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Abstract Technology for combinatorial optimization is rapidly changing, and as the

size and scope of problems that can be solved steadily increases, the complexity of

the underlying technology is growing. We foresee a huge demand for both the simpli-

fication of use of combinatorial optimization technology (so called “model and run”

capabilities), as well as increasing need for the ability to quickly build complex hybrid

solutions. These demands will place new emphasis on universal modeling languages

and model transformation capabilities, as well as flexible and high level ways of speci-

fying hybrid solutions. These changes put constraint programming in an ideal position

since: constraint programming has the most high-level view of problems to begin with

so we can ease modeling difficulties; and since constraint programmng is an integrative

technology, we have already spent considerable effort in making different solving tech-

nologies work together seamlessly. In this position paper we outline some of the key

challenges and important research directions we foresee for optimization technology,

1 Introduction

Optimization technology is increasingly pervasive in our society. It is used in many

different applications, such as scheduling supply-chains, controlling our main infras-

tructures, mitigating natural disasters, organizing transportation systems, discovering

motifs in genetic material or patterns in social networks, and validating programs. This

trend is likely to continue and intensify given the stress on our natural resources and

the need to preserve our environment.

As the need for optimization technology increases, is it essential to lower the barrier

of entry to using this technology. Many optimization problems are simple to solve

using modern technology, but the problem owners are unaware or unable to use the
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optimization technology already available. It is not acceptable that a new optimization

application requires completing a Ph.D. to build a solution. The technology needs to

be much easier to use so that domain experts with low optimization background can

take advantage of it. While problem modeling is a skill that needs to be learned, we

need to make it far easier to learn and apply this skill. To this end we need universal

modeling languages that can be used to “model and run”, that is, once a problem is

modeled correctly, the underlying optimization system automatically determines what

is the most appropriate technology, without any further intervention from the modeler.

Furthermore, we need to consider other avenues for using optimization technology, such

as taking advantage of the widespread ability of people to build simulations as a method

for accessing optimization technology (by automatically converting these simulations

into optimization tools).

As optimization tackles increasingly more complex and large-scale applications, the

demands placed on the underlying technology in terms of speed, scale, and expressive

power generates fundamental computational challenges. The complexity of this new

generation of applications places a significant cognitive burden even on expert prac-

titioners. For these applications it is no longer sufficient to write high-level models

that can be readily solved by a black-box solver: It is now necessary to discover which

technology is most appropriate for each part of a problem. This is why hybridizations

of major technologies, such as constraint programming, mathematical programming

and local search, are becoming the de-facto standard for addressing the complexity

of emerging applications. At the same time, the scope of optimization has broadened

from a focus on routing and scheduling to other areas of application that are some-

times both more challenging and more rewarding. These include integrated resource

planning; operational decision-making under uncertainty, with data being delivered

continuously in real-time to the optimization engine; and data-intensive optimization

where optimization technology is applied to very large data sets. This, in turn, places

new requirements on the technology which now needs to find high-quality solutions un-

der time constraints, exploit uncertainty, deal with large data sets, and be integrated

in complex runtime environments.

2 Challenges

2.1 Modeling and Solving

It is clear from the above discussion that optimization technology needs to be easier to

use for both non-experts and experts. We believe it is vital to create new technology

that will dramatically simplify the generation of new complex optimization applications

by supporting rapid prototyping, deep solver hybridization,1 data-intensive optimiza-

tion, and decision-making under uncertainty. In particular, optimization technology

needs to address the following challenges:

1. The design of high-level modeling languages and development environments for

optimization that capture the structure and execution behavior of optimization

problems at a high level of abstraction, including its combinatorial substructures

and stochastic information;

1 That is, using tightly interacting different solving technologies together.
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2. The definition of model transformations that take as inputs high-level models and

transform them into hybrid algorithms, exploiting the specific features of the ap-

plication at hand;

3. The design and implementation of efficient, highly parallel, optimization solvers

that integrate constraint programming (CP), mixed integer programming (MIP),

mixed integer nonlinear programming (MINLP), local search (LS), dynamic pro-

gramming (DP), and data-intensive optimization.

2.2 Optimization Tools

We take the view that there are multiple classes of optimization users, whose needs

must be accommodated differently. In particular, we need at least 3 different classes of

tools:

1. A universal modeling language for optimization that targets the large audience

of optimization modelers, building on the success of systems such as AMPL [10],

OPL [27], and Zinc [16]. Capturing a concise and precise model of the problem is

the first and most important step in any optimization solution. We need to make

this modeling language easy to use, well documented, extensible, and sufficiently

expressive for more expert users. This is the only tool set for the non expert and,

hence, it is the most important for proselytizing optimization technology.

2. A programming language for optimization that targets an audience with advanced

skills in both modeling and optimization, and for which application prototyping

and development time are paramount. This will build on tools such as CHIP [25],

Eclipse [31], and Comet [28], which integrate a programming language with an

optimization system. Clearly, these tools are for use by optimization experts tack-

ling the most challenging problems where new integrations and hybridizations are

required.

3. A suite of optimization libraries that will serve as the back-ends for the dedicated

modeling and programming languages and will give unparalleled control to opti-

mization application developers. The kernel of these libraries should be as small and

extensible as possible. The API must be carefully designed to allow both flexibility

and ease of use.

The three optimization tools interact as illustrated in Figure 1. The optimization

libraries provide the solving workhorse for the other components, and applications

can make use of whichever component best matches the needs and abilities of the

application developer.

The modeling and solving components are represented in the architecture as the

“Conceptual Model”, the “Executable” and the mapping between them called the

“Model transformation”. In fact this model transformation can be broken down into

two stages, via a “Design Model” , which may be implemented as a program in an

“Optimization programming language”, or could be captured only implicitly in the

transformation. The two stages are: “trans” mapping the Conceptual Model down to

a program (Design Model); and “links” which simply links the program to underlying

“Optimization libraries” at the Executable level.

Applications can be developed that making use of each of the 3 different tools:

– An application may invoke a high-level model written in the universal modeling

language, and simply make use of the answer returned;
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Fig. 1 The three components of optimization technology, and their interaction and relations
to different modeling concepts.

– An application may link to a complex hybrid solution written in the optimization

programming language; and react to the solutions of partial solutions determined

by the solution module; or

– An application may directly create a model for a single solver using the optimization

libraries API.

The advantage of having the three optimization tools in a single system is that users

can gradually extend their knowledge of the system starting from the most accessible

modeling language level and beginning to use the lower level tools directly as they

become more familiar with the system. There is also a symbiotic relationship between

the components, that should be taken advantage of in their development. For instance,

modeling abstractions developed initially for the modeling language may find their

way into the optimization libraries, if for example solving technology can be developed

that solves them more efficiently than by translation. Similarly, advances in the lower

layers can be exposed in the modeling and programming languages, for example half-

reification [9] initially introduced to improve the translation of complex terms inside

solvers, can be lifted to modeling systems.

3 Research Directions

We see the need and scope for major scientific contributions to optimization technology

in three main areas: Modeling, model transformations and solver technology. Obviously,

these three areas are intimately connected and interdependent, but they often interact

through well-defined interfaces.

3.1 Modeling

The goal of the modeling component is to design and implement a high-level language

and its development environment. We need a fundamental shift from the current view
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of (mathematical) modelling which is design modelling dictated by the facilities of

the underlying solvers, to a problem-oriented conceptual modelling which captures the

problem specification in a solver agnostic way. The primary goal of high-level modeling

is to support rapid prototyping by both experts and non-experts. A secondary goal is

to provide optimizers with an environment that allows them to debug and understand

their models at a high level of abstraction, a facility which is strongly lacking in existing

optimization tools. The ultimate goal for modeling should be to develop comprehensive

modeling concepts covering most of the uses of optimization in the field today, from

deterministic to stochastic optimization, from simulation optimization to on-line opti-

mization. The next paragraphs outline important research directions for achieving this

goal.

Search Fundamental to solving all combinatorial problems is search. One of the key

advantages of CP technology over other optimization technology is the ability for the

user to specify complex search procedures succinctly, that are executed efficiently. There

has been substantial progress in the field for defining complex search languages, e.g. [20,

30,29]. But there is more to be done. We believe that search languages should be as

orthogonal as possible, following the ideas of search combinators [22]. Further we need

to extend the complex search available for CP solvers to be usable for other types of

complete solvers like SAT and MIP solvers, and make new kinds of hybrid search, e.g.

combining autonomous search features like activity with programmed search.

Patterns for Hybridization: Complex optimization problems often require hybridiza-

tions of various techniques to obtain high-quality solutions in reasonable time. Tradi-

tionally, each hybrid algorithm is a unique, stand-alone piece of software that requires

substantial implementation effort and integration with existing software components,

as well as a deep understanding of the hybrid method. This makes building hybrid

solutions very challenging. An aim of optimization technology developers should be

to dramatically simplify this process, using a “plug-and-play” approach that allows

modelers to make use of optimization techniques (or “hybridization patterns”) with-

out understanding and/or reimplementing all the components or the communication

between them. We believe one can define common hybridization patterns, i.e., recipes

for creating new solvers from commonly required components see e.g. [21] or [2]. But we

need to go well beyond what is possible currently. A modeler should be able to explore

many hybridizations quickly using concise definitions. For instance, an hybridization

pattern may capture multi-scale modeling that arises in modeling a whole transporta-

tion network at the strategic, tactical, and operational levels.

Symmetry and Dominance Relations: Many industrial applications feature symmetries

and dominance relations which, when not exploited by the underlying algorithms, may

lead to significant degradation in performance. While it is unreasonable to expect that

modelers will be experts in techniques to break symmetries and dominance relations,

it is often the case that users are aware of these features and could communicate them

in the model. A modeling language should make it possible to express symmetries and

dominances or to reveal them through high-level constructs (e.g., [14]).

Stochastic Optimization: In the last decade, significant progress has been realized in

pushing the frontier of stochastic optimization. Simultaneously, there has been an in-

creasing number of applications requiring optimization under uncertainty. Ideally one
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should be able to start from an existing deterministic model, and extend this to a

stochastic model without reformulating constraints, by providing stochastic input data,

and relating different decisions to different stages. While this is possible in some sys-

tems [1] modelling these problems is still too low level, and tied to a the solving mech-

anism. A modeling language should make it possible to express optimization problems

under uncertainty concisely independent of the solving mechanism. This means being

able to specify random variables, common distributions, a variety of uncertainty mod-

els such as Markov and graphical models, as well as a variety of sampling procedures

(e.g., Latin-Square sampling and importance sampling). The modeling language also

needs to make it possible to express various types of objective functions to minimize

expected value or various measures of risk and to perform robust optimization. Support

for multi-stage (e.g. bi-level) models must also be included given their prominence in

numerous emerging applications in energy and infrastructures.

Dynamic Optimization: As optimization is increasingly moving from strategic plan-

ning to operational decision making under uncertainty, there is a need to support

dynamic optimization applications, i.e., applications where the data, variables, and/or

constraints evolve over time. In many such applications, a common model is extended

over time by adding constraints expressing what was previously the unknown future

or is applied to different scenarios capturing some future events. There is a need to

find the proper modeling support for dynamic optimization, to develop a theory of in-

cremental optimization supporting addition and deletion of constraints and variables,

and to build efficient incremental solvers to support dynamic optimization better.

Debugging and Explanation: There is a tremendous lack of integrated development

environments for optimization. As a result, modelers or programmers receive little or

no help to debug their models/programs, to analyze performance, and to understand

the behavior of their applications and the consequences of their modeling choices. This

severely restricts access to optimization, since optimization tends to have rather com-

plex control and data flows, due to non-deterministic search, constraint propagation,

randomization, and sophisticated building blocks such as cuts, nogoods, and global

constraints, whose behavior may be hard to understand.

We need to remedy this situation by building a sophisticated integrated develop-

ment environment (IDE) for optimization systems. While the IDE itself can be (and

indeed should be) produced using off the shelf systems such as Eclipse, the tools that

are integrated in the IDE are crucial to helping develop the next generation of opti-

mization practitioners. A key aspect of the research is to communicate some of the

solver behavior in terms that are understandable to modelers, i.e., in terms of the orig-

inal model. Another important feature will be a set of tools to “debug” the correctness

of the models (e.g., identifying sets of infeasible constraints e.g [15], a feature already

offered by systems like AIMMS [1]), to explore the performance of a given optimization

technique (e.g., capturing how the search space is explored and what is performed at

every node), to compare the performance of several solving techniques (e.g., by compar-

ing profiling data of each technique on an array of benchmarks), and to automatically

tune an optimization model. Developing these tools in a scalable, meaningful and, as

much as possible, solver-independent way is very challenging, but even modest progress

in this direction may make a significant difference on the practice in the field.
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Simulation: Much “optimization” performed in practice is through simulation. An or-

ganization can build a simulation of their operations, and then simulate the effect of

varying some configurations and/or business strategies on some scenarios in order to

adjust their processes accordingly. Most organizations find it far easier to generate a

simulation of their organization than to model it as a suite of optimization problems.

Optimization technology developers need to integrate simulation and simulation opti-

mization for use in modeling to cover this fundamental use of optimization and smooth

the path from simulation to optimization (see e.g. [5,11]). Simultaneously, many simula-

tion tools are in need of optimization to address some of their challenges as they move

closer to optimization. While the integration of optimization and simulation should

provide a fertile ground to make significant contributions to the field, at present it is

not heavily explored.

3.2 Model Analyses and Transformations

The availability of high-level “conceptual” models opens up some intriguing perspec-

tives for optimization software. By capturing the structure of the application, concep-

tual models convey substantial information to the modeling system, which can then

exploit it to derive “design” models that can be efficiently solved. In this section, we

review some of these opportunities focusing on model analyses and transformations.

3.2.1 Model Analyses

Given a high-level conceptual model of an optimization problem, it is important for

an optimization system to perform a static or runtime analysis to discover as much

information regarding the model as it is needed to apply the appropriate model trans-

formations. While the use of analysis techniques has been extensively explored in other

programming paradigms, this has not yet been the case for constraint programming.

This following paragraphs define a number of examples where model analyses can be

used.

Automatic Recovery of Combinatorial Structures: A modeling language should aim to

convey problem structure to the solver as explicitly as possible. However, non-experts

may not always use the appropriate abstractions or may not recognize them as such

in their models. Mixed integer programming (MIP) solvers uses a pre-processing steps

which, among many other functionalities, tries to infer some implicit structure from

the model (e.g., recognizing knapsack cuts by combining constraints [24]). A universal

modeling system has a similar goal but for a much richer modeling language and a larger

set of underlying solving technologies. A focus should be on automatically determine

global substructure in the form of implied global constraints (as initiated by [3,4]).

Adding these global constraints to the model (with or without removing the constraints

that imply them) can dramatically improve solving. More importantly it may make

life considerably easier for other model analyses and transformations listed below. For

example, current methods for automatic derivation of search procedures [8] strongly

make use of global constraints. A better understanding of the global substructure

can also help to transform a model written for one solver technology for another. So

automatic derivation of implied constraints is an enabling analysis for many other

analyses.
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Automatic Recognition of Special Cases An analysis can detect when a model is linear,

or when, for example, bounds consistency is the same as domain consistency. There are

often several design choices for some parts of every model (e.g., time-indexed models

or time-independent models in scheduling with MIP) and a long-term goal should be

to automate this selection using model analyses. Preliminary research on scheduling

models has shown the feasibility of this approach on a dedicated domain [18]: we need

to generalize this approach to much broader classes of models.

Automatic Derivation of Symmetries and Dominance Relationships: Industrial appli-

cations often feature symmetries, conditional symmetries, and/or dominance relation-

ships. As mentioned before, modelers should have the opportunity to express symme-

tries and dominances directly. But the modeling system should also be able to derive

these relationships from the problem variables and constraints. Preliminary work has

indicated the feasibility of this approach [17,26]. Once these symmetries and domi-

nances are identified, the model can add symmetry-breaking constraints or implement

dedicated search procedures dynamically breaking symmetries and dominances.

3.2.2 Model Transformations

Given a high-level conceptual model, it is possible to systematically derive design mod-

els that exploit the specific features of the application at hand (where the features might

have been explicitly given by the user or automatically inferred by an analyzer). A lan-

guage for capturing and expressing such transformations, like Cadmium [7], provides

a uniform approach to recording and using transformations. This can provide a good

starting point for building a library of reusable transformation components which can

then be composed naturally to express complex model transformations. The following

are three of the main research directions worth pursuing.

Automatic Derivation of Design Models: A drawback of most existing approaches to

combinatorial optimization is the necessity of choosing a solver technology before ex-

pressing a model. This early decision can be wrong and thus lead to significant devel-

opment effort which later has to be discarded entirely. Solver-independent conceptual

models make it possible to delay this decision. However, they must be able to compile

these high-level models into design models (e.g., CP or MIP models) and to find the

“best” way to map high-level features into design models.

Automatic Derivation of Search Procedures: Although modelers must be able to specify

search procedures if desired, it is likely that most modelers will choose not to use this

feature and simply express the variables, constraints, and objective of their application.

However, the high-level nature of the model makes it possible to derive dedicated search

procedures automatically. The idea is to analyze the model constraints and objectives

to derive dedicated heuristics that should outperform general-purpose search heuristics.

Preliminary evidence on reasonably simple models has demonstrated the potential of

this approach, which is however in its infancy [8].

Automatic Hybridization: Given a universal modeling language with a large variety of

underlying optimization solvers, there is significant scope for developing hybrid opti-

mization solutions. Model analyses, algorithm portfolios, or automatic model tuning

may be used to find the best hybridization for a class of problems or instances.
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3.3 Solver Technology

Over the last decade, as problems have become increasingly complex and the time

available for running a solution algorithm has been reduced for some classes of appli-

cations, hybrid methods have emerged as the technology of choice. To maximize the

ease of building hybrid optimization solutions we need a fully integrated optimiza-

tion solver that smoothly hybridizes the main optimization technologies: constraint

programming (CP), Boolean satisfiability (SAT), mixed integer programming (MIP),

mixed integer non-linear programming (MINLP), local search (LS), and dynamic pro-

gramming (DP). An August 2011 OR/MS article [12] eloquently articulated that CP

has become a must-have tool in any O.R. practitioner’s toolkit and hybridization is

becoming the future of optimization. CP is ideally positioned to become the kernel of

the new generation of optimization technologies because, since its inception, it has been

an integration framework. Constraints in CP are treated separately and communicate

with each other, and it is not a large step to move from this to treating models or

submodels separately and communicating between them. In addition, CP begins with

the most high-level modeling viewpoint, and hence is well placed to define new higher

level hybrid modeling facilities.

The key challenge in designing an architecture for such an integrated system is to

achieve the performance of a dedicated hybridization, while maintaining the composi-

tionality of the architecture. This means that users only pay for the technologies they

use and that no significant overhead is introduced by the architecture.

An ideal optimization system should be implemented as a suite of low-level libraries,

itself consisting of multiple components for each of the major technologies. The glue

between the various components, and their integration, should be a CP-based archi-

tecture now consisting of a number of collaborating constraint stores. We now examine

a number of areas where significant progress is necessary to meet this overall vision.

From SAT to CP Explanations and No-Goods: A key advance in modern optimiza-

tion is the advent of rapid methods to explain the reasons for failure and to record

them as constraints, often called no-goods in artificial intelligence and Benders cuts in

operations research. Nogoods have been vital to the success of SAT/SMT solvers and

form the basis of lazy clause generation [19], a hybridization of CP and SAT, which is

currently the state of the art for classes of hard scheduling problems [23]. The challenge

now is to extend no-good generation to combinatorial/global constraints which are the

cornerstone of the CP modeling methodology. These constraints are often difficult to

explain succinctly and long explanations can suffer from limited re-usability. What is

needed is the right way to explain the behavior of global constraints, yielding shorter

nogoods that can be exploited during search.

Mixed Integer Nonlinear Programming: Many of the important problems facing our

society, in particular in energy and infrastructure management, involves mixed non-

linear integer programming problems. They arise, for instance, in modeling electrical

power systems and gas infrastructures. Nonlinear optimization problems are very hard

to solve: they are generally tackled by globally convergent methods which produce

local minima from a wide range of starting points. Unfortunately, these methods do

not produce (dual) lower bounds which makes it difficult to evaluate the quality of

solutions; they also do not produce any guarantee on the quality of local minima.

However, there has been significant progress in MIP and convex optimization in recent
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years, which creates opportunities to develop global optimization solvers exploiting

both the discrete and continuous aspects of MINLP problems. New universal solver

technology must include MINLP capabilities. We need an MINLP component which

automatically and dynamically convexifies or linearizes non-convex constraints, making

use of the combinatorial substructure, which are then communicated to a central linear

or convex optimization solver. An MINLP component must also include traditional

globally convergent methods and be fully integrated with the CP-based architecture

to allow for flexible search and the exploitation of combinatorial substructures arising

in our application areas.

Dynamic Programming: When applicable, dynamic programming is a highly effective

methodology to solve optimization problems. This is typically the case when there

is enough structure in the applications and when parts of the problems are loosely

connected. Dynamic programming algorithms are often programmed from scratch and

no framework is available to express dynamic programs naturally. An optimization

technology platform should meet the following three objectives:

1. Provide a framework for expressing recursive equations that will then be compiled

into efficient low-level program;

2. Derive automatically recursive equations from certain classes of high-level models;

3. Automate the incremental updates of dynamic programs so that they can be easily

included in search, e.g., to compute lower bounds.

Alternatively, we can try to take advantage of dynamic programming approaches in

CP search using dominance relations (see [6]).

Data intensive Optimization: One fundamental change in the optimization space is the

availability of massive amounts of data. This has led to new classes of optimization ap-

plications such as data-mining, (constraint-based) clustering and pattern discovery and

recognition. These applications arise in many areas including computational biology,

social networks and forecasting. Moreover, some of these areas are evolving from very

dedicated algorithms, specialized to a given task, to more general frameworks. Indeed,

some data-mining projects have shown that constraint programming is a flexible and

efficient tool for addressing some traditional data-mining tasks [13].

It is clear however that optimization technology has to evolve to meet the demands

of some of these applications. Some of them feature few variables but extremely large

domains (e.g., large DNA or RNA sequences), others feature huge number of vari-

ables and constraints (e.g., mining documents), while others deal with extremely large

graphs that must be clustered with a variety of constraints on the clusters. We need to

design the data structures and optimization algorithms appropriate for data-intensive

optimization.

Large-Scale Parallel Optimization: The last couple of years have seen a fundamental

change in hardware evolution. Processors are not doubling speed every 18 months or

so. Rather, the industry has moved from single core desktop, to multi-core computers,

large clusters, and clouds of computing resources.

Optimization software has benefited tremendously from advances in processor

speed, making it possible to solve increasingly complex applications or problems which

must be solved with time constraints. However, improvements in hardware will no

longer translate into speedups for optimization software: It will become necessary to
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exploit parallel computing resources which may be challenging given the nature of

optimization algorithms.

Recent research has demonstrated that parallel computing on multi-core architec-

tures can bring significant benefits and that communication starts becoming a sig-

nificant issue when dealing with more than 1,000 processors [32]. One of the goals for

parallel optimization will be to build a novel architecture to scale to larger clouds, which

may fundamentally change the scope of highly complex problems and data-intensive

optimizations. Another goal should be to study how to parallelize hybrid and decom-

position algorithms, since they require more synchronization and communication.

4 Conclusion

In our opinion the future for constraint programming is very bright. The principle

reason is that CP concentrates on a high level view of problem structure, and is able to

take advantage of that structure. As we gain new insights into modeling, model analysis,

model transformations, global constraint solving, and hybridization, the benefits of

this new optimization technology can be utilized without expert knowledge. As we

tackle more and more complex optimization problems, the combination of optimization

algorithms and programming language concepts that is constraint programming, will

become more and more essential.
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