
Under consideration for publication in Theory and Practice of Logic Programming 1

Logic Programming with Satisfiability

MICHAEL CODISH
Department of Computer Science, Ben-Gurion University, Israel (e-mail: mcodish@cs.bgu.ac.il)

VITALY LAGOON
Department of Computer Science & Software Engineering, University of Melbourne, Australia

(e-mail: vitaly.lagoon@gmail.com)

PETER J. STUCKEY
NICTA Victoria Laboratory and Department of Computer Science & Software Engineering,

University of Melbourne, Australia (e-mail: pjs@csse.unimelb.edu.au)

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

This paper presents a Prolog interface to the MiniSat satisfiability solver. Logic program-
ming with satisfiability combines the strengths of the two paradigms: logic programming
for encoding search problems into satisfiability on the one hand and efficient SAT solving
on the other. This synergy between these two exposes a programming paradigm which
we propose here as a logic programming pearl. To illustrate logic programming with SAT
solving we give an example Prolog program which solves instances of Partial MAXSAT.

1 Introduction

The use of SAT solvers in a wide range of applications is a great success of recent
years and quickly growing more popular. Contributing to this success are two main
factors: (a) SAT solvers are continuously becoming more powerful, and (b) encoding
techniques are emerging to represent a wide range of search problems as proposi-
tional formulae such that each satisfying assignment of the encoding represents a
solution of the problem.

This paper presents a Prolog interface to the MiniSat SAT solver (Eén and
Sörensson 2004; MiniSAT 2006). MiniSat is a small (≈ 1200 lines of C-code) and
efficient open-source SAT solver which is designed to enable easy integration with
other tools and languages. Application of this interface facilitates the best of both
worlds: Prolog programming for encoding a search problem into a propositional
formula on the one hand, and application of powerful SAT solving tools on the
other.

In recent work (Codish et al. 2006b) we apply SAT encodings to decide LPO
termination (Dershowitz 1982) of a given term rewrite system τ . Here LPO termi-
nation of τ is encoded as a propositional formula ϕτ and any assignment satisfying
ϕτ indicates a precedence on the symbols in τ such that its corresponding lexico-
graphic path order orients the rules of τ . Namely for each rule `→ r in τ , ` �lpo r

2 M. Codish, V. Lagoon, and P.J. Stuckey

holds. Prolog is well suited for the tasks of parsing the given system τ and construct-
ing the encoding ϕτ . Searching for an assignment which satisfies ϕτ is conveniently
delegated to the SAT solver.

In other recent works Codish et al. apply SAT encodings to determine termina-
tion of rewrite systems using dependency pairs (Arts and Giesl 2000) and using
recursive path orders (RPO) (Dershowitz 1982). A contribution of those works is
the propositional encodings for so called argument filterings and usable rules, in
(Codish et al. 2006), and the encodings for multi-set orders and lexicographic path
orders modulo permutation of arguments, in (Annov et al. 2006).

All of the above mentioned results have been developed on top of the described
Prolog MiniSat interface. We have also had positive experience in using the interface
as an educational tool for teaching logic programming concepts as well as the basics
of SAT encodings and SAT solving.

2 Preliminaries

Most SAT solvers assume as input a propositional formula in conjunctive normal
form (CNF). That is a conjunction of disjunctions of literals, or equivalently a
conjunction of clauses. Each literal is a propositional variable p or its negation ¬p.
A truth assignment is a mapping from propositional variables into {0, 1}.

Syntax: In the logic programming setting we represent: literals as terms of the
form X or -X where X is a logic variable; clauses as lists of literals; and conjunctions
of clauses as lists of clauses. For propositional formulae we use terms involving the
symbols 0/0, 1/0, -/1, */2, +/2, ==/2, xor/2 for: false, true, negation, conjunction,
disjunction, bi-implication and xor. The syntax supports also: (X->Y;Z) which is
equivalent to X*Y+(-X)*Z. In the logic programming setting a truth assignment
is a substitution of the variables to the constants {0, 1}. We also use a list of
propositions to represent non-negative integers, but giving the least significant bit
first. For example [0,1,0,1] represents 0× 20 + 1× 21 + 0× 22 + 1× 23 = 10.

We now recall the satisfiability and maximum satisfiability problems. Partial
MAXSAT is a generalization of SAT and MAXSAT introduced by Miyazaki and
Iwama (Miyazaki et al. 1996). See also (Cha et al. 1997).

SAT: Given a propositional logic formula ϕ in conjunctive normal form, is there
an assignment of truth values to the propositional variables that makes ϕ true.

MAXSAT: Given a propositional logic formula ϕ in conjunctive normal form,
find an assignment of the logical variables that maximizes the number of clauses in
ϕ that are true.

Partial MAXSAT: Given propositional logic formulae ϕ and ψ in conjunctive
normal form, the problem is to find an assignment that satisfies all clauses in ϕ and
maximizes the number of clauses in ψ that are true.

Logic Programming with Satisfiability 3

3 Interfacing Prolog with MiniSat

The library implementation is written primarily in SWI-Prolog (Wielemaker 2003;
SWI-Prolog) and interfaces the MiniSat solver (Eén and Sörensson 2004; Mini-
SAT 2006) for solving SAT instances. We have integrated MiniSat and SWI-Prolog
through ≈190 lines of C-code and ≈140 lines of Prolog code. The C-code handles
the low-level interface and conversion between the internal data representations of
SWI-Prolog and of MiniSat. The Prolog code provides a high-level interface for us-
ing the SAT solver in Prolog applications. The SAT solver is deterministic. It does
not, and is not intended to, provide alternative satisfying assignments over back-
tracking. The MiniSat library for Prolog can be downloaded from (Codish et al.
2006a). It includes three modules for the user: cnf.pl, adder.pl and minisat.pl.

The module cnf.pl exports the predicate cnf/2. A call to cnf(F, Cnf) trans-
forms a propositional formula F to a conjunctive normal form Cnf. The implemen-
tation of cnf(F,Cnf) applies a Tseitin transformation (Tseitin 1968) to ensure that
the size of the conjunctive normal form Cnf is linear in that of the input formula
F. The basic idea is to associate fresh variables with the sub-formulae of F. So, for
example, if F is of the form G+H and variables A, B, C are associated respectively
with sub-formulae F, G, H, then the clauses for the bi-implication A ↔ (B ∨ C)

are introduced to the Cnf together with the clauses for the transformations of B

↔ G and C ↔ H. This process establishes the conjunctive normal form of A ↔
F. Adding the singleton clause [A] then provides a CNF equisatisfiable to F . The
variables A, B, C are sometimes referred to as “Tseitin variables”. A technique
proposed by Plaisted and Greenbaum (Plaisted and Greenbaum 1986) is applied to
reduce the size of the transformation when it can be determined that we are only
interested in the truth or the falsity of the result of a bi-implication introduced by
the transformation, but not both its truth and falsity.

To demonstrate the use of the module consider the following queries where T, T1
and T2 are the Tseitin variables.

?- cnf(X==Y,Cnf).

Cnf = [[T], [-X, Y, -T], [X, -Y, -T]]

?- cnf((X*Y)+(-X*Z),Cnf).

Cnf = [[T], [-T, T1, T2], [-T2, -X],

[-T2, Z], [-T1, X], [-T1, Y]]

Figure 1 illustrates the module adder.pl which includes a textbook (Cormen
et al. 1990) ripple-carry circuit for binary addition. The module exports the predi-
cate sum/3. A call to sum(Unary, Binary, Psi) constructs a Boolean circuit Psi.
The arguments Unary and Binary are lists of Boolean formulae, the truth values
of which encode unary and binary numbers respectively. These are the inputs and
outputs of the circuit which can be seen as computing the binary sum of its unary in-
puts. The formula, Psi is a propositional statement capturing the correspondence
between unary and binary representations of non-negative integers. The formula
Psi is satisfiable exactly when Unary and Binary encode the same number. In the
recursive call of the code, the formula Psi=F1*F2*F3 is constructed by splitting the

4 M. Codish, V. Lagoon, and P.J. Stuckey

inputs into two equal halves (padding with a zero if necessary). From the recursive
calls, the subformulae F1 and F2 relate the two halves of the inputs (unary) to
the (binary) numbers S1 and S2. The call to add(S1,S2,Sum,F3) constructs the
formula F3 for the binary Sum of S1 and S2. Observe that the length of Binary is
dlog2 |Unary|e.

:- module(adder,[sum/3]).

% sum(+,-,-).

sum([B],[S],(S==B)).

sum([B1,B2|Bs],Sum,F1*F2*F3) :-

split([B1,B2|Bs],Xs,Ys),

sum(Xs,S1,F1), sum(Ys,S2,F2), add(S1,S2,Sum,F3).

% split(+,-,-).

split([],[],[]).

split([X],[X],[0]).

split([X,Y|XYs],[X|Xs],[Y|Ys]) :- split(XYs,Xs,Ys).

% add(+,+,-,-).

add([X|Xs],[Y|Ys],[Z|Zs],(CXY==CarryXY)*(Z==SumXY)*Sum) :-

halfadder(X,Y,SumXY,CarryXY),

adder(Xs,Ys,CXY,Zs,Sum).

% adder(+,+,-,-).

adder([],[],Carry,[Z],Z==Carry).

adder([X|Xs],[Y|Ys],Carry,[Z|Zs],(CXY==CarryXY)*(Z==SumXY)*Rest) :-

fulladder(X,Y,Carry,SumXY,CarryXY),

adder(Xs,Ys,CXY,Zs,Rest).

% fulladder(+,+,+,-,-).

fulladder(X, Y, C, (X xor Y xor C), (C -> X+Y ; X*Y)).

% halfadder(+,+,-,-).

halfadder(X, Y, (X xor Y), X*Y).

Fig. 1. A ripple-carry adder circuit

To demonstrate the use of the module consider the following query construct-
ing the circuit Psi for the inputs Unary = [X+Y,X*Y,X==Y,X xor Y] and outputs
Binary = [S1, S2, S3].

?- sum([X+Y,X*Y,X==Y,X xor Y],[S1,S2,S3],Psi).

Psi = (T1==X+Y)*(T2==(X==Y))*(T3==T1 xor T2)*(T4==T1*T2)*(T5==X*Y)*

(T6==X xor Y)*(T7==T5 xor T6)* (T8==T5*T6)*(S1==T3 xor T7)*

(S2==T4 xor T8 xor (T3*T7))* (S3==(T3*T7->T4+T8;T4*T8))

Table 1 illustrates the declarative meaning of the predicate depicting the truth
values for Unary and Binary determined by Psi for the 4 truth assignments of X

and Y.

Logic Programming with Satisfiability 5

X Y Unary Binary
0 0 [0, 0, 1, 0] [1, 0, 0]
0 1 [1, 0, 0, 1] [0, 1, 0]
1 0 [1, 0, 0, 1] [0, 1, 0]
1 1 [1, 1, 1, 0] [1, 1, 0]

Table 1. Truth values for the circuit summing Unary=[X+Y,X*Y,X==Y,X xor Y]

The module minisat.pl exports four predicates:

• solve(Cnf) succeeds if and only if the formula Cnf in conjunctive normal
form is satisfiable, binding its variables to truth values 0 (false) and 1 (true)
that satisfy Cnf.

• sat(Cnf) succeeds if and only if the formula Cnf in conjunctive normal form
is satisfiable. It is similar to solve(Cnf) but does not bind any variables.

• minimize(Vec,Cnf) is similar to sat(Cnf). The additional argument Vec is
a list of variables (e.g., occurring in Cnf). The variables of Vec are assigned
the truth value that minimizes the binary number represented by Vec for all
solutions of Cnf. If Cnf has no solutions (i.e. is unsatisfiable) it fails.

• maximize(Vec,Cnf) is similar to minimize(Vec,Cnf) but the assignment
returned maximizes the value of the non-negative integer represented by Vec.

The predicates minimize/2 and maximize/2 are illustrated in Figure 2. Consider
the query ?- maximize(Xs, Cnf) where Xs is a list of k variables and Cnf a formula
in conjunctive normal form. To solve the query, the basic idea is to pose k questions,
one for each variable of Xs, to the SAT solver to determine the maximum value
of Xs. Each question determines the satisfiability of Cnf when setting the next bit
in Xs to its maximal value. Observe, in the code, that these questions are posed
using sat so as not to bind variables in the formula. Note also that each of these
questions is of size O(|Cnf|).

% minimize(+,+).

minimize([],CNF) :- sat(CNF).

minimize([B|Bs],CNF) :- minimize(Bs,CNF), ((B=0, sat(CNF)) -> true ; B=1).

% maximize(+,+).

maximize([],CNF) :- sat(CNF).

maximize([B|Bs],CNF) :- maximize(Bs,CNF), ((B=1, sat(CNF)) -> true ; B=0).

Fig. 2. Minimization and maximization in minisat.pl

To demonstrate the use of the module consider the following queries:

• solve/1. The call succeeds binding X and Y to truth values.

?- cnf(X==Y,Cnf), solve(Cnf).

X=0, Y=0

6 M. Codish, V. Lagoon, and P.J. Stuckey

• sat/1. The call succeeds without binding X and Y.

?- cnf(X==Y,Cnf), sat(Cnf).

Yes

• sum/3 with solve/1. The first call succeeds binding X=0 and Y=0. In this case
the circuit output is 1 (only one of the inputs is true under this assignment).
The second call indicates that it is possible to satisfy 2 of the inputs under
the assignment X=0 and Y=1.

?- sum([X+Y,X*Y,X==Y,X xor Y],Sum,F), cnf(F,Cnf), solve(Cnf).

X = 0, Y = 0

Sum = [1, 0, 0]

?- sum([X+Y,X*Y,X==Y,X xor Y],[0,1,0],F), cnf(F,Cnf), solve(Cnf).

X = 0, Y = 1

• sum/3 with maximize/2. The answer Sum=[1,1,0] indicates that it is possible
to satisfy at most three of the four formulae. The call maximize(Sum,Cnf)
binds only the elements of Sum. To obtain the maximizing assignment, X=1,
Y=1, the call to maximize must be followed by a call to solve(Cnf).

?- sum([X+Y,X*Y,X==Y,X xor Y],Sum,F), cnf(F,Cnf),

maximize(Sum,Cnf), solve(Cnf).

Sum=[1,1,0]

X=1, Y=1

4 Solving Partial MAX-SAT

To solve a Partial MAXSAT problem for CNF formula ϕ and ψ we seek an assign-
ment that satisfies ϕ and maximizes the number of clauses of ψ which are satisfied.
We solve the more general problem with ϕ an arbitrary propositional formula and
ψ a list of n propositional formulae.

The solution is illustrated in Figure 3. The arguments Phi and Psi correspond to
ϕ and ψ respectively. The key idea is to construct the formula SumPsi representing
the sum of the n formulae in Psi. This results in a vector Max with O(log n) bits.
We then aim to satisfy the conjunction Phi*SumPsi while maximizing the number
represented by Max. Solving the query maximize(Max,Cnf) involves O(log n) calls
to the SAT solver.

% partialMaxSat(+,+).

partialMaxSat(Phi,Psi) :-

sum(Psi,Max,SumPsi), cnf(Phi*SumPsi,Cnf),

maximize(Max,Cnf), solve(Cnf).

Fig. 3. Solving Partial MAXSAT

For example the following query provides an assignment which satisfies ϕ = X+Y
and 4 of the 7 formula in the second argument.

Logic Programming with Satisfiability 7

?- partialMaxSat(X+Y,[X*Y,X==Y,X xor Y,-X+Y, -X, -Y, X]).

X = 1, Y = 1

5 Conclusion

We contribute a Prolog library for solving SAT instances through an interface to the
MiniSat solver. We illustrate its use to encode a reduction from Partial MAXSAT
to SAT.

References

Annov, E., Codish, M., Giesl, J., Schneider-Kamp, P., and Thiemann, R. 2006. A
sat-based implementation for RPO termination. http://www.lix.polytechnique.fr/
∼hermann/LPAR2006/short.html. Short Paper at LPAR.

Arts, T. and Giesl, J. 2000. Termination of term rewriting using dependency pairs.
Theoretical Computer Science 236, 1-2, 133–178.

Cha, B., Iwama, K., Kambayashi, Y., and Miyazaki, S. 1997. Local search algorithms
for partial MAXSAT. In AAAI/IAAI. 263–268.

Codish, M., Lagoon, V., and Stuckey, P. J. 2006a. Minisat library for prolog. http:
//www.cs.bgu.ac.il/∼mcodish/Software/pl-minisat.tgz.

Codish, M., Lagoon, V., and Stuckey, P. J. 2006b. Solving partial order constraints
for LPO termination. In Term Rewriting and Applications (RTA). Vol. 4098. Springer,
Seattle, USA, 4–18.

Codish, M., Schneider-Kamp, P., Lagoon, V., Thiemann, R., and Giesl, J. 2006.
Sat solving for argument filterings. In Logic for Programming, Artificial Intelligence
and Reasoning (LPAR). Vol. 4246. Springer, 30–44.

Cormen, T. H., Leiserson, C. E., and Rivest, R. L. 1990. Introduction to Algorithms.
MIT Press, Chapter 29.

Dershowitz, N. 1982. Orderings for term-rewriting systems. Theoretical Computer
Science 17, 279–301.

Eén, N. and Sörensson, N. 2004. An extensible SAT-solver. In Theory and Applications
of Satisfiability Testing, 6th International Conference, SAT 2003 (Selected Revised Pa-
pers), E. Giunchiglia and A. Tacchella, Eds. Lecture Notes in Computer Science, vol.
2919. Springer, 502–518.

MiniSAT 2006. MiniSAT solver. http://www.cs.chalmers.se/Cs/Research/

FormalMethods/MiniSat. Viewed December 2005.

Miyazaki, S., Iwama, K., and Kambayashi, Y. 1996. Database queries as combinatorial
optimization problems. In CODAS. 477–483.

Plaisted, D. and Greenbaum, S. 1986. A structure preserving clause form translation.
Journal of Symbolic Computation 2, 293–304.

SWI-Prolog. SWI-prolog. http://http://www.swi-prolog.org/. Viewed December 2005.

Tseitin, G. 1968. On the complexity of derivation in propositional calculus. In Studies in
Constructive Mathematics and Mathematical Logic. 115–125. Reprinted in J. Siekmann
and G. Wrightson (editors), Automation of Reasoning, vol. 2, pp. 466-483, Springer-
Verlag Berlin, 1983.

Wielemaker, J. 2003. An overview of the SWI-Prolog programming environment. In
Proceedings of the 13th International Workshop on Logic Programming Environments,
F. Mesnard and A. Serebenik, Eds. Katholieke Universiteit Leuven, Heverlee, Belgium,
1–16. CW 371.

