ F a prece-
dence constraint (fi>fj) indicates that fi can appear only after
fj . An exclusion constraint (fi<>fj) between fi and fj indicates
that fi and fj cannot appear together in a sequence of features,
and is equivalent to the conjunction of (fi>fj) and (fj>fi). A
catalog is a pair 〈F, P 〉 with F a set of features and P a set of
precedence constraints on F . A feature subscription S of a catalog
〈Fc, Pc〉 is a tuple 〈F, C, U, WF , WU 〉 where F ⊆ Fc is the set
of features selected from Fc, C is the projection of Pc on F , i.e.,
C = {(fi > fj) ∈ Pc|fi, fj ∈ F}, U is a set of user defined
precedence constraints on F , and WF :F → N and WU :U → N
are maps which assign weights to features and user precedence con-
straints. The value of S is defined by

Value(S) = Σf∈F WF (f) + Σp∈UWU (p)

The weight associated with a feature or a precedence constraint
signifies its importance for the user.

A feature subscription 〈F, C, U, WF , WU 〉 of some catalog
〈Fc, Pc〉 is consistent if and only if the directed graph 〈F, C ∪ U〉
is acyclic. Checking for consistency of a subscription is straight-
forward using topological sort as described in (Lesaint et al. 2008).
If a feature subscription is inconsistent then the task is to relax it
and to generate a consistent one with maximum value. A relaxation
of a feature subscription S = 〈F, C, U, WF , WU 〉 is a consistent
subscription S′ = 〈F ′, C′, U ′, WF ′ , WU′〉 such that F ′ ⊆ F ,
C′ is the projection of C on F ′, U ′ is a subset of the projection
of U on F ′, WF ′ is the restriction of WF to F ′, and WU′ is the
restriction of WU to U ′. We say that S′ is an optimal relaxation
of S if there does not exist another relaxation S′′ of S such that
Value(S′′) > Value(S′). In (Lesaint et al. 2008), the authors
prove that finding an optimal relaxation of a feature subscription
is NP-hard. This is the problem addressed in this paper. We take
a declarative approach to SAT encoding. An encoding is a Prolog
program which maps a problem instance to a corresponding for-
mula in conjunctive normal form. This formula is then used to find
a solution to the instance by application of a SAT solver.

3. A Declarative Approach to Encoding
Most SAT solvers assume as input a propositional formula in con-
junctive normal form (CNF). That is a conjunction of disjunctions

adder([],[],C,[C],Cnf-Cnf).
adder([],[X|Xs],Cin,[Z|Zs],Cnf1-Cnf3) :-

half_adder(X,Cin,Z,Cout,Cnf1-Cnf2),
adder([],Xs,Cout,Zs,Cnf2-Cnf3).

adder([X|Xs],[],Cin,[Z|Zs],Cnf1-Cnf3) :-
half_adder(X,Cin,Z,Cout,Cnf1-Cnf2),
adder([],Xs,Cout,Zs,Cnf2-Cnf3).

adder([X|Xs],[Y|Ys],C,[Z|Zs],Cnf1-Cnf3) :-
full_adder(X,Y,C,Z,NextC,Cnf1-Cnf2),
adder(Xs,Ys,NextC,Zs,Cnf2-Cnf3).

half_adder(X,Y,Sum,Carry, Cnf1-Cnf3) :-
xor(Sum,X,Y,Cnf1-Cnf2),
and(Carry,X,Y,Cnf2-Cnf3).

full_adder(X,Y,CarryIn,Sum,CarryOut, Cnf1-Cnf4) :-
half_adder(A,Y,S1,C1,Cnf1-Cnf2),
half_adder(CarryIn,S1,Sum,C2,Cnf2-Cnf3),
or(Carry,C1,C2,Cnf3-Cnf4).

%% Z == X or Y
or(X,Y,Z, [[Z,-X],[Z,-Y],[-Z,X,Y] | Cnf]-Cnf).

%% Z == X and Y
and(X,Y,Z, [[Z,X,Y],[-Z,X],[-Z,Y] | Cnf]-Cnf).

%% Z == X xor Y
xor(X,Y,Z, [[Z,-X,Y],[Z,X,-Y],

[-Z,X,Y],[-Z,-X,-Y] | Cnf]-Cnf).

%% Z == (X == Y)
eq(X,Y,Z, [[-Z,-X,Y],[-Z,X,-Y],

[Z,X,Y],[Z,-X,-Y] | Cnf]-Cnf).

Figure 1. An encoding for a ripple carry adder

of literals, or equivalently a conjunction of clauses. Each literal is a
propositional variable p or its negation ¬p. A truth assignment is a
mapping from propositional variables into {0, 1}.

Before we introduce the specifics of our encoding of the
telecommunications feature subscription configuration problem to
SAT let us define a language in which to describe these specifics.
We portray the basic components of an encoding and their com-
position into more complex components as logic programs. So, an
encoding is a program which generates a CNF. Predicates in the
encoding specify the relation between the components and their
encoding to CNF. Composition of components is obtained as com-
position of programs and conjunction of CNFs.

We represent: literals as (Prolog) terms of the form X or -X
where X is a logic variable; clauses as lists of literals; and con-
junctions of clauses as lists of clauses. A truth assignment is a sub-
stitution of the variables to the constants {0, 1}. We will represent
binary numbers as lists of bits with the most significant bit last,
instead of the usual notation which has it first. Hence [1,0,1,1] rep-
resents the decimal number 13 or the binary number 1101. This
choice facilitates the handling of addition where least significant
bits are processed first. Encodings for binary adders play a major
role in the application we describe in this paper, hence we illustrate
the concept of declarative encoding with an encoding of binary ad-
dition given as Figure 1.

Ripple carry adder
Figure 1 illustrates the encoding of a textbook style (Cormen et al.
1990) ripple-carry circuit for binary addition. We will assume that

the lengths of the addends differ by at most one (with the extra
bit on the second addend). The predicates and/4, or/4 and xor/4
describe the encoding of the basic gates with the fourth argument
specifying the CNF as a difference list. The predicate eq/4 is a
gate which expresses that its inputs X and Y must be equal. For
example, a call to ?- and(X,Y,Z,Cnf-[]) will bind the variable
Cnf to a conjunctive normal form of the propositional formula
Z ↔ X ∧ Y . The predicates half adder/5 and full adder/6
specify the adder gates and illustrate the composition of encodings.
The goal adder(Xs,Ys,C,Zs,Cnf-[]) describes the encoding
(Cnf) of a circuit for ripple carry addition with inputs Xs and Ys
with an additional carry-in bit C. The output of the circuit is the
binary number Zs. A call to this predicate generates the circuit as a
propositional formula in conjunctive normal form. For example, a
call to

?- adder([X1,X2,X3,X4], [Y1,Y2,Y3,Y4], C, Zs, Cnf-[])

will bind the variable Cnf to a conjunctive normal form corre-
sponding to the 4-bit binary adder with inputs [X1,X2,X3,X4]
[Y1,Y2,Y3,Y4] and C and outputs Zs.

For encoding applications, such as that considered in this paper,
we will typically express the encoding declaratively and then solve
a problem instance by applying a SAT solver to its CNF encoding.
In our experimentation we apply the MiniSat SAT solver (Eén and
Sörensson 2004; MiniSAT) through its Prolog interface described
in (Codish et al. 2008c).

Just for fun, consider the Prolog query

?- adder(Xs,Xs,C,[1,0,1,1],Cnf-[]), sat(Cnf).
Xs = [0, 1, 1], C = 1.

?- adder(Xs,Xs,C,[0,1,1],Cnf-[]), sat(Cnf).
Xs = [1, 1], C = 0.

which generates the propositional formula representing a circuit for
addition and poses a query to the SAT solver: do there exist Xs and
C such that Xs+Xs+C=13 (or such that Xs+Xs+C=6)? The predicate
sat/1 is part of the interface to MiniSat described in (Codish et al.
2008c).

When considering the design of efficient circuits, two major
concerns are circuit size and circuit depth. For example a ripple-
carry adder is linear in size and depth. For k-bits it consists of k
full adders (size). The linear depth stems from the linear (“ripple”)
propagation of the carry-in bit which eventually reaches the carry-
out bit. In circuit theory the depth of a circuit is considered to
be a measure of the time complexity of the circuit. This is the
time it takes for an input signal to reach an output signal. When
encoding a circuit to a propositional formula, the size and depth of
the circuit also determine the size and depth of the formula. The
depth of the circuit has an impact on the chains of propagation that
can occur during SAT solving. Similar to the case for circuits, it
is often beneficial to consider a larger circuit with a smaller depth.
Although for SAT solving we are not measuring the time from input
to output, the depth of a formula still influences the number of
decisions that the solver must make to determine a value by unit
propagation.

The literature is rich in papers from the 1960’s and onwards
which present circuits for fast binary addition. We have experi-
mented with encodings for many of these including: carry look
ahead, parallel prefix adders, and conditional-sum adders, etc. In-
terestingly in our final version ripple carry adders appear preferable
to the more complex adders with smaller depth. We hypothesize
that this is because of two things: ripple carry adders use the least
number of gates, just k full adders and introduce the least number
of additional propositional variables k− 1 internal carries; and rip-

full_adder(X,Y,Cin,Sum,Cout,Cnf1-Cnf2) :-
Cin == 0, !, half_adder(X,Y,Sum,Cout,Cnf1-Cnf2).

full_adder(X,Y,Cin,Sum,Cout,Cnf1-Cnf2) :-
X == 0, !, half_adder(Cin,Y,Sum,Cout,Cnf1-Cnf2).

full_adder(X,Y,Cin,Sum,Cout,Cnf1-Cnf2) :-
Y == 0, !, half_adder(X,Cin,Sum,Cout,Cnf1-Cnf2).

half_adder(X,Y,Sum,Cout,Cnf1-Cnf2) :-
X == 0, !, Sum = Y, Cout = 0, Cnf1 = Cnf2.

half_adder(X,Y,Sum,Cout,Cnf1-Cnf2) :-
Y == 0, !, Sum = X, Cout = 0, Cnf1 = Cnf2.

and(X,Y,Z,Cnf1-Cnf2) :-
X == 0, !, Z = 0, Cnf1 = Cnf2.

and(X,Y,Z,Cnf1-Cnf2) :-
Y == 0, !, Z = 0, Cnf1 = Cnf2.

xor(X,Y,Z,Cnf1-Cnf2) :-
X == 0, !, Z = Y, Cnf1 = Cnf2.

xor(X,Y,Z,Cnf1-Cnf2) :-
Y == 0, !, Z = X, Cnf1 = Cnf2.

Figure 2. Clauses for simplifying the resulting circuits produced.

ple carry adders give very short circuits from the most significant
input bits to the most significant output bits (1 gate), and these are
the most important decisions made in maximization.

Simplifying circuits
An advantage of the declarative encoding of the circuits is that it
is easy to improve the resulting circuits. The code for adder/6 in
Figure 1 assumes a carry-in, but in many cases this is not required.
By setting the carry-in to 0 we obtain a correct circuit but one
which is not as small as required. Luckily the encoding is easy to
improve so that we do not create overly complex circuits. We can
add specialization code which takes advantage of fixed inputs to
simplify the resulting circuit.

The code in Figure 2 illustrates how to create specialized
circuits when one of the inputs is known to be 0. For exam-
ple a full adder with one input 0 becomes a half adder, a
half adder simply copies the input as sum, and has carry-out 0,
an and gate always outputs 0, and a xor just passes through the
input as output. Adding these clauses before the original clauses
for these predicates results in substantially simplified circuits. We
can of course add simplifications for when some inputs are known
to be 1, or when two inputs are known to be the same. All the
declarative code making use of the circuit elements automatically
benefits from the simplification.

4. Encoding Feature Subscription
This section presents the main components required to encode an
instance of the telecommunications feature subscription configura-
tion problem to a propositional statement so that a Boolean SAT
solver can be applied to derive a solution for the given instance.
In the following sections these components are discussed in more
detail.

Let S = 〈F, C, U, WF , WU 〉 be a subscription for a given
catalog 〈Fc, Pc〉. We seek an optimal relaxation

S′ = 〈F ′, C′, U ′, WF ′ , WU′〉.
With each feature f ∈ F we associate a propositional variable bf

indicating if f is included in F ′. With each constraint p ∈ C (and
p ∈ U) we associate a propositional variable bp to indicate if p is
included in C′ (or in U ′).

Encoding Catalog Constraints For each constraint p = (f > g)
in C, p is included in the relaxation C′ if and only if both f
and g are included in F ′. Hence we introduce to the encoding the
propositional constraint

bp ↔ bf ∧ bg (1)

Encoding User Constraints For each constraint p = (f > g)
in U , if p is included in the relaxation U ′ then both f and g
must be included in F ′. Hence we introduce to the encoding the
propositional constraint

bp → bf ∧ bg (2)

A user constraint p may be excluded from relaxation U ′ either by
excluding one of f or g (setting bf or bg to false) or by excluding
the constraint (setting only bp to false).

Encoding Acyclicity An assignment of truth values to the propo-
sitional variables bp determinethe subsets C′ and U ′ of C and U
in a relaxation. These subsets must be such that C′ ∪ U ′ represent
a partial order and in particular, contain no cycles. For each con-
straint p = (f > g) in C ∪ U we introduce to the encoding the
propositional constraint

bp → [[f > g]] (3)

which intuitively states that if p is included in the relaxation then f
is greater than g in the partial order. We will defer the full descrip-
tion of the formula [[f > g]] until the next section. The definition of
this formula will depend on how we choose to model the acyclicity
constraints.

Encoding Sum of Weights and Integer Comparison A relaxation
S′ is associated with a value Value(S′) equal to the sum of the
weights of the features in F ′ and the constraints in U ′ (as deter-
mined by the propositional variables bf and bp of the encoding).
For a given integer value m, we need to encode to propositional
logic the constraint Value(S′) ≥ m. Let us denote this encoding
by X

f∈F

wf ∗ bf +
X
p∈U

wp ∗ bp ≥ m (4)

We explain how this constraint is encoded in Section 6.

Finding an Optimal Relaxation A SAT solver can only answer
questions of satisfaction, not optimization, hence we need to de-
termine how we will determine an optimal relaxation. Given an en-
coding based on the above equations (1), (2), (3) and (4) for fixed m
we have a satisfaction problem. We can thus find the maximal value
of m via a series of satisfaction questions. Possible approaches are:
starting from a low value of m and increasing it until we find a
value which has no solution, starting from a high value of m and
decreasing it until we find a satisfiable value, or binary search over
the values of m. We explore these possibilities in detail in Sec-
tion 7.

5. Encoding Acyclicity
Consider the set of propositional variables bp which correspond to
the precedence constraints (catalog constraints, C and user prefer-
ences U). A truth assignment on these variables determines a re-
laxation (C′ ⊆ C and U ′ ⊆ U) which is required to be acyclic.
Two main approaches to encode acyclicity are discussed in the lit-
erature. In the paper (Codish et al. 2008b) the authors term these:
atom-based and symbol-based.

Atom-based encoding
The encoding of the telecommunications feature subscription con-
figuration problem to SAT described in (Lesaint et al. 2008) is

atom-based. It models a constraint of the form p = (f > g) (the
propositional variable bp as an atom). So in this encoding [[f > g]]
is simply a new propositional variable. To capture the meaning of
these atoms (as a precedence) the encoding introduces proposi-
tional statements to capture the axioms of partial orders which these
atoms are subject to. For example, to encode that if p1 = (a > b)
and p2 = (b > c) are true then also p3 = (a > c) is true, a clause
p1 ∧ p2 → p3 is introduced, and to encode that at least one of
p1 = (a > b) and p′1 = (b > a) can be true, a clause ¬p1 ∨¬p′1 is
introduced. For an instance involving n features, this encoding will
introduce O(n2) propositional variables and involve O(n3) clauses
to express acyclicity.

Symbol-based encoding (binary representation)
A symbol-based approach to encoding partial order constraints
is introduced in (Codish et al. 2008b). Informally, a partial order
constraint is just like a formula in propositional logic except that
statements may involve propositional variables as well as atoms of
the form (f > g) where f and g are symbols.

In that paper the authors present an encoding in which each
symbol is represented using k = dlog2 ne propositional variables
which model the binary representation of its integer value. This
same approach was experimented with for the encoding of telecom-
munications feature subscription configuration problems and ini-
tial results were reported in (Codish et al. 2008a). Each feature f
is associated with an integer variable encoded as a binary number
requiring k = dlog2 ne bits. The formula [[f > g]] is simply an
encoding of the integer “greater than” relationship on the binary
encodings of f and g.

For an instance involving n features, this requires k = dlog2 ne
additional propositional variables for each feature. Constraints of
the form illustrated in Equation (3) are then straightforward to en-
code in k-bit arithmetic and involve O(log n) clauses each. Overall
the encoding requires a total of O(n log n) additional propositional
variables and O(k log n) clauses, where k = |C ∪U |. Typically, k
is much smaller than the worst case which is n2.

Figure 3 illustrates an encoding for a constraint of the form
B ↔ [[f > g]]. The goal

xs gt ys([F0, . . . , Fk−1],[G0, ..., Gk−1],B,Cnf)

where [F0, . . . , Fk−1] and [G0, ..., Gk−1] are the k-bit binary inte-
gers corresponding to features f and g respectively, binds the logic
variable Cnf to the conjunctive normal (as a difference list) of the
formula for B ↔ [[f > g]]. Recall that binary numbers are repre-
sented as lists of bits, least significant first. The encoding is based
on the specification that for the case when f and g are represented
by more than a single bit then f > g holds if either f ′ > g′, for the
high bits f ′ and g′ of f and g or else if f ′ = g′ and f ′′ > g′′, for
the low bits f ′′ and g′′ of f and g.

The encoding problem described in (Codish et al. 2008b) is
concerned with proving termination of term rewrite systems using
lexicographic path orders (LPO). The experiments described in
(Codish et al. 2008b) apply a partial order constraint solver written
in SWI-Prolog (Wielemaker 2003) which interfaces the MiniSat
solver (Eén and Sörensson 2004) for solving SAT instances as
described in (Codish et al. 2008c). The results presented in (Codish
et al. 2008b) indicate a clear advantage in the use of a symbol-
based encoding over the use of an atom-based encoding for the
LPO termination problem. For the preliminary results presented in
ICLP08 (Codish et al. 2008a) we applied the same constraint solver.
Experimental evaluation shows that for many of the instances of
feature subscription the atom based encoding of (Lesaint et al.
2008) is superior to our symbol based encoding. This is particularly
true for instances which have a high ratio of constraints per feature.

xs_gt_ys([X],[Y],B,Cnf1-Cnf2) :- !,
gt(X,Y,B,Cnf1-Cnf2).

xs_gt_ys(Xs,Ys,B, Cnf1-Cnf6) :-
split(Xs,LoXs,HiXs),
split(Ys,LoYs,HiYs),
xs_gt_ys(HiXs,HiYs,B1,Cnf1-Cnf2),
xs_eq_ys(HiXs,HiYs,B2,Cnf2-Cnf3),
xs_gt_ys(LoXs,LoYs,B3,Cnf3-Cnf4),
and(B2,B3,Tmp, Cnf4-Cnf5),
or(B1,Tmp,B,Cnf5-Cnf6).

xs_eq_ys([X],[Y],B,Cnf1-Cnf2) :- !,
eq(X,Y,B,Cnf1-Cnf2).

xs_eq_ys([X|Xs],[Y|Ys],B,Cnf1-Cnf4) :- !,
eq(X,Y,B1,Cnf1-Cnf2),
xs_eq_ys(Xs,Ys,B2,Cnf1-Cnf4),
and(B1,B2,B,Cnf3-Cnf4).

%% Z == X > Y (equivalently Z == X * -Y)
gt(X,Y,Z,[[Z,-X,Y],[-Z,X],[-Z,-Y]|Cnf]-Cnf).

Figure 3. Symbol-based encoding with binary number representa-
tion.

On the one hand the atom-based encoding of acyclicity is larger
than the corresponding symbol-based encoding. On the other, it has
much more potential to facilitate unit propagation. In each of the n3

clauses of the form p1∧p2 → p3 (for p1 = (a > b), (p2 = b > c)
and p3 = (a > c)) once the solver has fixed any two of the choices
p1, p2,¬p3, then the third follows by unit propagation. In contrast
in the symbol-based approach, fixing individual bits or even pairs
of bits in the binary integer representation rarely determines other
bits of the representation.

Symbol-based encoding (unary representation)
In this paper we present an alternative symbol based encoding
which is significantly better (experimentally) than the two others.
It also has superior potential for unit propagation.

The unary encoding of a non-negative integer in n bits is a se-
quence of n values v1, v2, . . . vn such that v1 ≥ v2 ≥ · · · ≥ vn.
The value of such a representation is the number of bits taking
value 1. For example the sequence 11100000 represents the num-
ber 3 in 8 bits. Figure 4 illustrates the symbol-based encoding of
partial orders with unary numbers. The predicate unary/2 is the
encoding of a list of bits as a unary number. For each pair of con-
secutive variables xi, xi+1 a clause xi+1 → xi is introduced to the
encoding. The predicate xs gt ys unary/4 is the encoding of a
constraint of the form [[f > g]] by the goal

xs gt ys unary([F0, . . . , Fn−1],[G0, ..., Gn−1],B,Cnf)

where [F0, . . . , Fn−1] and [G0, ..., Gn−1] are the n-bit unary in-
tegers corresponding to symbols f and g respectively. The goal
binds the variable Cnf to the conjunctive norm form of the formula
B ↔ f > g.

The clauses encode f > g if and only if f−1 ≥ g where
f−1 is obtained by removing the first bit of f which must be a
1. Encoding that f ≥ g boils down to the requirement on the bits
at each position i in the representation: gi → fi (if the g bit is a 1
then so must be the f bit. In this context the representation of g has
one bit more than that of f (as one bit of f is already removed).

For an instance involving n features, this encoding introduces
O(n2) propositional variables (n per symbol) and involves O(kn)
clauses (n per constraint) to express acyclicity, where k = |C ∪
P |. In principle it is similar in size compared to the atom-based

unary([_],Cnf-Cnf) :- !.
unary([X1,X2|Xs],[[X1,-X2]|Cnf1]-Cnf2) :-

unary([X2|Xs],Cnf1-Cnf2).

% [X|Xs] > Ys iff X and Xs >= Ys
xs_gt_ys_unary([X|Xs],Ys,B,Cnf1-Cnf3) :-

xs_ge_ys_unary(Xs,Ys,R,Cnf1-Cnf2),
and(X,R,B,Cnf2-Cnf3).

x_ge_y_unary([],[Y],B,[[-B,-Y],[B,Y]|Cnf]-Cnf).
x_ge_y_unary([X|Xs],[Y|Ys],B,[[-B,-X,Y],[-B,R],

[B,-X,-R],[B,Y,-R]|Cnf1]-Cnf2) :-
x_ge_y_unary(Xs,Ys,R,Cnf1-Cnf2).

Figure 4. Symbol-based encoding with unary number representa-
tion

encoding. However, the potential for propagation is enormous. Any
single bit in the representation of a symbol f which is assigned any
value, determines by unit propagation several additional symbols in
the encoding of each precedence constraint involving f . Consider
a constraint f > g and denote the bits of f and g as f0, . . . fn−1

and g0, . . . gn−1. If a single bit fi is set to 1, then all of the bits
f0, . . . , fi−1 are determined by unit propagation and set to 1. If
fi is set to 0 then all of fi+1, . . . , fn−1 are determined by unit
propagation and set to 0. The other case, where gi is set, is similar,
but in this case the bits in g and in f are set.

The experimental evaluation presented in Section 8 illustrates
the advantage of this encoding which is much faster than the others.

6. Encoding Weighted Sums
The decision problem associated with the telecommunications fea-
ture subscription configuration problem is: given a parameter m is
there a solution S′ with value(S′) ≥ m. To encode this we need a
circuit to sum the weights in order to compare with the parameter
m.

Unweighted Sum
We shall start by discussing how to encode the sum of unweighted
bits in a set Q:

P
p∈Q p, where q = |Q|.

We first present a simple divide and conquer approach. To sum q
bits we introduce encodings for q/2 adders: 1 q/2-bit adder, 2 q/4-
bit adders, ..., q/2 1-bit adders. So the number of adders is linear
and the depth of the deepest adder is log q.

The Prolog code in Figure 5 illustrates this process of summing
a set of q bits. A call to sum(Bits,Sum,Cnf-[]) generates a
binary integer representation Sum of the list of Bits together with
the conjunctive normal form, Cnf, which specifies the relation
between Bits and Sum. A ripple carry adder (predicate adder/5)
was presented in Figure 1. Remember that the third argument is the
carry-in which can be utilized here to take one of the original q bits.
The call to adder(Sum1,Sum2,B1,Sum,Cnf3-Cnf4) constructs
the conjunctive normal form for the binary Sum of numbers Sum1
and Sum2 with the carry-in B1.

This encoding introduces O(q) additional propositional vari-
ables and O(q) clauses, but the longest chain of gates in the circuit
is O((log q)2)

Consider the sum of 11 bits. This is split into two 5-bit sums
with the remaining bit being a carry-in. Each 5-bit sum is split into
two 2-bit sums and a carry-in bit. The circuit created is shown in
Figure 6. The width of the line indicates the worth of the bit. A
carry-in to the 2-bit and 3-bit adders is shown entering the left hand
side.

sum([],[], Cnf-Cnf).
sum([X],[X], Cnf-Cnf).
sum([X,Y],[S,C],Cnf1-Cnf2),

half_adder(X,Y,S,C,Cnf1-Cnf2).
sum_cnf([B1,B2,B3],[S,C],Cnf1-Cnf2) :-

full_adder(B1,B2,B3,S,C,Cnf1-Cnf2).
sum([B1,B2,B3|Bs],Sum,Cnf1-Cnf4) :-

split([B2,B3|Bs],Xs,Ys),
sum(Xs,Sum1,Cnf1-Cnf2),
sum(Ys,Sum2,Cnf2-Cnf3),
adder(Sum1,Sum2,B1,Sum,Cnf3-Cnf4).

Figure 5. Summing bits by divide and add

1 2 3 4 5 6 7 8 9 10 11

HAHA HA HA

2-bit adder 2-bit adder

3-bit adder

Figure 6. Circuit for summing 11 bits by divide and add.

Consider the application of this approach to sum 15 bits. In
principle, this could be done by swapping each of the four half
adders in Figure 6 with full adders, each one taking one of the
additional four bits. In practice, this is exactly what happens. When
the recursive call for sum/3 (the last clause in Figure 5) receives
exactly three bits [X,Y,Z] the subsequent call to adder/5 is of
the form adder([X],[Y],Z,Sum,Cnf) which introduces the full
adder.

An alternative approach to summing bits associates a weight
with each bit. Initially all bits have weight 1, and then iteratively,
three bits with equal weights (w) are replaced by two bits: one with
the same weight and the other doubled (w and 2w). This process
terminates when there are no longer 3 bits with equal weights.
At this stage the remaining bits can be viewed as belonging to a
pair of binary numbers. The transformation of three to two bits is
performed with a full adder, and hence we term these two bits: a
sum and a carry bit. An encoding of this approach is presented in
Figure 7.

The call to predicate sum(Bits, Sum, Cnf1-Cnf3) reduces
the elements of Bits into two binary numbers Num1 and Num2
the Sum of which is provided by a binary adder. The heart of the
code is iterate 3x2 which given a list of bits, calls once 3x2 to
repeatedly take each 3 bits from the list and create a sum and a carry
bit using a full adder. This process creates a set of sum bits and a
set of carry bits. The set of sum bits are passed into a recursive call
to iterate 3x2 to reduce the original bits to a pair of sum bits
and a list of carry bits. The code for reduce uses iterate 3x2
to create the two lowest bits of the numbers Num1 and Num2, and
then recursively reduces the accumulated carry bits to determine
the other bits of Num1 and Num2. Finally, adding these two binary
numbers gives the sum of the original bits.

The iterate 3x2 reduction process on q bits introduces at
most dq/3e + dq/9e + dq/33e + · · · additional propositional

sum_cnf(Xs, Sum, Cnf1-Cnf3) :-
reduce(Xs,Num1,Num2,Cnf1-Cnf2),
add_cnf(Num1,Num2,Sum,Cnf2-Cnf3).

reduce([],[],[],Cnf-Cnf) :- !.
reduce(Xs,[X|Num1],[Y|Num2],Cnf1-Cnf3) :-

iterate_3x2(Xs,[X,Y],Cs-[],Cnf1-Cnf2),
reduce(Cs,Num1,Num2,Cnf2-Cnf3).

iterate_3x2([],[0,0],Cs-Cs,Cnf-Cnf) :- !.
iterate_3x2([X],[X,0],Cs-Cs,Cnf-Cnf) :- !.
iterate_3x2([X,Y],[X,Y],Cs-Cs,Cnf-Cnf) :- !.
iterate_3x2(Xs,[X,Y],Cs1-Cs3,Cnf1-Cnf3) :-

once_3x2(Xs,Ss,Cs1-Cs2,Cnf1-Cnf2),
iterate_3x2(Ss,[X,Y],Cs2-Cs3,Cnf2-Cnf3).

once_3x2([X,Y,Z|Xs],[S|Ss],
[C|Cs1]-Cs2,Cnf1-Cnf3) :- !,

full_adder(X,Y,Z,S,C,Cnf1-Cnf2),
once_3x2(Xs,Ss,Cs1-Cs2,Cnf2-Cnf3).

once_3x2(Xs,Xs,Cs-Cs,Cnf-Cnf).

Figure 7. Summing bits three by two

1 2 3 4 5 6 7 8 9 10 11

FA FA FA

FA

FA A B C D E

G

0 0

A B C

D

E

F

G

FA

FA

3-bit adder

F

Figure 8. Circuit for summing 11 bits by three by two.

variables (which is O(q)), and O(q) clauses with a maximal depth
of O(log3 q). Overall the reduction process adds O(q) additional
propositional variables and O(q) clauses with a maximum depth
of O(log3 q · log2 q). The final addition adds at most O(log2 q)
variables and O(log2 q) clauses.

This encoding also has the advantage that it never uses more bits
than necessary to encode intermediate values, since they are always
lists of bits. Consider again the problem of adding 11 bits. The
circuit resulting from summing three by two is shown in Figure 8.
For the full adders the carry bit is named and assumed connected
to the same named input box. Overall the three by two approach
requires 7 full adders and a 3-bit adder. Using the simplifications
of Figure 2 discussed at the end of Section 3 the 3-bit adder is
encoded as just a single half-adder. Compare this with the divide
and add approach which requires 7 full adders and 4 half adders.
Note also that the 11 bit sum is a case of a perfect balanced split in
divide and add approach.

In our encoding we combine the two approaches presented here
for summing bits. We encode the summing of a list Bits in two
phases. First we apply the divide and add technique of Figure 5

sum_cnf(Bits1,Bits2,Bits3,Bits4,Sum,C1-C9) :-
sum(Bits1,Sum1,C1-C2),
sum(Bits2,Sum2,C2-C3),
sum(Bits3,Sum3,C3-C4),
sum(Bits4,Sum4,C4-C5),
adder(Sum1,[0|Sum2],0,Sum12,C5-C6),
adder(Sum3,[0|Sum3],0,Sum3x3,C6-C7),
adder(Sum12,Sum3x3,0,Sum123,C7-C8),
adder(Sum123,[0,0|Sum4],0,Sum,C8-C9).

Figure 9. A weighted sum for bits with weightings from 1 to 4.

to obtain from each 15 bits from the list Bits a four bit binary
number. This results in a list Nums of four bit numbers. To this list
we apply a three by two reduction process similar to that described
in Figure 7, except that instead of combining 3 bits of weight w to
obtain two bits of weights w and 2w, we are combining three 4-bit
numbers of weight w to obtain 2 numbers, one of weight w and
one of weight 2w. Experimentation indicates that this combination
is considerably faster than each of the individual techniques.

Weighted Sum
We now discuss how to encode the sum of weighted bits in a
set Q:

P
p∈Q wp ∗ p. There are many approaches to determining

weighted sums in Boolean circuits. For the problems of interest to
us, the weights wp range only over 1..4. Hence the straightforward
approach is to simply sum up all the bits of the same weight (an
unweighted sum) and then multiply each sum by its weight and
add them. This is exemplified in the code of Figure 9.

The sum cnf predicate shown in Figure 9 receives as inputs the
lists of selection bits Bits1,Bits2,Bits3,Bits4 corresponding
to the weights, 1–4, and generates the formula as a conjunctive
normal form (difference list C1-C9) which specifies the bits, Sum,
of the weighted sum. Each individual set of bits is first summed, and
the resulting binary number is then multiplied by its coefficient, in
the cases of 2 and 4 by adding left shifts, and for 3 by adding twice
the number to the number itself. The weighted sums are then added.

7. Maximization using SAT
In this section we discuss several algorithms and implementations
which facilitate a SAT solver to address an optimization problem.
Given a conjunctive normal form, Cnf, and a vector Vec of vari-
ables, we seek a satisfying assignment for Cnf which maximizes
(or minimizes) the binary number represented by Vec. The Prolog
interface to MiniSat described in (Codish et al. 2008c) provides this
facility by means of a call to the predicate maximize(Vec,Cnf).
In (Codish et al. 2008c), the authors present an implementation
which iterates on the bits in Vec (from most to least significant).
In each iteration the next most significant bit of Vec is determined,
if possible to a “1”, and otherwise, if this results in an unsatisfi-
able Cnf formula, then to a “0”. In each iteration we keep only the
bindings to the variables in Vec and forget any other binding from
previous calls to the SAT solver. For a vector Vec with k bits, this
requires at most k calls to the SAT solver. Sometimes less, as per-
haps by chance some of the next bits to be considered were already
set to “1”. If Vec represents the sum of n bits then this involves
log n calls to the SAT solver. The code is depicted in Figure 10.

Note that the call “\+ (B=1, solve(Cnf))” succeeds if the
Cnf is unsatisfiable when B=1, but due to the use of negation it
does not bind the variables. To simplify presentation, the code in
Figure 10 instantiates only the variables that appear in Vec and
no other variables in Cnf. This is easily rectified if the satisfying
assignment is required.

maximize([],_Cnf) :-
\+ \+ solve(Cnf).

maximize([B|Bs],Cnf) :-
maximize(Bs,Cnf),
(\+ (B=1, solve(Cnf)) -> B=0 ; B=1).

Figure 10. Maximization by binary search.

maximize(Vec,Cnf) :-
solve(Cnf), assert(soln(Vec)), fail.

maximize(Vec,Cnf) :-
soln(_),
improve(Vec, Cnf).

improve(Vec,Cnf) :-
retract(soln(Last)),
xs_gt_ys(Vec,Last,Cnf1-Cnf),
(solve(Cnf1) ->

assert(soln(Vec)), fail
;

Vec = Last
),!.

improve(Vec, Cnf) :-
improve(Vec, Cnf).

Figure 11. Maximization by linear search.

An advantage of the approach described in Figure 10 is that the
number of calls to the SAT solver is bounded by the length of Vec.
A disadvantage is that, typically, the call to a SAT solver for an
unsatisfiable formula is far more expensive than that for a satisfiable
formula. Hence each “0” bit in the maximal value of Vec is more
costly to obtain. This approach is termed “binary search” because
each step eliminates half of the search space by setting the next
most significant bit.

Figure 11 presents an alternative approach which, starting from
any initial value of Vec for which Cnf is satisfiable, repeatedly
seeks to increase that value and still satisfy Cnf. Once the current
value of Vec can not be increased (and still satisfy Cnf), a maxi-
mum has been reached.

The first clause for maximize/2 generates the initial solution,
records (assert/1) it, and then fails in order to unbind the vari-
ables and initiate the “improvement” by a failure-driven loop in-
voked by the second clause of maximize/2 and specified as predi-
cate improve/2. Note that the second clause of maximize/2 calls
improve/2, only if it finds a current solution, which mean that the
formula Cnf is satisfiable, otherwise the call to maximize/2 fails.

A call of the form improve(Vec,Cnf) receives a formula, Cnf
and a vector, Vec and aims to (repeatedly) bind Vec to a num-
ber larger than the previous value of Vec. In the first clause for
improve/2, the previous value of Vec is picked up and called
Last by the call to retract/1. If this retract fails then the orig-
inal Cnf was not satisfiable (the call to solve(Cnf) in maximize
failed) and failure is reported. Otherwise, the call to xs gt ys/3
adds to the Cnf the clauses which encode that Vec must be larger
than Last. The resulting Cnf1 is provided to the SAT solver.
If Cnf1 is satisfiable, then the new value of Vec is recorded
(assert/1) and the call to fail invokes iteration, by means of
the second clause of improve/2 first unbinding all assignments in
the Cnf. If otherwise Cnf1 is not satisfiable, then the value in Last
is the maximum, and the iteration terminates.

The advantage of this approach is that all calls to the SAT solver,
except the last one, are satisfiable calls. A disadvantage is that the

number of calls to the SAT solver may be exponential in the length
of Vec. If Vec represents the sum of n bits then maximization may
require n calls to the SAT solver. However, experimental evidence
indicates that the number of calls to the SAT solver is typically
much less. This approach is termed “linear search” because the
search proceeds linearly.

For the optimization algorithm described in Figure 11, each time
the underlying SAT solver is re-invoked, it is considering a formula
which is more restricted than in the previous invocation. Clauses
further restricting the value of Vec have been added to the formula
of the previous invocation. This means that the conflict clauses
learned by the underlying sat solver (in this case MiniSat) in one
call are still valid for the subsequent calls.

The code depicted in both Figures 10 and 11 restarts the un-
derlying SAT solver from scratch with each invocation and as such
all conflict clauses are flushed. By extending the Prolog interface
to the underlying SAT solver, we can control which learned con-
flict clauses are kept and we can incrementally add clauses. This
enables to considerably improve the optimization techniques pre-
sented in Figures 10 and 11.

To apply the new interface, first the predicate sat init/0
should be called in order to initialize the solver. Then any of the
following operations can be taken at any time:

• sat add clauses(Cnf,Vs,SatVs): it adds to the solver’s
data-base the clauses in Cnf. Note that it assigns to every logic
variable in Cnf a corresponding sat variable that must be used
in further references to such a variable. In order to get the sat
variable that is assigned to each logic variable, the user should
provide a list of logic variables in the second argument Vs and
the predicate will bind SatVs to a list of the corresponding sat
variables. A sat variable is an integer value (negative means
negated);

• sat solve(Assumes): it succeeds if there exists an assign-
ment that satisfies the current formula. Namely, all clauses
added by all calls to sat add clauses/3 since the last call to
sat init/0) and under the assumptions in the list Assumes.
An assumption is a literal (of the form X or -X where X is a sat
variable) which is assumed to be true. Namely, the variable X
is assumed to be true or false, respectively. Note that the con-
flict clauses learned during this query are not cleared on exit,
but are maintained in order to use them in further calls to the
predicate. The assumptions provide a mechanism for checking
if there exists a satisfying assignment that satisfies some condi-
tions, without the need to add clauses that force the condition,
since we cannot later undo the addition of such clauses without
clearing the learned conflict causes.

• sat get values(SatVs,Values): given a list of sat vari-
ables SatVs, this predicate binds Values to the list of values (0
and 1) assigned to those sat variables in the satisfying assign-
ment that was found after the last call to sat solve/1.

At the end, the predicate sat deinit should be called in order to
de-initialize the underlying solver.

The code in Figure 12 implements the binary search algorithm
of Figure 10 using the new interface. It maintains all of the learned
conflicts clauses for use in subsequent invocations of the SAT
solver. It processes the bits from most to least significant, therefore
in the first line it reverses the list Vec to Vec MSB for convenience.
In the next lines: it initializes the SAT solver; adds the clauses of
Cnf to the solver’s data-base and gets back a list of sat variables
Vec MSB SVars which corresponds to the list of logic variables
Vec MSB; calls the underlying SAT solver to check if the formula is
satisfiable; then set one prefix/4 extracts the maximum prefix
of sat variables from Vec MSB SVars that are assigned to 1 in the

maximize(Vec,Cnf) :-
reverse(Vec,Vec_MSB),
sat_init,
sat_add_clauses(Cnf,Vec_MSB,Vec_MSB_SVs),
sat_solve([]),
set_one_prefix(Vec_MSB_SVs,Vec_MSB,SVs_1,Vs_1)
maximize_loop(SVs_1,Vs_1),
sat_deinit, !.

maximize_loop([],[]).
maximize_loop([SV|SVs],[V|Vs]) :-

(sat_solve([SV]) ->
set_one_prefix([SV|SVs],[V|Vs],SVs_1,Vs_1)

;
sat_add_clauses([[-SV]],_,_),
SVs_1=SVs,
Vs_1=Vs,

),
maximize_loop(SVs_1,Vs_1).

set_one_prefix([SV|SVs],[V|Vs],SVs_1,Vs_1) :-
sat_get_values([SV],[V]),
V = 1,
sat_add_clauses([[SV]],_,_), !,
set_one_prefix(SVs,Vs,SVs_1,Vs_).

set_one_prefix(SVs,Vs,SVs,Vs).

Figure 12. Maximization by binary search maintaining conflict
clauses.

last call and adds clauses to force them to be one in further calls
to the solver (also binds the corresponding logic variables to 1);
calls maximize loop/2 which on exit guarantees that Vec MSB is
bound to the maximum value; and the last line de-initializes the
solver.

The predicate maximize loop/2 has two arguments, the first
one is a list of sat variables to be maximized and the second is a list
of the corresponding logic variables. In each iteration it asks the un-
derlying SAT solver if there exists a satisfying assignment under the
assumption that the next bit SV is 1 (the call sat solve([SV])),
if yes then set one prefix/4 extracts the maximum prefix of
[SV|SVs] that takes values 1 in that assignment and adds clauses
that force them to be 1 in the next iterations (and binds the corre-
sponding variables in [V|Vs] to 1). Otherwise, it adds a clause that
forces SV to be 0 in the next iterations. This loop is repeated until
all bits are processed. This code still might require log n iterations,
but it has two advantages over the one of Figure 10: it takes ad-
vantage of the learned conflict clauses; and it eliminates the prefix
which is already know to be 1 in the current assignment.

The code in Figure 13 implements the linear search algorithm
of Figure 11 using the new interface. It maintains all of the learned
conflicts clauses for use in subsequent invocations of the SAT
solver. In the first clause: it initializes the sat solver; adds the
clauses of Cnf to the solver’s data-base and gets back a list of
sat variables Vec SVars which corresponds to the list of logic
variables Vec; calls the sat solver and gets the initial maximum
Curr Max; calls improve/3 (with the current maximum) which
on exit guarantees that Vec is binded to the maximum value; and
the last line de-initializes the solver. The predicate improve/3 has
three arguments, the first one is a list of sat variables to be max-
imized, the second corresponds to the last maximum, and the last
argument is used to return the actual maximum in the last itera-
tion. In each iteration of improve/3: it adds to the solver’s data-
base clauses which force the variables of Vec to be greater than the

maximize(Vec,Cnf) :-
sat_init,
sat_add_clauses(Cnf,Vec,Vec_SVs),
sat_solve([]),
sat_get_values(Vec_SVs,Curr_Max),
improve(Vec_SVs,Curr_Max,Vec),
sat_deinit, !.

improve(Vec,Last_Max,Final_Max) :-
xs_gt_ys(Vec,Last_Max,Cnf-[]),
sat_add_clauses(Cnf,_,_),
sat_solve([]),
sat_get_values(Vec,Curr_Max), !,
improve(Vec,Curr_Max,Final_Max).

improve(_Vec,Final_Max,Final_Max).

Figure 13. Maximization by linear search maintaining conflict
clauses.

last maximum Last Max; then if there exists a satisfying assign-
ment to the new formula it continues considering Curr Max as the
last maximum. This loop is repeated until the call sat solve([])
fails, which indicates that Last Max is the actual maximum, then
the second clause of improve/3 is activated and binds the third
argument to the actual maximum.

8. Experimental results
In this section we show the effect of various encodings on the speed
of the resulting SAT solution. The experimentation is based on
a collection of catalogs and feature subscriptions created by the
authors of (Lesaint et al. 2008). So the tables now compare the
same instances. This was not the case for the tables presented in
(Codish et al. 2008a). All together there are 270 instances, 10 per
configuration. The 40 smallest configurations are not detailed in the
tables.

First, we present a comparison with the published results from
(Lesaint et al. 2008). The numbers for the SAT encoding described
in (Lesaint et al. 2008) have improved considerably in the last year
due to extensive work on the Sat4J solver. We are not aware of
any improvments for the constraint programming and integer linear
programming based solutions.

Table 1 describes the experiments for catalogs with 50 fea-
tures and 250 precedence constraints (involving {<, >}). Each row
labeled by 〈f, p〉 specifies a subscription with f features and p
user precedence constraints with weights selected between 1 and
4. Times are measured in seconds and averaged for each set of
10 instances. The combined column marked pocsp (U/B) corre-
sponds to our Prolog implementation of partial order constraints
with unary and binary treatment of partial order and built on top of
MiniSat (average times over 10 random instances1). The columns
marked pwmsat, cplex and cp are the times taken from Table 2
of (Lesaint et al. 2008) for their: SAT encoding2, ILP solver and
CP solver. The machines are also different. Theirs is a PC Pentium
4 (CPU 1.8 GHz and 768 MB of RAM). Ours is a PC Pentium 4
(CPU 2.4 GHz and 512 MB of RAM). Ours is running SWI Prolog
under Linux, kernel 2.6.11-6. With no intention to compare the two
machines, the timings are clear enough.

Tables 2 and 3 illustrate results for larger catalogues
〈50, 500, {<, >, <>}〉 (50 features and 500 precedence con-

1 The precise instances used may be found at http://www.cs.bgu.ac.
il/~mcodish/Papers/Pages/feature_subscription.html
2 The authors of (Lesaint et al. 2008) use the SAT4J solver - http://www.
sat4j.org/.

〈f, p〉 pocsp (U/B) pwmsat cplex cp
〈30, 20〉 0.10 0.20 6.40 1.02 0.65
〈35, 35〉 0.37 1.58 23.95 22.76 7.43
〈40, 40〉 1.31 5.97 282.76 247.14 67.80
〈45, 90〉 18.72 266.11 12638.25 7690.90 1115.51
〈50, 4〉 1.58 9.52 195.72 1010.38 413.61

Table 1. Timings (sec) for catalog 〈50, 250, {<, >}〉

〈f, p〉 pocsp (U/B) pwmsat cplex cp
〈30, 20〉 0.01 0.01 4.09 0.48 0.42
〈35, 35〉 0.36 1.04 6.84 1.82 1.64
〈40, 40〉 0.54 2.28 11.31 3.02 3.91
〈45, 90〉 1.57 7.08 59.27 17.45 14.80
〈50, 4〉 0.96 3.87 21.47 3.77 16.92

Table 2. Timings (sec) for catalog 〈50, 500, {<, >, <>}〉

〈f, p〉 pocsp (U/B) pwmsat cplex cp
〈30, 20〉 0.01 0.01 5.03 18.46 2.38
〈35, 35〉 0.04 0.10 18.28 126.35 12.88
〈40, 40〉 3.14 94.69 92.11 514.27 42.27
〈45, 90〉 14.19 914.58 2443.23 3780.54 188.83
〈50, 4〉 10.72 483.33 319.53 3162.08 342.49

Table 3. Timings (sec) for catalog 〈50, 750, {<, >}〉

straints involving constraints from {<, >, <>}) and
〈50, 750, {<, >}〉 (50 features and 750 precedence constraints in-
volving constraints from {<, >}). Once again weights are values
between 1 and 4 and times are measured in seconds. The columns
marked pwmsat, cplex, and cp are the times taken from Table 3
of (Lesaint et al. 2008).

Table 4 provides a more recent comparison between the atom-
based and symbol-based encodings to SAT and contains five
columns of results for each configuration. The bottom 2 rows in
the table, labeled Total and Max, contains the total and maximal
values for all 270 instances. The first two columns of results, pocsp
(U/B), are identical to the corresponding columns in Tables 1-3.
They present the timings for our Prolog implementation of partial
order constraints using unary and binary representations built on
top of MiniSat. The next three columns pwmsat (U/B/At) present
timings (sec) obtained using the partial weighted MAXSAT solver
of Sat4J for three encodings: our symbol based approach using
unary and binary representation and the atom based encoding of
(Lesaint et al. 2008). The numbers in these three columns were
obtained on the same machine and using the same configuration of
the SAT solver. The machine is a Pentium IV 3GHz, 32 bits archi-
tecture running Linux 2.6.29.1 and Java 1.6.0 13 (and provided by
Daniel Le Berre).

We first note that there is a significant improvement in the num-
bers for pwmsat observable by comparing the rightmost column
of Table 4 with the corresponding pwmsat columns in Tables 1—3.
This improvement represents an improvement in the pwmsat solver
of Sat4J (the atom-based encoding is the same).

Columns pocsp(B) and pwmsat(B) represent timings for the
same encodings (symbol-based, binary representation) but are not
directly comparable as they run on different machines using dif-
ferent techniques to reach the optimal solution. Likewise columns
pocsp(U) and pwmsat(U) for the unary symbols based encoding.

Comparing the leftmost column (our symbol based encoding
with unary representation running on our pocsp solver) and the
rightmost column (the atom based encoding described in (Le-

catalog & 〈f, p〉 pocsp (U/B) pwmsat (U/B/At)
〈50, 250〉 〈30, 20〉 0.10 0.20 0.55 1.22 0.58

〈35, 35〉 0.37 1.58 2.37 7.12 1.40
〈40, 40〉 1.31 5.97 8.90 21.03 9.20
〈45, 90〉 18.72 266.11 178.40 1844.01 484.16
〈50, 4〉 1.58 9.52 6.69 11.97 30.72

〈50, 500〉 〈30, 20〉 0.01 0.01 0.12 0.15 0.07
〈35, 35〉 0.36 1.04 1.88 3.35 0.57
〈40, 40〉 0.54 2.28 2.61 5.31 0.91
〈45, 90〉 1.57 7.08 9.23 22.11 2.34
〈50, 4〉 0.96 3.87 4.52 8.77 2.39

〈50, 750〉 〈30, 20〉 0.01 0.01 0.12 0.16 0.07
〈35, 35〉 0.04 0.10 0.30 0.47 0.14
〈40, 40〉 3.14 94.69 16.91 153.75 3.22
〈45, 90〉 14.19 914.58 82.01 1205.12 24.64
〈50, 4〉 10.72 483.33 54.78 618.66 61.57

Total 561 18240 3833 39748 6259
Max 61 1667 662 14115 1867

Table 4. another comparison

learning binary linear
off 2073 1912
on 1012 561

technique time
d&a 907
r3×2 1702
combined 561

Table 5. Comparing the effect of search and learning (left); and
comparing the effect of how bits are summed (right)

saint et al. 2008) running on the MaxSAT solver of Sat4J), we
note that the total time for the symbol based approach is 10
times faster than that for the atom-based, and that the hardest in-
stance takes 30 times longer to solve in the atom based approach.
Note that in both cases this is the same instance, the one called
ncf50-ncp250-nuf45-nup90-mw4-ind8.

Table 5 provides (left side) a comparison of the linear and bi-
nary search techniques for maximization, with and without conflict
clause learning. The table indicates that without clause learning,
linear and binary search have similar performance. The effects
of clause learning are considerably more significant for the lin-
ear approach. The right side of Table 5 provides a comparison of
three techniques for summing bits. The d&a technique is the one
described in Figure 6. The r3×2 technique is the one described
in Figure 7. The combined technique is the one that first applies
d&a to derive 4-bit numbers and then applies to these the r3×2
technique. On both sides of the table times are in seconds and
denote the full time (encoding and SAT solving) for the entire
benchmark suite of 270 instances using the pocsp approach with
unary encoding. The Prolog code that appear in this paper can
be downloaded from http://www.cs.bgu.ac.il/~mcodish/
Software/ppdp09_code.pl. The code of the maximization pred-
icates (Figures 12 and 13) together with the corresponding MiniSat
Prolog interface can be downloaded from http://www.cs.bgu.
ac.il/~mcodish/Software/swi-minisat2.zip.

9. Conclusion
Modeling a combinatorial optimization problem in SAT can be a
significant challenge, when it contains features such as integers and
ordering and optimization. There are many choices for modeling
each component of the problem. By using a declarative language to
encode modeling choices we are able to simplify experimentation
with different approaches. We can also easily create simplified ver-
sions of the circuits that take into account knowledge that is fixed at

circuit creation time. We have applied our declarative programming
encodings to the telecommunications feature subscription problem,
creating a solution considerably better than previous published ap-
proaches. We believe there is great scope for using declarative pro-
gramming as a front end to SAT solvers.

We do not illustrate all the different experiments we have tried
in solving this problem. We have also experimented with sorting
networks for encoding weighted sums (as described in (Eén and
Sörensson 2006)), parallel prefix adders (see e.g. (Even 2006)) and
many other forms of adders.

Acknowledgments. We would like to thank Daniel Le Berre for
interesting discussions and helping us with experiments in this pa-
per. Luis Quesada provided the benchmarks used in (Lesaint et al.
2008) and many useful discussions. Michael Codish acknowledges
the support of the Lynn and William Frankel Center for Computer
Sciences at Ben-Gurion University. Peter Stuckey is employed by
NICTA. NICTA is funded by the Australian Government as rep-
resented by the Department of Broadband, Communications and
the Digital Economy and the Australian Research Council. Samir
Genaim was supported in part by the Information Society Tech-
nologies program of the European Commission, Future and Emerg-
ing Technologies under the IST-15905 MOBIUS and IST-231620
HATS projects, by the Spanish Ministry of Education (MEC) un-
der the TIN-2005-09207 MERIT ,TIN-2008-05624 DOVES and
HI2008-0153 (Acción Integrada) projects, and the Madrid Regional
Government under the S-0505/TIC/0407 PROMESAS project.

References
Gregory W. Bond, Eric Cheung, K. Hal Purdy, Pamela Zave, and J. Christo-

pher Ramming. An open architecture for next-generation telecommuni-
cation services. ACM Trans. Internet Techn., 4(1):83–123, 2004.

Michael Codish, Vitaly Lagoon, and Peter J. Stuckey. Telecommunications
feature subscription as a partial order constraint problem. In Maria Gar-
cia de la Banda and Enrico Pontelli, editors, ICLP, volume 5366 of Lec-
ture Notes in Computer Science, pages 749–753. Springer, 2008a. ISBN
978-3-540-89981-5.

Michael Codish, Vitaly Lagoon, and Peter J. Stuckey. Solving partial
order constraints for LPO termination. Journal on Satisfiability, Boolean
Modeling and Computation, 5:193–215, 2008b. (an earlier version
appears in the proceedings of RTA 2006, LNCS 4098).

Michael Codish, Vitaly Lagoon, and Peter J. Stuckey. Logic programming
with satisfiability. TPLP, 8(1):121–128, 2008c.

Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduc-
tion to algorithms. MIT Press and McGraw-Hill, 1990.

Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In Enrico
Giunchiglia and Armando Tacchella, editors, Theory and Applications of
Satisfiability Testing, 6th International Conference, SAT 2003 (Selected
Revised Papers), volume 2919 of Lecture Notes in Computer Science,
pages 502–518. Springer, 2004.

Niklas Eén and Niklas Sörensson. Translating pseudo-boolean constraints
into sat. JSAT, 2(1-4):1–26, 2006.

Guy Even. On teaching fast adder designs: Revisiting ladner & fischer.
In Oded Goldreich, Arnold L. Rosenberg, and Alan L. Selman, editors,
Essays in Memory of Shimon Even, volume 3895 of Lecture Notes in
Computer Science, pages 313–347. Springer, 2006. ISBN 3-540-32880-
7.

Carla P. Gomes, Henry Kautz, Ashish Sabharwal, and Bart Selman. Hand-
book of Knowledge Representation, volume 3 of Foundations of Arti-
ficial Intelligence, chapter Satisfiability Solvers, pages 89–134. Else-
vier, 2008. Editors: Frank van Harmelen, Vladimir Lifschitz, and Bruce
Porter.

R. M. Karp. Reducibility among Combinatorial Problems, pages 85–103.
Plenum Press, 1972. R. E. Miller and J. M. Thatcher (eds.).

David Lesaint, Deepak Mehta, Barry O’Sullivan, Luis O. Quesada, and Nic
Wilson. Solving a telecommunications feature subscription configura-

tion problem. In Peter J. Stuckey, editor, CP, volume 5202 of Lecture
Notes in Computer Science, pages 67–81. Springer, 2008. ISBN 978-3-
540-85957-4. (an earlier version appears in the Proceedings of Innova-
tive Applications of Artificial Intelligence, July 2008).

MiniSAT. MiniSAT. http://www.cs.chalmers.se/Cs/Research/
FormalMethods/MiniSat. Viewed December 2005.

Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and
Sharad Malik. Chaff: Engineering an efficient sat solver. In DAC, pages
530–535. ACM, 2001. ISBN 1-58113-297-2.

Jan Wielemaker. An overview of the SWI-Prolog programming environ-
ment. In Fred Mesnard and Alexander Serebenik, editors, Proceed-
ings of the 13th International Workshop on Logic Programming Envi-
ronments, pages 1–16, Heverlee, Belgium, December 2003. Katholieke
Universiteit Leuven. CW 371.

Lintao Zhang, Conor F. Madigan, Matthew H. Moskewicz, and Sharad Ma-
lik. Efficient conflict driven learning in a boolean satisfiability solver. In
ICCAD ’01: Proceedings of the 2001 IEEE/ACM international confer-
ence on Computer-aided design, pages 279–285, Piscataway, NJ, USA,
2001. IEEE Press. ISBN 0-7803-7249-2.

