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Abstract. Parallel Constraint Programming (CP) solvers typically split
the search space in disjoint subspaces, and run solvers independently on
these. This may induce significant overhead when solving optimization
problems. Parallel Boolean Satisfiability (SAT) solvers typically run a
portfolio of solvers, all solving the same problem but sharing some lim-
ited learnt clause information. In this paper we consider parallelizing a
lazy clause generation (LCG) constraint programming solver, which is
a constraint programming solver with learning. Since it is both a kind
of CP solver and a kind of SAT solver it is not clear which approach to
parallelization is likely to be most effective. We give examples of very
different kinds of optimization problems we wish to parallelize and show
that a hybrid approach to parallelization can provide a robust and high
performing parallel LCG solver.

1 Introduction

Techniques for verification and optimization such as SAT, CP, SMT and MIP
have greatly improved in the last decades, and are nowadays used in a wide
range of applications. Besides algorithmic improvements, more and more pow-
erful hardware has become available, giving an additional boost on sequential
performance. But the time of this free lunch seems to be over, as clock rates and
instructions per cycle are hardly improving anymore. In order to gain speedups
from today’s hardware, algorithms should be able to run in parallel. In this pa-
per, we consider the parallelization of the LCG solver Chuffed [5] for CP-based
optimization problems. Chuffed combines CP techniques such as search and
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strong propagation with techniques developed for SAT solving such as clause
learning, restarts and activity based search.

Whereas parallelization of CP solvers is usually based on some kind of search
space splitting, parallelization of SAT solvers is usually based on some form of
portfolio approach. Hence an interesting question arises for LCG solvers: should
they use search space splitting or portfolio methods for parallelizing search? In
this paper we investigate this question.

The contributions of this paper are

1. An analysis of the runtime-behavior of sequential solvers on optimization
problems, showing extremely different characteristics of different problems.

2. An optimistic branching technique which allows for finding good solutions
much earlier, which prevents superfluous work in search space splitting.

3. A comparison of search space splitting and work stealing, the common ap-
proach used in parallel CP, with a portfolio CP solver using techniques com-
monly used in parallel SAT.

4. A scalable, parallel LCG solver which allows for significant speedups on a
wide range of benchmarks. Compared to the sequential solver, superlinear
speedup is achieved in finding good solutions.

The structure of the paper is as follows. After discussing related work in
Section 2 and presenting the architecture of our parallel solver (3), we then
examine the use of sequential optimization on two very different optimization
problems in Section 4 and show the impact of basic approaches to parallelizing
their solving. In Sections 5 and 6, we present results on a suite of benchmarks
for parallelizing using search space splitting implemented by work stealing, and
an approach based on SAT-like portfolio solving. We then consider the effect
of splitting the problem by objective value in Section 7. After combining these
approaches to a stable and scalable solver in Section 8, we conclude in Section 9.

2 Related Work

The most common approach for solving CSP problems is to combine search
with propagation [27]. The search is implemented as backtracking, and at each
node of the search tree propagators are invoked to reduce variable domains with
respect to the decisions made during branching. In case an inconsistent state
is detected, i.e. some variable can take no possible value, the solver backtracks,
and tries another variable assignment. Implementing fast and scalable parallel
algorithms is noted as one of the large challenges in optimization [9].

2.1 Parallel CP

Parallel algorithms for CP typically split the search space, and run solver threads
on disjoint subspaces [11]. This approach has been studied for several decades,
and it is known that superlinear speedups are possible in some cases [14,22].
Most solvers use work stealing mechanisms to keep all solver threads busy [26],



and significant speedups are reported for up to 512 threads [15]. Recent research
tried to reduce the communication overhead in order to improve speedups for
massively-parallel search. In [17], the authors suggest to split the search space
by computing the discrepancy from a given search strategy. Thus, solver threads
only need to know about their index to compute their chunk of the search space.
Unfortunately, they report results for only a small number of experiments, and
cannot prove optimality for them. Another approach is to split the search space
before starting the search, and storing chunks of work in a master process [23,24].

If a good search strategy for a specific problem is known, this may be used
to focus the parallel search on promising parts of the search space [6], and gain
significant speedups.

It is known that some solvers are faster than others, depending on the prob-
lem instance. This fact was used in [2] to build a sequential portfolio, and later to
create a parallel portfolio solver [1]. Significant speedups could be gained using
a small number of threads, but it is not clear how scalable this approach is.

2.2 Parallel SAT

The satisfiability problem of propositional logic (SAT) can be seen as a special
case of CP with binary variables, and constraints given in form of disjunctions,
called clauses. It is typically solved using conflict driven clause learning (CDCL),
an extension of the well-known DPLL algorithms, together with agile restart-
ing strategies and activity based search [18]. These techniques allow for reusing
information about parts of the search space which were proven infeasible, and
restarting the search to emphasize important variables as well as recovering from
bad decisions made close to the root of the search tree. Parallel algorithms for
SAT either split the search space, or run different solver configurations in paral-
lel [3]. The latter approach, typically referred to as portfolio approach, has proven
very successful especially on structured instances. Recent research focusses on
the exchange of learnt clauses between solver threads [7,12]. Unfortunately, the
scalability of these solvers seems to be limited due to the sequential structure of
resolution proofs [13].

2.3 Lazy Clause Generation

Lazy Clause Generation (LCG) [8] combines techniques from CP and SAT to
solve Constraint Satisfaction Problems. If an inconsistency is detected during
search, the reasons for this inconsistency are compiled into a clause, and added
to the set of constraints. Thus, it is possible to reuse this knowledge in other parts
of the search tree, which is extremely helpful if these clauses are good explana-
tions for the failed search [28]. The LCG-based solver Chuffed4 [5] addition-
ally supports the Variable State Independent Decaying Sum (VSIDS) branching
heuristic that is commonly used in SAT solvers. This heuristic branches on vari-
ables first that have recently been involved in conflicts. Chuffed can switch
between activity based search and programmed search during runtime.

4
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3 Preliminaries

A Constraint Satisfaction Problem (CSP) problem φ is given by a triple (V,D,C),
where V = (v1, . . . , vn) = vars(φ) is a set of n variables on finite domains
D = (D1, . . . , Dn), and C is a set of predicates c : D 7→ {⊥,>}. We will as-
sume integer variables, i.e. v ∈ [lb(v), ub(v)] ∩ Z for all variables v. The set of
feasible solutions is given by S = {x ∈ D | ∀c ∈ C.c(x)}. A Constraint Optimiza-
tion Problem (COP) is a tuple (V,D,C, z) consisting of a CSP (V,D,C) and
a variable z that takes the objective value. Throughout this paper we will only
consider minimization problems, as maximization can be expressed by negating
the expression that z is equated to. When adding further constraints, we will
write φ|c = (V,D,C ∪ {c}).

3.1 Parallel Solver Architecture

We have developed a parallel version of Chuffed [5] which is used in all ex-
periments. Chuffed is a state-of-the-art lazy clause generation solver [20]. It
comes with a Master-Slave-infrastructure [6], where communication is performed
as message passing via MPI. When gaining parallelism by search space splitting,
the master process sends conjunctions of literals, called jobs, to the slaves. We
extended this scheme as follows to gain a more flexible solver.

– Portfolio-Solving, as in parallel SAT solving, can be achieved by sending
empty jobs to each slave process, which allows them to search the whole
search space. Diversification is gained by initializing the VSIDS-activities
with random values.

– Probing on variable values: The master process can send jobs of the form
[x ◦ c] to the slave processes, where x ∈ vars(φ), c ∈ Z, and ◦ ∈ {=, 6=,≤, <
,>,≥}. This can, e.g., be used for guessing bounds on the objective value.

– Learnt clauses are sent to, and forwarded by the master process, if their
length is sufficiently small. The threshold on the length can be adjusted
dynamically to both maintain a sufficient communication between solvers,
and prevent network congestion.

– Adaptive size of clause database: While Chuffed has a fixed bound on the
size of its clause database, we allow for a dynamic amount of received clauses.
Whenever the learnt clause database is cleaned, we delete all received clauses
with low activity.

– Hybrid approaches: It is possible to mix the modi operandi.

4 Optimization

As CP typically deals with decision problems, CP-based optimization is built
around decision procedures. Figure 1 shows how, given a decision procedure
Decide, an optimization algorithm can use this procedure to find an optimum
solution. Running this algorithm will result in a sequence of solver calls, of which



Algorithm 1 Optimize CP

function Optimize(φ, z, lb, ub)
res← (⊥,∞)
while (ub ≥ lb)

(sat, x)← Decide(φ|z≤ub)
if (sat) res← (>, z), ub← z − 1
else break

return res

the last one returns UNSAT, proving that either no solution exists, or that the
last solution found is optimal. In the remainder of this paper, we refer to the last
call as the ”proving optimality” part, and all other calls as the ”search” part of
the overall run.

In this section, we examine the behavior of these algorithms on two ex-
amples, both for the sequential and parallel case. The examples, cargo5 and
mqueens6 were chosen from the MiniZinc Challenges 2013 and 2014, respectively.
In all these experiments, the free search of Chuffed was used: On every restart,
Chuffed flips between programmed search and VSIDS (restart flip from [25]).

4.1 Parallel Optimization

We begin with the näıve approach, and simply reuse a parallel solver for opti-
mization problems. Whenever one of the parallel solvers finds a solution, this is
reported to the master. Furthermore, if the objective value of this solution is c, a
unit clause containing the literal [z < c] is sent to all solvers for stronger pruning.
We parallelized solving using a portfolio approach, and using search space split-
ting with work stealing [6]. For the portfolio approach, the search is diversified
by initializing variable activities with random values, based on different seeds
for each solver thread, as is common in SAT portfolios.

Figure 1 shows the development of the objective value during the solver run
on the cargo benchmark for p ∈ {2, 8, 64} processes. Note that we re-use the
master-slave architecture for this experiment, thus, one of these processes denotes
the master. The speed-up we observe is very limited: 2.2 for 7 worker processes,
and 4.2 for 63 workers. The reason for this is simple: All of the parallel processes
find many solutions independently of each other, but they hardly benefit from
new bounds found by other solvers. Similar results can be observed when gaining
parallelism by splitting the search space, c.f. Figure 2. Here, a lot of solutions are
found in disjoint parts of the search space. Exchanging bounds on the objective
among the worker threads leads to small improvements of the running time, but
the overall speedup is disappointing.

Our second running example, mqueens, shows a different behavior. Here, the
running time is dominated by proving optimality, which is proving unsatisfiabil-

5
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6
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Fig. 1. cargo: results for portfolio par-
allel solving
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Fig. 2. cargo: results for search space
splitting parallel solving

# CPUs Workers Portfolio SSS

2 1 155s 155s
8 7 102s 22s

64 63 39s 11s

Fig. 3. mqueens: run times.
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Fig. 4. mqueens: scaling behavior of
Gecode

ity. The portfolio solver shows some, but very limited speedup. Apparently, there
is no small optimality proof here, and exchanging clauses among the solvers is of
limited success due to the sequential structure of resolution proofs [13]. Search
space splitting is much more promising here, with a speedup of 6.9 when using 7
workers threads instead of 1. Unfortunately, using more cores yields only limited
additional speedup. Almost linear speedups can also be observed when running
the parallel version of the CP solver Gecode on this benchmark, c.f. Figure 4.
Gecode also uses search space splitting to gain parallelism, and work stealing for
load balancing.

We summarize these experiments with two main observations. First, search
space splitting is superior to portfolio solving in terms of proving optimality.
When run on many cores, it is crucial to split the work space in equally hard
chunks to benefit from more parallel threads. Second, both approaches scale
poorly when many suboptimal solutions can be found.
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4.2 Sequential Optimization

To gain a better understanding of the results we found in the parallel setting, we
discuss results obtained by running the sequential solver. For the two benchmarks
cargo and mqueens, we run the sequential version of Chuffed, and periodically
record the best objective value found so far. The results for cargo can be seen
in Figure 5: starting with a value of 3, 757, the objective value is improved
steadily, and drops to the optimum of 714 after 1, 453 seconds. In this case,
the solver spends the vast majority of the running time improving the solution,
and finds 2, 654 different solutions before proving optimality. Interestingly, the
improvement speed is roughly constant during the whole run, and the final call
to the decision procedure, which proves optimality, is not harder than previous
calls. For mqueens, we observe a totally different behavior, c.f. Figure 6. An
optimum solution is found within 4 seconds, whereas the proof of optimality
takes another 151 seconds.

This behavior is reflected by the difficulty of the respective decision problems.
For both benchmarks, we added different bounds on the objective, and aborted
the solver after finding the first solution. For cargo (Figure 7), we ran this
experiments for objective values in the interval [700, 1000], i.e. for values close to
the optimum objective value. The maximum running time observed was 30s, and
average running times of 3 seconds. A very interesting result of this experiment
is that the running time close to the optimum solution is not higher than running
times for higher bounds. So if we knew a good bound on the objective in advance,
we might run the solver with a tightened bound, and find an optimal solution
much faster. The mqueens benchmark shows a totally different behavior, c.f.
Figure 8. Here, the proof of optimality is hard, whereas both finding solutions
and proving bounds tighter than the optimal value is extremely fast.

5 Search Space Splitting

As shown in Section 4, parallelisation by splitting the search space in disjoint
parts allows for very good speedups, especially for proving optimality. Unfortu-
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nately, this approach comes with some drawbacks. After finding a solution, a
sequential algorithm will continue its search, using a tighter bound on the objec-
tive value for further pruning. In parallel, worker threads may therefore search
parts of the search space that would not be searched by a sequential algorithm,
which may dramatically decrease the efficiency, as mentioned in [6].

In order to keep waiting times of worker threads low, it is common to store
some jobs, i.e. chunks of the search space, at the master process. Whenever a
worker finishes working on its part of the search space, a new chunk of work can
be provided without waiting for another worker to provide work. In the worst
case, this can lead to situations in which none of the workers searches the part of
the search space containing the optimum solution. The decision how to split the
search space is very important for gaining some benefit from this approach: Let
φ = (V,D,C) denote an unsatisfiable CSP, and C ′ ⊂ C a minimum unsatisfiable
core, i.e. a set of constraints such that (V,D,C ′) is already unsatisfiable. Splitting
on a variable that does not occur in C ′ will then be less likely to speed up the
parallel solver. To overcome this problem, VSIDS activities can be used to choose
variables for splitting the search space. As VSIDS focusses on variables that were
involved in conflicts, this prevents branching on uninteresting variables. In our
implementation, the master sends the empty job to one worker, which starts to
work on this job. Whenever work has to be stolen, the master sends a request
to one of the slaves, which creates new jobs according to its topmost branching
decisions.

Example 1 Assume a worker is working on a job given as x1 ∧ x2, and its
topmost branching decisions are x3 and x4. If asked to provide two new jobs, it
fixes its new job to x1 ∧x2 ∧x3 ∧x4, and reports this to the master. In turn, the
master creates new jobs x1 ∧ x2 ∧ x3 ∧ x̄4 and x1 ∧ x2 ∧ x̄3.

LCG solvers can reuse information about failed search to further prune the
search space. Thus, the time required by a LCG solver to refute a part of the
search space depends on previous search. If parallelism is gained by splitting the
search space and running LCG solvers on disjoint parts of it, this may decrease
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the achievable speedup: whenever a worker receives a new chunk of the work
space, it needs to learn clauses which are relevant to this new subspace, which
might be the same as clauses for other chunks of the work space. Figure 9
shows the total number of conflicts occurring while solving mqueens. Here, the
number of conflicts increases with additional processes. To reduce this burden,
we exchange learnt clauses between solvers.

Unless something different is stated for single experiments, this solver ex-
changes bounds on the objective, and short clauses. Short learnt clauses are
exchanged between the solver processes. The bound on their size is adjusted
dynamically such that approximately 10% of the clauses in the database are
received from other solvers, which gave good results in our tests. As in [12], we
check the number of imported clauses regularly, and adjust the threshold on
clause size to exchange if too many or too few clauses were received.

To evaluate parallelization approaches we created a set of 110 different bench-
marks, suite, taken from MiniZinc challenges for 2013 and 2014.7 We used a

7 The exact set of instances is available at people.unimelb.edu.au/pstuckey/pchuffed.
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time limit of 5 minutes. We denote by SSS our search space splitting parallel
solver. Figure 10 shows the scaling behavior for 2 to 64 processes. Significant
speedups can be observed for up to 32 parallel processes. In Figure 11, we com-
pare the results for a parallel solver on 64 cores with the ones obtained using the
sequential solver. The parallel solver clearly outperforms the sequential version.
Furthermore, 12 more instances can be solved to optimality within 5 minutes.

In Figure 12, we compare the running times with and without exchanging
bounds on the objective between the solver processes. In some cases, e.g. if a
good solutions can be found by all of the parallel solvers, there is only a small
difference, whereas there is a huge difference for other instances, and 3 more
benchmarks can be solved to optimality. In other words, it is crucial for the
performance of a parallel LCG solver to find and communicate good bounds on
the objective value as fast as possible.

Note that the benchmarks which timed out do not mean an equal result: As
we are dealing with optimization problems, they often time out with different
incumbent solutions. This issue will be further considered in Section 7.

6 Portfolio

Portfolio solving is a common approach for parallel SAT solving. In this section,
we investigate the behavior of a portfolio CP-solver with learning. As common
in parallel SAT, the solvers are diversified by initializing their variable activities
randomly. Additionally, we allow for some communication between the solver
processes. As we are using a master-slave-architecture, a portfolio approach is
simulated by sending the empty job (i.e. the empty conjunction) to each solver.
For clause exchange, the same policy as in the SSS setting is used. We denote
this solver as Portfolio. Figure 13 compares the running times of the sequential
solver, and the portfolio solver on 64 cores, with a time limit of 5 minutes. Only
little speedup can be observed for easy instances, whereas parallelism pays off for
harder instances, and results in 10 more solved instances. The scaling behavior
is shown in Figure 14. Both significant speedups and an increased number of



100 101 102

100

101

102

Share clauses

B
o
u
n
d
s

o
n
ly

Fig. 15. suite: impact of clause sharing
on Portfolio with 64 cores

100 101 102

100

101

102

Portfolio

S
S
S

Fig. 16. suite: comparison of SSS and
Portfolio, 64 cores

solved instances can be observed when using more CPU cores. On the other
hand, 36 of the benchmarks time out, so either no optimum result was found,
or the proof of optimality could not be completed.

In parallel SAT solving, it is a well-known fact that clause exchange is very
helpful, especially for unsatisfiable instances. For parallel LCG, communication is
also beneficial, but it appears harder to determine which, and how many clauses
should be exchanged. Figure 15 compares the results of a portfolio solver on 64
cores with our adaptive clause exchange policy to a portfolio solver which only
exchanges the incumbent objective value. Communicating learnt clauses yields
a significant speedup and 6 more solved instances. Although this is a significant
improvement, the power of clause exchange for parallel LCG appears limited.
Further experiments showed that the exchange of clauses of size at most 2 speeds
up the computation, whereas larger clauses do not always help, and may even
significantly impede solving. As it appears difficult to determine the right choice
of clauses to exchange, we used the conservative, adaptive approach. Recent
work in SAT has emphasized the fact that many learnt clauses are not helpful
for satisfiable formulas [19]. As the optimization process consists of solving a
sequence of satisfiable problems, followed by one unsatisfiable one—the proof of
optimality—this may be the reason for these results. Nevertheless, the portfolio
solver is surprisingly strong. Using 64 cores, it can solve one instance that cannot
be solved optimally by the search space splitting solver, c.f. Figure 16.

7 Objective Probing

Both search space splitting and portfolio approaches yield good results. Never-
theless, they do not make use of the following observations from Section 4: in
many cases finding a good solution is not harder than finding any solution. Find-
ing good solutions early prunes the search, using the tighter objective bounds,
and conversely, finding them late result in superfluous search, and may reduce
the benefits of parallelism, c.f. Figure 12. Hence, it appears promising to try to
push a parallel solver towards finding good solutions quickly.
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To do so, we guess bounds on the objective, and use some solver processes
to probe whether there exists a solution satisfying the guessed bound, or not.
A similar approach was already used for parallel Boolean optimization in [16],
where the authors compute upper and lower bounds concurrently. When using
n processes for objective probing, we use bounds

bound(i) = lb+

⌊
i(ub− lb)

n

⌋
, (1)

where lb and ub denote lower and upper bounds on the objective value, and the
ith process solves Optimize(φ, z, lb, bound(i)).

Figure 17 shows the impact of this approach when solving the cargo bench-
mark. Compared to the näıve portfolio approach, c.f. Figure 1, an impressive
speedup of 483 is achieved, as the solver finds an optimum solution and proves
its optimality within 3 seconds. Furthermore, probing objective values yields
lower bounds on the objective. Thus, this approach allows for estimating the
quality of solutions.

In the remainder of this section, we will discuss how to implement the objec-
tive probing, and show results. As we deal with optimization problems, we also
consider the quality of solutions found. Therefore, we ran the sequential version
of Chuffed on each benchmark with a time limit of 3 hours, and recorded the
best solution found. Then, we tested how long it takes the parallel solver to find
a better solution, or prove that no better solution exists.

7.1 Objective Probing in Search Space Splitting

For the search space splitting solver, we split the workers in three groups of
equal size. Workers from the first group run on split parts of the search space
as before. Workers from the second subset start by guessing an objective value
according to equation 1. If this guess is refuted, i.e. a proof is found that no
solution exists with an objective value satisfying the bound, or it is implied,
i.e. a better solution is found, they join the workers from the first group. The



Table 1. suite: speedups when searching for good solutions.

#CPUs SSS SSS+

all hard all hard

avg median avg median avg median avg median

4 2.8 2 10.6 4.5 3.7 3.2 15.5 7.4
8 5 3.8 25.5 9.7 6.2 4 41.8 20.2
16 6.7 5.9 41.2 19.5 9.6 7.6 78.9 34.6
32 9.6 8 72.5 58.9 12.7 13.3 121.3 58.5
64 12.7 15 136.8 104 15.6 13.8 193.8 107

remaining threads behave like the ones from the second group, but re-guess
bounds on the objective, until half of the given time limit is reached. This can
be seen as a hyper-binary search on the objective, as the interval between lower
and upper bound is split in several parts. We denote this solver as SSS+.

Figure 18 shows the impact of this technique on the search for good solutions.
For very easy instances, which can be solved in less than one second, the paral-
lel solver is slower than the sequential version. For harder instances, significant
speedups can be observed. Table 1 shows the geometric average, and median
speedups obtained on all benchmarks, and on hard ones. Here, a benchmark is
considered hard if the sequential Chuffed does not terminate within 300 sec-
onds. The average speedup on all instances is sublinear, as many of them are
too easy and do not allow for sufficient speedups by the parallel solver. Con-
versely, the speedup on hard instances is significant, and superlinear for every
configuration. The configuration which uses objective probing, SSS+, reaches an
average speedup of 193.8 on 64 cores. On 8 and 16 cores, it is even faster than
SSS on 16 and 32 cores, respectively. On benchmarks of medium difficulty, the
results are mixed. Figure 21 compares the results of the SSS and SSS+ con-
figuration, when using 64 cores. The SSS+ configuration is significantly faster
on some benchmarks, and slightly slower on some others. This is especially the
case if probing fails in many cases, and thus only yields improved lower bounds
on the objective instead of tighter pruning. Summarizing, combining a Search
Space Splitting solver with objective probing gives an additional boost on the
performance, especially for hard problems with a large value range for the ob-
jective value. Splitting the solvers in three groups of equal size works well on our
benchmark suite, and it appears hard to find better choices that work well for
all benchmarks, or adapt the group size dynamically.

7.2 Portfolio Solving and Objective Probing

In portfolio solving, guessing bounds on the objective value may be seen as an
additional source of diversification for the solvers. As in the SSS+ configuration,
we split the solver processes in three groups. After objective probing is finished,
the respective solvers continue running as in the normal portfolio configuration.

On benchmarks of medium difficulty, this approach outperforms the common
portfolio configurations, as can be seen in Figure 20.
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Table 2. suite: speedups when searching for good solutions.

#CPUs Portfolio Portfolio+

all hard all hard

avg median avg median avg median avg median

4 3.2 2 13.4 4.3 4.3 2.4 18.2 7.4
8 4.7 3.7 23.5 9 6.1 4.2 33.9 8.43
16 6.1 4.5 39.4 14.6 9.2 7 68.4 26.9
32 7.7 7.4 62.1 38 11.4 8.9 107.5 77.4
64 9.1 10.1 84.6 42 13.6 14.6 152 133.6

The reason for this behavior seems to be the following: The portfolio ap-
proach is fast in finding good solutions, but for proving optimality it does not
scale as well as the search space splitting solver. Thus, the solving process is
accelerated if better solutions are found early, but it is not slowed down too
much if some workers spend computation time on proving lower bounds instead
of participating in the proof of optimality.

Table 2 shows the speedups obtained when searching for good solutions.
Again, superlinear average speedups can be observed for all configurations when
considering only the hard benchmarks, reaching a maximum of 152 for the port-
folio solver with objective probing, denoted Portfolio+, and 64 cores. Here, the
impact of objective probing is even larger than for the SSS solver. Interestingly,
the difference is small on 8 cores, and grows larger when using more parallel work-
ers, which may be a hint that the normal portfolio solver does not achieve suffi-
cient diversification when using many cores. Furthermore, the median speedup
on hard benchmarks is even higher than one obtained by the SSS solver.

8 A Hybrid Solver

When comparing the results of the portfolio solver with those of the SSS solver,
it becomes obvious that these approaches work differently well on different prob-
lems. As can be seen in the Figures 21 and 22, SSS tends to perform better on
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Fig. 23. suite: comparison between
Hybrid and SSS solver, 64 cores

#CPUs all hard

avg median avg median

4 4.3 3.3 18.4 6.3
8 6.3 4.7 38.2 19.9
16 9.6 6.4 79.9 43
32 11.7 8.8 116 62.4
64 15.7 16 196 140

Fig. 24. suite: speedups for Hybrid

when searching good solutions

average, both on 8 and 64 cores. Nevertheless, the SSS solver times out on some
instances that can be solved by the portfolio solver, and vice versa. It appears
therefore promising to combine both approaches to a (meta-)portfolio, which
combines SSS, initial guesses on the objective value and a SAT-like portfolio
solver. We therefore change the behavior of the SSS+-solver as follows. Workers
from the second group, which finish working on the respective guessed objec-
tive values, continue working as portfolio solvers rather than joining the SSS

solvers. Thus, they are capable of searching the whole search space instead of
being fixed on one subspace, which maintains the strength of the highly agile
VSIDS-based branching. We denote this as Hybrid. Interestingly, this is espe-
cially advantageous when using just a few cores. Here, the number of solved
instances is increased remarkably. The search for good solutions is improved sig-
nificantly: Using 64 cores, the median of speedups increases from 13.8 to 16 on
all instances, and from 107 to 140 on the hard ones.



9 Conclusion

We presented results of different approaches to parallelize the LCG solver Chuffed.
A portfolio approach performs astonishingly well, especially when trying to find
good solutions rather than proving optimality. Here, an approach based on search
space splitting is more successful, although is does not scale as smoothly as clas-
sical CP solvers. To avoid redundant work and hence gain better speedups, it is
important to communicate some information between the parallel solvers. The
most important information is the best incumbent objective value, whereas the
impact of exchanging longer clauses is limited.

A hybrid solver which combines probing the objective value, portfolio solv-
ing and search space splitting yields significant speedups on a wide range of
benchmarks. When trying to find better results than the sequential version of
Chuffed, the speedup obtained is significantly superlinear.

On the contrary, the speedups on unsatisfiable instances, e.g. when proving
optimality, are sublinear, which matches results from parallel SAT solving.
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