
Modelling with Option Types in MiniZinc?

Christopher Mears3, Andreas Schutt1,2, Peter J. Stuckey1,2, Guido Tack1,3, Kim
Marriott1,3, and Mark Wallace1,3

1 National ICT Australia (NICTA)
2 University of Melbourne, Victoria, Australia
3 Faculty of IT, Monash University, Australia

Abstract. Option types are a powerful abstraction that allows the concise mod-
elling of combinatorial problems where some decisions are relevant only if other
decisions are made. They have a wide variety of uses: for example in modelling
optional tasks in scheduling, or exceptions to a usual rule. Option types represent
objects which may or may not exist in the constraint problem being modelled,
and can take an ordinary value or a special value > indicating they are absent.
The key property of variables of option types is that if they take the value > then
the constraints they appear in should act as if the variable was not in the origi-
nal definition. In this paper, we explore the different ways that basic constraints
can be extended to handle option types, and we show that extensions of global
constraints to option types cover existing and common variants of these global
constraints. We demonstrate how we have added option types to the constraint
modelling language MINIZINC. Constraints over variables of option types can
either be handled by transformation into regular variables without extending the
requirements on underlying solvers, or they can be passed directly to solvers that
support them natively.

1 Introduction

A common feature of complex combinatorial models is that some decisions are only
relevant if other decisions are made. Hence some part of the model may be irrelevant
dependent on decisions in another part. This is typically modelled by requiring that
the “irrelevant decisions” are fixed to some default value, and none of the constraints
about the irrelevant decisions are enforced. While it is certainly possible to express such
models in traditional modelling languages, it is neither concise nor straightforward.

Many programming languages, including ML, Haskell and Scala, provide an option
type, to wrap an arbitrary type with an additional “None” value to indicate that the re-
turned value is not meaningful. This paper introduces an extension to the MINIZINC
modelling language [14] that uses a similar approach to indicate that a value is irrel-
evant. We add support for option types in MINIZINC, that is types extended with an
additional value> indicating that a decision was irrelevant. The meaning of constraints

? NICTA is funded by the Australian Government as represented by the Department of Broad-
band, Communications and the Digital Economy and the Australian Research Council. The
first author was sponsored by the Australian Research Council grant DP110102258.

and functions on normal types is lifted to option types to create the desired behaviour
that variables taking the value > do not constrain the rest of the model.

Variables of option type, or optional variables, are used to model objects (or rela-
tionships) that may or may not exist in the problem being modelled. Such a variable
may take a value like an ordinary variable, or have an absent value. The most common
use of optional variables in constraint programming is in modelling the start times of
optional tasks, tasks in a scheduling problem that may or may not occur.

Example 1. In a flexible job shop scheduling problem a task t can be performed on one
of k machines, with a duration dtl if it runs on machine l. A common model for this is to
model a single task t with start time St and (variable) duration Dt , as well as k optional
tasks with optional start times Otl and (fixed) duration dtl . If task t runs on machine l
then Otl = St , Dt = dtl and Ot j =>,1≤ j 6= l ≤ k.

Optional variables are also used to model “exceptional circumstances”.

Example 2. Consider an assignment problem where each of m workers should be as-
signed to one of n tasks, where there are too many workers for the tasks (m > n). A
common way of modelling this in constraint programming is using the global constraint
alldifferent_except_0([w1, . . . ,wm]) where worker assignments wi,1 ≤ i ≤ m
take values in the range 0..n, where 0 represents that the worker is not assigned to any
task. With optional variables this is modelled differently: each variable wi is an op-
tional variable with domain 1..n and >. The > plays exactly the same role as 0 in the
traditional approach, but the constraint is now simply alldifferent([w1, . . . ,wm])
applied to optional variables wi. Lifting this constraint to work on optional variables
will automatically provide the desired behaviour.

Some of the global constraints in the global constraint catalogue [1] in fact arise
from the common occurrence of modelling with optional variables. We believe the
global constraint catalogue could be simplified by the addition of optional variables
and automatic lifting of constraints to optional variables. Optional variables can also
make some forms of modelling easier even if they are not required.

Example 3. Consider an assignment problem with m workers and n tasks, but this time
n > m. If we require that workers who work on tasks adjacent in the list are compatible,
we can model this by

∀1≤ j ≤ n−1. ∀1≤ i, i′ ≤ m. wi = j∧wi′ = j+1→ compatible[i, i′] ,

but this creates a very large and complex set of constraints. Instead we can model this
using an inverse global constraint, using optional variables. Let t j = i be the optional
variable representing that task j is worked on by worker i, but if no one does the task
then t j =>. We can then model the above constraint using

inverse(w, t)∧∀1≤ j ≤ n−1. compatible[t j, t j+1] .

If t j => or t j+1 => then the constraint compatible[t j, t j+1] will automatically hold.

2

In the remainder of this paper we formally define option types, and how we can
automatically lift the meaning of constraints and functions on ordinary types to their
option type extension. We show how with option types we can concisely model com-
mon modelling idioms, and extend the expressiveness of the modelling language. The
contributions of this paper are:

– A theory for extending a constraint definition over standard types to option types
(Section 2.1).

– A standard approach to extending functions from standard types to option types
(Section 2.2).

– An extension to MINIZINC to support option types (Section 3).
– An extension of the comprehension syntax of MINIZINC to allow iteration over

variable sets and variable conditions (where clauses) using option types (Sec-
tion 3.2).

– An approach to automatically translating models with option types into models
without option types (Section 4). This has the advantage of providing support for
the new modelling features for all solvers supporting FLATZINC without changes.

– The ability for solvers to specify their support for constraints with option types,
so that models using them can make use of efficient variable implementations and
propagation algorithms, where the solvers support them (Section 4.4).

2 The Logic of Option Types

Option types are defined using the type constructor opt which maps a type to an option
type. If T is the set of possible values (excluding >) then opt T = T ∪{>}.

Modelling for constraint programming (CP) consists of defining relations over de-
cision variables and functionally defined terms on these decision variables. To extend
modelling to include option types, we must define how to interpret relations and func-
tions on option types. To be useful for modelling, these definitions should have mean-
ings that are natural to the modeller.

2.1 Lifting Constraints to Option Types

The key requirement for easy use of option types is for the modeller to clearly under-
stand the meaning of constraints involving option types. Here we show how to automat-
ically lift an existing constraint definition that uses standard types to be one defined on
option types. The lifting is meant to reflect the implicit understanding that “if an option
type variable x takes the value > each constraint involving x should act as if x was not
part of its definition.”

Projection Interpretation Converting the implicit understanding into a formal defini-
tion, which we denote the projection interpretation, leads to the following:

Let c(x1, . . . ,xn) be a constraint requiring a non-option variable of type T in the ith

position, then if xi is of type opt T , the extended version of the constraint, ce:{xi} for
the ith argument is

ce:{xi}(x1, . . . ,xn)⇔ (xi 6=>∧ c(x1, . . . ,xn))∨ (xi =>∧∃xi.c(x1, . . . ,xn)) .

3

Thus either the variable xi takes a non-> value and the constraint acts as usual, or the
variable takes the > value and the constraint acts as if xi was projected out.

We can extend this to lift arbitrary numbers of variables as follows. Define ce:S

where S ⊆ vars(c) as c when S = /0 and (ce:S′)e:{x} when S = S′ ∪{x} otherwise. The
meaning of the lifting is independent of order; e.g.:

ce:{x}e:{y}
(x,y,z) = ce:{y}e:{x}

(x,y,z)

Note that while the lifting operation does distribute over disjunction, it does not
distribute over conjunction.

Example 4. When y => the constraint ce:{y}(x,y,z) where c(x,y,z) = x ≤ y∧ y≤ z, is
equivalent to x≤ z, whereas x≤e:{y} y∧ y≤e:{y} z is equivalent to true.

Note that pushing negations into relations is not a valid transformation with option
types.

Example 5. When y = > the expression ¬(x =e:{y} y) is equivalent to false, while
ce:{y}

2 (x,y) where c2(x,y)≡ x 6= y, is equivalent to true.

However, this does not further restrict MiniZinc: pushing negations is already in-
valid for MiniZinc given the relational semantics [6] treatment of partial functions.

Since we will usually lift all arguments of a constraint to option types, we define
cp(x1, . . . ,xn) = ce:{x1,...,xn}(x1, . . . ,xn). The lifted version of equality x =p y defines a
weak equality, denoted x =w y, which holds if x equals y or either x or y is >. In order
to give names to expressions of option type and support substitutivity we also need the
strong equality, x =s y (or just x = y), which holds if x and y are identical, e.g. it is false
if x takes value > and y takes a value different from >.

Example 6. Given a constraint Oi j + di j ≤ S j between an optional variable Oi j and
standard variable S j, then if Oi j => the constraint is automatically satisfied. Note that
it is important to disregard the possible values of the optional variable which are not
> when determining the meaning. If Oi j had a domain of 0..10∪ {>} and duration
di j = 4 then we do not want to have this constraint force S j ≥ 4 even when Oi j = >.
The projection interpretation does not constrain S j since Oi j can take value −∞ (or any
value not larger than l−4 where l is the lowest value in the domain of S j).

Compression Interpretation An alternate intuition for extending constraints to option
types exists for constraints with an n-ary array argument. In this alternate interpretation,
the compression interpretation, we treat the constraint as if > values had been removed
from the array argument.

Example 7. Given a constraint alldifferent on array of optional variables W =
{wi | 1≤ i≤m}, then under the assumption that w1 =w2 = · · ·=wk =>,k <m then the
compression interpretation of alldifferentc([>, . . . ,>,wk+1. . . . ,wm]) is the con-
straint alldifferent([wk+1, . . . ,wm]). Note that for alldifferent the compres-
sion interpretation and the projection interpretation agree, since alldifferente:W (w)
is equivalent to alldifferent([wk+1, . . . ,wm]) when w1 =w2 = · · ·=wk =>,k <m.

4

While the projection and compression interpretation often agree, there are con-
straints where they do not.

Example 8. Consider the constraint sliding_sum(l,u,k,v) which requires that l ≤
v[i]+ . . .+ v[i+ k−1]≤ u,∀1≤ i≤ n− k+1 where n is the length of the array v. The
projection interpretation allows a > value for v[j] if there is some value that keeps all
the sliding sums in the right range. For example sliding_sump(1,2,3, [1,1,>,1,1])
holds since it is satisfied for v[3] = 0, but sliding_sump(1,2,3, [1,1,>,0,>,1,1])
does not hold (the only solution would replace each > by 0 but this fails on the mid-
dle 3). Compression eliminates the > values from the array, changing the values being
summed, hence sliding_sumc(1,2,3, [1,1,>,1,1]) equals sliding_sum(1,2,3,
[1,1,1,1]) and does not hold, while sliding_sumc(1,2,3, [1,1,>,0,>,1,1]) equals
sliding_sum(1,2,3, [1,1,0,1,1]), and does hold.

The compression interpretation must be modified when we have a tuple of arrays
used to represent an array of tuples.

Example 9. Given a constraint cumulative(s,d,r,L) where s are optional variables,
and assuming that s1 = s2 = · · ·= sk =>,k < n, then the constraint under the projection
interpretation is equivalent to cumulative([sk+1, . . . ,sn], [dk+1, . . . ,dn], [rk+1, . . . ,rn],
L); that is, we treat the constraint as if the tasks whose start time is optional did not
exist in the constraint. Note that this is equivalent to a compression interpretation which
removes the “corresponding” values of other arrays. Under the assumption that the du-
rations d and resources r are also optional, and assuming that r1 = >,d2 = >,s3 =
>,r4 =>,d5 =>,s6 => then the projection interpretation of the constraint is equiva-
lent to cumulative([s7, . . . ,sn], [d7, . . . ,dn], [r7, . . . ,rn],L).

Given that the projection interpretation is clear for any constraint and usually agrees
with the compression interpretation when that makes sense, for MINIZINC we define
the projection interpretation as the meaning for lifting a constraint to option types.

2.2 Lifting Functions to Option Types

MINIZINC includes many built-in functions (and operators) and also allows users to
define their own functions. Lifting existing functions from standard types to option
types is also important, so that the modeller can concisely make use of functions in
their models with option types. Again we want to have a clear policy so the modeller
understands how functions interact with option types.

First note that mapping functions to relations and using the projection-based lifting
does not give us what we want. Consider the constraint plus(x,y,z) defined as x+y = z.
Then plusp(i,>, j) holds for all i and j (the > takes the value j− i), hence we have lost
the functional nature of the expression x+ y!

Absorption Lifting A straightforward extension of functions to option types is to treat
the absent value as an absorbing element:

5

x⊕a y
def
=

> if x =>
> if y =>
x⊕ y otherwise

The absent value can be viewed as “contagious”. This definition can transform any
function ⊕ : A×B→C to ⊕a : opt A×opt B→ opt C.

Identity Lifting The intended meaning of the absent value is that it should be ignored
wherever possible. With this in mind, binary operations of the form ⊕ : S×S→ S can
be lifted to ⊕i : opt S×opt S→ opt S by the definition:

x⊕i y
def
=

 y if x =>
x if y =>
x⊕ y otherwise

For these operations the absent value acts as the identity: for + it is zero, for ∧
it is true, and so on. When both values are absent, the result of the operation is ab-
sent. This definition is the natural conversion from the semigroup (S,⊕) to the monoid
(S ∪ {>},⊕i). Note we can still use identity lifting for operations like min even though
its identity element (+∞) is not in the usual domain of integer variables.

Arithmetic subtraction and division are not associative, and therefore do not form
semigroups. The above definition does not make sense for these operators since they
do not have left-identities. However these operators do have right-identities, and so
identity-lifting can be extended to this case by defining:

x⊕r y
def
=

> if x =>
x if y =>
x⊕ y otherwise

Effectively when we lift a function then an absent value in a position where it has no
identity element gives an absent result. For example 3−> = 3 since > acts as 0, but
>−3 => since there is no identity in this position. Note that the result is absent if and
only if x is absent.

Unary Operators and Functions Unary operators and functions ⊕ : S→ S can be
lifted naturally to ⊕a : opt S→ opt S. Absorption lifting is the only thing that makes
sense for a unary function.

Boolean Operations Objects of type opt bool, optional Booleans, are not common
when modelling with optional variables, since usually optionality is captured within
lifted constraints (which only take two-valued truth values). But we can directly create
objects of type opt bool. For the Boolean operations ∧ and ∨ we use identity lifting,
and negation (¬) uses absorption lifting like any other unary operator. This defines a
three-valued logic where an absent value has the effect that it neither contributes to
satisfying a proposition nor hinders it. For example, both A∧i> and A∨i> are simply
equivalent to A.

6

This is not a standard three-valued logic, for example while De Morgan’s laws still
hold, distribution of ∧ over ∨, and vice versa do not. Essentially the > value acts as a
context sensitive default value.

Absorption lifting of logical operators corresponds to Kleene’s weak (or Bochvar’s
internal) three-valued logic [10,2]. Unfortunately, absorption lifting does not accord
with our intuition as it makes >∧a C equal to > rather than C. Note that both of the
standard three-valued logics—Łukasiewicz’s [18] and Kleene’s (strong) three-valued
logics—also conflict with our intuition, as they make >∧ true equal to > rather than
true.

N-ary Functions The identity-lifted functions permit the easy definition of many use-
ful n-ary functions over optional variables. For example:

Σ jx j = 0+ x1 + x2 + · · ·+ xn Σ i
jx j = 0+i x1 +

i x2 +
i · · ·+i xn

∀ j.b j = true∧b1∧b2∧·· ·∧bn ∀i j.b j = true∧ib1∧i b2∧i · · ·∧i bn
∃ j.b j = false∨b1∨b2∨·· ·∨bn ∃i j.b j = false∨ib1∨i b2∨i · · ·∨i bn

In these cases, if all variables x j or b j are absent then the result is the default zero,
true or false value. That is, these functions have the type array of opt T → T .

The meaning of an n-ary function where some of the arguments are> is the function
with those arguments omitted, as in the compression interpretation for relations. For
example, an absent value in a forall will not cause it to be false.

In some cases we may wish for an n-ary function of type array of opt T →
opt T , where if all argument values are absent the result is also absent. This is the
only choice for functions where there is no default value, such as minimum.

minimum(X) = min(x1,min(x2, . . .min(xn−1,xn) . . .))
becomes

minimumi(X) = mini(x1,mini(x2, . . .mini(xn−1,xn) . . .))
Thankfully most builtin functions in MINIZINC are either unary, binary, or n-ary

functions resulting from folding binary functions. It is not necessarily obvious how to
extend other functions to option types, and hence we do not propose any lifted meaning
for these, although we could suggest absorption lifting as the default.

For some models it is convenient to make use of the absorption-lifted form of a func-
tion even if it has an identity-lifted form. This can make defining complex interactions
of optional variables more natural.

Example 10. Consider the span constraint [11] on optional tasks: span(s0,d0, [s1, . . . ,sn],
[d1, . . . ,dn]) where si are optional start times and di are durations. The span constraint
ensures that task 0 starts at the earliest start time of any task 1 ≤ i ≤ n and ends at
the last end time, and if none occurs then s0 = >. The start time constraint is cap-
tured by s0 =s minimum([s1, . . . ,sn]). If each of s1, . . . ,sn are> then the minimum func-
tion forces s0 = >. In contrast the end time constraint is not captured by s0 +

i d0 =s
maximum([s1 +

i d1, . . . ,sn +
i dn]) since even absent start times can contribute to the

max if the corresponding duration is large. Instead we need s0+
a d0 =s maximum([s1+

a

d1, . . . ,sn +
a dn]) where +a is the absorption lifted version of the + function. Only the

tasks that occur will contribute to the maximum.

7

3 Using Option Types in MiniZinc

Option types are included in MINIZINC with the addition of a new type constructor
opt, which maps a type to an option version of the type. An ordinary constraint lifted
to option types uses the projection interpretation, and a function lifted to option types
uses absorption lifting, except for the binary operators where identity lifting applies
(and folds over these operators).

3.1 Basic Modelling with Option Types

Two versions of equality are provided for option types: a strong equality =s, denoted =,
which ensures that both sides are identical, and a weak equality =w, denoted ~=, which
also holds if either side is >. The actual value > is represented in models using _ and
has polymorphic type opt $T. But we suggest avoiding using it directly, and instead
provide two (polymorphic) primitive constraints defined on option types:

predicate occurs(var opt $T: x) = not absent(x);
predicate absent(var opt $T: x) = (x = _);

where occurs(x) iff x 6= > and absent(x) iff x = >. Clearly occurs is the negation of
absent. Both are provided for clarity of modelling.

Example 11. A MINIZINC model for flexible job shop scheduling as discussed in Ex-
ample 1 is shown below. Note that the optional variables are used to give start times for
the version of the tasks starting on each machine. The disjunctive constraint is the
version lifted for option types. The alternative constraints are directly defined on
option types; they enforce the span constraint (see Example 10) as well as ensuring at
most one optional task actually occurs. The redundant cumulative constraint ensures
no more than k tasks run at one time. The aim is to minimize the latest end time.

int: horizon; % time horizon
set of int: Time = 0..horizon;
int: n; % number of tasks
set of int: Task = 1..n;
int: k; % number of machines
set of int: Machine = 1..k;
array[Task,Machine] of int: d;
int: maxd = max([d[t,m] | t in Task, m in Machine]);
int: mind = min([d[t,m] | t in Task, m in Machine]);
array[Task] of var Time: S;
array[Task] of var mind..maxd: D;
array[Task,Machine] of var opt Time: O;
constraint forall(m in Machine)

(disjunctive([O[t,m]|t in Task],[d[t,m]|t in Task]);
constraint forall(t in Task)(alternative(S[t],D[t],

[O[t,m]|m in Machine],[d[t,m]|m in Machine]));
constraint cumulative(S,D,[1|i in Task],k);
solve minimize max(t in Task)(S[t] + D[t]);

8

Example 12. A MINIZINC model for the problem of assigning m workers to n tasks
discussed in Example 2 is shown below. The constraint is simply an alldifferent
over optional variables.

int: n; % number of tasks
int: m; % number of workers
array[1..m] of var opt 1..n: w; % task for each worker
constraint alldifferent(w);
solve satisfy;

Example 13. Similarly a MINIZINC model for the compatible worker assignment prob-
lem discussed in Example 3 is shown below.

int: n; % number of tasks
int: m; % number of workers
array[1..m,1..m] of bool: compatible;
array[1..m] of var 1..n: w; % task for each worker
array[1..n] of var opt 1..m: t; % worker for each task
constraint inverse(w,t);
constraint forall(j in 1..n-1)(compatible[t[j],t[j+1]]);
solve satisfy;

Example 14. The span constraint of Example 10 can be expressed as shown below,
where ~+ is a new operator added to MINIZINC to encode absorption lifted addition.

predicate span(var opt Time:s0, var int: d0,
array[int] of var opt Time:s, array[int] of int:d) =

s0 = min(s) /\
(absent(s0) -> d0 = 0) /\
s0 ~+ d0 = max([s[i] ~+ d[i] | i in index_set(s)]);

The first line makes use of strong equality to ensure that s0 is absent if each of the
tasks in s is absent. The second line of the definition ensures that if the spanning task is
absent, then its duration is fixed (to zero). The third line use absorption lifted + (written
~+) to constrain the end time. We can define alternative using span.

3.2 Extending Comprehension Syntax using Option Types

A significant advantage of the addition of option types for MINIZINC is that it allows us
to increase the expressiveness of comprehensions in the language. At present an array
comprehension expression of the form [f (i) | i in S where c(i)] requires that S is a fixed
set and c(i) is a condition that does not depend on decision variables (has type/mode
par bool). Once we include option types this can be relaxed.

Suppose f (i) is of type T . We allow c(i) to be dependent on decisions (type/mode
var bool) by modifying the array comprehension to output an array of opt T rather
than an array of T , with the interpretation that if c(i) = false then f (i) is replaced by>.

9

Hence we rewrite [f (i) | i in S where c(i)] as1

[if c(i) then f (i) else > endif | i in S]

Once we have extended the where clause to be decision dependent it is straightfor-
ward to also support comprehensions where the set S is itself a decision variable. The
comprehension [f (i) | i in S where c(i)] where S is a set decision variable is equiva-
lent to [f (i) | i in ub(S) where i ∈ S∧ c(i)] where ub(S) returns an upper bound on
the set S. Note that all set variables in MINIZINC are guaranteed to have a known finite
upper bound. Generating comprehensions over variable sets can be highly convenient
for modelling. The constraint language ESSENCE [7] has a similar feature but only for
specific functions like sum. In MINIZINC since comprehensions generate arrays that
can be then used as arguments to any predicate or function, this is impossible without
option types.

Example 15. Consider the Balanced Academic Curriculum problem [4] (problem 30 in
CSPlib (www.csplib.org)). The computation of the total load T [s] of a student s,
taking courses C[s] where course c has load L[c], is usually defined in MINIZINC as

array[Student] of var set of Course: C;
constraint forall(s in Student)

(T[s] = sum(c in Course)(bool2int(c in C[s])*L[c]));

but a more natural formulation is simply

array[Student] of var set of Course: C;
constraint forall(s in Student)(T[s] = sum(c in C[s])(L[c]));

which can be transformed automatically to

array[Student] of var set of Course: C;
constraint forall(s in Student)

(T[s] = sum(c in Course)
(if c in C[s] then L[c] else _ endif));

The sum is now over optional integers. We can use the same syntax even for a user
defined function, e.g. if we are interested in calculating average course load A[s]

constraint forall(s in Student)(A[s] = average(c in C[s])(L[c]));
function var float: average(array[int] of var opt int:x) =

int2float(sum(x)) /
sum([1.0 | i in index_set(x) where occurs(x[i])]);

This also allows us to use option types to express open global constraints in a closed
world [9], that is global constraints that act on a set of variables which is part of the
decisions made, but is bounded. For example if the set decision variable S holds the set
of indices of variables x to be made all different, we can express this as

1 To support this we need to extend if-then-else-endif in MINIZINC to allow non-
parametric tests, or use the alternate translation [>, f (i)][bool2int(c(i))+1] (that is, an array
lookup returning > if c(i) is false and f (i) otherwise).

10

www.csplib.org

constraint alldifferent([x[i] | i in S]);

which becomes

constraint alldifferent([if i in S then x[i] else _ endif |
i in ub(S)]);

creating a call to lifted alldifferent with exactly the right behaviour (variables
whose index is not in S are ignored).

4 Implementing Option Types in MiniZinc

Changes to MINIZINC to support option types are surprisingly small. The major change
is the addition of the opt type constructor to the language and an additional automatic
coercion from type T to opt T , and the extension of type inference to handle the new
type constructor and coercion.

The remainder of the changes are simply adding a library of lifted definitions of
predicates and functions to the system. In this library a decomposition is defined for
each of the FLATZINC predicates lifted to option types. Similarly the global constraints
of MINIZINC are defined in a library lifted to option types.

4.1 Rewriting Option Type Variables

Critically the option type library translates away option types so that underlying solvers
do not need to support (and indeed never see) option types. The key to translation is
replacing a variable x of type opt T by two variables: a Boolean ox encoding occurs(x),
and vx of type T encoding the value of x if it is not>. If the optional variable x does not
occur then ox = false and the value vx is left unconstrained.

These are encoded using special functions vx = deopt(x) and ox = occurs(x). These
two functions are the “primitive” operations on option variables. They are used as terms
to represent the encoding, and rely on common subexpression elimination to ensure
that there is a unique representation for each optional variable x. These functions are
extended to arrays of variables in the natural way. Only in the last stage of transla-
tion to FLATZINC are these expressions replaced by new FLATZINC variables. Finally,
variables on option types are removed if they do not appear in any constraints in the
resulting FLATZINC model.

4.2 Lifting Constraints

Given this encoding we can lift constraints automatically according to the projection
interpretation. Existential quantification corresponds to introducing fresh variables in
a let expression. For example, given a predicate p(array[int] of var int: x,

var int: y), the MINIZINC compiler could automatically generate the lifted version

predicate p(array[int] of var opt int: x, var opt int: y) =
let { array[index_set(x)] of var int: xx; constraint xx ~= x;

var int: yy; constraint yy ~= y; } in p(xx,yy);

11

Although this automatic lifting would be correct, we can often define better versions
of lifted constraints that avoid introducing all those temporary variables.

Example 16. The lifted version on integer disequality int_ne can be defined without
introducing additional variables as

predicate int_ne(var opt int: x, var opt int: y) =
(occurs(x) /\ occurs(y)) -> (deopt(x) != deopt(y));

It simply enforces the disequality if both optional variables occur. Similar definitions
exist for all primitive constraints.

4.3 Global Constraints over Option Types

Using the usual MINIZINC rewriting capabilities we can define default decompositions
for global constraints over option types. In many cases these can be the same as the
regular decomposition.

Example 17. The standard decomposition for alldifferent is given below rewritten
for option types by adding opt to the type.

predicate alldifferent(array[int] of var opt int: x) =
forall(i,j in index_set(x) where i < j)(x[i] != x[j]);

This gives a correct implementation since the calls to != will be replaced by int_ne
over option types, as defined above in Example 16.

For certain global constraints we may be able to do better than simply reusing a
standard decomposition.

Example 18. If the underlying solver supports alldifferent_except_0 we can
use that to translate alldifferent on optional variables. In the new array ox, we
shift the values of the original array x to be above 0 and map > for x variables to 0.

predicate alldifferent(array[int] of var opt int: x) =
let { int: l = lb_array(x); int: u = ub_array(x);

array[index_set(x)] of var 0..u-l+1: ox; } in
alldifferent_except_0(ox) /\
forall(i in index_set(x))

((absent(x[i]) -> ox[i] = 0) /\
(occurs(x[i]) -> ox[i] = deopt(x[i])-l+1));

Example 19. A solver supporting the cumulative constraint could implement the
disjunctive constraint by modelling absent tasks as using zero resources:

predicate disjunctive(array[int] of var opt int: s,
array[int] of int: d) =

cumulative(deopt(s),d,
[bool2int(occurs(s[i])) | i in index_set(s)],1);

12

4.4 Native Support for Option Types

To achieve better performance, solvers that natively support some option types can de-
fine predicates directly (without decomposition) and they will be passed directly to the
FLATZINC model used by the solver. In order to mix the usage of option types where
some functions and predicates are natively supported and some are not, we require
solvers that natively support option types to natively support the primitive functions
deopt(x) and occurs(x).

Example 20. For a solver that natively supports optional tasks we can add this declara-
tion to its globals library to pass the disjunctive constraint directly to the solver:

predicate disjunctive(array[int] of var opt int: s,
array[int] of int: d);

4.5 Different Encodings

An alternative encoding of option integer type variables (see [17] for details) is to re-
place each optional integer variable x ranging over b..e by a Boolean ox = occurs(x)
(as before) and two integer variables lx = lower(x) ranging over b..e + 1 encoding
the lower bound on x if it occurs, and ux = upper(x) ranging over b− 1..e encoding
the upper bound if it occurs. These are related by ox ↔ lx = ux, ¬ox → lx = e + 1,
¬ox → ux = b− 1. Propagators are extended to enforce lower bounds on x as lower
bounds on lx, and never enforce a lower bound greater than e. Similarly upper bounds
on x are enforced as upper bounds on ux and never less than b− 1. The advantage of
this representation is that in a CP solver with explanation [15] there are literals encoding
optional lower bounds [lx ≥ d] and optional upper bounds [ux ≤ d].

Example 21. Using this alternate encoding we can define the disjunctive constraint to
make use of a builtin disjunctive on these variables opt3_disjunctive

predicate disjunctive(array[int] of var opt int: s,
array[int] of int: d) =

opt3_disjunctive([occurs(s[i]) | i in index_set(s)],
[lower(s[i]) | i in index_set(s)],
[upper(s[i]) | i in index_set(s)], d);

5 Experiments

In this section, we show that models involving optional variables yield efficient solver-
level models, comparable in performance to a manual encoding of optionality. We have
extended our MINIZINC compiler to handle option types as described in Sect. 4.

As an experiment, we model the flexible job shop scheduling problem as in Exam-
ple 11 and solve it using a lazy clause generation solver, which is the state of the art
for flexible job shop problems as described in [17]. The alternative constraints are
implemented using a decomposition into element constraints. For the disjunctive
constraints, we use the three-variable encoding from Sect. 4.5 and compare it with the
following simple decomposition:

13

Table 1. Experimental results

Instance decomposition global hand-written [17]
objective runtime #CP objective runtime #CP objective runtime #CP

fattahi/mfjs1 468* 1.60s 8250 468* 1.01s 387 468* 0.97s 388
fattahi/mfjs2 446* 1.53s 10133 446* 1.00s 327 446* 1.01s 330
fattahi/mfjs3 466* 4.49s 24506 466* 3.10s 681 466* 3.37s 697
fattahi/mfjs4 554* 8.84s 24546 554* 7.24s 1024 554* 6.98s 964
fattahi/mfjs5 514* 8.67s 23399 514* 7.30s 881 514* 7.20s 900
fattahi/mfjs6 634* 41.85s 37025 634* 33.70s 3666 634* 32.30s 3474
fattahi/mfjs7 959 — — 909 — — 909 — —
fattahi/mfjs8 1095 — — 889 — — 889 — —
fattahi/mfjs9 1466 — — 1123 — — 1123 — —
fattahi/mfjs10 1609 — — 1395 — — 1395 — —

predicate disjunctive(array[int] of var opt int: s,
array[int] of int: d) =

forall (i,j in index_set(s) where i<j)
(s[i] ~+ d[i] <= s[j] \/ s[j] ~+ d[j] <= s[i]);

Table 1 compares the results of running the lazyfd G12 solver [5] on the same
MINIZINC model using option types with two alternate definitions for disjunctive:
the decomposition and a global using opt3_disjunctive from Section 4.5. The
mapping to FLATZINC without option types is managed completely automatically. We
compare against the hand-written MiniZinc model (hand-written) used in [17], which
uses the same global constraint but with a manual encoding of the option types. Un-
like [17], we use a fixed search in order to test the difference between the models. We
compare the best objective value found (a * indicates the optimal value was proven),
the runtime (or — for > 600s), and the number of choice points (#CP). Comparing the
results shows that the automatic three-variable disjunctive decomposition matches
the performance of the hand-written models from [17], the only difference being a slight
variation in the explored search tree. The models using the simple decomposition, which
can be used with any solver even if it does not support the global disjunctive constraint
with optional tasks, scale quite well at least for the smaller examples.

6 Related Work and Conclusion

Modelling dependent decisions by hand is common in constraint programming, and
arguably accounts for many models using implication to control whether constraints are
active or not. Optional tasks [11,12] were explicitly added to the modelling language
OPL to handle the common case of scheduling with optional variables. They correspond
to option tuple types (start, duration, end) rather than optional start times we use here.
When MINIZINC is extended to handle tuple types, we will be able to model optional
tasks in exactly the same manner.

Conditional constraint satisfaction problems (CCSPs) [13,8] are strongly related
to option types. A CCSP is a CSP with control on which variables are active; i.e.,

14

participate in a solution. It splits the variables V into an initial always active set VI ,
and a possibly active set VP, and splits constraints into regular compatibility constraints
and activity constraints, which control which variables need to take a value. Activity
constraints can be of the form c incl−→ v meaning if c holds v is active, and c excl−→ v meaning
if c holds v is inactive. A compatibility constraint is relevant if all of its variables are
active; irrelevant constraints are not imposed. We can straightforwardly model CCSPs
using option types. Variables in VP are lifted to option types. A compatibility constraint
c is relevant if rel(c)≡ ∧v∈vars(c)∩VP occurs(v), and is modelled as rel(c)→ c. Activity
constraints are modelled directly as rel(c)∧c→ occurs(v) for inclusion and rel(c)∧c→
absent(v) for exclusion. Since conditional CSPs build on a traditional CSP framework
they don’t consider global constraints and complex Boolean and integer expressions
and hence they in effect use a very simple form of constraint lifting, relevance, which
is analogous to absorption lifting. This lifting does not give the behaviour we want for
optional tasks for example.

Previous work [16] has attempted to reformulate CCSPs into ordinary CSPs by
adding a “null” value to the domains of possibly active variables. This approach was
necessary because the constraint solvers used in that work only supported extensional
table constraints. Our approach generates implications involving arbitrary constraints,
which builds on the support for reification in MINIZINC.

Recently Caballero et al [3] built a transformation that allows the user to extend
base types of MINIZINC (float, int and bool) with additional values and map them
to MINIZINC. This could be used to implement option base types, but the meaning of
extended constraints and functions is left to the user to define. The work is very similar
in flavor; there the type extension is more general, and the meaning defined by the user,
while the translation to base MINIZINC is fixed. Here the extension is fixed—and a
strong contribution is to define the meaning of the extension—while the translation to
MINIZINC can be redefined.

Option types share some similarities to the treatment of partial functions in the
relational semantics [6] adopted by MINIZINC. Partial functions introduce an unde-
fined element⊥ which in the relational semantics percolates up to the nearest enclosing
Boolean context, where it is treated as false. Option types are more complex, the ex-
tra value > percolates up to where there is an identity element, then acts like identity.
A four-valued treatment of the semantics of MINIZINC would be ideal, but would not
match the reality of the underlying two-valued solving technology.

Option types are a simple yet powerful addition to a modelling language. They allow
concise and natural expression of circumstances where some decisions are irrelevant if
other decisions are not made. Adding option types to MINIZINC turns out to be surpris-
ingly easy, and also allows us to extend the comprehension syntax. We can use option
types to recreate the state-of-the-art solution to flexible job shop scheduling problems.

Acknowledgments

NICTA is funded by the Australian Government through the Department of Commu-
nications and the Australian Research Council through the ICT Centre of Excellence
Program.

15

References

1. Beldiceanu, N., Carlsson, M., Demassey, S., Petit, T.: Global constraint catalogue: Past,
present and future. Constraints 12(1), 21–62 (2007)

2. Bochvar, D., Bergmann, M.: On a three-valued logical calculus and its application to the
analysis of the paradoxes of the classical extended functional calculus. History and Philoso-
phy of Logic 2, 87–112 (1981)

3. Caballero, R., Stuckey, P.J., Tenoria-Fornes, A.: Finite type extensions in constraint program-
ming. In: Schrijvers, T. (ed.) PPDP 2013. pp. 217–228. ACM Press (2013)

4. Castro, C., Manzano, S.: Variable and value ordering when solving balanced academic cur-
riculum problems. http://arxiv.org/abs/cs/0110007 (2001)

5. Feydy, T., Stuckey, P.: Lazy clause generation reengineered. In: Gent, I. (ed.) CP 2009.
LNCS, vol. 5732, pp. 352–366. Springer (2009)

6. Frisch, A., Stuckey, P.: The proper treatment of undefinedness in constraint languages. In:
Gent, I. (ed.) Proceedings of the 15th International Conference on Principles and Practice of
Constraint Programming. LNCS, vol. 5732, pp. 367–382. Springer (2009)

7. Frisch, A.M., Harvey, W., Jefferson, C., Hernández, B.M., Miguel, I.: Essence : A constraint
language for specifying combinatorial problems. Constraints 13(3), 268–306 (2008)

8. Geller, F., Veksler, M.: Assumption-based pruning in conditional CSP. In: van Beek, P. (ed.)
CP 2005. LNCS, vol. 3709, pp. 241–255. Springer (2005)

9. van Hoeve, W.J., Régin, J.C.: Open constraints in a closed world. In: Beck, J.C., Smith, B.M.
(eds.) CPAIOR 2006. LNCS, vol. 3990, pp. 244–257. Springer (2006)

10. Kleene, S.C.: Introduction to Metamathematics. North Holland (1952)
11. Laborie, P., Rogerie, J.: Reasoning with conditional time-intervals. In: Wilson, D.C., Lane,

H.C. (eds.) FLAIRS 2008. pp. 555–560. AAAI Press (2008)
12. Laborie, P., Rogerie, J., Shaw, P., Vilím, P.: Reasoning with conditional time-intervals part

II: An algebraical model for resources. In: Lane, H.C., Guesgen, H.W. (eds.) FLAIRS 2009.
pp. 201–206. AAAI Press (2009)

13. Mittal, S., Falkenhainer, B.: Dynamic constraint satisfaction problems. In: Proceedings of
the National Conference on Artificial Intelligence (AAAI). pp. 25–32 (1990)

14. Nethercote, N., Stuckey, P., Becket, R., Brand, S., Duck, G., Tack, G.: MiniZinc: Towards
a standard CP modelling language. In: Bessiere, C. (ed.) CP 2007. LNCS, vol. 4741, pp.
529–543. Springer (2007)

15. Ohrimenko, O., Stuckey, P., Codish, M.: Propagation via lazy clause generation. Constraints
14(3), 357–391 (2009)

16. Sabin, M., Freuder, E., Wallace, R.: Greater efficiency for conditional constraint satisfaction.
In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 649–663. Springer (2003)

17. Schutt, A., Feydy, T., Stuckey, P.J.: Scheduling optional tasks with explanation. In: Schulte,
C. (ed.) CP 2013. LNCS, vol. 8124, pp. 628–644. Springer (2013)

18. Łukasiewicz, J.: On three-valued logic. In: Borkowski, L. (ed.) Selected works by Jan
Łukasiewicz, pp. 87–88. North Holland (1970)

16

	Modelling with Option Types in MiniZinc

