
Discovery of Minimal Unsatisfiable Subsets of
Constraints Using Hitting Set Dualization

James Bailey and Peter J. Stuckey

NICTA Victoria Laboratory
Department of Computer Science and Software Engineering

The University of Melbourne 3010, Australia

Abstract. An unsatisfiable set of constraints is minimal if all its (strict)
subsets are satisfiable. The task of type error diagnosis requires finding all
minimal unsatisfiable subsets of a given set of constraints (representing
an error), in order to generate the best explanation of the error. Similarly
circuit error diagnosis requires finding all minimal unsatisfiable subsets
in order to make minimal diagnoses. In this paper we present a new ap-
proach for efficiently determining all minimal unsatisfiable sets for any
kind of constraints. Our approach makes use of the duality that exists
between minimal unsatisfiable constraint sets and maximal satisfiable
constraint sets. We show how to incrementally compute both these sets,
using the fact that the complements of the maximal satisfiable constraint
sets are the hitting sets of the minimal unsatisfiable constraint sets. We
experimentally compare our technique to the best known method on a
number of large type problems and show that considerable improvements
in running time are obtained.

Keywords: Minimal unsatisfiable sets, constraint solving, hitting sets,
hypergraph transversals.

1 Introduction

A set of constraints is unsatisfiable if it has no solution. An unsatisfiable set of
constraints is minimal if all its (strict) subsets are satisfiable. A number of forms
of error diagnosis, in particular type error diagnosis, require finding all minimal
unsatisfiable subsets of a given set of constraints (representing an error), in order
to generate the best explanation of the error.

There is a significant amount of work that deals with minimal unsatisfiable
sets, particularly in the areas of explanation and intelligent backtracking (e.g. [4])
or nogood creation (e.g. [16]). However, the vast bulk of this work is only in-
terested in finding a single minimal unsatisfiable set. This is usually achieved
by relying on some kind of justification recording, and then postprocessing the
recorded unsatisfiable set to eliminate unnecessary constraints. In many cases a
non-minimal unsatisfiable set is used.

Our motivation for examining the problem of finding all minimal unsatisfiable
subsets of a set of constraints arises from type error debugging. In Hindley-Milner

type inference and checking, a program is mapped to a system of Herbrand
constraints and a type error results when this system of Herbrand constraints is
unsatisfiable. An explanation of the type error is given by a minimal unsatisfiable
subset of the system of Herbrand constraints

Example 1. Consider the following fragment of Haskell code

f [] y = []
f (x:xs) y = if (x < y) then (f xs y) else xs
g xs y = ’z’ > (f xs y)

that defines a function f which returns a list, and then erroneously compares
the result of that function to character ’z’. The Chameleon type debugging
system [17, 11] finds a single minimal unsatisfiable set of constraints that causes
the type error and underlines the associated the program fragments. If that
minimal unsatisfiable set included the constraints posed by the base case in the
definition of function f, the Chameleon system would show the following

f [] y = []

f (x:xs) y = if (x < y) (f xs y) else xs

g xs y = ’z’ > (f xs y)

while if the minimal unsatisfiable set included the constraints posed by the re-
cursive case in the definition of function f, the Chameleon system would instead
show the following

f [] y = []

f (x : xs) y = if (x < y) (f xs y) else xs

g xs y = ’z’ > (f xs y)

One explanation may be easier to understand than another, for example if it
involves fewer constraints. Hence, deriving all minimal unsatisfiable sets allows
us to choose the “simplest” explanation.

Finding all minimal unsatisfiable sets of a system of constraints is a challeng-
ing problem because, if it is done naively, it involves examining every possible
subset. Indeed in the worst case there may be an exponential number of answers.
Most previous work has concentrated on its use in diagnosis of circuit errors. The
best method we know of is given by Garćıa de la Banda et al [5], who presented
a series of techniques that significantly improved on earlier approaches of [13]
and [12].

This paper presents a completely new method for calculation of all minimal
unsatisfiable constraint sets. We show that this problem is closely related to a
problem from the area of data mining, concerned with enumerating interest-
ing sets of frequent patterns. In particular, we show how an algorithm known
as Dualize and Advance [10], which has previously been proposed for discover-
ing collections of maximal frequent patterns in data mining, can be efficiently

adapted to the constraint context, to jointly enumerate both all minimal unsat-
isfiable sets and all maximal satisfiable sets of constraints.

Interestingly, Dualize and Advance, although having good worst case com-
plexity, does not seem to be a practical algorithm for finding maximal frequent
patterns in data mining [19, 8], due to the large number of patterns required to
be output. However, in the constraint context, the size of the output (i.e. the
number of minimal unsatisfiable sets of constraints and the number of maxi-
mal satisfiable sets of constraints) is typically far smaller and we demonstrate
its efficiency. Furthermore, we show how improvements in the procedure can be
made by incorporation of information from the constraint graph. We experimen-
tally compare our method with the best known available technique from [5] on
a number of debugging problems containing hundreds of constraints and show
that our new approach can result in significant savings in running time. A fur-
ther advantage of our approach for more traditional circuit diagnosis problems
is that a possible diagnosis of an error corresponds to the complement of a max-
imal satisfiable set of constraints [15]. In our method these are easy to generate
from the calculated maximal satisfiable sets.

The outline of the remainder of this paper is as follows. We first give some
background definitions in Section 2. Next, we examine the best previous ap-
proach to the problem we are aware of, that of Garćıa de la Banda et al [5]
in Section 3. In Section 4, we describe the Dualize and Advance approach and
how it can be adapted and optimised for the constraint context. In Section 5
we describe the results of experiments comparing the two approaches. Finally in
Section 6 we conclude and discuss future work.

2 Background

Let us start by introducing the notation which will be used herein. A constraint
domain D defines the set of possible values of variables. A valuation θ, written
{v1 7→ d1, . . . , vm 7→ dm}, di ∈ D, 1 ≤ i ≤ m, maps each variable vi to a value di

in the domain.
A constraint c is a relation on a tuple of variables vars(c). Let vars(c) =

(vi1 , . . . , vin) then c defines a subset vals(c) of Dn. A valuation θ ≡ {v1 7→
d1, . . . , vm 7→ dm} is a solution of constraint c if (di1 , . . . , din) ∈ vals(c).

A set of constraints C is satisfiable iff there exists a solution θ of C. Otherwise
it is unsatisfiable. We assume an algorithm sat(C) which returns true if C is
satisfiable and false otherwise.

We will also be interested in incremental satisfaction algorithms. Incremen-
tal satisfiability checks process each of the constraints one at a time. Hence,
to answer the question sat({c1, . . . , cn}) we compute the answers to questions
sat({c1}), sat({c1, c2}), . . ., sat({c1, . . . , cn−1}) and finally sat({c1, . . . , cn}). We
describe incremental satisfiability algorithms as a procedure isat(cn, state) which
takes a new constraint cn and an internal state representing a set of constraints
{c1, . . . , cn−1} and returns a pair (result, state′) where result = sat({c1, . . . , cn})
and state′ is a new internal state representing constraints {c1, . . . , cn}.

Since we are focusing on debugging, we will use the Herbrand equation
constraint domain H. That is, equations over uninterpreted function symbols,
such as the constraint arising in Hindley-Milner typing. The complexity of sat
for this class of constraints is O(n) where n is the number of symbols in the
constraint [14]. The complexity of n calls to isat, (true, s1) = isat(c1, true),
(true, s2) = isat(c2, s1), . . ., (result, sn) = isat(cn, sn−1) is O(nA−1(n)) where
A−1(n) is the inverse Ackerman’s function. The amortized incremental com-
plexity of isat(c, state) is thus effectively constant. We will use calls to isat
as one measure for the complexity of our algorithms. For this purpose as call
sat({c1, . . . , cn}) is equivalent to n calls to isat.

For a given problem, we define the constraint universe U as the set which
contains every possible constraint that can be considered. In a typing problem
these are all the type constraints represented by the program to be typed, while
in circuit diagnosis it is all the constraints defining the circuit and its inputs and
outputs.

A constraint set C is a minimal unsatisfiable constraint set if C is unsatisfi-
able and each C ′ ⊂ C is satisfiable. A constraint set C is a maximal satisfiable
constraint set if C is satisfiable and each C ′ ⊃ C (where C ′ ⊆ U) is unsatisfi-
able. For a set of constraints S, we define its complement to be S = U − S. Let
S = {S1, S2, . . . , Sk} be a set of constraint sets (i.e. each of S1, S2 etc is a set of
constraints). We define S, the complement of S, to be the set of complements of
each of the constraint sets. i.e. S = {S1, S2, . . . , Sk}.

Let A = {A1, A2, . . . , An} be a set of constraint sets. We say a set P ⊆ U is
a hitting set of A if (P ∩ A1 6= ∅) ∧ (P ∩ A2 6= ∅) ∧ . . . ∧ (P ∩ An 6= ∅). We say
that P is a minimal hitting set of A, if P is a hitting set of A and each S ⊂ P
is not a hitting set of A. We define HST (A) to be the set of all the minimal
hitting sets of A. The cross product of two sets of set A = {A1, . . . An} and
B = {B1, . . . , Bm} is denoted as A⊗B = {Ai ∪Bj | i ≤ n, j ≤ m}.

3 Best Previous Approach

The best previous approach we are aware of for finding all minimal unsatisfiable
subsets of a constraint set is from Garćıa de la Banda et al [5], who extended
approaches by [13] and [12]. Essentially all these approaches rely on enumerating
all possible subsets of the constraints and checking which are unsatisfiable but
all of whose subsets are satisfiable.

The code for min unsat shown below gives the core. The call min unsat(∅,U ,∅)
it finds all minimal unsatisfiable subsets of U . The first argument is used to avoid
repeatedly examining the same subset. The call min unsat(D, P , A) traverses of
all subsets of the set D ∪ P which include D, i.e. {D ∪ P ′ | P ′ ⊆ P}. D refers
to definite elements, ones which must appear in all subsequent subsets and P
refers to possible elements, ones which may appear in subsequent subsets. The
argument A collects all the minimal unsatisfiable subsets found so far. This call
explores all subsets {D ∪ P ′ | P ′ ⊆ P} in an order such that all subsets of
D∪P are explored before the while loop in the call min unsat(D,P ,A) finishes.

When a satisfiable subset is found then the algorithm need not look at its further
subsets. If an unsatisfiable set is found then it is added to the collection A after
all its subsets have been examined, unless there is already a subset of it in A.
The code returns the set of minimal unsatisfiable subsets found.

min unsat(D, P , A)
if (sat(D ∪ P)) return A
while (∃c ∈ P)

P := P − {c}
A := min unsat(D, P , A)
D := D ∪ {c}

endwhile
if (¬∃A ∈ A such that A ⊂ D) A := A ∪ {D}
return A

This simple approach is improved in [5] by (a) detecting constraints that
are present in all minimal unsatisfiable subsets by preprocessing, (b) taking into
account constraints that must always be satisfiable once other constraints are
not present, (c) using reasoning about independence of constraints to reduce
the number of subsets examined, and most importantly (d) using incremental
constraint solving to select which elements c to select first in the while loop.
The last modification is the most important in terms of reducing the amount of
satisfaction checking and subsets examined.

Essentially by performing the satisfiability check sat(D ∪ P) incrementally
we find the first constraint ci where D ∪ {c1, . . . , ci−1} is satisfiable and D ∪
{c1, . . . , ci} is not. This guarantees that ci appears in some minimal unsatisfiable
set. By choosing c = ci in the while loop we (hopefully) quickly find large
satisfiable subsets thus reducing the search.

4 Dualization Approach

We now describe our new approach for determining all the minimal unsatisfiable
sets of constraints. It is based on a technique that has been proposed in the area
of data mining, called Dualize and Advance [10], for discovery of interesting
patterns in a database. Other similar algorithms exist from work in hypergraph
transversals [3].

The key idea is that for a given constraint universe U , there exists a rela-
tionship between the minimal unsatisfiable sets of constraints and the maximal
satisfiable sets of constraints. In particular, suppose we have a set G of satisfiable
constraint sets, then HST (G) is the collection of the smallest sets which are not
contained in any set from G. If we let G be the collection of all the maximal
satisfiable constraint sets, then HST (G) is the collection of all the smallest sets
that are not contained in any maximal satisfiable set (i.e. the minimal unsatis-
fiable constraint sets). Furthermore, if G is a collection of some, but not all the
maximal satisfiable constraint sets, then HST (G) must contain at least one set
which is satisfiable and is not contained in any set in G (see [10] for proof).

Example 1 Suppose for universe U = {c1, c2, c3, c4} the maximal satisfiable
sets of constraints are G = {{c3}, {c4}, {c2}}. Then the complements sets are
G = {{c1, c2, c3}, {c1, c3, c4}, {c1, c2, c4}} and the minimal unsatisfiable sets are
HST (G) = {{c1}, {c2, c4}, {c2, c3}, {c3, c4}}.

We now present the algorithm for jointly generating both the minimal un-
satisfiable sets and the maximal satisfiable sets. Although the stated purpose of
our work is to find the minimal unsatisfiable sets, it is worth noting that the
maximal satisfiable sets are also useful. In particular, if there are several possi-
ble error explanations, then the constraints which appear in the most maximal
satisfiable sets are least likely to be in error. Similarly for circuit diagnosis, the
minimal diagnoses are the complements of the maximal satisfiable sets [15].

The dualize and advance algorithm daa min unsat is given in Figure 1. The
explanation is as follows. The algorithm maintains a number of variables: X is
a satisfiable set, which is grown into a maximal satisfiable set M by the grow
procedure which simply adds new constraints that do not cause unsatisfiability;
A is the set of minimal unsatisfiable subsets currently found; X is the comple-
ments of the maximal satisfiable sets currently found; and N are the hitting sets
for X which are the candidates for minimal unsatisfiable subsets.

Initially all the set of minimal unsatisfiable sets and complements of maximal
satisfiable sets are empty. The X variable is set to ∅. In the repeat loop, the
algorithm, repeatedly grows M to a maximal satisfiable subset, adds its comple-
ment to X and calculates the new hitting sets for X. This gives the candidates
N for minimal unsatisfiable subsets.

For each of these not already recognised as a minimal unsatisfiable subset we
check satisfiability. If the set S is satisfiable then it is the starting point for a
new maximal satisfiable set, and we break the for loop and continue. Otherwise
S is added to the minimal unsatisfiable subsets A. When we find no satisfiable
S then we have discovered all minimal unsatisfiable subsets.

Example 2 We trace the behaviour of the algorithm daa min unsat using Exam-
ple 1, where the minimal unsatisfiable sets are G = {{c1}, {c2, c4}, {c2, c3}, {c3, c4}}
and the maximal satisfiable sets are {{c4}, {c3}, {c2}}. We show the values of key
variables just before the for loop for each iteration of the repeat loop.

Iter. M X N = HST (X)
1 {c2} {{c1, c3, c4}} {{c1}, {c3}, {c4}}
2 {c3} {{c1, c3, c4}}, {c1, c2, c4}} {{c4}, {c1}, {c2, c3}}
3 {c4} {{c1, c3, c4}, {c1, c2, c4}, {c1, c2, c3}} {{c1}, {c2, c3}, {c2, c4}, {c3, c4}}

Each iteration produces a new complement of a maximum satisfiable set.
Once all maximal satisfiable sets have been found, the repeat loop terminates.

4.1 Determining the Hitting sets HST

A core part of the procedure is the calculation of the hitting sets on each itera-
tion of the while loop. There are many possible methods for computing hitting

daa min unsat(U)
A := ∅
X := ∅
X := ∅
repeat

M := grow(X,U);
X := X ∪ {U −M}
N := HST (X)
X := ∅
for (S ∈ N−A)

if (sat(S))
X := S
break

else A := A ∪ {S}
endfor

until (X = ∅)
return (A)

grow(S,U)
for (c ∈ U − S)

if (sat(S ∪ {c})) S := S ∪ {c}
endfor
return(S)

Fig. 1. Dualize and advance algorithm for finding minimal unsatisfiable sets.

sets. This problem is also known as the hypergraph transversal problem. We use a
method first described by Berge [2], since it is simple to implement and behaves
reasonably efficiently. More complex techniques do exist though which have bet-
ter worst case complexity (see [7]) or are better in practice for large problems
(see [1]). The basic idea of the Berge algorithm is that to compute the hitting
sets of a set G, the sets contained in G are first ordered, and then partial cross
products of these sets are computed, with the output being minimised at each
step.

Let G = {S1, S2, . . . , Sk} and define Gi = {S1, . . . , Si}. Then HST (Gi) is given
by the formulas

HST (G1) = {{c} | c ∈ S1}
HST (G2) = HST (G1 ∪ {S2}) = Min(HST (G1)⊗ {{c} | c ∈ S2})
. . .
HST (Gi) = HST (Gi−1 ∪ {Si}) = Min(HST (Gi−1)⊗ {{c} | c ∈ Si})

where Min(G) is the set G with all non-minimal subsets removed.

Min(G) = {S | S ∈ G ∧ (∀T ∈ G (T ⊆ S) ⇒ (T = S)}.

4.2 Incremental Hitting set Calculation

Looking more closely at the procedure for minimal hitting set calculation, we
can see that it is incremental in nature—the hitting sets HST (G) of a set G
are computed by considering each set from G in turn and calculating the partial
hitting sets. Thus, by remembering the partial hitting setsHST (G1),HST (G2),
etc, we can incrementally calculate the new hitting sets of X when a new set of
constraints is added. Hence we can replace the line

N := HST (X)

by

N := Min(N⊗ {{c} | c ∈ U −M})

4.3 Complexity of the the algorithm

The complexity of the algorithm is as follows. The number of iterations of the
repeat loop is equal to the number of maximal satisfiable sets, since in each
iteration we find one more M . In each iteration we call grow once which costs
at most |U | incremental calls to sat, for Herbrand equations the cost is thus
O(|U |) overall. Each minimal unsatisfiable set is found within the for loop of
daa min unsat and needs no further processing once it has been found to be un-
satisfiable. Each minimal unsatisfiable set requires at most |U | incremental calls
to sat, thus again O(|U |) overall for Herbrand equations. If A is the collection of
all the minimal unsatisfiable sets and X is the collection of all the complements
of maximal satisfiable sets, then overall the complexity (using the optimisation
from section 4.2) is O(|A| × |U |+ |X| × |U |+ cost(HST (X))).

The core part of the cost is the calculation of the hitting sets HST (X),
done incrementally. In general, the number of hitting sets (and thus the size of
X) can be exponential in |U |. Also, as we will show shortly (Example 3), the
number of partial hitting sets may also be exponential, even when the size of X
is polynomial. The addition of a new set Si to G, can either increase the number
of minimal hitting sets by a factor of |Si|, or cause a superpolynomial decrease
in the number of minimal hitting sets [18]. The exact complexity of the Berge
algorithm is not yet well understood, but an upper bound for the cost(HST (X))
is O(2|U |).

4.4 Optimisation of Hitting Set Computation Using the Constraint
Graph

The order in which the sets of G are considered when computing the hitting
sets can have a significant impact on the running time of the hitting set calcula-
tion. This is because the size of the partial hitting sets can blow up for certain
orderings. An example (based on one from [6]) is:

Example 3 Let G = {{ci, cj} | i ≤ 10, j ≤ 10} Suppose we order the sets of
G to be {{c1, c2}, {c3, c4}, {c5, c6}, {c7, c8}, {c9, c10}, . . .}}. Then |HST (G5)| =
25, whereas if they are ordered as {{c1, c2}, {c2, c3}, {c1, c3}, {c1, c4}, {c2, c4}, . . .}
then |HST (G5)| = 3. In other words, a blowup of the intermediate results occurs
for the first ordering, but not the second.

To address this problem, a natural heuristic to use is that the sets contained in
X should be ordered in increasing cardinality, to minimise the number of partial
hitting sets. However, we do not have direct information about the cardinality
of the next M to be generated.

A heuristic to try and achieve this is as follows: When maximising a set in
the grow procedure, we should add constraints in an order that ‘maximises’ the
number of constraints in the final grown M set. Therefore, we should add the
constraints most likely to cause unsatisfiability last of all. To identify such con-
straints, we use a constraint graph to help identify a global ordering of all the
constraints in the universe, with constraints likely to cause unsatisfiability occur-
ring at the end of the ordering and constraints not likely to cause unsatisfiability
occurring at the start of the ordering.

Given a set of constraints U , the constraint graph g(U) is a graph where each
vertex in the graph corresponds to one of the constraints and there is an edge
between two vertices c1 and c2 iff there exists a v such that v ∈ vars(c1) and
v ∈ vars(c2). We estimate the centre of the constraint graph (the vertex will the
least maximal distance from all other nodes) and then order vertices according
to their distance from the centre. Constraints closest to the centre are at the
beginning of the ordering, since these are expected to participate in the most
minimal unsatisfiable subsets and those furthest away from the centre are at the
end of the ordering.

4.5 Discussion of the Algorithm

As mentioned, our hitting set algorithm is based on the Dualize and Advance
algorithm for mining interesting patterns (sets of items) in a database [10]. Work
in [19] also presented a practical implementation of Dualize and advance for data
mining. Our approach differs from both these works in a number of ways

– The context is constraints and not sets of items.
– The size of the output in data mining problems (number of maximally sat-

isfiable sets and number of minimal unsatisfiable sets) is huge, this means
that Dualize and Advance is not practical for data mining requirements [8,
19]. However, in the constraint scenario the number of minimal unsatisfiable
sets is likely to be small, since the scenario is type error debugging. We are
not aware of any previous work where Dualize and Advance has been shown
to be efficient for an important practical problem.

– Knowledge of the constraint graph can be used as a means for improving the
algorithm.

Dualize and Advance is quite similar to Reiter’s approach for model based
diagnosis ([15]), which uses the computation of hitting sets to relate conflict
sets (similar to unsatisfiable sets) and diagnoses (complements of maximum
satisfiable sets). The key difference is that Reiter’s approach uses hitting set
calculation to obtain each new minimum unsatisfiable set, whereas Dualize and
Advance uses hitting set calculation to obtain each new maximum satisfiable
set. Dualize and Advance has the important advantage that a satisfiable set can
be grown into a maximum satisfiable set using an incremental solver. Reiter’s
technique requires a minimal unsatisfiable subset to be obtained from a larger
unsatisfiable set by removal of constraints and there isn’t the same opportunity
for incremental solver use. Reiter’s method also requires the costly maintenance
of a tree structure for computing the hitting sets.

5 Experimental Evaluation

In order to investigate the benefits of our technique, we have implemented a
prototype system in SICStus Prolog. The evaluation uses a number of bench-
mark problems arising from type error debugging. These are taken from sets of
constraints generated by the Chameleon system [17] for debugging Haskell pro-
grams and use the efficient satisfiability procedure for solving Herbrand equa-
tions provided by SICStus Prolog. Figure 2 shows the characteristics of these
benchmarks: the number of constraints |U |, the number of minimal unsatisfi-
able subsets |A| (and in brackets the average size of each minimal unsatisfiable
subset) and the number of maximal satisfiable subsets |X| (and in brackets the
average size). Note that |X| is the number of complements of the maximal sat-
isfiable sets, which is equal to the number of maximal satisfiable sets. These
benchmark problems were chosen due to their challenging size and each has a
constraint universe of size 72 or more constraints. Näıvely each problem then
requires considering at least 272 subsets.

The algorithms from Sections 3 and 4 were coded in SICStus Prolog. The
experiments were run on a Dell PowerEdge 2500 with Intel PIII, 1GHz CPU
and 2 GB memory. All times are measured in seconds. We compare against two
versions of the algorithms from [5]. The first 3.648 (using the terminology of
that paper) performs (a) preprocessing to detect constraints in all unsatisfiable
subsets, (b) eliminates constraints which are always satisfiable after other con-
straints are deleted, (c) breaks constraints up that are independent and (d) uses
the incremental search approach. The second 3.8 simply combines (a) and (d).
The first version is the method that (in general) examines the fewest subsets,
while the second is the one that (in general) performs the fewest isat checks.

Figure 3 shows the running times for four different algorithms. The first two
sets of times are those from the system [5] with the parameter sets 3.648 and 3.8.
The second two sets of running times are for the Dualize and Advance algorithm.
DAA.1 uses the basic algorithm with the optimisations from 4.2. DAA.2 uses
the basic algorithm with the optimisations from 4.2 and 4.4

Benchmark |U | |A| |X|
const 72 6 (37) 88 (70)

rotate 81 8 (65) 68 (80)

filter 98 12 (24) 5427 (95)

drop 156 11 (62) 599 (152)

rot13 159 9 (10) 376379 (154)

permute 239 16 (77) 120 (237)

plot 448 10 (15) 300 (445)

diff 610 4 (46) 46 (609)

msort 1016 4 (34) 2699 (1013)

Fig. 2. Type error benchmark problems

Benchmark [5]3.648 [5]3.8 DAA.2 DAA.1

const 1.8 1.3 1 1

rotate 1.3 1.5 1 1

filter 16441 7505 381 644

rot13 1269 71089 27780 30807

drop 2152 3037 77 145

permute 296 57 14 7

plot 1932 1868 44 46

diff 387 11 14 15

msort 908543 91412 1430 1420

Fig. 3. Comparative running times to find all minimal unsatisfiable sets (Seconds)

Looking at Figure 3, we see that the hitting set algorithms are substantially
faster in the majority of cases. The one exception is the rot13 benchmark,
where there are a huge number of maximally satisfiable sets. The structure of
the rot13 minimal unsatisfiable sets gives a clue as to why this may be so.
There are nine of these, with several of them being quite different from one
another (i.e. sharing few constraints). This may be because there is more than
one independent type error in the rot13 program. The rot13 benchmark also
illustrates the importance of independence optimizations for the approach of [5].

The ordering of the constraints only makes a slight difference in many cases
(DAA.1 versus DAA.2), but in others it can reduce computation time by half.

In Figure 4 we show the number of calls to isat made by each of the algo-
rithms. We see that the number of calls to isat is substantially reduced for the
DAA algorithms versus the others. Both versions of DAA make exactly the same
number of isat checks. Observe that the only difference in running time between
DAA.2 and DAA.1 is the time taken for (incremental) hitting set calculation.

Looking at Figure 3, it is clear that for some of the problems, the amount
of time taken, even for the best hitting set algorithm (DAA.2) may still be too
high to be useful for interactive debugging. One strategy to cope with this is to

Benchmark [5]3.648 [5]3.8 DAA

const 7039 147945 6567

rotate 6934 81440 6028

filter 1956330 20692654 532208

rot13 86421 137706583 59844542

drop 118046 5154734 94041

permute 56464 106335 30119

plot 1649205 1649205 135200

diff 179685 180864 28856

msort 6890081 32858078 2743337

Fig. 4. Number of incremental satisfiability checks (calls to isat) to find all minimal
unsatisfiable sets

Benchmark [5]3.648 [5]3.8 DAA.2

const 1.5 0.2 0.8

rotate 2.6 0.2 1.1

filter 5.4 0.7 0.2

rot13 22.8 2.5 0.4

drop 41 4.9 23.6

permute 60.5 4.3 12.1

plot 158 8.7 41.9

diff 276 6.6 13.5

msort 4889 146 36.7

Fig. 5. Comparative running times to find one minimal unsatisfiable set (Seconds)

provide the user with each minimal unsatisfiable set as soon as it is found, rather
than waiting until all have been computed. This way the user may begin trying
to discover the source of the error earlier. Figure 5 shows the amount of time
taken for each algorithm to output the first minimal unsatisfiable set found. We
see that the amount of time taken is generally more acceptable for interactive use
and indeed the non hitting set algorithm [5]3.8 is usually the fastest. A possible
technique would thus be to run [5]3.8 in parallel with DAA.2 and stop [5]3.8 after
finding the first minimal unsatisfiable set. This would provide the user with one
minimal unsatisfiable set quickly, but would still be likely compute the entire
collection of minimal unsatisfiable in an acceptable total elapsed time.

6 Conclusions and Future Work

Finding all minimal unsatisfiable sets is a challenging problem because it im-
plicitly involves considering each possible subset of a given set of constraints.
In this paper we investigated how to reduce as much as possible the number of
constraints sets that need to be examined. We presented a new method which

builds upon related work in data mining and showed it to be superior to the
best known previous method.

A promising direction for future work is to investigate the tradeoffs between
using the hitting set approach and that of [5] and see if a hybrid technique
combining the advantages of both can be developed.

Acknowledgements

We would like to thank Kathryn Francis for assistance with the implementation
and experimental evaluation, and Jeremy Wazny for providing the type error
benchmark problems.

References

1. J. Bailey, T. Manoukian, and K. Ramamohanarao. A fast algorithm for comput-
ing hypergraph transversals and its application in mining emerging patterns. In
Proceedings of the IEEE International Conference on Data Mining (ICDM), pages
485–488, 2003.

2. C. Berge. Hypergraphs, North Holland Mathematical Library, volume 45. Elsevier
Science Publishers B.V (North-Holland), 1989.

3. E. Boros, G. Gurvich, L. Khachiyan, and K. Makino. Dual bounded generating
problems: Partial and multiple transversals of a hypergraph. SIAM Journal on
Computing, 30(6):2036–2050, 2000.

4. B. Davey, N. Boland, and P.J. Stuckey. Efficient intelligent backtracking using
linear programming. INFORMS Journal of Computing, 14(4):373–386, 2002.

5. Maria Garcia de la Banda, Peter J. Stuckey, and Jeremy Wazny. Finding all mini-
mal unsatisfiable subsets. In Proceedings of the 5th ACM SIGPLAN international
conference on Principles and Practice of Declarative Programming, pages 32–43.
ACM Press, 2003.

6. T. Eiter and G. Gottlob. Identifying the minimal transversals of a hypergraph and
related problems. SIAM Journal on Computing, 24(6):1278–1304, 1995.

7. Michael L. Fredman and L. Khachiyan. On the complexity of dualization of mono-
tone disjunctive normal forms. Journal of Algorithms, 21(3):618–628, 1996.

8. B. Goethals and M. Zaki. Advances in frequent itemset mining implementations:
Introduction to FIMI03. In [9].

9. Bart Goethals and Mohammed Javeed Zaki, editors. Proceedings of the ICDM
2003 Workshop on Frequent Itemset Mining Implementations, FIMI’03, volume 90
of CEUR Workshop Proceedings, Melbourne, Florida, USA, 2003.

10. D. Gunopulos, R. Khardon, H. Mannila, S. Saluja, H. Toivonen, and R. S. Sharma.
Discovering all most specific sentences. ACM Transactions on Database Systems,
28(2):140–174, 2003.

11. C. Haack and J. B. Wells. Type error slicing in implicitly typed, higher-order
languages. In Proc. of ESOP’03, LNCS, pages 284–301. Springer-Verlag, 2003.

12. B. Han and S-J. Lee. Deriving minimal conflict sets by CS-trees with mark set in
diagnosis from first principles. IEEE Transactions on Systems, Man, and Cyber-
netics, 29(2):281–286, 1999.

13. A. Hou. A theory of measurement in diagnosis from first principles. Artificial
Intelligence, 65:281–328, 1994.

14. M. Paterson and M. Wegman. Linear unification. Journal of Computer and System
Sciences, 16(2):158–167, 1978.

15. R. Reiter. A theory of diagnosis from first principles. Artificial Intelligence, 32:57–
95, 1987.

16. J. Silva and K Sakallah. Grasp – a new search algorithm for satisfiability. In
Proceeding of ICCAD’96, pages 220–228, 1996.

17. M. Sulzmann and J. Wazny. Chameleon.
http://www.comp.nus.edu.sg/~sulzmann/chameleon.

18. K. Takata. On the Sequential Method for Listing Minimal Hitting Sets. In Pro-
ceedings Workshop on Discrete Mathematics and Data Mining, 2nd SIAM Inter-
national Conference on Data Mining, 2002.

19. T. Uno and K. Satoh. Detailed description of an algorithm for enumeration of
maximal frequent sets with irredundant dualization. In [9].

