
A Hybrid BDD and SAT Finite Domain
Constraint Solver

Peter Hawkins and Peter J. Stuckey

NICTA Victoria Laboratory
Department of Computer Science and Software Engineering

The University of Melbourne, Vic. 3010, Australia
{hawkinsp,pjs}@cs.mu.oz.au

Abstract. Finite-domain constraint solvers based on Binary Decision
Diagrams (BDDs) are a powerful technique for solving constraint prob-
lems over finite set and integer variables represented as Boolean formulæ.
Boolean Satisfiability (SAT) solvers are another form of constraint solver
that operate on constraints on Boolean variables expressed in clausal
form. Modern SAT solvers have highly optimized propagation mecha-
nisms and also incorporate efficient conflict-clause learning algorithms
and effective search heuristics based on variable activity, but these tech-
niques have not been widely used in finite-domain solvers. In this paper
we show how to construct a hybrid BDD and SAT solver which inherits
the advantages of both solvers simultaneously. The hybrid solver makes
use of an efficient algorithm for capturing the inferences of a finite-
domain constraint solver in clausal form, allowing us to automatically
and transparently construct a SAT model of a finite-domain constraint
problem. Finally, we present experimental results demonstrating that the
hybrid solver can outperform both SAT and finite-domain solvers by a
substantial margin.

1 Introduction

Finite-domain constraint satisfaction problems (CSPs) are an important class of
problems with a wide variety of practical applications. There are many compet-
ing approaches for solving such problems, including propagation-based constraint
solvers and Boolean Satisfiability (SAT) solvers.

We have previously shown how to represent many finite-domain constraint
problems using Binary Decision Diagrams (BDDs) by modeling problems in
terms of Boolean variables and representing both variable domains and con-
straints as formulæ over these variables [10]. The BDD representation of these
formulæ allows us to “package” together groups of Boolean variables, where each
group represents a set, multiset, or integer variable, and to make inferences on
the sets of values that each group of variables can take simultaneously. This al-
lows us to describe bounds, domain, and other types of propagation using BDD
operations.

Another important class of finite-domain CSPs is the class of Boolean Satisfi-
ability problems. While there is a variety of algorithms for solving SAT problems,

some of the most successful complete SAT solvers are based on variants of the
Davis-Putnam-Logemann-Loveland (DPLL) algorithm [6]. The basic algorithm
has existed for over forty years, and a great deal of effort has gone into producing
robust and efficient implementations. Three key elements of a modern SAT solver
are a suitable branching heuristic, an efficient implementation of propagation,
and the use of conflict-directed learning [23].

Most SAT solvers operate on problems expressed as a set of clauses, (although
recently there has been some interest in non-clausal representations for SAT
problems [20]). This uniform representation allows the use of highly efficient
data structures for performing unit propagation, and the generation of conflict
clauses in order to avoid repeating the same subsearch, as well to drive heuristics
that lead the search to new parts of the search space.

Modern SAT solvers are very effective on some kinds of problems, and prac-
tical SAT solvers such as MiniSAT [8] have been successfully applied to a wide
range of problems including electronic circuit fault detection and software veri-
fication. The main disadvantage of SAT solvers is that some kinds of constraints
are hard to model efficiently using clauses—for example the set constraint |S| = k
requires

(
n

k−1

)
+

(
n

k+1

)
clauses to express, and the resulting propagation is weak.

Although both BDD and SAT solvers are Boolean solvers, they represent
different tradeoffs in the general propagation-search paradigm: BDDs are ex-
pensive to manipulate but produce powerful propagation and minimize search,
while SAT propagation is quick and weak, leading to more search but hopefully
requiring less time overall. One of the unique advantages of the SAT solver comes
from the use of nogood learning, which allows substantial search space reduc-
tions for structured problems. To a certain extent the strengths of each solver
are complementary, and in this paper we show how to create a hybrid solver that
inherits from both.

In this paper, we present a novel approach to combining a BDD-based finite-
domain constraint solver and a SAT solver into an efficient hybrid constraint
solver. While dual modeling is not new, the key contribution of this paper is
an efficient algorithm for capturing the inferences of a finite-domain solver in
clausal form. Not only does this allow us to use the conflict-directed learning
and backjumping algorithms of a SAT solver in a finite-domain constraint solver,
we can also use this algorithm to lazily construct a SAT model from a finite-
domain constraint problem represented in BDD form, giving us some of the
speed advantages of a SAT solver without the need for an explicit clausal model
of a problem.

The contributions of this paper are:

– We show how we can construct a hybrid constraint solver by pairing finite-
domain variables with a dual Boolean representation.

– We show how we can efficiently convert the inferences performed by a BDD
based solver into clausal form. These inferences can be used to lazily con-
struct a SAT model of a problem from a finite-domain model, and allow us
to apply conflict-directed learning techniques to the inferences of a finite-
domain solver.

– We demonstrate experimentally that combining BDD and SAT solvers can
substantially improve performance on some set benchmarks.

2 Propagation-based Constraint Solving, BDDs and SAT

In this section we introduce definitions and notation for the rest of the paper.
Most of these definitions are standard (see e.g. [15]).

We consider a typed set of variables V = VI∪VS made up of integer variables
VI , for which we use lower case letters such as x and y, and sets of integers
variables VS , for which we use upper case letters such as S and T .

A domain D is a complete mapping from a fixed (countable) set of variables
V to finite sets of integers (for the integer variables in VI) and to finite sets of
finite sets of integers (for the set variables in VS). A domain D1 is said to be
stronger than a domain D2, written D1 v D2, if D1(v) ⊆ D2(v) for all v ∈ V.

We frequently use set range notation: [L .. U] denotes the set of sets of in-
tegers {A | L ⊆ A ⊆ U} when L and U are sets of integers. A set is said
to be convex if it can be expressed as a range. The convex closure of a set
S is the smallest range that includes S, and is written conv(S). For example
conv({{1, 3}, {1, 4, 5}, {1, 4, 6}}) = [{1} .. {1, 3, 4, 5, 6}]. We lift the concepts of
convex and convex closure to domains in the natural way.

A valuation θ is a mapping of integer and set variables to correspondingly
typed values, written {x1 7→ d1, . . . , xn 7→ dn, S1 7→ A1, . . . , Sm 7→ Am}. We
extend the valuation θ to map expressions or constraints involving the variables
in the natural way. Let vars be the function that returns the set of variables
appearing in an expression, constraint or valuation. In an abuse of notation,
we define a valuation θ to be an element of a domain D, written θ ∈ D, if
θ(vi) ∈ D(vi) for all vi ∈ vars(θ).

A constraint is a restriction placed on the allowable values for a set of vari-
ables. We shall be interested in constraints over integer and set variables. We
define the solutions of a constraint c to be the set of valuations θ that make that
constraint true, i.e. solns(c) = {θ | (vars(θ) = vars(c)) ∧ (� θ(c))}

We associate a propagator with every constraint. A propagator f is a mono-
tonically decreasing function from domains to domains, so D1 v D2 implies that
f(D1) v f(D2), and f(D) v D. A propagator f is correct for a constraint c if
and only if for all domains D: {θ | θ ∈ D} ∩ solns(c) = {θ | θ ∈ f(D)} ∩ solns(c)
This is a weak restriction since, for example, the identity propagator is correct
for any constraints. We assume that all propagators are correct.

A set bounds propagator f for constraint c is a propagator that maps convex
domains to convex domains. For set problems typically set bounds propagators
are employed.

A propagation solver for a set of propagators F and a domain D repeatedly
applies the propagators in F starting from the domain D until a fixpoint is
reached.

2.1 Binary Decision Diagrams

A Reduced Ordered Binary Decision Diagram (ROBDD) is canonical representa-
tion of a propositional expression (up to reordering on the propositions), which
permits an efficient implementation of many Boolean function operations, in-
cluding conjunction (∧), disjunction (∨), existential quantification (∃). In an
ROBDD each node is either 1 (true) or 0 (false) or of the form n(v, t, e) where
v is a Boolean variable, and t and e are ROBDDs. For more details the reader
is referred to the work of Bryant [3]. The modeling of constraint problems using
ROBDDs is discussed extensively in [10].

2.2 SAT and Unit Propagation

A proposition p ∈ P is a Boolean variable, where P denotes the universe of
Boolean variables. A literal l is either a proposition p or its negation ¬p. The
complement of a literal l, ¬l is ¬p if l = p or p if l = ¬p. A clause C is
a disjunction of literals. An assignment is a set of literals A such that ∀p ∈
P.{p,¬p} 6⊆ A. An assignment A satisfies a clause C if one of the literals in C
appears in A.

A SAT solver takes a conjunction (or set) of clauses and determines if there is
an assignment that simultaneously satisfies all the clauses. Complete SAT solvers
typically involve some form of the DPLL algorithm which combines search and
propagation by recursively fixing the value of a proposition to either 1 (true)
or 0 (false) and using unit propagation to determine the logical consequences
of each decision made so far. The unit propagation algorithm finds all clauses
p1 ∨ p2 ∨ . . . ∨ pk where at least k − 1 of the literals are known to be false,
and asserts the remaining literal to be true (since it is the only possible way
for the clause to be satisfied). If all k literals are known to be false, then we
have discovered a conflict in the set of assignments made so far and we must
backtrack. Unit propagation can be performed very efficiently by using watched
literal techniques [16].

Modern SAT solvers make use of nogood learning in order to reduce the
search space, and guide search away from unprofitable areas. Nogood learning
relies on building an implication graph for values derived by unit propagation
(although the graph is usually represented implicitly). The implication graph is
a directed acyclic graph where the nodes l@t are pairs of literal l and timestamp
t indicating the time the literal became known.

Unit propagation on a clause l1∨· · ·∨ ln from nodes ¬l1@t1, . . . , ¬li−1@ti−1,
¬li+1@ti+1, . . . , ¬ln@tn, 1 ≤ i ≤ n adds a new node li@ti where ti is the max-
imum timestamp ti = max{t1, . . . , ti−1, ti+1, . . . , tn} as well as arcs ¬lj@tj →
li@ti, 1 ≤ j 6= i ≤ n. If we discover a conflict from a clause l1 ∨ · · · ∨ ln using
literals ¬l1@t1, . . . ,¬ln@tn, we add a node ⊥@t where t = max(t1, . . . tn) and
arcs ¬li@ti → ⊥@t, 1 ≤ i ≤ n.

When we derive a contradiction then any cut across the graph that leaves the
contradiction on one side (the conflict side), and all the decisions (nodes without
incoming arcs) on the other side (the reason side) defines a nogood. Nogoods can

p1@1

��

¬p9@2
uulll

p4@5
((QQQ ¬p2@2

uulll

��

¬p5@3

$$JJJJJ ¬p6@5

%%KKK
KKK

zzttttt
p3@4

yysss
sss

rrffffffffffffffffffffff

p7@5
((RRRR p8@5

uukkkk
k

⊥@5

Fig. 1. An example implication graph, showing a possible set of implications on the
set of clauses (p9 ∨ ¬p2) ∧ (¬p1 ∨ p2 ∨ ¬p4 ∨ ¬p6) ∧ (¬p3 ∨ p5 ∨ p6 ∨ p7) ∧ (p2 ∨ ¬p3 ∨
p6 ∨ p8) ∧ (¬p7 ∨ ¬p8) .

be added to the solver’s store of learnt clauses in order to assist with future
decisions.

We have a choice of which cut of a conflict graph to take. The decision cut
simply keeps all the decisions (nodes without parents) (which corresponds to
the cut commonly chosen by Conflict-Directed Backjumping schemes in a CSP
context). A cut scheme that has been shown to be more effective experimentally
in the SAT context, called 1-UIP [22], is to choose a cut that places only nodes
with the same timestamp as the contradiction on the conflict side; of these, only
nodes between the Unique Intersection Point (a node which dominates all nodes
between the conflict and itself) closest to the conflict and the conflict itself are
placed on the conflict side.

Example 1. Consider the implication graph shown in Figure 1. All the nodes with
the same timestamp as the contradiction are shown with shadow. The 1-UIP cut
is shown as the dashed line, since ¬p6 is the closest node to the conflict which
is included on all paths from the decision at time 5 to the confict. The nogood
generated is p2∨¬p3∨p5∨p6. The decision cut generates ¬p1∨¬p3∨¬p4∨p5∨p9.

3 A Hybrid SAT and Finite-Domain Constraint Solver

Since the powerful inference abilities of a finite-domain constraint solver and the
efficient propagation and conflict-directed learning of a SAT solver are to some
extent complementary, we would like to construct a hybrid solver that combines
the advantages of both. Such a hybrid solver can be created through a process
of dual modeling, where the same constraint problem is modeled in multiple
cooperating solvers.

There are several important points we must consider when creating a dual
model of a constraint problem:

– How should the problem variables and their domains be modeled in each
solver?

– How should deductions be communicated between the two solvers during the
search process?

gfed`abcFD
Solver

values //

inferences

$$

failure

""DD
DD

DD
DD

DD
gfed`abcSAT

Solver
values

oo

backjumps

||zz
zz

zz
zz

zz @A BC
nogoods

EDoo

gfed`abcSearch
Control

choices

bbDDDDDDDDDD choices

<<zzzzzzzzzz

Fig. 2. Interactions between FD and SAT solvers and search.

– Which of the problem constraints be modeled in each solver, and how should
they be modeled?

– How should the execution of the search procedure and the two solvers be
scheduled?

In the next three sections we outline our approach to these problems. An
illustration of the interaction of the two solvers is shown in Figure 2.

3.1 Boolean Modeling of Constraint Variables and Domains

As a first step in constructing a hybrid model of a constraint problem, we need
to establish how we will represent the constrained variables and their domains
in each solver. Since finite-domain solvers are more expressive than Boolean
models, it is reasonable to assume that we already have a finite-domain model
for a problem, and we need only consider the how to represent finite-domain
variables and domains in a propositional manner suitable for a SAT solver

Note that in the specific case of our hybrid solver the finite-domain solver is
based on BDDs and also operates using a very similar Boolean model [10], but
the discussion here is completely general and independent of the structure of the
finite-domain solver.

Set variables are natural to model in terms of propositional logic. Suppose
S is a set variable over a domain [∅ .. {1, . . . , n}]. We can model S as a set of
propositions P (S) = {S1, . . . , Sn}, where Si ↔ i ∈ S. Constraints then map to
propositional formulæ over these variables. For example, the expression S = A
for some fixed set A in [∅ .. {1, . . . , n}] is equivalent to the propositional formula
B(S = A) =

∧n
i=1 Si ↔ (i ∈ A).

Finite domain integer variables do not have such a natural propositional
representation. Many encodings are possible — we outline here direct and log
encodings (for more details, see, e.g. [21]).

In the direct or unary encoding, we model a finite domain integer variable x
over a domain {0, . . . , n} by the propositions P (x) = {x0, . . . , xn} where xi holds
if and only if x = i. Since this representation would allow x to take on multiple

values at once, we must also add constraints stipulating that x must take exactly
one value: (x0∨· · ·∨xn)∧

∧n−1
i=0

∧n
j=i+1 ¬xi∨¬xj . The expression x = i for a fixed

value i is modeled by the propositional formula B(x = i) = xi ∧
∧n

j=0,j 6=i ¬xj .
Note that we can think of the direct encoding as encoding integers as singleton
sets.

Another representation of finite domain integer variables is a log or binary
encoding, which uses propositions P (x) = {x0, x1, . . . , xk} that correspond to
a binary representation x = x0 + 2x1 + · · · + 2kxk, where k = blog2 nc. The
expression x = i for a fixed value i is modeled as the propositional formula B(x =
i) =

∧k
j=0(xj ↔ ij) where ij , 0 ≤ j ≤ k is the jth bit of the binary encoding

of the number i. The log encoding does not require any auxiliary constraints
to ensure that each variable takes a single value. The log encoding is known
to produce weaker unit propagation than the direct encoding [21] but produces
smaller models in some cases and allows operations such as addition to be defined
more compactly.

Since we can map set or integer values to propositional formulæ, we can
easily map the domains of constrained variables as well. Given a variable v,
we can define the propositional representation B(D(v)) of the domain D(v) as
B(D(v)) =

∨
d∈D(v) B(v = d). Note that B(D(v)) is equivalent to a conjunction

of propositions if v is a set variable and D(v) is a convex set, or if v is an arbitrary
integer variable in the direct encoding. However, it is important to note that
with any of these encodings we can in theory represent arbitrary domains, not
necessarily just those defined by conjunctions of propositions. However, SAT
solvers are limited to domains represented as conjunctions of propositions, and
hence we confine our attention to conjunctive domains in this paper.

Example 2. Consider the set variable S which ranges over [∅ .. {1, 2, 3}], then
P (S) = {S1, S2, S3}. Then for the domain D(S) = [{1} .. {1, 2}] we have B(D(S)) =
S1 ∧ ¬S3. For the non convex domain D′(S) = {{1}, {2, 3}} then B(D′(S)) =
(S1 ∧ ¬S2 ∧ ¬S3) ∨ (¬S1 ∧ S2 ∧ S3).

For an integer x ranging over {0, 1, 2, 3} then the domain D(x) = {1, 2} in
the direct encoding is simply B(D(x)) = ¬x0 ∧ ¬x3, while in the log encoding
it is B(D(x)) = (x0 ∧ ¬x1) ∨ (¬x0 ∧ x1).

3.2 Channeling Constraints and Clause Generators

The most interesting part of constructing a dual solver is the channeling of
information between the finite-domain and SAT solvers. The standard approach
to channeling information between solvers is to create channeling constraints,
which ensure that the domains of the corresponding variables in each solver are
equal. While we could use such an approach when coupling a SAT solver and
a finite-domain solver, simply communicating information about the values in
a domain is insufficient to allow the SAT solver to build an inference graph
and perform nogood computations. In order for the SAT solver to compute
meaningful nogoods we also need to communicate the reasons for any deductions
made by finite-domain constraint propagation.

Our basic strategy is for each proposition p inferred through finite-domain
propagation we will derive an inference clause. An inference clause is a SAT
clause that is a logical consequence of a finite-domain propagator, and that
would have derived p through unit propagation from the variables that were
fixed at the time that the finite-domain propagator deduced p. This new clause
effectively encapsulates an inference of a finite-domain propagator in a form that
the SAT solver can understand.

By adding inference clauses to the clause set of the SAT solver, we can
perform nogood learning and conflict-directed backjumping on the inferences of
the finite-domain solver. We can either add inference clauses explicitly to the
SAT solver’s store of learnt clauses, or extend the SAT solver so that inference
clauses are used implicitly for performing nogood calculations. In the former
case, we are effectively using finite-domain propagators as generators for SAT
clauses, thus removing the need for a SAT model of the problem. As the search
progresses and more inference clauses are added, effectively a SAT model of each
finite domain constraint is constructed.

While it would be possible to augment any finite-domain solver to generate
inference clauses by extending the propagator implementations on a case-by-
case basis, since our FD solver is based on BDDs we can derive these clauses
efficiently and automatically.

Let f be a propagator for a constraint c and D be a domain, and suppose
f(D) = D′ where D′ 6= D. Let vars(c) = {v1, . . . , vn}. Clearly we have that
(c ∧

∧n
i=1

∨
x∈D(vi)

vi = x) →
∧n

i=1

∨
x∈D′(vi)

vi = x. In the Boolean formalism
this is equivalent to (B(c) ∧

∧n
i=1 B(D(vi))) →

∧n
i=1 B(D′(vi)), where B(c) is a

formula representing constraint c.
Now suppose B(D) and B(D′) are conjunctions of propositions. This as-

sumption holds if we restrict ourselves to use set bounds propagators [10]. We
can treat these conjunctions as sets. Let p ∈ B(D′(vi))\B(D(vi)) be a newly in-
ferred proposition. Then in any context where the constraint c holds, the clause
(
∧n

i=1 B(D(vi))) → p or equivalently (
∨n

i=1 ¬B(D(vi))) ∨ p also holds, and p
would have been derived from this clause through unit propagation. We call
this clause the simple inference of p, which we can add as a new (redundant)
constraint.

Example 3. Consider the constraint c ≡ |S| = x where S ranges over [∅ .. {1, . . . , 5}]
and x ranges over {0, 1, 2, 3, 4, 5}. Let D(S) = [{1, 2}, {1, 2, 4}] and D(x) =
{3, 4, 5}. Then the strongest set bounds propagator f for c is such that f(D) = D′

where D′(S) = [{1, 2, 4}, {1, 2, 4}], D′(x) = {3}.
In the Boolean representation B(D(S)) = S1 ∧ S2 ∧ ¬S3 ∧ ¬S5, B(D(x)) =

¬x0 ∧ ¬x1 ∧ ¬x2, B(D′(S)) = S1 ∧ S2 ∧ ¬S3 ∧ S4 ∧ ¬S5, and B(D′(x)) =
¬x0 ∧¬x1 ∧¬x2 ∧ x3 ∧¬x4 ∧¬x5. The newly inferred propositions are S4, ¬x4,
¬x5, and x3. Considering ¬x4, we can see that the clause (S1∧S2∧¬S3∧¬S5∧
¬x0∧¬x1∧¬x2) → ¬x4 or equivalently ¬S1∨¬S2∨S3∨S5∨x0∨x1∨x2∨¬x4

is valid and captures the deduction on x4 made by the constraint propagation.
Similarly we can produce one clause for each of the other propositions deduced
by propagation.

mininf(p,c,P)

let M := P
let {p1, . . . , pm} := P
for i := 1..m

if ¬ sat(B(c) ∧ ¬p ∧ (M \ {pi}))
M := M \ {pi}

return M

Fig. 3. A generic algorithm for finding minimal reasons for inferences

The simple clauses generated above, while logically valid, are not minimal,
and hence are unlikely to generate much useful propagation since they will only
produce inferences when all but one of the Boolean variables in the clause are
fixed. Since the decision variables of all of the variables involved in the constraint
are included in the clause, we are unlikely to revisit this particular combination
of variable assignments again as the search progresses. In order to maximize the
chance of generating useful inferences, we need to generate minimal reasons for
each inference.

We define a minimal inference of p as follows. Let P =
⋃n

i=1 B(D(vi))) be
the set of candidate propositions for the minimal inference of p and let M =
{m1, . . . ,mk} ⊆ P . We say M is a sufficient set of reasons for p if (B(c) ∧∧k

j=1 mj) → p. We say M is a minimal set of reasons for p if M is a sufficient
set of reasons for p and for any sufficient set N ⊆ M we have M = N .

Example 4. For the propagation in Example 3 some minimal reasons define the
inference clauses:

(S1 ∧ S2 ∧ ¬S3 ∧ ¬S5 ∧ ¬x0 ∧ ¬x1 ∧ ¬x2) → S4

(¬S3 ∧ ¬S5) → ¬x4

¬S3 → ¬x5

(S1 ∧ S2 ∧ ¬S3 ∧ ¬S5 ∧ ¬x2) → x3

Note that other minimal reasons exist, e.g. ¬S5 → ¬x5.

In general a minimal set of reasons is not unique. It is also possible that the
same proposition would be inferred by multiple propagators, each propagator
producing different minimal sets of reasons, and hence the reasons deduced for
the value of a proposition depend on the order of execution of the propagators.

A generic algorithm for computing minimal reasons for inferences is shown in
Figure 3. This algorithm needs O(n) satisfiability checks where n is the number
of candidate propositions. Such an algorithm would be prohibitive to use in
general, although a divide-and-conquer version similar to the QUICKXPLAIN
algorithm of [11] would perform better.

However, we can specialize this algorithm for use in a BDD context, leading
to an efficient algorithm for inferring a minimal set of reasons for a deduction p.
First we generate the BDD for G = ∃̄vars(P)B(c) ∧ ¬p, that is the constraint c
with the information that p is false, restricted to the propositions P of interest

BDDmininf(G,P ,M)
if G = 0 return M
let G = n(v, Gv, G¬v)
let P = n(vP , PvP , P¬vP)
if PvP = 0 then l := ¬vP else l := vP

if v = vP then
if BDDsatconj(G¬l,Pl) then return BDDmininf(Gl,Pl,M ∪ {l})
else return BDDmininf(Gl ∨G¬l, Pl, M)

else
return BDDmininf(G,Pl,M)

Fig. 4. A BDD-based algorithm for finding minimal reasons for inferences

in determining the minimal set M . We then recursively visit the BDD G deter-
mining whether each proposition in order is required for a contradiction. The
resulting algorithm is shown in Figure 4.

The algorithm works as follows. The initial call is BDDmininf(G, P , ∅). The
first argument is the remaining BDD, the second the remaining set of possible
reasons (represented as a conjunction BDD) and the last is the set of propositions
in the minimal inference so far (which in practice is also represented by a BDD).
The algorithm maintains the invariant that G ∧ P is unsatisfiable.

If the BDD G is 0 (false) then no further reasons are required and we return
the set M . The BDD cannot be 1 (true) since it must be unsatisfiable when
conjoined with P . We find the literal l in P with the least variable vP in the
BDD variable ordering. If the variable v at the top of the BDD G is not the
same then the literal l is irrelevant since it does not appear in G, and so we
recurse, looking at the next least literal. Otherwise we check whether G¬l ∧ Pl

is satisfiable which corresponds to if the variable v takes the opposite value
from l. If this is satisfiable then l is required to make a minimal inference, since
removing it would lead to something satisfiable with the remainder Pl. Hence
we add l to M and follow the l choice in the BDD G recursively. Otherwise l is
not required, since the remainder of P is sufficient to ensure that both branches
of G are unsatisfiable. We project out the variable v from G obtaining Gv ∨G¬v

(this requires building new BDD nodes) and recursively proceed.
Note that BDDsatconj(G, H) checks whether the conjunction H is a satisfying

assignment for G, and simply requires following the path H in the BDD G. It
does not require constructing new BDD nodes.

3.3 Constraint Modeling, Scheduling and Search

We have a great deal of flexibility in modeling the problem constraints in each
solver. However, as discussed in Section 3.2, we do not need to construct a model
of a constraint problem for the SAT solver — we can lazily construct it from
the finite-domain model. However, it is also possible that in some cases better
performance may be obtained by an explicit dual model, although this is not
borne out by the experiments in Section 4. Due to space constraints we do not
discuss explicit SAT models of constraint problems here.

We also have a great deal of flexibility in deciding how to schedule the prop-
agation of the SAT and BDD solvers. In our solver, we choose to treat the SAT
solver as a single “propagator” which is executed at a higher priority than any
other propagator. This ensures that the cheap SAT inferences are performed
before the relatively expensive finite-domain inferences. Various labeling heuris-
tics can be used, and we present experimental results for a sequential labeling
heuristic as well as the Variable-State-Independent-Decaying-Sum (VSIDS) SAT
solver heuristic.

4 Experimental Results

We have implemented a hybrid BDD and SAT solver in the Mercury system [19].
The BDD solver makes use of the CUDD BDD package [18] while the SAT solver
is an interface to MiniSAT [8], but exporting control of search to Mercury.

The “Social Golfers” problem (problem prob010 of CSPLib) is problem com-
monly used as a benchmark for set CSP solvers. The aim of this problem is to
arrange N = g×s golfers into g groups of s players for each of w weeks, such that
no two players play together more than once. We can model this problem as a
set constraint problem using a w×g matrix of set variables vij , where 1 ≤ i ≤ w
is the week index and 1 ≤ j ≤ g is the group index. See [10] for the model in
detail, although in this paper we have added constraints that allocate the golfers
in sequential order to the first week in order to remove symmetries.

All test cases were run on a cluster of 8 identical 2.4Ghz Pentium 4 machines
with 1Gb RAM and 2Gb swap space. Each test case was repeated 3 times,
and the lowest of the 3 results used. In the result tables: “*” denotes a test
case without a solution, “—” denotes failure to complete a test case within 10
minutes, and “×” denotes an out of memory error.

From Table 1, we can see that the best of the hybrid solvers outperforms the
BDD bounds and (split) domain solvers that were presented in [10] on almost
all of the test cases.1 Using simple clause learning (B+SB) is not useful, since
the overhead of deriving and storing nogoods is not repaid through search space
reduction. The most surprising column is perhaps B+M which shows the over-
head of minimizing the clauses without reducing the search space. It appears
that generating minimized nogoods requires less than double the time taken for
the original propagation. Once we make use of the minimal clauses (B+MB)
by recording nogoods and performing backjumping we often improve on the
bounds solver, but interestingly adding all of the inferred clauses to the SAT
solver (B+MA) can lead to substantial further reductions in the search space.
The B+MA column corresponds to a hybrid where in some sense we lazily build
a CNF model of the problem using only the “useful” clauses found by the BDD
model.

Table 2 presents results obtained using a Variable-State-Independent-Decaying-
Sum heuristic, which is commonly used by SAT solvers. This table also contains
1 Note that the BDD bounds solver is substantially faster on these examples than

solvers such as Eclipse or Mozart due to better modeling capabilities and a more
efficient implementation language [10].

Problem
Domain Bounds B+SB B+M B+MB B+MA

time fails time fails time fails time time fails time fails
w-g-s /s /s /s /s /s /s

2-5-4 0.1 0 0.1 30 <0.1 28 0.1 0.1 23 0.1 11
2-6-4 0.1 0 0.4 2036 0.8 1212 1.2 0.5 499 0.1 45
2-7-4 0.3 0 1.2 4447 1.9 2087 3.7 0.8 534 0.2 90
2-8-5 1.3 0 — — — — — — — 0.8 472
3-5-4 0.2 0 0.1 30 0.1 28 0.1 0.1 23 0.1 11
3-6-4 1.3 0 1.3 2039 1.6 1215 2.5 1.0 502 0.2 48
3-7-4 8.0 0 3.6 4492 3.7 2131 7.7 1.8 551 0.5 99
4-5-4 0.5 0 0.1 30 0.2 28 0.2 0.2 23 0.2 11
4-6-5 98.0 0 19.6 12747 23.1 8600 33.5 9.9 2323 0.7 81
4-7-4 — — 7.0 4498 6.3 2137 12.2 2.9 557 0.8 105
4-9-4 — — 1.5 71 1.7 69 2.2 2.0 43 1.9 32
5-4-3 (*) 29.0 5165 87.6 63519 140.8 43402 190.9 52.3 10440 12.0 9568
5-5-4 2.9 41 5.4 2686 7.1 1661 12.6 9.4 1356 2.3 1167
5-7-4 — — 11.9 4583 9.7 2195 19.7 4.6 608 1.5 159
5-8-3 7.3 0 0.7 14 0.7 13 0.9 0.9 13 0.9 12
6-4-3 (*) 22.4 2132 130.3 61647 183.8 42986 235.7 12.6 1774 2.1 908
6-5-3 1.4 82 3.0 1455 4.2 967 6.9 2.5 327 0.9 282
6-6-3 1.3 0 0.3 5 0.3 5 0.4 0.4 5 0.4 5
7-5-3 — — — — — — — 127.5 11945 18.2 6154
7-5-5 (*) <0.1 0 0.9 131 1.0 131 1.2 1.0 99 0.8 100

Table 1. Performance results for the Social Golfers problem, using a sequential,
smallest-element-in-set labeling heuristic. “Domain” = BDD Domain solver of [10].
“Bounds” = BDD Bounds solver of [10]. “B+SB” = Bounds + simple clause learn-
ing + backjumping. “B+M” = Bounds + minimized clause learning, no backjumping.
“B+MB” = Bounds + minimized clause learning + backjumping. “B+MA” = Bounds
+ adding minimized clauses to the SAT solver as learnt clauses

a comparison with the SAT solvers MiniSAT and zChaff, the pseudo-boolean
SAT solver MiniSAT+, and a dual BDD and SAT model with all constraints
but cardinality constraints duplicated as SAT clauses. It appears that as in
the sequential case, the B+MA technique performs the best out of all of the
solvers. The SAT solvers are frequently disadvantaged in this comparison be-
cause the representation of the cardinality constraints frequently requires a very
large number of clauses.

5 Related Work and Conclusion

At present we are unaware of any other BDD based propagation solvers than
our own, so in that sense the work is completely novel. But at a feature level
there are relationships with much previous work.

Modeling of finite domains as Booleans is well understood and a standard
form of dual modeling (see e.g. [4]). There has been interest in encoding CSPs
as SAT problems [21]. The novel part of our approach is representing the actions
of a finite-domain propagator in terms of clausal inferences. Even though the
propagation rules of [4] and membership rules of [1] used to model propagation

Problem
B+MB B+MA Dual MiniSAT zChaff MiniSAT+

time fails time fails time fails time fails time fails time
w-g-s /s /s /s /s /s /s

2-5-4 0.1 21 0.1 22 0.1 4 0.2 273 0.2 767 0.2
2-6-4 0.3 83 0.1 64 0.1 12 0.5 125 0.9 1850 0.3
2-7-4 0.7 161 0.2 119 0.2 10 1.4 282 2.7 2858 0.6
2-8-5 3.6 437 1.3 622 0.8 130 × × × × 1.5
3-5-4 0.1 26 0.1 24 0.5 215 0.3 534 2.2 7018 0.6
3-6-4 0.5 102 0.3 58 1.5 374 0.9 488 2.0 2715 1.2
3-7-4 1.1 128 0.6 92 3.5 493 6.9 7517 3.3 2348 2.1
4-5-4 0.2 27 0.4 122 2.0 900 0.5 543 3.3 9580 1.2
4-6-5 2.1 186 1.3 304 9.7 2135 17.0 763 × × 4.0
4-7-4 1.0 40 1.0 98 13.1 1546 53.8 47801 281.7 166710 4.7
4-9-4 2.0 35 2.0 59 41.3 2161 — — × × 12.9
5-4-3 (*) 66.0 13126 5.6 5876 11.1 10750 0.4 4554 1.4 9044 1.2
5-5-4 9.4 667 1.9 581 2.4 785 1.4 3291 2.3 7230 2.6
5-7-4 2.2 96 1.5 104 29.3 3458 — — — — 8.5
5-8-3 1.3 35 1.7 425 10.7 1212 — — 46.6 110980 7.3
6-4-3 (*) 0.3 74 0.2 71 1.3 637 0.3 4307 0.8 5975 1.1
6-5-3 11.1 1062 4.3 2801 8.2 3669 0.8 7795 74.4 186858 2.2
6-6-3 0.4 16 1.0 275 5.6 1310 2.2 17869 2.6 11666 3.5
7-5-3 127.6 14237 18.0 7018 35.8 118876 66.1 197714 396.8 562386 6.3
7-5-5 (*) 86.1 2513 2.0 139 1.4 97 8.8 1858 16.9 6910 6.9

Table 2. Performance results for the Social Golfers problem, using a VSIDS labeling
heuristic. “B+MB” = Bounds + minimized clause learning + backjumping. “B+MA”
= Bounds + adding minimized clauses to the SAT solver as learnt clauses. “Dual” =
Bounds + minimized clause learning + backjumping + Dual SAT/BDD model. “Min-
iSAT” = MiniSAT SAT solver [8]. “zChaff” = zChaff SAT solver [16]. “MiniSAT+” =
MiniSAT with Pseudo-boolean extensions [9]

are similar, they only define directional inferences for modeling the behavior of
propagators, rather than directly modeling logical inferences.

There is a substantial body of work on look back methods in constraint
satisfaction (see e.g. Dechter [7], chapter 6), but there seems little evidence
of success for look back methods that combine with propagation. The most
successful combination appears to be Forward Checking with Conflict Directed
Backjumping (FC-CBJ) [17]. But other work by Bessière and Regin [2] calls
into question whether FC-CBJ should be considered competitive. They showed
that maintaining arc consistency (MAC) with an appropriate search strategy
is usually better than FC-CBJ, and that conflict directed backjumping did not
appear to improve the empirical performance of MAC. We believe our results do
not match this conclusion primarily because we are able to use the highly efficient
data structures of a SAT solver for maintaining and propagating nogoods, as well
as an efficient BDD-based algorithm for calculating dependencies, thus making
conflict-directed backjumping a worthwhile investment.

The only propagation based solver we are aware of that incorporates nogoods
is the PaLM system [12]. It has been used to investigate new search methods

based principally on dynamic backtracking. Like most previous work on nogoods
in CSPs it keeps explanations and derives nogoods based on the constraints and
decisions made in the search, rather than a SAT solver which simply records the
inferences. Effectively it always uses decision cuts, instead of the more powerful
1-UIP nogoods. The system has been used to show that nogoods can be used
constructively inside a propagation based solver [13].

The closest work to our own is that of Katsirelos and Bacchus [14], which
showed that one could use nogood technology derived from SAT for storing and
managing nogoods in a CSP system using FC-CBJ. Unfortunately no results
were presented that combined MAC with nogood recording, which appears to
limit the performance of the resulting solver. Another difference is that they
don’t appear to record the FC inferences as clauses, acting rather like S+MB
rather than S+MA. They also reported no success with using SAT-derived la-
beling heuristics, which does not match our experience. The closest work to our
implication detection algorithm is that of Damiano and Kukula [5]. In this work,
however, the BDDs are static and not used for finite-domain propagation.

The use of nogoods has lead to a substantial improvement in the ability of
SAT solvers to solve practical problems. SAT solvers treat nogoods both more
efficiently than traditional CBJ approaches, but also learn better nogoods from
a conflict. Our work shows at least in the case of set bounds propagation there
is an advantage to using nogoods, because we can quickly determine minimal
inferences and make use of the clever SAT technology to both generate and
efficiently propagate nogoods.

Although we have hybridized a BDD-based finite domain constraint solver,
we could similarly hybridize a more conventional finite domain propagation con-
straint solver by hard coding the minimal inferences for each primitive constraint
supported by the solver. The advantage of BDD-based approach is that it is
completely generic, and requires no extra work to support the wide variety of
constraints that can be modeled as BDDs and is surprisingly fast.

For future work, we intend to try combining nogood learning with domain
propagation, although this is more difficult to achieve, and possibly of less value.
We will also try adding a 0-1 Integer Linear Programming solver into the hybrid
solver, in the hope of producing a solver with better optimization capabilities.

In conclusion, we have demonstrated that by combining finite-domain con-
straint propagation and SAT techniques we can produce a highly efficient hybrid
solver, which outperforms either of the original solvers on benchmarks. The high
performance of this solver is a result of an efficient algorithm for accurately
capturing the inferences of a finite-domain constraint solver as SAT clauses.

References

[1] K. Apt and E. Monfroy. Constraint programming viewed as rule-based program-
ming. TPLP, 1(6):713–750, 2001.

[2] C. Bessière and J.-C. Regin. MAC and combined heuristics: Two reasons to forsake
FC (and CBJ?) on hard problems. In Proceedings of CP96, LNCS. Springer, 1996.

[3] R. E. Bryant. Symbolic Boolean manipulation with ordered binary-decision dia-
grams. ACM Comput. Surv., 24(3):293–318, 1992. ISSN 0360-0300.

[4] C. Choi, J. Lee, and P. J. Stuckey. Propagation redundancy in redundant mod-
elling. In F. Rossi, editor, Proceedings of CP2003, volume 2833 of LNCS, pages
229–243. Springer-Verlag, 2003.

[5] R. Damiano and J. Kukula. Checking satisfiability of a conjunction of BDDs. In
Proceedings of DAC ’03, pages 818–823, New York, NY, USA, 2003. ACM Press.

[6] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-
proving. Communications of the ACM, 5:394–397, 1962.

[7] R. Dechter. Constraint Processing. Morgan Kaufmann, 2003.
[8] N. Eén and N. Sörensson. An extensible SAT-solver. In E. Giunchiglia and

A. Tacchella, editors, Proceedings of SAT 2003, volume 2919 of LNCS, pages 502–
518, May 2003.

[9] N. Eén and N. Sörensson. Minisat+. http://www.cs.chalmers.se/Cs/Research/
FormalMethods/MiniSat/MiniSat+.html, 2005.

[10] P. Hawkins, V. Lagoon, and P. J. Stuckey. Solving set constraint satisfaction
problems using ROBDDs. Journal of Artificial Intelligence Research, 24:109–156,
July 2005.

[11] U. Junker. QUICKXPLAIN: Conflict detection for arbitrary constraint propaga-
tion algorithms. In IJCAI’01 Workshop on Modelling and Solving problems with
constraints (CONS-1), 2001.

[12] N. Jussien and V. Barichard. The PaLM system: explanation-based constraint
programming. In Proceedings of TRICS: Techniques foR Implementing Constraint
programming Systems, a post-conference workshop of CP 2000, pages 118–133,
2000.

[13] N. Jussien, R. Debruyne, and P. Boizumault. Maintaining arc-consistency within
dynamic backtracking. In Proceedings of CP2000, volume 1894 of LNCS, pages
249–261, Singapore, Sept. 2000. Springer-Verlag.

[14] G. Katsirelos and F. Bacchus. Unrestricted nogood recording in CSP search. In
Proceedings of CP2003, volume 2833 of LNCS, pages 873–877. Springer, 2003.

[15] K. Marriott and P. J. Stuckey. Programming with Constraints: an Introduction.
The MIT Press, 1998.

[16] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering
an efficient SAT solver. In 39th Design Automation Conference (DAC 2001), June
2001.

[17] P. Prosser. Hybrid algorithms for the constraint satisfaction search. Computational
Intelligence, 9(3):268–299, 1993.

[18] F. Somenzi. CUDD: Colorado University Decision Diagram package. [Online,
accessed 31 May 2004], Feb. 2004. http://vlsi.colorado.edu/~fabio/CUDD/.

[19] Z. Somogyi, F. Henderson, and T. Conway. The execution algorithm of Mer-
cury, an efficient purely declarative logic programming language. Journal of Logic
Programming, 29(1–3):17–64, 1996.

[20] C. Thiffault, F. Bacchu, and T. Walsh. Solving non-clausal formulas with DPLL
search. In Proceedings of CP2004, volume 3258 of LNCS, pages 663–678. Springer,
2004.

[21] T. Walsh. SAT vs CSP. In Proceedings of CP2000, volume 1894 of LNCS, pages
441–456. Springer, 2000.

[22] L. Zhang, C. Madigan, M. Moskewicz, and S. Malik. Efficient conflict driven learn-
ing in a Boolean satisfiability solver. In Proceedings of International Conference
on Computer Design (ICCAD), pages 279–285, 2001.

[23] L. Zhang and S. Malik. The quest for efficient Boolean satisfiability solvers. In
Proceedings of CAV2002, volume 2404 of LNCS, pages 17–36, July 2002.

