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ABSTRACT
In this paper we illustrate the facilities for type debugging
of Haskell programs in the Chameleon programming en-
vironment. Chameleon provides an extension to Haskell
supporting advanced and programmable type extensions.
Chameleon maps the typing problem for a program to a sys-
tem of constraints each attached to program code that gen-
erates the constraints. We use reasoning about constraint
satisfiability and implication to find minimal justifications
of type errors, and to explain unexpected types that arise.
Through an interactive process akin to declarative debug-
ging, a user can track down exactly where a type error
occurs. The approach handles Hindley/Milner types with
Haskell-style overloading. The Chameleon system provides
a full implementation of our flexible type debugging scheme
which can be used as a front-end to any existing Haskell
system.

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Language Classifica-
tions—Applicative (functional) languages; D.3.3 [Programming
Languages]: Language Constructs and Features—Polymor-
phism,Constraints; F.3.3 [Logics and Meanings of Pro-
grams]: Studies of Program Constructs—Type structure

General Terms
Languages, Theory

Keywords
type inference, type debugging, Hindley/Milner, overload-
ing, type classes, constraints

1. INTRODUCTION
Strongly typed languages provide the user with the con-

venience to significantly reduce the number of errors in a
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program. Well-typed programs can be guaranteed not to
“go wrong” [21], with respect to a large number of potential
problems. However, programs are often not well-typed, and
therefore must be modified before they can be accepted. Un-
fortunately, it can be difficult to determine why a program
has been rejected.

Traditional inference algorithms depend on a particular
traversal of the syntax tree. Therefore, inference frequently
reports errors at locations which are far away from the ac-
tual source of the problem. The programmer is forced to
tackle the problem of correcting her program unaided. This
can be a daunting task for even experienced programmers;
beginners are often left bewildered.

Despite recent efforts, see e.g. [3, 20], we believe there
remains a lot of scope for improvement. For example, previ-
ous works exclude Haskell-style overloading [27] which can
be naturally handled by our approach (see e.g. Examples 2
and 7), and is a serious cause for consternation for beginning
Haskell programmers.

The novelty of our approach lies in mapping the entire
typing problem, including type classes and extensions, to a
set of constraints. Program locations are attached to in-
dividual constraints. By employing some simple constraint
reasoning steps we are able to narrow down the source of
the type error. We demonstrate our approach via a simple
example.

Example 1. Consider the following annotated program
where we use numbers to refer to individual program loca-
tions.

p4 = (f2 ’a’1)3

f7 True5 = True6

Each expression is translated into a set of constraints, each
of which has an attached justification in this case a pro-
gram location number, and a type variable representing its
type. For example, expression (f2 ’a’1)3 is translated to
constraint (t1 = Char)1, f(t2)2, (t2 = t1 → t3)3 with type
t3. Note that we introduce for each function symbol f a pred-
icate symbol f . So, for example f(t2)2 refers to an instance
of function f at location 2 where t2 refers to the particular
instance type.

Each function definition is translated to a Constraint Han-
dling Rule (CHR) [6]. More specifically, we make use of
CHR simplification rules. For example, in case of the above



program we find

p(t4) ⇐⇒ (t1 = Char)1, f(t2)2, (t2 = t1 → t3)3, (t4 = t3)4
f(t7) ⇐⇒ (t5 = Bool)5, (t6 = Bool)6, (t7 = t5 → t6)7

The left-hand side of the first rule consists of the predicate
p(t4) where t4 refers to the type of function p. The right-
hand side consists of the constraints generated out of the
program text representing the type of p. The ⇐⇒ symbol
can be read as logical equivalence. Operationally the rules
are read as defining replacements, you may replace the left
hand side by the right hand side. We keep applying rules
until no further rules are applicable.

For example, we can infer the type of expression p8 by
applying the above CHRs to the initial constraints store p(t)8

where 8 stands for a hypothetical program location. Here is
the final result.

p(t)8
−→ t = t4, (t1 = Char){1,8}, f(t2){2,8}(t2 = t1 → t3){3,8},

(t4 = t3){4,8}

−→ (t1 = Char){1,8}, t2 = t7, (t5 = Bool){5,2,8},
(t2 = t1 → t3){3,8}, (t6 = Bool){6,2,8},
(t7 = t5 → t6){7,2,8}, (t4 = t3){4,8}

In the first step, the constraint p(t)8 matches the left hand
side of the first CHR. We replace p(t)8 by the right hand
side. In addition, we add the matching equation t = t4. Note
how the justification from p(t)8 is added to each justification
set. In the final step, the constraint f(t2){2,8} matches the
left hand side of the second CHR.

Note that constraints are unsatisfiable in the final store.
Indeed, p is not well-typed. By collecting justifications at-
tached to unsatisfiable constraints we are able to narrow
down the possible source of the type error. A minimal unsat-
isfiable subset of the resulting constraints is (t1 = Char){1,8},
t2 = t7, (t5 = Bool){5,2,8}, (t7 = t5 → t6){7,2,8}, (t2 = t1 →
t3){3,8}. Hence the system underlines the program location
{1, 2, 3, 5, 7} (ignoring 8 since we did not provide it in the
program)

p = f ’a’
f True = True

indicating that the program must be changed in at least one
of these locations to be corrected. 2

Haack and Wells [9] in parallel proposed a very similar
approach to that above, mapping the typing problem to
Herbrand constraints. The advantage of using CHRs arises
when we extend the approach to handle Haskell-style over-
loading [27].

Example 2. Consider the following program making use
of Haskell type class Ord via the < function.

q x y z = if x < y then z else y z

There is a type error since we are comparing a function y.
The Hugs systems reports

ERROR "t.hs" (line 2): Illegal Haskell 98 class

constraint in inferred type

*** Expression : q

*** Type : Ord (a->a) => (a->a)->(a->a)->a->a

In our system we can ask for an explanation for why the
offending class constraint appears. Instead of minimal un-
satisfiable subsets we simply search for minimal implicants.

Justifications attached to minimal implicants allows us to
narrow down the possible source of the unexpected type. In
Chameleon, we say :explain q (Ord (* -> *)) (where *

stands for an anonymous type variable) and the system re-
ports

q x y z = if x < y then z else y z

illustrating why the offending constraint arises. 2

Since many Haskell Prelude functions make use of type
class overloading, the ability to handle this feature is vital
for a Haskell type debugger.

Our type inference algorithm generates equational and
user-defined constraints out of expressions. Constraints are
justified by the program location where they originated from.
These locations are retained during CHR solving. Simple
reasoning steps on constraints, such as finding minimal un-
satisfiable subsets and minimal implicants, allows us to iden-
tify problematic program locations.

Our contributions are:

• We give a translation of the typing problem for Hind-
ley/Milner which includes Haskell-style overloading into
CHRs.

• We refine CHR solving by keeping track of justifica-
tions, i.e. program locations, attached to constraints.

• Our approach is the first to:

– explain the locations that lead to a type having a
certain shape,

– handle Haskell-style overloading (and indeed more
complex type extensions [24]).

• We provide an interactive type debugger implementing
the above ideas as part of the Chameleon environment.

The rest of the paper is organized as follows. We first de-
scribe the debugging features supported by the Chameleon
debugging system, with only informal explanations about
how they are implemented. Then we give the formal un-
derpinning to the system. In Section 3 where we introduce
types and constraints and then present a formal definition
of constraint solving in terms of Constraint Handling Rules
(CHRs) in Section 4. In Section 5 we show how to translate
a Hindley/Milner typing problem with Haskell-style over-
loading into a system of CHRs, and how we use this for
type inference and checking in Section 6. In Section 7, we
discuss how simple constraint reasoning steps support type
debugging of programs. Related work is discussed in Sec-
tion 8. We conclude in Section 9. An implementation of our
type debugger is available via [26].

2. THE CHAMELEON TYPE DEBUGGER
In this section we explain the features of the Chameleon

type debugger. Chameleon can be used as a front-end to any
existing Haskell system. The Chameleon system does not
currently allow for the debugging of errors in the definitions
of type classes and instances.1 Chameleon does of course
allow us to debug the usage of classes and instances.
1To do so requires a well-understood check of the confluence
of the CHRs [1]. This is straightforward for CHRs arising
from Haskell 98 classes and instances, but termination is-
sues arise when arbitrary programmed type extensions are
allowed. Currently, we also do not check for the monomor-
phism restriction and some other Haskell 98 specific context
restrictions.



The debugger makes use of two kinds of constraint rea-
soning. In order to explain why a type error arises it deter-
mines minimal unsatisfiable subsets of a set of constraints.
In order to explain why an expression has a certain type
it determines a minimal implicant of a set of constraints.
Details of these operations can be found in Section 7.

2.1 Error Explanation
We can ask for the type of an expression e using the com-

mand type e. If e has no type this displays the parts of the
program which cause the error. It translates e into a set of
constraints C. The constraint C is executed with respect
to the CHRs P of the translated program, by exhaustively
applying the rules in P to obtain a new constraint C ′. We
denote this execution by C −→∗

P C′. If C′ is satisfiable
it displays the type of e. Otherwise the system determines
a minimal unsatisfiable subset of C ′ (simply the first one
detected) and displays the justifications for that set.

We support two basic approaches to displaying the justi-
fications of an error.

Local explanation restricts attention to the expression for
which the type error is detected, all locations outside this
expression are ignored. If the expression is a single function
name, we restrict attention to the function definition. Lo-
cal explanation is useful for top-down exploratory style of
type debugging which we believe is more natural. Indeed
while using local explanations the system in fact simplifies
all constraints arising from each other function, which con-
siderably simplifies the calculation of minimal unsatisfiable
subsets and minimal implicants.

Example 3. Returning to Example 1, using local expla-
nation the CHR for f(t) is treated as f(t) ⇐⇒ t = Bool →
Bool and the minimal unsatisfiable subset is (t1 = Char){1.8},
(t2 = Bool → Bool){2,8}, (t2 = t1 → t3){3,8}. The result-
ing justification 1, 2, and 3 is the same as before (restricted
to locations in p), but less constraints are generated. The
resulting explanation is p = f ’a’ 2

Global explanation is more expensive to compute but al-
lows the user to explore an error in a bottom-up manner.
Here all the justification information is used to determine an
error. The system highlights positions involved in one min-
imal unsatisfiable subset, and can highlight those positions
that occur in all minimal unsatisfiable subsets differently
from those not occurring in all.

Example 4. Consider the following program:

foldl f z [] = [z]
foldl f z (x:xs) = foldl f (f z x) xs
flip f x y = f y x
reverse = foldl (flip (:)) []
palin xs = reverse xs == xs

where palin is intended to be a function from a list to a
Boolean value. It should return True if its argument is a
palindrome. Hugs [15] reports the following:

ERROR Ex1.hs:6 - Type error in application
*** Expression : xs == reverse xs
*** Term : xs
*** Type : [a]
*** Does not match : [[a]]
*** Because : unification would give infinite type

telling us no more than that there is an error within palin.

By using global error explanation, we can get an imme-
diate picture of the program sites which interact to cause
this error. In the following debugger query, one global ex-
planation of the type error is given by the underlined code.
Locations which appear in all minimal unsatisfiable subsets
are underlined twice, while those which only appear in the
selected minimal unsatisfiable subset are underlined once.
Note that the “real” cause of the error does occur in all un-
satisfiable subsets, and in our experience this is usually the
case where there is one “real” error.

Ex1.hs> :set global
Ex1.hs> :type palin
type error - contributing locations
foldl f z [] = [z]

foldl f z (x:xs) = foldl f (f z x) xs

flip f x y = f y x

reverse = foldl (flip (:)) []

palin xs = reverse xs == xs

By starting from any of these sites, the programmer is able
to work towards the true cause of the error - in any direction.
In this case, the problem is that the first clause of foldl

should not return a list, [z], but rather z. Correspondingly,
the offending location is double-underlined.

If we had taken a local approach to error explanation here,
the result would have been specific to only the definition of
palin. We would then have to proceed in a top-down fash-
ion, from definition to definition, towards the offending ex-
pression.

2

The system naturally handles type class extensions that
can be expressed by CHRs.

Example 5. Functional dependencies in class constraints
are useful for preventing ambiguity. Consider a multi-parameter
collection class Collect a b where type b is a collection of
elements of type a. The class definition is

class Collect a b where
empty :: b
insert :: a -> b -> b
member :: a -> b -> Bool

As defined this class is flawed, since the type of empty ::

Collect a b => b is ambiguous. Type variable a appears
only in the constraint component. This leads to difficulties
when implementing Haskell-style overloading [16]. Func-
tional dependencies allow us to overcome this problem, by
stating that b functionally determines a. Hugs [15] supports
functional dependencies.

class Collect a b | b -> a where ...

This functional dependency can be expressed by a CHR prop-
agation rule.

Collect a b, Collect a′ b =⇒ a = a′

The =⇒ symbol is read as logical implication. Operationally
the rule is read as, if you have a match for the left hand side
you may add the right hand side. The above rule states that
if there are two Collect constraints with the same second
argument, we enforce that their first arguments are identical.

Consider the following program which tries to check if a
Float is a member of a collection of Ints.



f g x y = if member (x::Float) (insert (1::Int) y)
then g x else y

The constraints for f imply Collect Int t and Collect F loat t
which causes the propagation CHR to fire adding the infor-
mation that Int = F loat causing a type error to be detected.
The justification of the error is reported as:

Ex9.hs> :type f
type error - contributing locations
f g x y = if member (x::Float) (insert (1::Int) y)

then g x else y
rule(s) involved: Collect a b, Collect a’ b ==> a = a’

The system could be straightforwardly extended to report
the source of the CHR involved—the functional dependency
b -> a. 2

Example 6. A strength of our system is to be able to
support almost arbitrary type class extensions. This is made
possible through the extensible type system [24] underlying
our approach. Consider

f x y = x / y + x ‘div‘ y

The inferred type is f :: (Integral a, Fractional a)

=> a -> a -> a rather than immediately causing a type er-
ror. We would like to state that the Integral and Fractional

classes must be disjoint. This can be expressed via the fol-
lowing CHR.

Integral a, Fractional a =⇒ False

Then, the type debugger reports the following.

Ex10.hs> :t f
type error - contributing locations
f x y = x / y + x ‘div‘ y
rule(s) involved: Integral a, Fractional a ==> False

2

2.2 Type Explanation
Another important feature of the debugger is to explain

how various types arise, even when there are no type errors.
This allows the user to ask “why does this expression have
such a type”? We can ask to explain the type t of expression
e using the command explain e (D ⇒ t). The system builds
the constraints C for expression e and executes C −→∗

P C′

and then checks whether C ′ ⊃ ∃̃(te = t, D) where te is the

type variable corresponding to e and ∃̃ quantifies everything
except te. That is the inferred type for e is stronger than
that we are asking to explain. If this is the case it determines
a minimal subset of C ′ which causes the implication and
displays the set of justifications for this set, in a global or
local fashion just as for type error explanation.

In the following example we use this capability to explain
an error arising from a missing instance.

Example 7. Consider the following program illustrating
a classic beginners error with Haskell

sum [] = []
sum (x:xs) = x + sum xs

The Hugs system generates the error

ERROR Ex11.hs:9 - Illegal Haskell 98 class constraint
in inferred type
*** Expression : sum
*** Type : Num [a] => [[a]] -> [a]

The inferred type has a class constraint that is non-variable
and has no instance. This is completely opaque to a begin-
ning Haskell programmer.

We can generate an explanation for the error by looking
for a reason for (e.g. minimal set of constraints implying)
the constraint Num [a]. Asking the type debugger

Ex11.hs> :explain sum (Num [*] => *)
sum [] = []
sum (x:xs) = x + sum xs

Clearly indicating the problem arises from the [] of the body
of the first rule interacting with + and the recursive call to
sum. 2

Example 8. Returning to Example 5, the Hugs error mes-
sage is

ERROR Ex9.hs:10 - Constraints are not consistent with
functional dependency
*** Constraint : Collects Float a
*** And constraint : Collects Int a
*** For class : Collects a b
*** Break dependency : b -> a

This gives very little information to the programmer about
the error. In our system we can ask where the constraints
arise from:

Ex9.hs> :explain f (Collects Float * => *)
f g x y = if member (x::Float) (insert (1::Int) y)

then g x else y

Note that even though the constraint system is unsatisfi-
able, a minimal implicant correctly determines a useful jus-
tification of the constraint. 2

2.3 Referring to Local Variables
In order to track down type errors interactively it is often

useful to be able to find the types and explain the types of
variables local to a function definition. Current interactive
Haskell systems only permit references to variables bound at
the top-level. The debugger allows the syntax f;r to refer to
variable r local to the definition of f . If there are multiple
equations (patterns) for the definition for f we can select
one using the notation f;n;r where n is an integer pattern
number. By default if there are multiple equations, and no
pattern number is given, the first where the local variable
exists is used. Local variables inside nested scopes can also
be referred to.

Example 9. Consider the program

f (x:xs1) = True
f xs2 ys = let h xs3 = xs ++ xs

g ys = ys ++ xs
in h ys ++ g (xs ++ ys)

Then f;1;xs refers to xs1, while f;2;xs refers to xs2. By
default f;xs refers to xs1. In addition f;2;h;xs and f;h;xs

refer to xs3. 2

2.4 Type Addition
While the explain command allows users to ask why a

location has a type of a particular shape, the declare com-
mand allows users to ask why not of a location and a type.
The declare f (C ⇒ t) command adds constraints x = t, C
where x is the type of f to the CHR program defining f .



Example 10. Returning to Example 7, we can get an-
other explanation for the erroneous type of sum by adding
the expected type.

Ex11.hs> :declare sum ([Int] -> Int)
Ex11.hs> :type sum
type error - contributing locations
sum :: [Int] -> Int
sum [] = []

we are shown those locations which are in conflict with the
newly declared type. 2

2.5 Source-Based Debugger Interface
Although an interactive debugging system provides users

with the means to quickly pose a number of consecutive
queries, narrowing in on the target, it might also be viewed
as a slightly heavy handed interface to the debugger. An
interactive system necessarily interrupts the typical, edit-
compile programming cycle, which may be distracting. Fur-
thermore, it may at times seem quite awkward to keep type
exploration separate from the program source itself.

To this end we have provided an alternative means to
interact with the debugger, by allowing for commands to
appear naturally within the source program. At this time
we have support for type e where e is an expression written
e::?. And we support explain e (D ⇒ t), where e is an
expression and D ⇒ t is a type scheme, written e::?D => t.

Entire declarations can be queried by writing such a com-
mand at the same scope as the declaration (with a decla-
ration name in place of an expression.) These queries are
collected and processed in textual order. They do not effect
the semantics of the program in which they are embedded,
merely the compiler’s output.

Example 11. Consider the following, modified, snippet
of the program presented in Example 4.

reverse ::?
reverse = foldl (flip (:)) []

When we attempt to compile this code, using the non-
interactive system, we would get, in addition to the usual
type error message, the following output:
reverse :: [a] -> [[a]]

Further modification of the program might lead to the fol-
lowing, which involves an explain-style query:

reverse ::?
reverse = (foldl (flip (:)) []) ::? * -> [[*]]

The corresponding output would be:

reverse :: [a] -> [[a]]

foldl (flip (:)) [] ::? * -> [[*]]
because of: foldl (flip (:)) []

2

2.6 Declarative Debugging Interface
Chameleon also includes a simplistic declarative debug-

ging interface. We can invoke the declarative debugging
interface on an expression e with a type error using the
command debug e. The declarative debugger works like
a declarative debugger for a logic program [23], localizing
the error by finding a function whose type is wrong, but all
the functions used in its definitions are correct. A similar
feature is also provided by [14, 3].

Example 12. Consider the program of Example 4 once
more. The declarative debugger trace might be

Ex1.hs> :debug palin
reverse :: [a] -> [[a]]
Ex1.hs: is this type correct> n
flip :: (a -> b -> c) -> b -> a -> c
Ex1.hs: is this type correct> y
foldl :: (a -> b -> a) -> a -> [b] -> [a]
Ex1.hs: is this type correct> n
type error - contributing locations
foldl f z [] = [z]
foldl f z (x:xs) = foldl f (f z x) xs

2

The declarative debugging interface, chooses a minimal
unsatisfiable subset, and asks the user about types of func-
tions involved in this set, from the top down to discover
where the error actually lies. It then shows the justifica-
tions of the error in this function. Note that since it uses
a minimal unsatisfiable subset, it will never ask questions
about functions not involved in this subset. This is not the
case for the system of [3], since it does not determine mini-
mal unsatisfiable subsets.

3. TYPES AND CONSTRAINTS
We consider an extension of the Hindley/Milner system

with constraints.

Expressions e ::= f | x | λx.e | e e | let f = e in e
Types t ::= a | t → t | T t̄
Type Schemes σ ::= τ | ∀ᾱ.C ⇒ t
Constraints C ::= t = t | U t | C ∧ C

W.l.o.g., we assume that λ-bound and let-bound variables
have been α-renamed to avoid name clashes. We commonly
use x, y, z, . . . to refer to λ-bound variables and f, g, h, . . . to
refer to user- and pre-defined functions. Both sets of vari-
ables are recorded in a variable environment Γ. Note that
we consider Γ as an (ordered) list of elements, though we
sometimes use set notation. We denote by {x1 : σ1, . . . , σn :
tn}.σ : t the environment {x1 : σ1, . . . , σn : tn, σ : t}.

Our type language consists of variables a, type construc-
tors T and type application, e.g. T a. We use common
notation for writing function and list types. A type scheme
is of the form ∀ā.C ⇒ t where ā refers to the set of bound
variables, C is a set of constraints and t is a type. When C
is omitted it is considered to be True.

We make use of two kinds of constraints—equations and
user-defined constraints. An equation is of the form t1 = t2,
where t1 and t2 are types. A user-defined constraint is one
of U t1 · · · tn where U is a predicate symbol and t1, . . . , tn

are types, or p(t) where p is a predicate symbol and t a type.
The reason for the two forms of user-defined constraints is
simply to have different notation for user-defined constraints
for indicating the types of functions, and user-defined con-
straints specifying some other program properties.

Conjunctions of constraints are often treated as sets of
constraints. We assume a special (always satisfiable) con-
straint True representing the empty conjunction of con-
straints, and a special never-satisfiable constraint False . If
C is a conjunction we let Ce be the equations in C and Cu be
the user-defined constraints in C. We assume the usual defi-
nitions of substitution, most general unifier (mgu), etc. [18].

We consider the standard Hindley/Milner system extended
with constraints. The typing rules (Figure 1) are essentially



(Var) C, Γ ` v : σ (v : σ ∈ Γ) (Let)
C, Γ ` e : σ C, Γ.x : σ ` e′ : τ ′

C, Γ ` let x = e in e′ : τ ′

(Abs)
C, Γ.x : t1 ` e : t2

C, Γ ` λx.e : t1 → t2
(App)

C, Γ ` e1 : t1 → t2 C, Γ ` e2 : t1

C, Γ ` e1e2 : t2

(∀ Intro)
C ∧ D, Γ ` e : t ā 6∈ fv(Γ, C)

C, Γ ` e : ∀ā.D ⇒ t
(∀ Elim)

C, Γ ` e : ∀ā.D ⇒ t′ F |= C ⊃ [t̄/ā]D

C, Γ ` e : [t̄/ā]t′

Figure 1: Hindley/Milner with Constraints

the ones from HM(X) [22, 25]. In rule (Var), we assume
that v either refers to a λ- or let-bound variable. In rule
(∀ Intro), we build type schemes by pushing in the “affected”
constraints. Note that we slightly deviate from the standard
HM(X) (∀ Intro). However, the current rule is good enough
for a lazy language. We refer to [22] for a detailed discussion.
In rule (∀ Elim), we assume that F refers to a first-order
formula specifying relations among user-defined constraints,
|= denotes the model-theoretic entailment relation and ⊃
stands for logical implication. We generally assume that F
can be described by a set of CHRs.

4. CONSTRAINT HANDLING RULES WITH
JUSTIFICATIONS

We will translate the typing problem to a constraint prob-
lem where the meaning of the user-defined constraints is de-
fined by Constraint Handling Rules (CHRs) [6]. CHRs ma-
nipulate a global set of primitive constraints, using rewrite
rules of two forms

simplification c1, . . . , cn ⇐⇒ d1, . . . , dm

propagation c1, . . . , cn =⇒ d1, . . . , dm

where c1, . . . , cn are user-defined constraints, and d1, . . . , dm

are constraints.
The logical interpretation of the rules is as follows. Let

x̄ be the variables occurring in {c1, . . . , cn}, and ȳ be the
other variables occurring in the rule. The logical reading is

simplification ∀x̄((c1 ∧ · · · ∧ cn) ↔ ∃ȳ (d1 ∧ · · · ∧ dm))

propagation ∀x̄((c1 ∧ · · · ∧ cn) ⊃ ∃ȳ (d1 ∧ · · · ∧ dm))

In our use of the rules, constraints occurring on the right
hand side of rules have attached justifications (program lo-
cations). We extend the usual derivation steps of Constraint
Handling Rules to maintain justifications.

A simplification derivation step applying a renamed rule
instance r ≡ c1, . . . , cn ⇐⇒ d1, . . . , dm to a set of constraints
C is defined as follows. Let E ⊆ Ce be such that the most
general unifier of E is θ. Let D = {c′1, . . . , c

′
n} ⊆ Cu, and

suppose there exists substitution σ on variables in r such
that {θ(c′1), . . . , θ(c

′
n)} = {σ(c1), . . . , σ(cn)}, that is a subset

of Cu matches the left hand side of r under the substitution
given by E. The justification J of the matching is the union
of the justifications of E ∪ D.

Then we create a new set of constraints C ′ = C−{c′1, . . . , c
′
n}∪

{c′1 = c1, . . . , c
′
n = cn, (d1)+J , . . . , (dn)+J}. Note that the

equation c′i = ci is shorthand for s1 = t1, . . . , sm = tm

where c′i ≡ p(s1, . . . , sm)J′ and ci ≡ p(t1, . . . , tm). The an-
notation +J indicates that we add the justification set J to
the original justifications of each di. The other constraints
(the equality constraints arising from the match) are given
empty justifications. Indeed, this is sufficient. The connec-
tion to the original location in the program text is retained
by propagating justifications to constraints on the rhs only.

A propagation derivation step applying a renamed rule
instance r ≡ c1, . . . , cn =⇒ d1, . . . , dm is defined similarly
except the resulting set of constraints is C ′ = C ∪ {c′1 =
c1, . . . , c

′
n = cn, (d1)+J , . . . , (dn)+J}.

A derivation step from global set of constraints C to C ′

using an instance of rule r is denoted C −→r C′. A deriva-
tion, denoted C −→∗

P C′ is a sequence of derivation steps
using rules in P where no derivation step is applicable to
C′. The operational semantics of CHRs exhaustively apply
rules to the global set of constraints, being careful not to
apply propagation rules twice on the same constraints (to
avoid infinite propagation). For more details on avoiding
repropagation see e.g. [1].

5. TRANSLATION TO CONSTRAINT HAN-
DLING RULES

Our approach to type inference follows [4] by translating
the typing problem into a constraint problem. However, in
contrast to [4] where translation results in a set of Horn
clauses, we map the typing problem to a set of Constraint
Handling Rules (CHRs) [6].

For each definition f = e, we introduce a CHR of the form
f(t, l) ⇐⇒ C. The type parameter t refers to the type of
f whereas l refers to the set of types of λ-bound variables
in scope (i.e. the set of types of free variables which come
from the enclosing definition). The reason for l is that we
must ensure that λ-bound variables remain monomorphic.
The constraint C contains the constraints generated out of
expression e plus some additional constraints restricting l.
We use list notation (on the level of types) to refer to the
“set” of types of λ-bound variables. In order to avoid con-
fusion with lists of values, we write 〈l1, . . . , ln〉 to denote the
list of types l1, . . . , ln. We write 〈l|r〉 to denote the list of
types with head l and tail r.

The following example provides some details about our
translation scheme.

Example 13. Consider

k z = let h w = (w,z)

f x = let g y = (x,y)



in (g 1, g True, h 3)

in f z

A (partial) description of the resulting CHRs might look as
follows. For simplicity, we leave out the constraints gener-
ated out of expressions. We commonly write tx to denote
the type of λ-bound variable x.

(k) k(t, l) ⇐⇒ l = 〈〉, . . .
(h) h(t, l) ⇐⇒ l = 〈tz〉, . . .
(f) f(t, l) ⇐⇒ l = 〈tz〉, . . .
(g) g(t, l) ⇐⇒ l = 〈tz, tx〉, . . .

Note that the λ parameter l refers exactly to the set of types
of all free (λ) variables in scope.

Consider expression. (g 1, g True, h 3). At each in-
stantiation site, we need to specify correctly the set of types
of λ-bound variables in scope which were in scope at the
function definition site. Note that λ-variables z and x are
in scope of g y = ... whereas only z is in scope of h w =

.... Among others, we generate (justifications are omitted
for simplicity)

g(t1, l1), l1 = 〈tz, tx〉, t1 = Int → t′1,
g(t2, l2), l2 = 〈tz, tx〉, t2 = Bool → t′2,
h(t3, l3), l3 = 〈tz〉, t3 = Int → t′3, . . .

We observe that at function instantiation sites our constraint
generation algorithm needs to remember correctly the set of
types of λ-variables where were in scope at the function defi-
nition site. We apply a trick to avoid such calculations. The
set of types of lambda-bound variables in scope for function
definitions is left “open”. The set of types of lambda-bound
variables at function instantiation sites corresponds to the
“full” set of types of lambda-bound variables in scope. Our
actual translation yields the following result.

(k) k(t, l) ⇐⇒ l = r, t = t1 → t2, f(t, l1), l1 = 〈tz〉, t1 = tz

(h) h(t, l) ⇐⇒ l = 〈tz|r〉, t = tw → (tw, tz)

(f) f(t, l) ⇐⇒ l = 〈tz|r〉, t = (t′1, t
′
2, t

′
3), g(t1, l1),

l1 = 〈tz, tx〉, t1 = Int → t′1,
g(t2, l2), l2 = 〈tz, tx〉, t2 = Bool → t′2,
h(t3, l3), l3 = 〈tz, tx〉, t3 = Int → t′3

(g) g(t, l) ⇐⇒ l = 〈tz, tx|r〉, t = ty → (tx, ty)

For example, in rule (h) we require that variable z is in
scope plus possibly some more variables (see underlined con-
straint). Please observe that in rule (f), we pass in the
(somewhat redundant) variable tx as part of the l parame-
ter at the instantiation site of h (see double-underlined con-
straint). There is no harm in doing so, because there is no
reference to variable tx on the right hand side of rule (h). 2

The translation of the typing problem consists of a mutu-
ally recursive process of generating constraints out of expres-
sions and generating CHRs for function definitions. We as-
sume that individual expressions are annotated with unique
numbers, i.e. program locations.

Constraint generation is formulated as a logical deduction
system with clauses of the form Γ, e `Cons (C t) where en-
vironment Γ and expression e are input parameters and con-
straint C and type t are output parameters. See Figure 2 for
details. For example, in rule (Var-f) we generate an “instan-
tiation” constraint. The constraint f(t, l), l = 〈tx1

, . . . , txn
〉

demands on instance of f on type t where (tx1
, . . . , txn

)
refers to the set of types of λ-bound variables in scope. The

actual type of f will be described by a CHR where the set of
types of λ-bound variables is left open. Note that the order
of types of lambda-bound variables matters.

Generation of CHRs is formulated as logical deduction
system with clauses of the form Γ, e `Cons P where envi-
ronment Γ and expression e are input parameters and the
set P of CHRs is the output parameter. See Figure 3 for
details.

In the following, we discuss how to adjust our translation
scheme in case of some type extensions. For brevity we omit
the (uninteresting) l argument for λ-bound variables, whose
role is orthogonal to these extensions.

5.1 Type Annotations
A type annotation (f :: C ⇒ t)i generates the CHR

fa(t′) ⇐⇒ (t′ = t)i, (C)i where t′ is a fresh type variables.
Assume there is a function definition f = e. Then, type

inference yields a CHR f(t) ⇐⇒ C ′. In such a case, the
CHR for f is modified from f(t) ⇐⇒ C ′ to become f(t) ⇐⇒
C′, fa(t).

Example 14. Consider the program

(g :: [Char] -> Bool)1

g8 ((x2:3)4xs5)6 = True7

The CHR generated for g from the annotation is simply

ga(x) ⇐⇒ (x = [Char] → Bool)1

The CHR generated for g is

g(t8) ⇐⇒(t2 = tx)2, (t3 = a → [a] → [a])3,
(t3 = t2 → t4)4, (t5 = txs)5, (t4 = t5 → t6)6,
(t7 = Bool)7, (t8 = t6 → t7)8, ga(t8)

2

For functions with both a definition and an annotation
we additionally have to check that the annotated type is
“subsumed” by the inferred type. Details will be discussed
in Section 6.

5.2 Multiple Clauses
The (possibly multiple) definitions for a single function

are joined using another CHR. If there are m definitions of
f , numbered fi1 , . . . , fim

then the final CHR rule for f is

f(x) ⇐⇒ fi1 (x), . . . , fim
(x)

Note the lack of justifications, which will be collected from
the rules for fi1 , . . . , fin

.

5.3 Recursive Functions
If we were to naively apply the scheme outlined before to

the translation of recursive programs, our type inference pro-
cedure would become undecidable. In short, a CHR deriva-
tion, in such a situation, would never terminate.

Example 15. Consider the program:

f (x, y) = g (x, y)
g (x, y) = f (y, x)

Applying the standard translation, we would generate some-
thing like the following.

f(tf ) ⇐⇒ g(tg), tg = (tx, ty) → tr, tf = (tx, ty) → tr

g(tg) ⇐⇒ f(tf ), tf = (ty, tx) → tr, tg = (tx, ty) → tr



(Var-x)
(x : t1) ∈ Γ t2 fresh

Γ, xl `Cons ((t2 = t1)l t2)

(Var-f) {x1 : tx1
, . . . , xn : txn

}, fl `Cons (f(t, l)l, l = 〈tx1
, . . . , txn

〉 t)

(Abs)
Γ.x : t1, e `Cons (C t2) t1, t3, t4 fresh

Γ, (λxl1 .e)l2 `Cons (C, (t3 = t4 → t2)l2 , (t1 = t4)l1 t3)

(App)
Γ, e1 `Cons (C1 t1) Γ, e2 `Cons (C2 t2) t3 fresh

Γ, (e1 e2)l `Cons (C1, C2, (t3 = t1 → t2)l t3)

(Let)
Γ, e2 `Cons (C t)

Γ, let f = e1 in e2 `Cons (C t)

Figure 2: Justified Constraint Generation

(Var) Γ, v `Def ∅

(Abs)
t fresh Γ.x : t, e `Def P

Γ, λx.e `Def P

(App)
Γ, e1 `Def P1 Γ, e2 `Def P2

Γ, e1 e2 `Def P1 ∪ P2

(Let)

Γ, e1 `Cons (C t) Γ = {x1 : t1, . . . , xn : tn} r fresh

Γ, e2 `Def P

P ′ = P ∪ {f(t, l) ⇐⇒ C, l =< t1, . . . .tn|r >}

Γ, let f = e1 in e2 `Def P ′

Figure 3: Rule Generation for Hindley/Milner

Note that these rules are simplified versions of what our
translation scheme would actually generate. If we were to
attempt a CHR derivation involving either rule, it is clear
that it would never terminate. 2

To circumvent this problem, we enforce monomorphic re-
cursion for functions without type annotations in Chameleon.
Consequently, this allows us to replace the user constraints
involved in cycles with monomorphic types. We do this by
unfolding cyclical user constraints.

Example 16. We return to the two CHRs generated above,
with the knowledge that the calls to f and g within their bod-
ies are involved in a cycle.

We begin with the rule for f above, and apply the sim-
plification rule for g to the rhs constraints, obtaining the
following:

f(tf ) ⇐⇒ f(t′f ), t
′
f = (t′y, t′x) → t′r, t

′
g = (t′x, t′y) → t′r,

tg = t′g, tg = (tx, ty) → tr, tf = (tx, ty) → tr

The newly added constraints are shown in boldface. The
constraint tg = t′g represents the matching of the type in
the g user constraint and the type in the head of the g rule.

Finally, to break the cycle we replace the call to f with a con-
straint asserting that t′f is the same type as we have already
found for f - hence the monomorphism.

f(tf ) ⇐⇒ t′f = tf , t
′
f = (t′y, t′x) → t′r, t

′
g = (t′x, t′y) → t′r,

tg = t′g, tg = (tx, ty) → tr, tf = (tx, ty) → tr

The same procedure would then be carried out for the g rule.
2

We are able to type polymorphic recursive programs, given
that the programmer has supplied sufficient type declara-
tions.

Example 17. Consider the function:

f :: [a] -> Bool
f [] = True
f (x:xs) = f [xs]

Note that the type annotation is necessary. In such a case,
our translation (simplified) yields the following.

fa(t) ⇐⇒ t = [a] → Bool
f(t) ⇐⇒ f1(t), f2(t)
f1(t) ⇐⇒ t = [a] → Bool
f2(t) ⇐⇒ t = [a] → t1, t2 = [[a]] → t1, fa(t2)



To break the cycle, we employ the annotated CHR for the
recursive call. 2

5.4 Overloading
For an in-depth treatment of the translation of Haskell-

style class and instance declarations to CHRs we refer the
interested reader to [24, 8].

The translation from declarations to CHRs is

instance (C => TC t)l0 where TC t ⇐⇒ Cl0
f = e

class (C => TC x)l1 where TC x =⇒ Cl1
f :: (C ⇒ t)l2 fa(y) ⇐⇒ y = t, Cl2 , (TC x)l2

The appropriate location (l0, l1 or l2) is added as justifi-
cation to all constraints on the right hand side. A missing
constraint C is treated as True. Note that we use upper-case
letters for user-defined type class constraints, and lower-case
letters for user-defined constraints referring to function def-
initions.

Example 18. Given the class and instance declarations
below,

class (Eq a)50 where
(==) :: a -> a -> Bool51

class (Eq a => Ord a)52 where
(>) :: a -> a -> Bool53

instance (Ord a => Ord [a])54 where
[] > = False
( : ) > [] = True
(x:xs) > (y:ys) = x > y || x == y && xs > ys

instance (Ord Bool)55 where
True > False = True

> = False

we generate the following CHRs

Eq a =⇒ True
eqa(t51) ⇐⇒ (t51 = a → a → Bool)51, (Eq a)51

Ord a =⇒ (Eq a)52
gta(t53) ⇐⇒ (t53 = a → a → Bool)53, (Ord a)53
Ord [a] ⇐⇒ (Ord a)54

Ord Bool ⇐⇒ True

We assume eq represents the type of Eq’s member func-
tion (==) and gt represents the type of Ord’s member func-
tion (>). Note that CHRs arising from the type annotations
appearing in the classes have a missing implicit class con-
straint added.

Note we would also generate constraints for the code defin-
ing the instance methods for > and check this versus the an-
notation constraints for gt. 2

The proof of correctness of these rules in modeling the
class constraints can be found in [8]. Note that our type
debugging approach also immediately extends to more com-
plicated approaches to overloading that can be expressed as
CHRs [24].

We generally assume that CHRs are confluent. A set of
CHRs is confluent if any sequence of derivation steps leads to
the same final constraint store. This condition holds trivially
for CHRs generated from the Hindley/Milner subset of our
language. The same is true for any valid set of Haskell 98 [10]
class and instance declarations.

6. TYPE INFERENCE VIA CHR SOLVING
Consider type inference for a function definition f = e.

We execute the goal f(t, l) using the CHR program P cre-
ated, i.e. f(t, l) −→∗

P C, and build φ, the most general uni-
fier of Ce. Let ā = fv(φCu) \ fv(φl). These are the vari-
ables we will quantify over; we specifically exclude types
of λ-bound variables. We can then build the type scheme,
f :: ∀ā φCu ⇒ φt.

Note that in our scheme we are a bit more “lazy” in de-
tecting type errors compared to other formulations.

Example 19. Consider

e = let f = True True

in False

Our (simplified) translation to CHRs yields

f(t) ⇐⇒ t1 = Bool, t1 = t2 → t3, t2 = Bool, t3 = t
e(t) ⇐⇒ t = Bool

For simplicity, we omit justifications and the l parameter.
Note that type inference for expression e succeeds, although
function f is ill-typed. There is no occurrence of f in the
let body, hence we never execute the CHR belonging to f.
In a traditional approach, type inference for e proceeds by
first inferring the type of f immediately detecting that f is
not well-typed. Note that our approach is still type-safe for
a lazy language. Additionally, we could require that all de-
fined functions must be type correct, by simply executing the
corresponding CHRs. 2

Example 20. Consider the following program, together
with the class and instance declarations of Example 18

lteq10 x1 y2 = (not7 ((x4 >3)5 y6)8)9

not :: Bool -> Bool16

where (>) is part of the Ord class. The translation process
yields (again for simplicity we ignore the λ-bound variables
argument):

lteq(t10) ⇐⇒ (t1 = tx)1, (t2 = ty)2, gt(t3, )3, (t4 = tx)4,
(t3 = t4 → t5)5, (t6 = ty)6, not(t7)7,
(t5 = t6 → t8)8, (t7 = t8 → t9)9,
(t10 = t1 → t2 → t9)10

not(t16) ⇐⇒ (t16 = Bool → Bool)16

These rules are generated directly from the program text.
Type inference for (lteq22 [w17]18)23 generates the con-

straints
(t17 = tw)17, (t18 = [t17])18, lteq(t22)22, (t22 = t18 → t23)23

This is the initial constraint which we run the CHR program
on. For the first step, we find E = ∅ and D = {lteq(t22)22}
means we can apply the first rule above leading to

(t17 = tw)17, (t18 = [t17])18, t10 = t22, (t1 = tx){1,22},
(t2 = ty){2,22}, gt(t3){3,22}, (t4 = tx){4,22}, (t3 = t4 → t5){5,22},
(t6 = ty){6,22}, not(t7){7,22, (t5 = t6 → t8){8,22},
(t7 = t8 → t9){9,22}, (t10 = t1 → t2 → t9){10,22},
(t22 = t18 → t23)23

For brevity, we show the whole derivation in a simplified
form, just showing θ(Cu) ∧ t23 = θ(t23) where θ is the mgu
of Ce for C at each step, and omit justifications. That is,
we only show the user-defined constraints and the top type



variable t23, under the effect of the equations in C ignoring
justifications.

lteq([tw] → t23), t23 = t23

−→lteq not(t8 → t9), gt([tw] → t2 → t8), (t23 = t2 → t9)

−→not gt([tw] → t2 → Bool), t23 = t2 → Bool

−→gt Ord [tw], t23 = [tw] → Bool

−→Ord [a] Ord tw, t23 = [tw] → Bool

−→Ord a Ord tw, Eq tw, t23 = [tw] → Bool

In other words the type inferred for the original expression
is (Ord a, Eq a) => [a] -> Bool. Note that we are more
“verbose” than e.g. Hugs [15] which would report Ord a =>

[a] -> Bool. Clearly, the constraint Eq a is “redundant”,
since every instance of Ord must be an instance of Eq as
specified by the class declaration for Ord. In [24], we show
how to remove such redundant constraints. However, for
type debugging purposes it is desirable to keep all constraints
for better type explanations.

The fourth step in the derivation is the only one requiring
a non-empty set E of equations to justify the match. The
constraint D = {(Ord a1){3,22,53}} matches the left hand
side of the rule Ord [a2] ⇐⇒ (Ord a2)54. The minimal set
of equations E ⊆ C where θ = mgu(E) is such that θ(a1)
has the form [t′] is

(t1 = tx){1,22}, (t53 = a1 → a1 → Bool){3,22,53}, t3 = t53,
(t4 = tx){4,22}, (t3 = t4 → t5){5,22}, t10 = t22, (t18 = [t17])18,
(t10 = t1 → t2 → t9){10,22}, (t22 = t18 → t23)23

The total justifications of E∪D are {1, 3, 4, 5, 10, 18, 22, 23, 53}.
Hence we replace the constraint (Ord a1){3,22,53} by

[a2] = a1, (Ord a2){1,3,4,5,10,18,22,23,53,54}

2

We can state soundness and completeness of type infer-
ence for the system described in Figure 1. We assume that
the type of predefined functions is recorded as a CHR. For
example, map :: (a->b)->[a]->[b] is represented by

map(t, l) ⇐⇒ t = (a → b) → ([a] → [b]).

Theorem 1 (Soundness and Completeness). Let P1

be a set of CHRs describing all predefined functions, Γ be an
environment containing all free variables, e be an expres-
sion and t be a type. Then, we have that Γ ` e : t iff
Γ, e `Cons (C t′) for some constraint C and type t′ and
Γ, e `Def P2 for some set P2 of CHRs such that C −→∗

P1∪P2

D and φt′ = t with φ m.g.u. of D where we consider fv(Γ)
as Skolem constants.

The theorem can be reestablished for each of the type
extensions considered.

Note that in case of type annotations, type inference needs
to perform a subsumption check. We compare a type anno-
tation for function f versus the function definition by sim-
ply testing the following. We execute fa(t, l) −→∗ C1 and
f(t, l) −→∗ C2 and check that |= C1 ⊂ ∃̄t,l C2. The correct-
ness of this check is proved in [24].

In case of overloading, we must also ensure that type
schemes are unambiguous. For Haskell 98 this equates to
checking that variables appearing within the context of the
type scheme must also appear within the type. Not enforc-
ing this condition would make the semantics of such pro-
grams non-deterministic. For details, we refer to [24].

7. CONSTRAINT OPERATIONS
The type debugger make use of two essential manipula-

tions of the constraints generated from the CHR derivation:
finding a minimal unsatisfiable subset of an unsatisfiable
constraint set, and finding a minimal subset that implies
some give constraint (which may be used if the constraints
are satisfiable or unsatisfiable). Justifications attached to
those minimal sets refer to problematic program locations.

7.1 Minimal Unsatisfiable Subsets
Assume type inference fails. That is, we have that C −→∗

P

D for some constraint C and D where D is unsatisfiable.
For D to be unsatisfiable it must be that De is unsatisfiable,
since user-defined constraints only contribute new equations.

We are interested in finding a minimal subset E of De such
that E is unsatisfiable. An unsatisfiable set is minimal if the
removal of any constraint from that set leaves it satisfiable.
The Chameleon system simply finds an arbitrary minimal
unsatisfiable subset. We also determine which constraints
in this set are present in all minimal unsatisfiable subsets.

We can naively determine minimal unsatisfiable subsets
by testing each possible subset. This is impractical. Using
an incremental equation solver (as all unification algorithms
are) we can quickly determine a minimal unsatisfiable subset
of D by adding the equations one at a time and detecting
the first time the set is unsatisfiable. The last added equa-
tion must be involved in the minimal unsatisfiable subset.
Applying this principle repeatedly results in:

min unsat(D)
M := ∅
while satisfiable(M) {

C := M
while satisfiable(C)

{ let e ∈ D − C; C := C ∪ {e} }
D := C; M := M ∪ {e} }

return M

We can straightforwardly determine which constraints e ∈
M must occur in all minimal unsatisfiable subsets, since this
is exactly those where D−{e} is satisfiable. The complexity
(for both checks) is O(|D|2) using an incremental unification
algorithm. A detailed analysis of the problem of finding all
minimal unsatisfiable constraints can be found in [7].

Ultimately, we are interested in the justifications attached
to minimal unsatisfiable constraints. This will allow us to
identify problematic locations in the program text.

Example 21. Consider the final constraint of Example 1.

(t1 = Char){1,8}, t2 = t7, (t5 = Bool){5,2,8}, (t6 = Bool){6,2,8},
(t7 = t5 → t6){7,2,8}, (t2 = t1 → t3){3,8}, (t4 = t3){4,8}

The system of constraints is detected as unsatisfiable as the
second last constraint (t2 = t1 → t3){3,8} is added. Hence
(t4 = t3){4,8} can be excluded from consideration. Solving
from the beginning, starting with (t2 = t1 → t3){3,8}, unsat-
isfiability is detected at (t7 = t5 → t6){7,2,8}. In the next
iteration, starting with (t7 = t5 → t6){7,2,8} and (t2 = t1 →
t3){3,8}, unsatisfiability is detected at (t5 = Bool){5,2,8}.
Therefore, (t6 = Bool){6,2,8} can be excluded. The final re-
sult M is

(t1 = Char){1,8}, t2 = t7, (t5 = Bool){5,2,8},
(t7 = t5 → t6){7,2,8}, (t2 = t1 → t3){3,8}

Note that M is the only minimal unsatisfiable constraint for
this example. 2



7.2 Minimal Implicants
We are also interested in finding minimal systems of con-

straints that ensure that a type has a certain shape.
Assume that C −→∗

P D where |= D ⊃ ∃ā.F unexpectedly,
where F is a conjunction of equations. We want to identify
a minimal subset E of D such that |= E ⊃ ∃ā.E. The
algorithm for finding minimal implicants is highly related to
that for minimal unsatisfiable subsets.

The code for min impl is identical to min unsat except the
test satisfiable(S) is replaced by ¬implies(S,∃ā.D′).

min impl(D)
M := ∅
while ¬implies(M,∃ā.D′) {

C := M
while ¬implies(C,∃ā.D′)

{ let e ∈ D − C; C := C ∪ {e} }
D := C; M := M ∪ {e} }

return M

The test implies(M,∃ā.D′) can be performed as follows.
If D′ is a system of equations only, we simply add them and
check that no variable apart from those in ā is bound.

If D′ includes user defined constraints, then for each user-
defined constraint ci ∈ D′

u we nondeterministically choose
a user-defined constraint c′i ∈ M . We then check that
implies(M, ∃ā.(D′

e ∪ {ci = c′i}) holds as above. We need
to check all possible choices for c′i (although we can omit
those which obviously lead to failure, e.g. ci = Eq a and
c′i = Ord b).

8. RELATED WORK
The most conservative approach to improving type error

information involves modifying the order in which substitu-
tions take place within traditional inference algorithms. The
standard algorithm, W, tends to find errors too late in its
traversal of a program [17, 29], since it delays substitutions
until as late as possible. W has been generalized [17] so that
the point at which substitutions are applied can be varied.
Despite this, there are cases where it is not clear which vari-
ation provides the most appropriate error report. Moreover,
all of these algorithms suffer from a left-to-right bias when
discovering errors during abstract syntax tree (AST) traver-
sal.

One way to overcome this problem, as we have seen, is to
avoid the standard inference algorithms altogether and fo-
cus directly on the constraints involved. Although our work
bears a strong resemblance to [11, 12, 13], our aims are
different. We attempt to explain errors involving advanced
type system features, such as overloading, whereas [13], who
are developing a beginner-friendly version of Haskell, choose
to ignore such features by design. Furthermore, they fo-
cus on producing non-interactive error messages, and do not
consider mechanisms for providing type explanations.

In [19], graphs are used to represent type information,
again, independently of any particular program traversal.
This work allows generation of potentially more useful type
error messages, again without any opportunity for user in-
teraction.

A number of “error explanation systems” [2, 5, 28] allow
the user to examine the process by which specific types are
inferred. By essentially recording the effects of the inference
procedure on specific types a step at a time, a complete
history can be built up. One common shortcoming of such
systems is the excessive size of explanations. Although com-
plete, such explanations are full of repetitive and redundant

information which can be a burden to deal with. Further-
more, since these systems are layered on top of an existing
inference algorithm, they suffer from the same AST traversal
bias. In contrast, when asked to explain why an expression
has a particular type, our system finds precisely those loca-
tions which have contributed.

Chitil [3] describes a compositional type explanation sys-
tem based on the idea of principal typings. In his system
a user can explore the types of subexpressions by manually
navigating through the inference tree. This is very simi-
lar to our form of declarative debugging (Section 2.6). Note
that our form of type explanation allows us to automatically
identify contributing program locations.

Independently, Haack and Wells [9] also discuss finding
of minimal unsatisfiable subsets which allows them to find
problematic program locations. However, they only consider
error explanations. That is, in their system it is not possible
to explain why functions have a type of a certain shape.
Furthermore, their approach applies to the Hindley/Milner
system only whereas our approach is applicable to Haskell-
style type classes and its various extensions.

9. CONCLUSION
We have presented a flexible type debugging scheme for

Hindley/Milner typable programs which also includes Haskell-
style overloading. The central idea of our approach is to
translate the typing problem to a constraint problem, i.e. a
set of CHRs. Type inference is phrased in terms of CHR
solving. Our approach has the advantage that we are not
dependent on a fixed traversal of the abstract syntax tree.
Constraints can be processed in arbitrary order which makes
a flexible traversal of the syntax tree possible.

In case of a type error (or unexpected result), we find min-
imal unsatisfiable constraints (minimal implicants). Justi-
fications, i.e. program locations, attached to constraints al-
low us to identify problematic program expressions. The
approach has been fully implemented [26] and can be used
as a front-end to any existing Haskell system.

There is much further work to do in improving the sys-
tem. This includes adding features such as: allowing the
user to trace the CHR type inference derivation, and ex-
plaining each step in the derivation, and using the minimal
unsatisfiable subsets to generate better error messages. In
particular, we plan to include some heuristics to catch com-
mon errors. The Helium [13] programming environment in-
cludes a database of common mistakes which is searched for
a match when a type error occurs. This allows meaningful
error messages and suggestions on how to fix the error to be
presented. Using minimal unsatisfiable subsets to search in
the database should allow us to detect more generic common
mistakes.
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