
Automating Branch-and-Bound for Dynamic Programs

Jakob Puchinger Peter J.Stuckey
NICTA Victoria Research Lab, Department of Comp. Sci. and Soft. Eng. University of Melbourne, Australia

{jakobp|pjs}@csse.unimelb.edu.au

Abstract
Dynamic programming is a powerful technique for solving opti-
mization problems efficiently. We consider a dynamic program as
simply a recursive program that is evaluated with memoization and
lookup of answers. In this paper we examine how, given a func-
tion calculating a bound on the value of the dynamic program, we
can optimize the compilation of the dynamic program function. We
show how to automatically transform a dynamic program to a num-
ber of more efficient versions making use of the bounds function.
We compare the different transformed versions on a number of ex-
ample dynamic programs, and show the benefits in search space
and time that can result.

Categories and Subject Descriptors I.2.2 [Artificial Intelligence]:
Automatic Programming—Program transformation

General Terms Algorithms, Languages

Keywords Dynamic Programming, Branch and Bound, Auto-
matic Transformation

1. Introduction
Dynamic programming (Bellman 1957) is a method of solving
problems by decomposition into subproblems of the same form.
Dynamic programming requires that the problem has the optimal
substructure property, that is, one can create an optimal solution
to a problem using only the optimal solutions of its subproblems.
Dynamic programming is a highly successful approach to solving
many optimization problems from bioinformatics to manufactur-
ing, see e.g. (Hohwald et al. 2003; Yavuz and Tufekci 2006).

One reason dynamic programming is popular is dynamic pro-
gramming solutions are typically easier to implement than other op-
timization approaches, since it simply requires functions and mem-
oing. In this paper we therefore consider a dynamic program as
simply being a recursive program that is evaluated with memoiza-
tion and lookup of answers.

A classic example of a dynamic program is 0-1 knapsack.

EXAMPLE 1. Consider the 0-1 knapsack problem. Given a set of
items {1, . . . , n} of weight wi, 1 6 i 6 n and profit pi, 1 6
i 6 n, and a constraint on total weight W . Choose the subset
I ⊆ {1, . . . , n} such that

P
i∈I wi 6 W and profit

P
i∈I pi is

maximized. The dynamic programming formulation solves knap-
sack problems k(i, w) returns the maximum profit for the knapsack

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PEPM’08, January 7–8, 2008, San Francisco, California, USA.
Copyright c© 2008 ACM 978-1-59593-977-7/08/0001. . . $5.00

problem which allows the use of items from {1, . . . , i} for a total
weight of w. The relationship is represented by the pseudo-code

k(i, w) = if i = 0 then 0
else if w < wi then k(i− 1, w)
else max(k(i− 1, w), k(i− 1, w − wi) + pi)

Note that the function k above does not return the actual set
of values I required to reach the optimal solution, but it can be
determined by tracing back the calculations that lead to the optimal
solution. This is standard for dynamic programming so we omit
any further consideration of it in the paper, and concentrate solely
on calculating the optimal solution.

In this paper we investigate how to optimize the compilation of
this dynamic programming functions, given a function that deter-
mines an upper bound on the result.

EXAMPLE 2. . An upper bound to the 0-1 knapsack problem (due
to Dantzig (1957)) is the sum of k most profitable items where
they fit in the knapsack, plus the proportion of the k + 1th most
profitable item that fits in the remainder. If we assume that the items
are ordered by profitability pi/wi, so pi/wi > pj/wj for each
1 6 i < j 6 n then it is easy to define an upper bound on each
knapsack subproblem. Let Pi =

Pi
j=1 pi and Wi =

Pi
j=1 wi.

upper k(i, w) =

8<: Pi if Wi 6 w
Pk + pk+1(w −Wk)/wk+1

if ∃0 6 k < i.Wk 6 w ∧Wk+1 > w

We can use these bounds to improve the calculation of dynamic
programs in a number of ways which we denote:

• Local bounding where we use already calculated alternatives to
the dynamic program to give a local lower bound in calculating
the remaining alternatives;

• Ordering where we use upper bounds to order the sub-problems
examined in an order likely to find good solutions first; and

• Argument bounding where we calculate and pass lower bounds
to each subproblem, and use upper bounds to prune the calcu-
lation of subproblems that are useless.

The use of bounds to improve dynamic programming dates at
least back to the work of Morin and Martsen (1976). They consider
a class of dynamic programs of the form maximization (or mini-
mization) over a sum of incremental costs. Given a global lower
bound L, they calculate the incremental costs required to reach a
sub-problem. They check whether the sum c of the incremental
costs to reach the sub-problem plus the upper bound on the sub-
problem at least equals the global lower bound, before solving the
sub-problem. This approach applied to 0-1 knapsack gives:

k(i, w, c) = if c+ upper k(i, w) < L then upper k(i, w)
else if i = 0 then 0
else if w < wi then k(i− 1, w, c)

else max(k(i− 1, w, c),
k(i− 1, w − wi, c+ pi) + pi)

The argument c records the profit made in the decisions taken to
reach this sub-problem. It is increased, when we choose to add item
i in the second argument of the max.

Later this approach was extended (Carraway and Schmidt 1991)
to take advantage of lower bounds to improve the global lower
bound. For example if we find that c + lower k(i, w) > L, where
lower k(i, w) is a lower bound on the knapsack subproblem then
we can update L to be c + lower k(i, w). These approaches are
only usable on dynamic programs defined as maximization (or
minimization) over some associative commutative operator. They
are quite related to the argument bounding approach. We note
that the use of bounding for dynamic programming is a folklore
technique, and there are many other kinds of bounding approaches
that have been applied to specific problems (e.g. (Weingartner and
Ness 1967; Spouge 1989; Hohwald et al. 2003; Yavuz and Tufekci
2006; Garcia de la Banda and Stuckey 2007)).

There are some works improving the performance of recursive
programs by transforming them into dynamic programs via effi-
cient incrementalization (Liu and Stoller 2003) or tabling (Somogyi
and Sagonas 2006). In contrast to our approach those transforma-
tions do not use any kind of bounds information.

The contributions of this paper are:

• We show how one can automatically optimize dynamic program
functions to make use of bounds, for a wide class of function.

• Our optimization creates much stronger bounded versions of
dynamic programs than the only previous generic approaches
we are aware of (Morin and Martsen 1976; Carraway and
Schmidt 1991).

• We show that the automatically produced code competes with
hand-specialized bounded dynamic programs.

In the remainder of the paper we first define the class of dynamic
programs we will optimize, and discuss memoization. In Section 3
we show how to build an evaluation of the upper bound of an ex-
pression. In Section 4 we introduce the first two transformations:
automatically adding local bounding information, and then extend
this with ordering. In Section 5 we introduce the argument bound-
ing approach which passes bounds information into the dynamic
program. In Section 6 we discuss the extension of our approach to
expressions involving loops. We give experimental results in Sec-
tion 7 and then conclude.

2. Dynamic Programs as Functions
A dynamic program is most easily understood from a computer
science perspective as simply a recursive function. We assume
our dynamic programs use the following language of expressions.
dp(ō) is the dynamic programming function. We will only be
interested in the part of the body of the function that appears above
a call to dp since the transformations will not rely on the remaining
parts. We use o to represent other parts of the expression, and ō to
represent a sequence of other parts.

Expressions e ::= o | x | dp(ō) | e+ e | e× e
if o then e else e |
min(e, e) | max(e, e) | let x = e in e |

We assume x are variables, o are other expressions, which may not
include dp expressions or make use of let-defined variables that
(transitively) depend on dp expressions. We assume that × is re-
stricted to expressions which are non-negative, this is not a strong
restriction since dynamic programs that make use of multiplication
(of dp expressions) typically satisfy it. We also assume for simplic-
ity each let expression uses a different unique variable name.

The introduction gives the definition of the 0-1 knapsack dy-
namic program using this notation.

Call-based evaluation of a dynamic program, can be considered
simply as evaluation of the recursive function, with the proviso that
if a recursive call is made that has previously been made, rather
than recomputing the result, the previously calculated answer is
retrieved. Thus we are interested in memoizing answers (Michie
1968).

2.1 Memoization
In order to make a function into a dynamic program we must
memoize the results of the function calls. We assume the follow-
ing memoization functions: getdp(ō) returns a pair p of status
of the memoization of dp(ō) and a value. optimal(p) is true if
the optimal value is memoized, value(p) returns the value mem-
oized, setdp(ō, x) memoizes the value x as the optimal value
for dp(ō) and returns x. The memoized version of a function
simply wraps the expression e of the function body by let p =
getdp(ō) in if optimal(p) then value(p) else setdp(ō, e).

EXAMPLE 3. The memoizing version of knapsack program from
Example 1 is

k(i, w) = let p = getdp(ō)
in if optimal(p) then value(p)

else setdp(i, w,
if i = 0 then 0
else if w < wi then k(i− 1, w)
else max(k(i− 1, w),

k(i− 1, w − wi) + pi))

3. Building Bounds Expressions for Dynamic
Programs

In this paper we shall concentrate on dynamic programs for max-
imization problems. The optimization of minimization programs
is analogous. The assumption of this paper is that the author of
the dynamic program for dp(ō) has also defined an upper bound-
ing function upper dp(ō) such that dp(ō) 6 upper dp(ō). We
assume that after some amount of initialization work (that occurs
before the dynamic program is invoked), the bounds function can
be determined in (amortized) constant time.

In order to create bounded dynamic programs we will wish to
create two types of expression from the definition of the dynamic
program. The first expression UB(e, Let) builds an expression to
evaluate the upper bound of expression e under the assumption
that equations x = e in Let hold (the let definitions in scope).
It is defined in Figure 1. The definition is straightforward, we
simply replace calls to dp(ō) by u dp(ō). We define u dp(ō) =
upper dp(ō). The reason for having two names for the upper
bound, is that later we will replace this definition by a smarter
version.

We now build expressions that evaluate a lower bounded version
of a given expression e. The expression LBED(e, l, Let) returns,
under the assumption that the equations in Let hold, the value of
e if it is greater than the given lower bound l, or if this is not the
case, LBED(e, l, Let) returns an upper bound on the value of e.
This upper bound is guaranteed to be less than or equal to l. The
expression is defined in Figure 2.

We assume that any newly introduced variables x are fresh.
The interesting cases are for: dp(ō) where we call a function
lbed dp(ō, l) which will return the lower bounded version dp(ō)
(more on this later); for + we use the upper bound of the second
summand to give a correct lower bound for evaluating the first
summand, while we use the actual value of the first summand to
lower bound the second summand; similarly for ×; min where if

UB(o, Let) := o
UB(x, {x = e} ∪ Let) := UB(e, Let)
UB(dp(ō), Let) := u dp(ō)
UB(e1 + e2, Let) := UB(e1, Let) + UB(e2, Let)
UB(e1 × e2, Let) := UB(e1, Let)× UB(e2, Let)
UB(if o then e1 else e2, Let) := if o then UB(e1, Let) else UB(e2, Let)
UB(min(e1, e2), Let) := min(UB(e1, Let), UB(e2, Let))
UB(max(e1, e2), Let) := max(UB(e1, Let), UB(e2, Let))
UB(let x = e1 in e2, Let) := UB(e2, {x = e1} ∪ Let)

Figure 1. UB expressions

LBED(o, l, Let) := o
LBED(x, l, {x = e} ∪ Let) := LBED(e, l, Let)
LBED(dp(ō), l, Let) := lbed dp(ō, l)
LBED(e1 + e2, l, Let) := let x = LBED(e1, l − UB(e2, Let), Let) in

x+ LBED(e2, l − x, Let)
LBED(e1 × e2, l, Let) := let x = LBED(e1, l ÷ UB(e2, Let), Let) in

x× LBED(e2, l ÷ x, Let)
LBED(if o then e1 else e2, l, Let) := if o then LBED(e1, l, Let)

else LBED(e2, l, Let)
LBED(min(e1, e2), l, Let) := let x = LBED(e1, l, Let) in

if x 6 l then x
else min(x, LBED(e2, l, Let))

LBED(max(e1, e2), l, Let) := let x = LBED(e1, l, Let) in
max(x, LBED(e2,max(l, x), Let))

LBED(let x = e1 in e2, l, Let) := LBED(e2, l, {x = e1} ∪ Let)

Figure 2. LBED expressions

the first expression fails to surpass the lower bound, we do not
need to look at the second expression; and for max where the first
expression can improve the lower bound for the second expression.

The definition of lbed dp(ō, l) is

let x = u dp(ō) in if x 6 l then x else dp(ō)

which checks if the upper bound of the dp(ō) cannot reach the
required lower bound. If so we simply return the upper bound,
otherwise we solve the subproblem.

Note that the definition of LBED above is careful to introduce let
expressions for any result that is reused. This is important to avoid
unnecessary repeated computation.

THEOREM 1. Let C be a context assigning values to all (free)
variables in e. Let [[e′]]C be the value of e′ obtained by evaluating
expression e′ in context C. Suppose [[x]]C = [[ex]]C for each
x = ex ∈ Let. Then u = [[LBED(e, l, Let)]]C is such that either
u > l and u = [[e]]C or u 6 l and u > [[e]]C .

4. Local Bounding
With the transformations of the previous section we are ready to
introduce local bounding transformations. For the local bounding
transformation, once we have determined the first part of a max ex-
pression, we will use the bounds to determine if we should evaluate
the second part. Figure 3 defines the local bounding transformation:
we replace an expression dp(ō) = e by dp(ō) = LOCAL(e, {}).

EXAMPLE 4. Consider the knapsack program defined in Exam-
ple 1 the result of the local bounding transformation (omitting the
memoization wrapper and after inlining the definition of lbed k(i−
1, w − wi, x1 − pi)) is

k(i, w) = if i = 0 then 0
else if w < wi then k(i− 1, w)
else let x1 = k(i− 1, w) in

max(x1,
let x2 = let x3 = u k(i− 1, w − wi) in

if x3 6 x1 − pi then x3

else k(i− 1, w − wi)
in x2 + pi)

One can see that if the upper bound on the second call k(i−1, w−
wi) is not good enough to increase the max then the recursive call
will not be made. Clearly the resulting code could be improved fur-
ther, for example, we can substitute for x2 since it occurs only once.
Also if x2 takes the value u k(i − 1, w − wi) we are guaranteed
that it will not create a maximum, but fixing this is more difficult,
and the overhead is low.

The local bounding technique ensures that before any call to
dp(ō) if we have a known lower bound, then we check whether the
upper bound can surpass the lower bound. The number of calls to
dp to solve a problem using local bounds cannot increase.

THEOREM 2. The set of calls C of the form dp(ō′) made in order
to solve a given problem dp(ō) using the local bounding trans-
formed version is a (possibly non-strict) subset of the set of calls
C′ used to solve dp(ō) using the standard form.

Hence the local bounding technique is likely to be beneficial as
long as the overhead of computing u dp(ō′) is small enough.

4.1 Implementing the bounds function
We are given an implementation of the upper bounds function
upper dp(ō) which can be used for u dp(ō), but we should also

LOCAL(o, Let) := o
LOCAL(x, Let) := x
LOCAL(dp(ō), Let) := dp(ō)
LOCAL(e1 + e2, Let) := LOCAL(e1, Let) + LOCAL(e2, Let)
LOCAL(e1 × e2, Let) := LOCAL(e1, Let)× LOCAL(e2, Let)
LOCAL(if o then e1 else e2, Let) := if o then LOCAL(e1, Let)

else LOCAL(e2, Let)
LOCAL(min(e1, e2), Let) := min(LOCAL(e1, Let), LOCAL(e2, Let))
LOCAL(max(e1, e2), Let) := let x = LOCAL(e1, Let)in

max(x, LBED(e2, x, Let))
LOCAL(let x = e1 in e2, Let) := LOCAL(e2, {x = e1} ∪ Let)

Figure 3. LOCAL expressions

be aware of the possibility that when determining u dp(ō) we may
already have determined dp(ō). In this case, there is no point in
using the inaccurate upper bound function upper dp(ō), when we
have the accurate answer memorized. Hence we will extend the
memoization of dp(ō) so that bounds can be memorized as well, as
follows:

u dp(ō) = let p = getdp(ō)
in if known(p) then bound(p)

else bsetdp(ō, upper dp(ō))

where we extend the memoization functions with: known(p) is
true if either a bound or the optimal value is memoized, bound(p)
returns the bound or optimal value recorded in p, and bsetdp(ō, x)
memoizes the value x as a bound for dp(ō) and returns x.

4.2 Ordering
Once we are not necessarily going to evaluate all of the subprob-
lems that make up a dynamic program, then the order in which we
try to evaluate them can make a difference. We can use the bounds
as an estimate of where the better solution lies, and try those values
first. The quicker a good solution is found, the more pruning the
bounded dynamic program can achieve. This technique is known
as best first search in branch and bound type algorithms.

The most obvious place to use ordering is in the max expres-
sions that set up the bounds. Modifying the local bounding trans-
formation to also order evaluations is straightforward, we simply
evaluate the bounds of both expressions in a max before choosing
which order to evaluate them. We change the following rules for
the local transformation to implement ordering, see Figure 4.

EXAMPLE 5. The local ordered version of knapsack (where again
we have omitted the memoization wrapper and inlined calls to
lbed k) is:

k(i, w) = if i = 0 then 0
else if w < wi then k(i− 1, w)
else let x1 = u k(i− 1, w) in

let x2 = u k(i− 1, w − wi) + pi in
if x1 > x2

then let x3 = k(i− 1, w) in
max(x3,

let x4 =
let x5 = u k(i− 1, w − wi) in
if x5 6 x1 − pi then x5

else k(i− 1, w − wi)
in x4 + pi)

else let x6 = k(i− 1, w − wi) + pi in
max(x6,

let x7 = u k(i− 1, w) in
if x7 6 x6 then x7

else k(i− 1, w))

One can begin to see the reason why a programmer may want these
transformations automated, given the relative size of this code, to
the starting code of Example 1. Clearly we can improve this code
by noticing that e.g. x7 = x1.

As defined the ordering is only applied to a top-most min or max
expression. We could define an ordered version of LBED which also
orders any subexpressions. Since the ordering code adds significant
overhead, we are likely not to want to use it at every level of
the expression. In order to experiment effectively with ordering
we extend the expression language with ordered versions of the
operations oplus (+), otimes (×), omin (min) and omax (max).
We can then extend the bounded expression evaluation to handled
these new expressions using ordering. See Figure 5.

Theorem 2 extends also to the ordering version, but the over-
heads of the ordering version are larger compared to the simple
local version.

5. Argument Bounding
The weakness of the local bounding approaches is that in each dp
call we need to calculate a possible answer before we can make
use of the bounding approach to prune. Given we have already
calculated bounds in the function that calls dp(ō) we should make
use of this in the calculation of dp(ō). This leads to the argument
bounding approach where we add an extra argument to the dp
function, to communicate the previously calculated lower bound. In
effect we simply replace dp(ō) = e by dp(ō, l) = LBED(e, l, {}).

On the face of it argument bounding could be disastrous. By
adding a new argument to the dp function we extend the number
of calls that need to be memoized. We will avoid this by carefully
reusing the same memoization for different lower bounds l.

Argument bounding has other advantages. We now can move
the handling of bounds calculations into the start of the dp function,
instead of the call sites. This leads to cleaner and faster code.

The argument bounded function is created as shown below. The
bounding calculations and memoization lookup and storage are
folded into the expression.

dp(ō, l) = let p = getdp(ō)
in if optimal(p) then value(p)

else let u = if known(p) then bound(p)
else upper dp(ō)

in if u 6 l then u
else let r = LBED(e, l, {}) in

if r > l then setdp(ō, r)
else bsetdp(ō, r)

The memoized answer is recovered, if it already records the optimal
value this is returned. Otherwise if a previous upper bound has
been recorded it puts it in u, otherwise the upper bound u is
calculated using upper dp. Now if the upper bound u is no greater

ORDER(max(e1, e2), Let) := let x1 = UB(e1, Let) in let x2 = UB(e2, Let) in
if x1 > x2

then let x3 = ORDER(e1, Let) in
max(x3, LBED(e2, x3, Let))

else let x4 = ORDER(e2, Let) in
max(x4, LBED(e1, x4, Let))

Figure 4. ORDER expressions

LBED(oplus(e1, e2), l, Let) := let x1 = UB(e1, Let) in let x2 = UB(e2, Let) in
if x1 + x2 6 l then x1 + x2

else if x1 > x2

then let x3 = LBED(e1, l − x2, Let) in
x3 + LBED(e2, l − x3, Let)

else let x4 = LBED(e2, l − x1, Let) in
x4 + LBED(e2, l − x4, Let)

LBED(otimes(e1, e2), l, Let) := let x1 = UB(e1, Let) in let x2 = UB(e2, Let) in
if x1 × x2 6 l then x1 × x2

else if x1 > x2

then let x3 = LBED(e1, l ÷ x2, Let) in
x3 × LBED(e2, l ÷ x3, Let)

else let x4 = LBED(e2, l ÷ x1, Let) in
x4 × LBED(e2, l ÷ x4, Let)

LBED(omin(e1, e2), l, Let) := let x1 = UB(e1, Let) in let x2 = UB(e2, Let) in
if min(x1, x2) 6 l then min(x1, x2)
else if x1 6 x2

then let x3 = LBED(e1, l, Let) in
if x3 6 l then x3

else min(x3, LBED(e2, l, Let))
else let x4 = LBED(e2, l, Let) in

if x4 6 l then x4

else min(x4, LBED(e1, l, Let))
LBED(omax(e1, e2), Let) := let x1 = UB(e1, Let) in let x2 = UB(e2, Let) in

if max(x1, x2) 6 l then max(x1, x2)
else if x1 > x2

then let x3 = LBED(e1, l, Let) in
max(x3, LBED(e2,max(l, x3), Let))

else let x4 = LBED(e2, l, Let) in
max(x4, LBED(e1,max(l, x4), Let))

Figure 5. Operators with ordering

than the calling lower bound l we simply return the upper bound,
otherwise we evaluate the body using the given bound l and store
the result in r. If the result r surpasses the lower bound l we store
it as optimal, otherwise we store it as a bound.

The only other change is required in expression LBED(e, l, {}),
the definition of lbed dp(ō, l′) is changed to dp(ō, l′).

EXAMPLE 6. The argument bounded version of knapsack is:

k(i, w, l) =
let p = getdp(ō)
in if optimal(p) then value(p)

else let u = if known(p) then bound(p)
else upper k(i, w)

in if u 6 l then u
else let r = if i = 0 then 0

else if w < wi then k(i− 1, w, l)
else let x1 = k(i− 1, w, l) in

max(x1, k(i− 1, w − wi,
max(l, x1)− pi)

+pi)
in if r > l then setdp(ō, r) else bsetdp(ō, r)

Note that as opposed to the local transformation, we only require
one lookup of the memo table per function call.

One extra requirement of the argument bounded version is that
the initial call must have a suitable initial bound. If we are maxi-
mizing we need a lower bound, note that this is the opposite bound
to the function we require for the optimizing transformation. The
usual approach is to use a heuristic solution to the problem to get a
good bound.

We straightforwardly combine the argument bounding approach
with ordering of subexpressions using the ordered rewriting for
LBED of Section 4.2.

A result analogous to Theorem 2 does not hold for the argument
bounding transformation. The body of dp(ō, l) can be executed
multiple times for different values of l if they occur in a decreasing
sequence, and are still greater than the actual optimal value. Our
experiments will show that in fact any repeated computation for the
same value ō is very rare. Note that a result analogous to Theorem 2
does hold for the method of (Morin and Martsen 1976), but this also
results in its inherent weakness. If the heuristic lower bound to the

problem is poor, there will not be as much pruning as in argument
bounding, which updates this bound as computation proceeds.

6. Extending the Expression Language
Many dynamic programs use some form of set or list comprehen-
sion (loops) to define the recursive function. The transformations
defined above straightforwardly extend to handle expressions of the
form

min{e[x] | x ∈ o} | max{e[x] | x ∈ o} |P
{e[x] | x ∈ o} | Π{e[x] | x ∈ o}

assuming the set o being looped over does not depend on the dy-
namic programming function. The only complexity is in describing
the looping structure.

For example we can define the lower bounded evaluation of a
max set expression as

LBED(max{e[x] | x ∈ o}, l, Let) =
foldl(λy.λx.max(y, LBED(e[x], y, Let)), l, o)

The function λy.λx.max(y, LBED(e[x], y, Let)) takes the current
lower bound as first argument y and the value for x and computes
the maximum of the lower bounded evaluation of the expression
with value x inserted, using y as the lower bound. This creates
the new lower bound (and answer to the maximum). This function
is folded over the set of values o for x, starting with initial lower
bound l.

In order to create looping versions of
P

(similarly for Π) we
need to fold functions that pass a pair of (current sum, current lower
bound).

Again we can extend the ordering approach to lower bounded
evaluation of these loop expressions straightforwardly. Essentially
the upper bounds of e[x] are calculated for each x ∈ o and then the
values of o are sorted by this value to give list o′. We then fold over
the list o′. For example

LBED(omax{e[x] | x ∈ o}, l, Let) =
let o′ = [snd(p) | p ∈ sort([(−UB(e[x]), x) | x ∈ o])]
in foldl(λy.λx.max(y, LBED(e[x], y, Let)), l, o′)

The values x in o are paired with the negation of their upper
bound UB(e[x]), and then sorted, and then the ordered x values
are extracted into o′. This is then the order the loop is executed.

7. Experiments
We created a prototype optimizing compiler for dynamic program
expressions in Prolog. It manipulates a term representing the dy-
namic program to create the term representing the bound optimized
version. After transformation, some optimization of the term is per-
formed, removing repeated let definitions, and substituting for let
defined variables that occur at most once. Finally it outputs a C
procedure for evaluating the dynamic program. The memoization
functions and “other code” o used by the dynamic program are as-
sumed to exist already in the C code.

The transformer does not fully support the looping expressions
of Section 6, and in particular does not support the ordering on
loop expressions.1 For the one example (Open Stacks) where this
is used, the code was added by hand.

We examine 3 problems: 0-1 knapsack, shortest paths and open
stacks. The first two are well-studied and there are specific better al-
gorithms than the dynamic programming approaches but they serve
to illustrate the benefits of our approach. For the third problem, a
dynamic programming solution is the state of the art.

1 There is no intrinsic reason except the messiness of converting higher
order terms into C code.

type time count lookup prune resolve
Uncorrelated

dp 154.60 2542848 2490438
dpl 47.76 712591 690062
dpo 66.40 712591 690062
dpa 0.08 728 17 704 0

dpao 0.04 716 169 506 0
dpm 1.68 18568 3458 15050

dpme 0.20 2663 363 2300
Weakly correlated

dp 142.84 2328037 2275126
dpl 36.84 588732 565892
dpo 51.92 588732 565892
dpa 0.12 1000 27 962 0

dpao 0.20 861 129 666 0
dpm 5.44 64428 15622 48733

dpme 1.56 14230 2292 11938
Strongly correlated

dp 309.00 7561692 2026466
dpl 10.00 162775 88842
dpo 13.96 162775 88842
dpa 3.04 47149 0 30000 0

dpao 4.32 47597 3 26447 0
dpm 14.28 231792 121651 37439

dpme 10.96 139123 76941 35712
Inverse strongly correlated

dp 169.60 2948450 2894723
dpl 75.40 1106735 1075550
dpo 105.48 1106735 1075550
dpa 0.88 11392 763 10590 0

dpao 0.84 8347 81 6626 0
dpm 4.92 68184 46401 21728

dpme 2.92 34501 20309 14192

Table 1. 0-1 Knapsack on 4 classes: uncorrelated, weakly corr,
strongly corr, inverse str. corr.

7.1 Knapsack
We have seen the knapsack example throughout the paper. The up-
per bounding function is discussed in the introduction. While there
are many better algorithms for solving knapsack, see e.g. (Kellerer
et al. 2004), the standard one above remains very good for medium
sized problems.

We compare the knapsack code of: the original dynamic pro-
gram (dp), locally bounded optimization (dpl), locally bounded or-
dering (ordering the max) (dpo), argument bounded optimization
(dpa), and argument bounded ordering (dpao), as well as the ap-
proach of (Morin and Martsen 1976) (dpm) and its extension (Car-
raway and Schmidt 1991) (dpme).

We use the generator gen2.c (see (Martello et al. 1999)) avail-
able at www.diku.dk/~pisinger to create knapsack benchmarks
with 500 items. We created 100 examples each of uncorrelated,
weakly correlated, strongly correlated, inverse strongly correlated
knapsack problems.

Table 1 shows the average results of each approach in terms
of time (milliseconds), the count of the number of times the func-
tion body was executed (after lookup and pruning), the number of
lookups of previous optimal solutions, the number of calls pruned
by argument bounds, and the number of resolves, where a call
dp(ō) for which the function body has previously executed again
executes the function body. We leave the column blank where the
count is not applicable. Note that count− resolves also gives the
space required for memoization.

The results in Table 1 clearly show the benefits of bounded
evaluation. The argument bounding approach is clearly superior
to other approaches including dpm and dpme. Ordering is better
for all cases except strongly correlated examples , and with poor
initial lower bounds it can be massively better. Note dpa and dpao
substantially improve on dpm and dpme.

type time count lookup prune resolve
dp 6590.12 41726638 82703503

dpl 205.77 978535 4584
dpo 109.95 376304 4608
dpa 101.58 395346 43899 735172 4938

dpao 59.16 198962 14268 374486 0
dp 6720.35 41748030 82746060

dpl 364.30 1692531 9980
dpo 173.81 589276 10029
dpa 117.48 469791 93281 827654 15611

dpao 69.93 242022 33742 434612 0
dp 6603.70 41265211 81789087

dpl 290.22 1383633 8445
dpo 100.70 341407 8461
dpa 127.85 505092 64475 930808 9404

dpao 74.98 255488 24127 475364 0

Table 2. USA-road-d.NY non-Euclidean bounds.

7.2 Shortest Path
Finding shortest paths in a directed graph with nodes numbered
1 to n is another classic dynamic program: the Floyd-Warshall
algorithm. The function s(i, j, k) returns the length of the shortest
path from node i to node j using at most 1, . . . , k as intermediate
nodes. The recursive function is defined as follows.

s(i, j, k) = if i = j then 0
else if k = 0 then dij

else min(s(i, j, k − 1),
s(i, k, k − 1) + s(k, j, k − 1))

where dij is the (directed) edge length from i to j. Again while
there are many algorithms for shortest path, this O(n3) algorithm
is reasonable for medium sized graphs with negative edge lengths,
particularly when multiple questions need to be answered, since it
can reuse previously stored results.

We use two lower bounding functions in the experiments. The
first simply makes use of connectivity. Let pmin =

P
{d′i | 1 6

i 6 n, d′i = minj dij , d
′
i < 0} be the shortest possible node

distinct path. Note if edge lengths are non-negative then pmin = 0.
We use a union-find algorithm applied to all edges incident to

1, . . . , k (in other words all (i, j) where {i, j} ∩ {1, . . . , k} 6= ∅
and dij < +∞) to define a representative r(i, k) for each node i
of the connected cluster it belongs to. If two nodes i and j have
different representatives r(i, k) and r(j, k) then they cannot be
connected through 1, . . . , k and only the direct arc is possible.
Otherwise we use pmin as the bound.

l s(i, j, k) = if r(i, k) 6= r(j, k) then dij else pmin

If each node i represents a position (xi, yi) in 2D space and
the edge lengths dij are guaranteed to be greater than or equal
to the Euclidean distance

p
(xi − xj)2 + (yi − yj)2, then we can

improve the above bound by replacing pmin by the Euclidean
distance

p
(xi − xj)2 + (yi − yj)2.

We compare the same set of procedures as for knapsack, except
for dpm and dpme which are not applicable. The ordering is on
the min. The instances we used for evaluating our approach were
derived from instances of the 9th DIMACS Implementation Chal-
lenge - Shortest Paths (www.dis.uniroma1.it/~challenge9/).
We used three 500 node slices of the New York City dataset, with
up to 100 feasible shortest path queries per instance. We solve them
without (Table 2), or with the Euclidean distance bounds (Table 3).

The results are shown in Tables 2 and 3. For dpa and dpao
we use a heuristic upper bound greater than the sum of maximum
arc lengths. For these examples the difference between local and
argument bounding is less than previously, and the advantage of
ordering is clear. This example also illustrates how a more accu-

type time count lookup prune resolve
dp 6963.84 41726638 82703503

dpl 61.58 272404 1038
dpo 38.42 119714 1052
dpa 51.93 215811 29995 398375 191

dpao 7.26 19427 364 37690 0
dp 6755.91 41748030 82746060

dpl 167.94 751044 3686
dpo 99.19 313666 3751
dpa 62.19 256666 60248 448779 473

dpao 11.04 28897 709 55737 0
dp 6856.39 41265211 81789087

dpl 126.65 573112 2960
dpo 55.78 169317 2973
dpa 71.45 288697 41169 531596 747

dpao 14.68 39093 822 76152 0

Table 3. USA-road-d.NY Euclidean bounds.

rate bounding function (Euclidean) can substantially improve the
results.

7.3 Open Stacks
The minimization of maximum number of open stacks problem is
defined as follows: Given a set of products P for each product
p ∈ P we have a set of customers wanting the product cust(p).
A stack is open for a customer c from the time the first prod-
uct p is created where c ∈ cust(p), to the time the last prod-
uct p is created with c ∈ cust(p). The aim is to order the set of
products to minimize the maximum number of open stacks. Then
a(p′, S) = |(∪p∈S∪{p′}cust(p))∩(∪p∈P−Scust(p))| is the num-
ber of stacks open when scheduling p′ after P−S−{p′} and before
S. The recursive function definition o(S) which give the number of
open stacks for scheduling S assuming P−S where scheduled pre-
viously is:

o(S) = if S = {} then 0
else min{max(a(p, S − {p}), o(S − {p})) | p ∈ S}

We use the lower bounding function discussed in (Garcia de la
Banda and Stuckey 2007).

We compare on a few of the more difficult small benchmarks
(20 products, 20 customers, each a suite of 100 instances) from
the Constraint Modelling Challenge 2005 (Constraint Modelling
Challenge). We compare the same set of codes as in knapsack, as
well as the dynamic programming solution (dpc) to this problem
that won the Constraint Modelling Challenge 2005, beating other
solutions by at least two orders of magnitude.

The results are shown in Table 4. For dpa, dpao, dpm, dpme
and dpc we use the best heuristic upper bound of 6 heuristics
(for details see (Garcia de la Banda and Stuckey 2007)). For these
examples this is almost always the optimal answer. Hence dpm
is very similar to dpa in performance. dpme is slower because it
needs to find many heuristic solutions for the sub-problems.

To show the sensitivity to the upper bound, we also use simply
the number of customers. The poor upper bound illustrates the
weakness of the approach of (Morin and Martsen 1976). Since it
cannot use solutions it has already generated to improve the upper
bounding. Table 5 shows the results using this upper bound on the
methods that make use of it. We can see that dpa, dpao, and dpme
are almost unchanged, but dpm performs uniformly worse than
dpl.

Ordering is distinctly worse for this example, because so many
solutions are equivalent in terms of objective, and it forces more to
be explored. Note that dpa is only around 4 times slower and never
requires more than 25% more space than the best known solution
dpc which incorporates many other kinds of optimizations, as well

type time call look prune resolve
problem 20 20

dp 1359.49 483773 4186989
dpl 59.18 21920 18167
dpo 101.16 14179 5697
dpa 10.82 3145 5 12659 0

dpao 109.00 15241 26636 16916 972
dpm 11.02 2869 11881 23948

dpme 148.04 2781 11563 23354
dpc 2.87 1970 2816

wbo 20 20
dp 3074.13 1003447 9014094

dpl 195.87 66439 58442
dpo 293.29 36113 14139
dpa 18.27 4735 9 16987 0

dpao 313.56 38642 57453 33913 2237
dpm 20.53 4973 18526 49729

dpme 241.87 4353 16190 44697
dpc 4.58 3284 4672

wbop 20 20
dp 3237.96 1048595 9437166

dpl 184.36 61233 54879
dpo 269.02 32260 13238
dpa 16.40 4156 8 14516 0

dpao 285.82 34386 49194 31554 1948
dpm 20.84 4698 17642 47747

dpme 204.53 3760 13501 40049
dpc 5.02 3465 6464

wbp 20 20
dp 1342.36 471523 4097099

dpl 91.29 33323 27930
dpo 157.60 21489 8938
dpa 13.64 4012 8 15566 0

dpao 169.20 23059 40236 26884 1462
dpm 16.62 4584 18745 38453

dpme 183.60 3451 13647 31248
dpc 4.36 3009 5147

Table 4. Openstacks: problem 20 20, wbo 20 20, wbop 20 20,
wbp 20 20

type time call look prune resolve
problem 20 20

dpa 10.24 3214 13 12810 0
dpao 108.69 15241 26636 16916 972
dpm 339.45 122301 917271 136591 0

dpme 147.98 2788 11580 23407 0
wbo 20 20

dpa 18.04 4878 33 17247 0
dpao 312.09 38642 57453 33913 2237
dpm 2028.98 653654 5582559 301957 0

dpme 241.78 4382 16254 45012 0
wbop 20 20

dpa 15.38 4255 36 14599 0
dpao 285.91 34386 49194 31554 1948
dpm 1552.44 494477 4086391 396711 0

dpme 205.33 3777 13550 40215 0
wbp 20 20

dpa 13.56 4064 21 15614 0
dpao 168.09 23059 40236 26884 1462
dpm 307.69 110895 785350 170869 0

dpme 184.40 3481 13760 31452 0

Table 5. Openstacks: problem 20 20, wbo 20 20, wbop 20 20,
wbp 20 20 with weak upper bounds

its own special bounding approach. We think this is impressive for
an approach derived directly from the naive recursive equation.

8. Conclusion
Branch and bound for dynamic programs is folklore, with little for-
mally published description, hence it is less frequently used than it
could be. Adding branch and bound by hand also compromises the

simplicity of dynamic programming, and hence is perhaps seen as
unattractive, but it can massively improve performance. By allow-
ing automatic bounding of dynamic programs programmers gain
the advantages of bounding without the complexity. Of the ap-
proaches we investigate argument bounding, with or without or-
dering is best, and even though it is not guaranteed to resolve the
same problem, clearly this happens only rarely in our examples.
Clearly the effectiveness of the approach depends upon the tight-
ness of the bounding function supplied, but the simple bounds ex-
ample for shortest paths illustrates that even with a relatively crude
bounding function we can still get significant improvements.

An interesting direction for future work would be to integrate
our ideas in one of the available dynamic programing frame-
works (Giegerich and Meyer 2002; Eisner et al. 2005), mainly
used in bioinformatics applications. This may lead to performance
improvements by orders of magnitude for existing and future ap-
plications, as it did for our examples.

We can extend the approach to a greater class of expressions
(negation, subtraction, multiplication by non-positive numbers) if
we also have a a separate lower bounding function. There are
other optimizations/transformations that we could imagine includ-
ing: checking whether we have already computed the optimal an-
swer dp(ō) before worrying about bounding. and optimistically im-
proving bounds in the hope of finding good solutions faster.

Acknowledgments
We would like to thank Moshe Sniedovich for helpful discussions
on this subject, and Ting Chen for his work on an earlier proto-
type transformer, as well as the referees whose comments helped
improve the presentation.

References
R. Bellman. Dynamic Programming. Princeton University Press, 1957.
R. Carraway and R. Schmidt. An improved discrete dynamic programming

algorithm for allocating resources among interdependent projects. Man-
agement Science, 37(9):1195–1200, 1991.

Constraint Modelling Challenge. Constraint Modelling Challenge 2005.
http://www.dcs.st-and.ac.uk/~ipg/challenge/, 2005.

G. Dantzig. Discrete variable extremum problems. Operations Research,
5:266–277, 1957.

J. Eisner, E. Goldlust, and N.A. Smith. Compiling Comp Ling: Weighted
dynamic programming and the Dyna language. In Proceedings of Hu-
man Language Technology Conference and Conference on Empirical
Methods in Natural Language Processing (HLT-EMNLP), pages 281–
290, Vancouver, 2005. Association for Computational Linguistics.

M. Garcia de la Banda and P.J. Stuckey. Dynamic programming to mini-
mize the maximum number of open stacks. INFORMS Journal of Com-
puting, 19(4):607–617, 2007. See (Constraint Modelling Challenge) for
a shorter version.

R. Giegerich and C. Meyer. Algebraic dynamic programming. In AMAST
’02: Proceedings of the 9th International Conference on Algebraic
Methodology and Software Technology, volume 2422 of LNCS, pages
349–364. Springer, 2002.

H. Hohwald, I. Thayer, and R.E. Korf. Comparing best-first search and dy-
namic programming for optimal multiple sequence alignment. In Georg
Gottlob and Toby Walsh, editors, IJCAI-03, Proceedings of the Eigh-
teenth International Joint Conference on Artificial Intelligence, pages
1239–1245. Morgan Kaufmann, 2003.

H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer,
2004.

Y.A. Liu and S.D. Stoller. Dynamic programming via static incrementaliza-
tion. Higher Order and Symbolic Computation, 16(1-2):37–62, 2003.

S. Martello, D. Pisinger, and P. Toth. Dynamic programming and strong
bounds for the 0-1 knapsack problem. Management Science, 45(3):414–
424, 1999.

D. Michie. “memo” functions and machine learning. Nature, 218:19–22,
1968.

T.L. Morin and R.E. Martsen. Branch-and-bound strategies for dynamic
programming. Operations Research, 24(4):611–627, 1976.

Z. Somogyi and K. F. Sagonas. Tabling in Mercury: Design and implemen-
tation. In Pascal Van Hentenryck, editor, Practical Aspects of Declara-
tive Languages, 8th International Symposium, PADL 2006, volume 3819
of LNCS, pages 150–167. Springer, 2006.

J.L. Spouge. Speeding up dynamic programming algorithms for finding
optimal lattice paths. SIAM Journal on Applied Mathematics, 49(5):
1552–1566, 1989.

H.M. Weingartner and D.N. Ness. Methods for the solution of the multi-
dimensional 0/1 knapsack problems. Operations Research, 15:83–103,
1967.

M. Yavuz and S. Tufekci. A bounded dynamic programming solution to the
batching problem in mixed-model just-in-time manufacturing systems.
International Journal of Production Economics, 103(2), 2006.

