Constraints manuscript No.
(will be inserted by the editor)

The Future of Optimization Technology

Maria Garcia de la Banda - Peter J. Stuckey -
Pascal Van Hentenryck - Mark Wallace

the date of receipt and acceptance should be inserted later

Abstract Technology for combinatorial optimization is rapidly changing, and as the
size and scope of problems that can be solved steadily increases, the complexity of
the underlying technology is growing. We foresee a huge demand for both the simpli-
fication of use of combinatorial optimization technology (so called “model and run”
capabilities), as well as increasing need for the ability to quickly build complex hybrid
solutions. These demands will place new emphasis on universal modeling languages
and model transformation capabilities, as well as flexible and high level ways of speci-
fying hybrid solutions. These changes put constraint programming in an ideal position
since: constraint programming has the most high-level view of problems to begin with
so we can ease modeling difficulties; and since constraint programmng is an integrative
technology, we have already spent considerable effort in making different solving tech-
nologies work together seamlessly. In this position paper we outline some of the key
challenges and important research directions we foresee for optimization technology,

1 Introduction

Optimization technology is increasingly pervasive in our society. It is used in many
different applications, such as scheduling supply-chains, controlling our main infras-
tructures, mitigating natural disasters, organizing transportation systems, discovering
motifs in genetic material or patterns in social networks, and validating programs. This
trend is likely to continue and intensify given the stress on our natural resources and
the need to preserve our environment.

As the need for optimization technology increases, is it essential to lower the barrier
of entry to using this technology. Many optimization problems are simple to solve
using modern technology, but the problem owners are unaware or unable to use the

Maria Garcia de la Banda - Mark Wallace
National ICT Australia and Monash University, Australia E-mail:
{mbanda,mark.wallace} @infotech.monash.edu.au

Peter J. Stuckey - Pascal Van Hentenryck
National ICT Australia and the University of Melbourne, Australia
E-mail: {pstuckey,pvh}@unimelb.edu.au



optimization technology already available. It is not acceptable that a new optimization
application requires completing a Ph.D. to build a solution. The technology needs to
be much easier to use so that domain experts with low optimization background can
take advantage of it. While problem modeling is a skill that needs to be learned, we
need to make it far easier to learn and apply this skill. To this end we need universal
modeling languages that can be used to “model and run”, that is, once a problem is
modeled correctly, the underlying optimization system automatically determines what
is the most appropriate technology, without any further intervention from the modeler.
Furthermore, we need to consider other avenues for using optimization technology, such
as taking advantage of the widespread ability of people to build simulations as a method
for accessing optimization technology (by automatically converting these simulations
into optimization tools).

As optimization tackles increasingly more complex and large-scale applications, the
demands placed on the underlying technology in terms of speed, scale, and expressive
power generates fundamental computational challenges. The complexity of this new
generation of applications places a significant cognitive burden even on expert prac-
titioners. For these applications it is no longer sufficient to write high-level models
that can be readily solved by a black-box solver: It is now necessary to discover which
technology is most appropriate for each part of a problem. This is why hybridizations
of major technologies, such as constraint programming, mathematical programming
and local search, are becoming the de-facto standard for addressing the complexity
of emerging applications. At the same time, the scope of optimization has broadened
from a focus on routing and scheduling to other areas of application that are some-
times both more challenging and more rewarding. These include integrated resource
planning; operational decision-making under uncertainty, with data being delivered
continuously in real-time to the optimization engine; and data-intensive optimization
where optimization technology is applied to very large data sets. This, in turn, places
new requirements on the technology which now needs to find high-quality solutions un-
der time constraints, exploit uncertainty, deal with large data sets, and be integrated
in complex runtime environments.

2 Challenges
2.1 Modeling and Solving

It is clear from the above discussion that optimization technology needs to be easier to
use for both non-experts and experts. We believe it is vital to create new technology
that will dramatically simplify the generation of new complex optimization applications
by supporting rapid prototyping, deep solver hybridization,1 data-intensive optimiza-
tion, and decision-making under uncertainty. In particular, optimization technology
needs to address the following challenges:

1. The design of high-level modeling languages and development environments for
optimization that capture the structure and execution behavior of optimization
problems at a high level of abstraction, including its combinatorial substructures
and stochastic information;

1 That is, using tightly interacting different solving technologies together.



2. The definition of model transformations that take as inputs high-level models and
transform them into hybrid algorithms, exploiting the specific features of the ap-
plication at hand;

3. The design and implementation of efficient, highly parallel, optimization solvers
that integrate constraint programming (CP), mixed integer programming (MIP),
mixed integer nonlinear programming (MINLP), local search (LS), dynamic pro-
gramming (DP), and data-intensive optimization.

2.2 Optimization Tools

We take the view that there are multiple classes of optimization users, whose needs
must be accommodated differently. In particular, we need at least 3 different classes of
tools:

1. A universal modeling language for optimization that targets the large audience
of optimization modelers, building on the success of systems such as AMPL [10],
OPL [27], and ZINC [16]. Capturing a concise and precise model of the problem is
the first and most important step in any optimization solution. We need to make
this modeling language easy to use, well documented, extensible, and sufficiently
expressive for more expert users. This is the only tool set for the non expert and,
hence, it is the most important for proselytizing optimization technology.

2. A programming language for optimization that targets an audience with advanced
skills in both modeling and optimization, and for which application prototyping
and development time are paramount. This will build on tools such as CHIP [25],
EcLIpsE [31], and COMET [28], which integrate a programming language with an
optimization system. Clearly, these tools are for use by optimization experts tack-
ling the most challenging problems where new integrations and hybridizations are
required.

3. A suite of optimization libraries that will serve as the back-ends for the dedicated
modeling and programming languages and will give unparalleled control to opti-
mization application developers. The kernel of these libraries should be as small and
extensible as possible. The API must be carefully designed to allow both flexibility
and ease of use.

The three optimization tools interact as illustrated in Figure 1. The optimization
libraries provide the solving workhorse for the other components, and applications
can make use of whichever component best matches the needs and abilities of the
application developer.

The modeling and solving components are represented in the architecture as the
“Conceptual Model”, the “Executable” and the mapping between them called the
“Model transformation”. In fact this model transformation can be broken down into
two stages, via a “Design Model” ;| which may be implemented as a program in an
“Optimization programming language”, or could be captured only implicitly in the
transformation. The two stages are: “trans” mapping the Conceptual Model down to
a program (Design Model); and “links” which simply links the program to underlying
“Optimization libraries” at the Executable level.

Applications can be developed that making use of each of the 3 different tools:

— An application may invoke a high-level model written in the universal modeling
language, and simply make use of the answer returned;



Application

Fig. 1 The three components of optimization technology, and their interaction and relations
to different modeling concepts.

— An application may link to a complex hybrid solution written in the optimization
programming language; and react to the solutions of partial solutions determined
by the solution module; or

— An application may directly create a model for a single solver using the optimization
libraries API.

The advantage of having the three optimization tools in a single system is that users
can gradually extend their knowledge of the system starting from the most accessible
modeling language level and beginning to use the lower level tools directly as they
become more familiar with the system. There is also a symbiotic relationship between
the components, that should be taken advantage of in their development. For instance,
modeling abstractions developed initially for the modeling language may find their
way into the optimization libraries, if for example solving technology can be developed
that solves them more efficiently than by translation. Similarly, advances in the lower
layers can be exposed in the modeling and programming languages, for example half-
reification [9] initially introduced to improve the translation of complex terms inside
solvers, can be lifted to modeling systems.

3 Research Directions

We see the need and scope for major scientific contributions to optimization technology
in three main areas: Modeling, model transformations and solver technology. Obviously,
these three areas are intimately connected and interdependent, but they often interact
through well-defined interfaces.

3.1 Modeling

The goal of the modeling component is to design and implement a high-level language
and its development environment. We need a fundamental shift from the current view



of (mathematical) modelling which is design modelling dictated by the facilities of
the underlying solvers, to a problem-oriented conceptual modelling which captures the
problem specification in a solver agnostic way. The primary goal of high-level modeling
is to support rapid prototyping by both experts and non-experts. A secondary goal is
to provide optimizers with an environment that allows them to debug and understand
their models at a high level of abstraction, a facility which is strongly lacking in existing
optimization tools. The ultimate goal for modeling should be to develop comprehensive
modeling concepts covering most of the uses of optimization in the field today, from
deterministic to stochastic optimization, from simulation optimization to on-line opti-
mization. The next paragraphs outline important research directions for achieving this
goal.

Search Fundamental to solving all combinatorial problems is search. One of the key
advantages of CP technology over other optimization technology is the ability for the
user to specify complex search procedures succinctly, that are executed efficiently. There
has been substantial progress in the field for defining complex search languages, e.g. [20,
30,29]. But there is more to be done. We believe that search languages should be as
orthogonal as possible, following the ideas of search combinators [22]. Further we need
to extend the complex search available for CP solvers to be usable for other types of
complete solvers like SAT and MIP solvers, and make new kinds of hybrid search, e.g.
combining autonomous search features like activity with programmed search.

Patterns for Hybridization: Complex optimization problems often require hybridiza-
tions of various techniques to obtain high-quality solutions in reasonable time. Tradi-
tionally, each hybrid algorithm is a unique, stand-alone piece of software that requires
substantial implementation effort and integration with existing software components,
as well as a deep understanding of the hybrid method. This makes building hybrid
solutions very challenging. An aim of optimization technology developers should be
to dramatically simplify this process, using a “plug-and-play” approach that allows
modelers to make use of optimization techniques (or “hybridization patterns”) with-
out understanding and/or reimplementing all the components or the communication
between them. We believe one can define common hybridization patterns, i.e., recipes
for creating new solvers from commonly required components see e.g. [21] or [2]. But we
need to go well beyond what is possible currently. A modeler should be able to explore
many hybridizations quickly using concise definitions. For instance, an hybridization
pattern may capture multi-scale modeling that arises in modeling a whole transporta-
tion network at the strategic, tactical, and operational levels.

Symmetry and Dominance Relations: Many industrial applications feature symmetries
and dominance relations which, when not exploited by the underlying algorithms, may
lead to significant degradation in performance. While it is unreasonable to expect that
modelers will be experts in techniques to break symmetries and dominance relations,
it is often the case that users are aware of these features and could communicate them
in the model. A modeling language should make it possible to express symmetries and
dominances or to reveal them through high-level constructs (e.g., [14]).

Stochastic Optimization: In the last decade, significant progress has been realized in
pushing the frontier of stochastic optimization. Simultaneously, there has been an in-
creasing number of applications requiring optimization under uncertainty. Ideally one



should be able to start from an existing deterministic model, and extend this to a
stochastic model without reformulating constraints, by providing stochastic input data,
and relating different decisions to different stages. While this is possible in some sys-
tems [1] modelling these problems is still too low level, and tied to a the solving mech-
anism. A modeling language should make it possible to express optimization problems
under uncertainty concisely independent of the solving mechanism. This means being
able to specify random variables, common distributions, a variety of uncertainty mod-
els such as Markov and graphical models, as well as a variety of sampling procedures
(e.g., Latin-Square sampling and importance sampling). The modeling language also
needs to make it possible to express various types of objective functions to minimize
expected value or various measures of risk and to perform robust optimization. Support
for multi-stage (e.g. bi-level) models must also be included given their prominence in
numerous emerging applications in energy and infrastructures.

Dynamic Optimization: As optimization is increasingly moving from strategic plan-
ning to operational decision making under uncertainty, there is a need to support
dynamic optimization applications, i.e., applications where the data, variables, and/or
constraints evolve over time. In many such applications, a common model is extended
over time by adding constraints expressing what was previously the unknown future
or is applied to different scenarios capturing some future events. There is a need to
find the proper modeling support for dynamic optimization, to develop a theory of in-
cremental optimization supporting addition and deletion of constraints and variables,
and to build efficient incremental solvers to support dynamic optimization better.

Debugging and FExplanation: There is a tremendous lack of integrated development
environments for optimization. As a result, modelers or programmers receive little or
no help to debug their models/programs, to analyze performance, and to understand
the behavior of their applications and the consequences of their modeling choices. This
severely restricts access to optimization, since optimization tends to have rather com-
plex control and data flows, due to non-deterministic search, constraint propagation,
randomization, and sophisticated building blocks such as cuts, nogoods, and global
constraints, whose behavior may be hard to understand.

We need to remedy this situation by building a sophisticated integrated develop-
ment environment (IDE) for optimization systems. While the IDE itself can be (and
indeed should be) produced using off the shelf systems such as Eclipse, the tools that
are integrated in the IDE are crucial to helping develop the next generation of opti-
mization practitioners. A key aspect of the research is to communicate some of the
solver behavior in terms that are understandable to modelers, i.e., in terms of the orig-
inal model. Another important feature will be a set of tools to “debug” the correctness
of the models (e.g., identifying sets of infeasible constraints e.g [15], a feature already
offered by systems like AIMMS [1]), to explore the performance of a given optimization
technique (e.g., capturing how the search space is explored and what is performed at
every node), to compare the performance of several solving techniques (e.g., by compar-
ing profiling data of each technique on an array of benchmarks), and to automatically
tune an optimization model. Developing these tools in a scalable, meaningful and, as
much as possible, solver-independent way is very challenging, but even modest progress
in this direction may make a significant difference on the practice in the field.



Stmulation: Much “optimization” performed in practice is through simulation. An or-
ganization can build a simulation of their operations, and then simulate the effect of
varying some configurations and/or business strategies on some scenarios in order to
adjust their processes accordingly. Most organizations find it far easier to generate a
simulation of their organization than to model it as a suite of optimization problems.
Optimization technology developers need to integrate simulation and simulation opti-
mization for use in modeling to cover this fundamental use of optimization and smooth
the path from simulation to optimization (see e.g. [5,11]). Simultaneously, many simula-
tion tools are in need of optimization to address some of their challenges as they move
closer to optimization. While the integration of optimization and simulation should
provide a fertile ground to make significant contributions to the field, at present it is
not heavily explored.

3.2 Model Analyses and Transformations

The availability of high-level “conceptual” models opens up some intriguing perspec-
tives for optimization software. By capturing the structure of the application, concep-
tual models convey substantial information to the modeling system, which can then
exploit it to derive “design” models that can be efficiently solved. In this section, we
review some of these opportunities focusing on model analyses and transformations.

3.2.1 Model Analyses

Given a high-level conceptual model of an optimization problem, it is important for
an optimization system to perform a static or runtime analysis to discover as much
information regarding the model as it is needed to apply the appropriate model trans-
formations. While the use of analysis techniques has been extensively explored in other
programming paradigms, this has not yet been the case for constraint programming.
This following paragraphs define a number of examples where model analyses can be
used.

Automatic Recovery of Combinatorial Structures: A modeling language should aim to
convey problem structure to the solver as explicitly as possible. However, non-experts
may not always use the appropriate abstractions or may not recognize them as such
in their models. Mixed integer programming (MIP) solvers uses a pre-processing steps
which, among many other functionalities, tries to infer some implicit structure from
the model (e.g., recognizing knapsack cuts by combining constraints [24]). A universal
modeling system has a similar goal but for a much richer modeling language and a larger
set of underlying solving technologies. A focus should be on automatically determine
global substructure in the form of implied global constraints (as initiated by [3,4]).
Adding these global constraints to the model (with or without removing the constraints
that imply them) can dramatically improve solving. More importantly it may make
life considerably easier for other model analyses and transformations listed below. For
example, current methods for automatic derivation of search procedures [8] strongly
make use of global constraints. A better understanding of the global substructure
can also help to transform a model written for one solver technology for another. So
automatic derivation of implied constraints is an enabling analysis for many other
analyses.



Automatic Recognition of Special Cases An analysis can detect when a model is linear,
or when, for example, bounds consistency is the same as domain consistency. There are
often several design choices for some parts of every model (e.g., time-indexed models
or time-independent models in scheduling with MIP) and a long-term goal should be
to automate this selection using model analyses. Preliminary research on scheduling
models has shown the feasibility of this approach on a dedicated domain [18]: we need
to generalize this approach to much broader classes of models.

Automatic Derivation of Symmetries and Dominance Relationships: Industrial appli-
cations often feature symmetries, conditional symmetries, and/or dominance relation-
ships. As mentioned before, modelers should have the opportunity to express symme-
tries and dominances directly. But the modeling system should also be able to derive
these relationships from the problem variables and constraints. Preliminary work has
indicated the feasibility of this approach [17,26]. Once these symmetries and domi-
nances are identified, the model can add symmetry-breaking constraints or implement
dedicated search procedures dynamically breaking symmetries and dominances.

3.2.2 Model Transformations

Given a high-level conceptual model, it is possible to systematically derive design mod-
els that exploit the specific features of the application at hand (where the features might
have been explicitly given by the user or automatically inferred by an analyzer). A lan-
guage for capturing and expressing such transformations, like Cadmium [7], provides
a uniform approach to recording and using transformations. This can provide a good
starting point for building a library of reusable transformation components which can
then be composed naturally to express complex model transformations. The following
are three of the main research directions worth pursuing.

Automatic Derivation of Design Models: A drawback of most existing approaches to
combinatorial optimization is the necessity of choosing a solver technology before ex-
pressing a model. This early decision can be wrong and thus lead to significant devel-
opment effort which later has to be discarded entirely. Solver-independent conceptual
models make it possible to delay this decision. However, they must be able to compile
these high-level models into design models (e.g., CP or MIP models) and to find the
“best” way to map high-level features into design models.

Automatic Derivation of Search Procedures: Although modelers must be able to specify
search procedures if desired, it is likely that most modelers will choose not to use this
feature and simply express the variables, constraints, and objective of their application.
However, the high-level nature of the model makes it possible to derive dedicated search
procedures automatically. The idea is to analyze the model constraints and objectives
to derive dedicated heuristics that should outperform general-purpose search heuristics.
Preliminary evidence on reasonably simple models has demonstrated the potential of
this approach, which is however in its infancy [8].

Automatic Hybridization: Given a universal modeling language with a large variety of
underlying optimization solvers, there is significant scope for developing hybrid opti-
mization solutions. Model analyses, algorithm portfolios, or automatic model tuning
may be used to find the best hybridization for a class of problems or instances.



3.3 Solver Technology

Over the last decade, as problems have become increasingly complex and the time
available for running a solution algorithm has been reduced for some classes of appli-
cations, hybrid methods have emerged as the technology of choice. To maximize the
ease of building hybrid optimization solutions we need a fully integrated optimiza-
tion solver that smoothly hybridizes the main optimization technologies: constraint
programming (CP), Boolean satisfiability (SAT), mixed integer programming (MIP),
mixed integer non-linear programming (MINLP), local search (LS), and dynamic pro-
gramming (DP). An August 2011 OR/MS article [12] eloquently articulated that CP
has become a must-have tool in any O.R. practitioner’s toolkit and hybridization is
becoming the future of optimization. CP is ideally positioned to become the kernel of
the new generation of optimization technologies because, since its inception, it has been
an integration framework. Constraints in CP are treated separately and communicate
with each other, and it is not a large step to move from this to treating models or
submodels separately and communicating between them. In addition, CP begins with
the most high-level modeling viewpoint, and hence is well placed to define new higher
level hybrid modeling facilities.

The key challenge in designing an architecture for such an integrated system is to
achieve the performance of a dedicated hybridization, while maintaining the composi-
tionality of the architecture. This means that users only pay for the technologies they
use and that no significant overhead is introduced by the architecture.

An ideal optimization system should be implemented as a suite of low-level libraries,
itself consisting of multiple components for each of the major technologies. The glue
between the various components, and their integration, should be a CP-based archi-
tecture now consisting of a number of collaborating constraint stores. We now examine
a number of areas where significant progress is necessary to meet this overall vision.

From SAT to CP Ezplanations and No-Goods: A key advance in modern optimiza-
tion is the advent of rapid methods to explain the reasons for failure and to record
them as constraints, often called no-goods in artificial intelligence and Benders cuts in
operations research. Nogoods have been vital to the success of SAT/SMT solvers and
form the basis of lazy clause generation [19], a hybridization of CP and SAT, which is
currently the state of the art for classes of hard scheduling problems [23]. The challenge
now is to extend no-good generation to combinatorial/global constraints which are the
cornerstone of the CP modeling methodology. These constraints are often difficult to
explain succinctly and long explanations can suffer from limited re-usability. What is
needed is the right way to explain the behavior of global constraints, yielding shorter
nogoods that can be exploited during search.

Mized Integer Nonlinear Programming: Many of the important problems facing our
society, in particular in energy and infrastructure management, involves mixed non-
linear integer programming problems. They arise, for instance, in modeling electrical
power systems and gas infrastructures. Nonlinear optimization problems are very hard
to solve: they are generally tackled by globally convergent methods which produce
local minima from a wide range of starting points. Unfortunately, these methods do
not produce (dual) lower bounds which makes it difficult to evaluate the quality of
solutions; they also do not produce any guarantee on the quality of local minima.
However, there has been significant progress in MIP and convex optimization in recent



10

years, which creates opportunities to develop global optimization solvers exploiting
both the discrete and continuous aspects of MINLP problems. New universal solver
technology must include MINLP capabilities. We need an MINLP component which
automatically and dynamically convexifies or linearizes non-convex constraints, making
use of the combinatorial substructure, which are then communicated to a central linear
or convex optimization solver. An MINLP component must also include traditional
globally convergent methods and be fully integrated with the CP-based architecture
to allow for flexible search and the exploitation of combinatorial substructures arising
in our application areas.

Dynamic Programming: When applicable, dynamic programming is a highly effective
methodology to solve optimization problems. This is typically the case when there
is enough structure in the applications and when parts of the problems are loosely
connected. Dynamic programming algorithms are often programmed from scratch and
no framework is available to express dynamic programs naturally. An optimization
technology platform should meet the following three objectives:

1. Provide a framework for expressing recursive equations that will then be compiled
into efficient low-level program,;

2. Derive automatically recursive equations from certain classes of high-level models;

3. Automate the incremental updates of dynamic programs so that they can be easily
included in search, e.g., to compute lower bounds.

Alternatively, we can try to take advantage of dynamic programming approaches in
CP search using dominance relations (see [6]).

Data intensive Optimization: One fundamental change in the optimization space is the
availability of massive amounts of data. This has led to new classes of optimization ap-
plications such as data-mining, (constraint-based) clustering and pattern discovery and
recognition. These applications arise in many areas including computational biology,
social networks and forecasting. Moreover, some of these areas are evolving from very
dedicated algorithms, specialized to a given task, to more general frameworks. Indeed,
some data-mining projects have shown that constraint programming is a flexible and
efficient tool for addressing some traditional data-mining tasks [13].

It is clear however that optimization technology has to evolve to meet the demands
of some of these applications. Some of them feature few variables but extremely large
domains (e.g., large DNA or RNA sequences), others feature huge number of vari-
ables and constraints (e.g., mining documents), while others deal with extremely large
graphs that must be clustered with a variety of constraints on the clusters. We need to
design the data structures and optimization algorithms appropriate for data-intensive
optimization.

Large-Scale Parallel Optimization: The last couple of years have seen a fundamental
change in hardware evolution. Processors are not doubling speed every 18 months or
so. Rather, the industry has moved from single core desktop, to multi-core computers,
large clusters, and clouds of computing resources.

Optimization software has benefited tremendously from advances in processor
speed, making it possible to solve increasingly complex applications or problems which
must be solved with time constraints. However, improvements in hardware will no
longer translate into speedups for optimization software: It will become necessary to



11

exploit parallel computing resources which may be challenging given the nature of
optimization algorithms.

Recent research has demonstrated that parallel computing on multi-core architec-
tures can bring significant benefits and that communication starts becoming a sig-
nificant issue when dealing with more than 1,000 processors [32]. One of the goals for
parallel optimization will be to build a novel architecture to scale to larger clouds, which
may fundamentally change the scope of highly complex problems and data-intensive
optimizations. Another goal should be to study how to parallelize hybrid and decom-
position algorithms, since they require more synchronization and communication.

4 Conclusion

In our opinion the future for constraint programming is very bright. The principle
reason is that CP concentrates on a high level view of problem structure, and is able to
take advantage of that structure. As we gain new insights into modeling, model analysis,
model transformations, global constraint solving, and hybridization, the benefits of
this new optimization technology can be utilized without expert knowledge. As we
tackle more and more complex optimization problems, the combination of optimization
algorithms and programming language concepts that is constraint programming, will
become more and more essential.

Acknowledgments We would like to thank the anonymous reviewers for their comments
which helped substantially improve this article. NICTA is funded by the Australian
Government as represented by the Department of Broadband, Communications and
the Digital Economy and the Australian Research Council through the ICT Center of
Excellence program.

References

—_

. Aimms modelling system. http://business.aimms.com.

2. I. D. Aron, J. N. Hooker, and T. H. Yunes. Simpl: A system for integrating optimization
techniques. In Integration of Al and OR Techniques in Constraint Programming for
Combinatorial Optimization Problems, First International Conference, CPAIOR 2004,
volume 3011 of Lecture Notes in Computer Science, pages 21-36. Springer, 2004.

3. N. Beldiceanu and H. Simonis. A constraint seeker: Finding and ranking global constraints
from examples. In J. H.-M. Lee, editor, Principles and Practice of Constraint Programming
- CP 2011 - 17th International Conference, volume 6876 of Lecture Notes in Computer
Science, pages 12—26. Springer, 2011.

4. N. Beldiceanu and H. Simonis. A model seeker: Extracting global constraint models from
positive examples. In M. Milano, editor, Proceedings of the 18th International Conference
of Principles and Practice of Constraint Programming, CP 2012,, volume 7514 of Lecture
Notes in Computer Science, pages 141-157. Springer, 2012.

5. A. Brodsky and H. Nash. CoJava: optimization modeling by nondeterministic simulation,
in constraint programming. In Principles and Practice of Constraint Programming (CP),
pages 91-107, 2006.

6. G. Chu, M. Garcia de la Banda, and P. Stuckey. Automatically exploiting subproblem
equivalence in constraint programming. In Integration of AI and OR Techniques in Con-
straint Programming for Combinatorial Optimization Problems, volume 6140 of LNCS,
pages 71-86. Springer, 2010.

7. G. Duck, L. De Koninck, and P. Stuckey. Cadmium: An implementation of ACD term

rewriting. In M. G. de la Banda and E. Pontelli, editors, Proceedings of the 24th Interna-

tional Conference on Logic Programming, LNCS, pages 531-545. Springer, 2008.



12

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.
26.

27.

. S. Elsayed and L. Michel. Synthesis of search algorithms from high-level CP models. In
J. Lee, editor, Proceedings of the 17th International Conference on Principles and Practice
of Constraint Programming, volume 6876 of LNCS, pages 256-270. Springer, 2011.

. T. Feydy, Z. Somogyi, and P. Stuckey. Half-reification and flattening. In J. Lee, editor,

Proceedings of the 17th International Conference on Principles and Practice of Constraint

Programming, volume 6876 of LNCS, pages 286-301. Springer, 2011.

R. Fourer, D. M. Gay, and B. W. Kernighan. AMPL: A Modeling Language for Mathe-

matical Programming. Duxbury Press, 2002.

K. Francis, S. Brand, and P. Stuckey. Optimization modelling for software developers. In

M. Milano, editor, Proceedings of the 18th International Conference on Principles and

Practice of Constraint Programming, page to appear. Springer, 2012.

H. Ganu. Constraint programming. In ORMS Today, pages 44—47. August 2011.

T. Guns, S. Nijssen, and L. D. Raedt. Itemset mining: A constraint programming per-

spective. Artificial Intelligence, 175(12-13):1951-1983, 2011.

W. Harvey and T. Kelsey. Symmetry group expression for CSPs. In Proceedings of Sym-

Con03: Third International Workshop on Symmetry in Constraint Satisfaction Problems,

pages 86-96, 2003.

U. Junker. Quickxplain: Preferred explanations and relaxations for over-constrained prob-

lems. In Proceedings of the Nineteenth National Conference on Artificial Intelligence,

Sizteenth Conference on Innovative Applications of Artificial Intelligence, pages 167-172.

AAAI Press / The MIT Press, 2004.

K. Marriott, N. Nethercote, R. Rafeh, P. Stuckey, M. Garcia de la Banda, and M. Wallace.

The design of the Zinc modelling language. Constraints, 13(3):229-267, 2008.

C. Mears, M. G. de la Banda, and M. Wallace. On implementing symmetry detection.

Constraints, 14(4):443-477, 2009.

J.-N. Monette, Y. Deville, and P. Van Hentenryck. Aeon: Synthesizing Scheduling Al-

gorithms from High-Level Models, pages 43-59. Operations Research/Computer Science

Interfaces. Springer, 2009.

O. Ohrimenko, P. Stuckey, and M. Codish. Propagation via lazy clause generation. Con-

straints, 14(3):357-391, 2009.

L. Perron. Search procedures and parallelism in constraint programming. In J. Jaffar,

editor, Fifth International Conference on Principles and Practice of Constraint Program-

ming, volume 1713 of LNCS, pages 346—-360. Springer, 1999.

J. Puchinger, P. Stuckey, M. Wallace, and S. Brand. Dantzig-wolfe decomposition and

branch-and-price solving in G12. Constraints, 16(1):77-99, 2011.

T. Schrijvers, G. Tack, P. Wuille, H. Samulowitz, and P. Stuckey. Search combinators.

In J. Lee, editor, Seventeenth International Conference on Principles and Practice of

Constraint Programming, volume 6876 of LNCS, pages 774—788. Springer, 2011.

A. Schutt, T. Feydy, P. Stuckey, and M. Wallace. Explaining the cumulative propagator.

Constraints, 16(3):250-282, 2011.

M. Trick. Formulations and reformulations in integer programming. In Proceedings of the

Second International Conference on the Integration of AI and OR Techniques in Con-

straint Programming for Combinatorial Optimization Problems (CP-AI-OR’05), 2005.

P. Van Hentenryck. Constraint Satisfaction in Logic Programming. MIT Press, 1989.

P. Van Hentenryck, P. Flener, J. Pearson, and M. Agren. Compositional derivation of

symmetries for constraint satisfaction. In Proceedings of the 6th International Symposium

on Abstraction, Reformulation and Approzimation, (SARA 2005), pages 234-247, 2005.

P. Van Hentenryck, I. Lustig, L. Michel, and J.-F. Puget. The OPL Optimization Pro-

gramming Language. MIT Press, 1999.

. P. Van Hentenryck and L. Michel. Constraint-Based Local Search. MIT Press, 2005.

. P. Van Hentenryck and L. Michel. Constraint-Based Local Search. MIT Press, 2005.

. P. Van Hentenryck, L. Perron, and J.-F. Puget. Search and strategies in OPL. ACM
TOCL, 1(2):285-315, 2000.

. M. Wallace, S. Novello, and J. Schimpf. Eclipse: A platform for constraint logic program-
ming. Technical report, IC-Parc Imperial College, London,, 1997.

. F. Xie and A. J. Davenport. Massively parallel constraint programming for supercomput-
ers: Challenges and initial results. In Integration of AI and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems, volume 6140 of LNCS, pages
334-338. Springer, 2010.



